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ABSTRACT

Graphs offer unique insights into relationships and interactions between entities,
complementing data modalities like text, images, and videos. By incorporating
relational information from graph data, AI models can extend their capabilities
beyond traditional tasks. However, relational data in sensitive domains such as
finance and healthcare often contain private information, making privacy preser-
vation crucial. Existing privacy-preserving methods, such as DP-SGD, which rely
on gradient decoupling assumptions, are not well-suited for relational learning
due to the inherent dependencies between coupled training samples. To address
this challenge, we propose a privacy-preserving relational learning pipeline that
decouples dependencies in sampled relations during training, ensuring differen-
tial privacy through a tailored application of DP-SGD. We apply this method to
fine-tune large language models (LLMs) on sensitive graph data, and tackle the
associated computational complexities. Our approach is evaluated on LLMs of
varying sizes (e.g., BERT, Llama2) using real-world relational data from four text-
attributed graphs. The results demonstrate significant improvements in relational
learning tasks, all while maintaining robust privacy guarantees during training.
Additionally, we explore the trade-offs between privacy, utility, and computational
efficiency, offering insights into the practical deployment of our approach.

1 INTRODUCTION

Graph data, commonly used to represent relationships between entities, are widely employed to
model complex systems in the real world (Leskovec et al., 2007; Kwak et al., 2010; Shamsi et al.,
2022; Madani et al., 2022). In AI applications, the relationships captured by graph structures provide
complementary information to foundation models pretrained on other modalities, such as text and
images, enabling these models to more effectively handle tasks involving multiple entities (Brown
et al., 2020; Dosovitskiy et al., 2020; Zhang et al., 2024; Madan et al., 2024). For instance, models
trained on product descriptions or pictures may not fully capture the relationships revealed by user
behaviors, such as co-purchases or co-viewings. Incorporating such relational information allows
AI models to better meet users’ needs, e.g., in product recommendations. Models pretrained on text
or images and subsequently fine-tuned with relational information from graphs have recently found
applications in various domains (Ling et al., 2023), including healthcare (Wu et al., 2021; Zhang
et al., 2022; Gao et al., 2023), finance (Ouyang et al., 2024), and computer vision (Li et al., 2023a).
However, the relationships involved in these applications often contain sensitive personal informa-
tion, such as social connections for recommendations (Zheng et al., 2022), patient-hospital visits for
clinical diagnosis (Lu & Uddin, 2023), and financial transactions for fraud detection (Kurshan &
Shen, 2020). This raises critical concerns about how to protect the privacy of relational data when
exposed to AI models, motivating the research in this work.

Differential Privacy (DP) (Dwork, 2006; Dwork et al., 2014) is widely considered the gold standard
for measuring the privacy guarantees of data-processing algorithms (Xu et al., 2021; Pan et al.,
2024). Current DP methods for model training, such as DP-SGD (Song et al., 2013; Abadi et al.,
2016; Ponomareva et al., 2023), are primarily designed for tasks other than relational learning. DP-
SGD, in particular, operates under the assumption that the gradient in each training step can be
decoupled with respect to individual training samples that require privacy protection. Under this
assumption, DP-SGD controls the norm of the gradient induced by each sample, obfuscates it by
adding Gaussian noise, and thus ensures a privacy guarantee. However, relational learning on graphs
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Figure 1: Learning from a domain rich in relational information (graph edges) with differential pri-
vacy and testing in new domains with limited relational information between entities. The privacy-
preserving challenge in relational learning: Each loss term typically involves coupled relations
through negative sampling in a mini-batch B, where perturbing one relation (e.g., adding (u, v)
to or removing (u,w) from the set E) may affect multiple loss terms in the same batch. Decoupled
sampling limits such perturbation to affect at most one relation tuple Ei in a mini-batch.

introduces unique challenges because each loss term typically involves multiple relationships (e.g.,
positive and negative relationships), and each relationship involves multiple entities. Consequently,
the gradient in relational learning cannot be decomposed into specific privacy-preserved samples,
which violates the per-sample decoupling assumption, rendering DP-SGD not directly applicable.

Recent studies on privacy-preserving training of graph neural networks (GNNs) (Daigavane et al.,
2021; Olatunji et al., 2021; Sajadmanesh & Gatica-Perez, 2021; Mueller et al., 2022; Sajadmanesh
et al., 2023; Sajadmanesh & Gatica-Perez, 2024; Chien et al., 2024) do not address the issue at hand,
though they also work with relational data. These works focus on training based on node classifica-
tion labels, where the loss term can still be decomposed for specific nodes given the representations
of these nodes output by GNNs. Their methods, which obfuscate the message-passing process to
prevent privacy leakage during GNN encoding, do not mitigate privacy risks arising from relational
learning—on the supervision side—where the loss term cannot be decomposed.

This study aims to introduce a privacy-preserving relational learning pipeline to address this gap.
In relational learning, each loss term typically involves an observed relation (represented by edges
in the graph), paired with one or more missing relations for contrast. The traditional coupled sam-
pling of observed and missing relations means that removing or adding an observed relation will
impact the gradients of multiple loss terms within the sampling batch, leading to significant privacy
leakage. Our key insight is to decouple the sampling process for observed and missing relations.
By doing so, we ensure that removing or adding an observed relation affects at most one loss term,
thereby limiting the sensitivity of data perturbation in relational learning. This approach makes it
theoretically compatible with the privacy accounting of the DP-SGD framework.

As an application, we apply this approach to privacy-preserving fine-tuning of large pretrained mod-
els using graph data, choosing LLMs as a proof of concept since many relational datasets involve
entities with rich textual attributes. While modern privacy libraries like Opacus (Yousefpour et al.,
2021), TensorFlow Privacy (McMahan et al., 2018), and JAX Privacy (Balle et al., 2022) support
per-sample gradient computation for applying DP-SGD, each loss term in relational learning in-
volves multiple entities (denoted by K), and each entity with textual attributes contains multiple
tokens (denoted by M ). Naively computing per-sample gradients results in keeping O(KM) gra-
dient copies in memory per loss term. Even with parameter-efficient fine-tuning (PEFT) techniques
like LoRA (Hu et al., 2021), modern GPUs encounter out-of-memory issues with moderate batch
sizes. However, larger batch sizes are empirically preferred to enhance privacy preservation (Li et al.,
2021; Anil et al., 2021; Räisä et al., 2024). To address this challenge, we propose to hook low-rank
representations of individual token gradients and directly compute per-loss-term gradients, thereby
eliminating the instantiation of O(KM) gradients. This approach significantly alleviates memory
constraints, enabling more efficient privacy-preserving fine-tuning.

We evaluate our approach by testing whether LLMs can learn from private domains rich in rela-
tional data and enhance performance on relational learning tasks in new domains that lack relational
information between entities, which often occurs in cold-start recommendation (Bobadilla et al.,
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2012) and zero-shot relational learning (Cai et al., 2024). Using real-world relational data from four
text-attributed graphs, we fine-tune BERT (Devlin et al., 2018) and Llama2 (Touvron et al., 2023)
at various model sizes (110M, 340M, 7B) under different levels of DP (ϵ ≤ 10) to stimulate two use
cases of cross-category co-purchase recommendation and cross-regional model deployment. Our
results demonstrate that LLMs can effectively learn from relational data to address relational learn-
ing tasks, even when working with sensitive data that requires DP guarantees. Additionally, we
investigate the trade-offs between utility, privacy, and computational efficiency in LLM-based rela-
tional learning, extending existing research of privacy-preserving learning with LLMs on standard
(non-relational) text data (Li et al., 2021). These findings offer valuable insights for the practical
deployment of LLMs in privacy-preserving relational learning scenarios.

2 PRELIMINARIES: NOTATIONS AND STANDARD LEARNING VIA DP-SGD

Graph (V, E , X) consists of a relation set E that describes the relationship between entities in V =
[N ]. Each entity v ∈ V is associated with an attribute Xv of text, images, or other data modalities.
Definition 2.1 ((ϵ, δ)-Differential Privacy). A randomized mechanism M satisfies an (ϵ, δ)-
differential privacy if for any adjacent datasets D,D′ that differ in one sample, and any output
set S ⊂ Range(M), Pr(M(D) ∈ S) ≤ exp(ϵ) Pr(M(D′) ∈ S) + δ, where ε, δ ≥ 0 measure the
privacy loss. Smaller values of ϵ, δ imply stronger privacy guarantees.

The notion of adjacent datasets can be generalized to relational data. Specifically, two relation sets
E , E ′ are considered adjacent if one can be obtained from the other by adding or removing a relation.
We provide the formal definition of DP guaranteed in this work in Sec. 3.1.

Standard DP Learning Paradigm. To achieve data privacy for training deep learning models,
DP-SGD (see Alg. 2, Song et al. (2013); Abadi et al. (2016)) was proposed. Consider a mini-batch
B with b samples. The model parameter Θ is updated iteratively as Θt+1 = Θt−ηgt(B), where η is
the learning rate, and gt(B) = ∂ℓ(Θt;B)/∂Θt is the gradient of the loss ℓ on B w.r.t the parameters
Θt at step t. Adding or removing one sample from B can change g(B), causing privacy leakage that
can be measured by the sensitivity ∆2 = maxB,B′ ||g(B) − g(B′)||2, where B′ and B are different
in one sample |(B\B′) ∪ (B′\B)| = 1. DP-SGD first clips per-sample gradients to control the
sensitivity and then adds Gaussian noise to obfuscate the potential change to achieve DP,

g̃(B) = 1

b

[∑

xi∈B
Clip(g(xi), C) +N (0, σ2C2I)

]
,

where g(xi) is the parameter gradient of the loss on example xi, Clip(g, C) = g/max(1, ||g||2/C)
for some constant C > 0. Clipping per-sample gradients limits the sensitivity to at most C. Then, the
Gaussian noise with standard deviation σC is added to achieve DP based on the Gaussian mechanism
for this step (Dwork et al., 2014). To obtain the DP guarantee for the entire training procedure, the
composition theorem (Balle & Wang, 2018) is used to account for the total privacy loss over T steps.
Mini-batch sampling also allows for some privacy amplification, for which interested readers may
check relevant works for more details (Balle et al., 2018; Wang et al., 2019).

3 METHODOLOGY

In this section, we first introduce the technical difficulty of applying standard DP-SGD when training
models in relational learning. Then, we propose a pipeline that addresses this difficulty and can
provably achieve differential privacy in learning from the relational data. To apply our proposed
pipeline to fine-tune large pretrained language models on text-attributed graphs, we further address
the computing challenge induced by the control of gradient sensitivity.

3.1 CHALLENGES IN PRIVATE RELATIONAL LEARNING

Enhance Models with Relational Data Relational data provide complementary information to
models trained on a specific modality, enabling them to more effectively handle tasks involving
multiple entities. Suppose the representation of each entity u is obtained from a model parameterized

3
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by Θ encoding its attribute, i.e., hu = fΘ(Xu). A common approach of relational learning is to
use relationships between entities to refine their representations (Yasunaga et al., 2022b; Duan et al.,
2023; Xie et al., 2023). This is typically achieved via training based on a loss ℓ that can be generally
written as the following form (Hadsell et al., 2006; Schroff et al., 2015; Song et al., 2015; Sohn,
2016; Ying et al., 2018; Oord et al., 2018). Given a tuple Ei, consisting of an observed (positive)
relation e+i ∈ E and several missing (negative) relations {e−ij}kj=1 where e−ij /∈ E , the loss is
denoted as ℓ(Θ;Ei). For a mini-batch B of tuples, the loss sum for B is computed as

LΘ(B) =
∑

Ei∈B
ℓ(Θ;Ei) =

∑

Ei∈B
ℓ(Θ; (e+i , {e−i1 , . . . , e

−
ik
})). (1)

For convenience, let ze = Γ(hu,hw) denote the combined representations of entities in each
relationship. One popular choice of ℓ is the InfoNCE loss (Oord et al., 2018): ℓ(Θ;Ei) =

− ln
(
exp(ze+i

)/
∑

e′∈Ei
exp(ze′)

)
. Another choice is the pairwise Hinge loss ℓ(Θ;Ei) = [γ +

ze+i
− ze−ij

]+ which is commonly used for learning from complex multi-relations in knowledge

graphs (Bordes et al., 2013; Wang et al., 2014; Yang et al., 2014; Lin et al., 2015). Here, γ repre-
sents the margin, and ze also encodes the representation of the relationship besides the entities. Note
that our method for relational learning may even be extended to the case where each relationship
contains more than two entities, such as network motifs (Milo et al., 2002; Benson et al., 2016) and
hyperedges (Berge, 1984), although the later discussion focuses on pairwise relationships.

Relational Learning with Different Privacy For relational learning, the information subjected to
be protected is the existence of a relation e in the relation set E , formally defined as follows.

Definition 3.1. (DP for Relational Data) An (ϵ, δ)-DP algorithm for relational data ensures that
the output obtained from a randomized mechanism M : X → Y for any adjacent relation sets
E , E ′ ∼ X and measurable sets Y ⊂ Y satisfy: Pr[M(E) ∈ Y ] ≤ eϵPr[M(E ′) ∈ Y ] + δ.

Achieving DP for relational data limits the ability of the best possible adversary to uncover any
specific relationship between entities used for training from the model parameters. When the set of
relations is defined by a plain graph, the above concept reduces to the definition of edge-level DP
widely used in privacy-preserving graph algorithms (Hay et al., 2009).

Recall that DP-SGD relies on clipping per-sample gradients to bound the sensitivity of the gradient
sum of a mini-batch. For relational learning, the gradient sum g(B) of mini-batch B is given by

g(B) = ∂LΘ(B)
∂Θ

=
∑

Ei∈B
g(Ei) =

∑

Ei∈B

[
∂ℓ(Θ;Ei)

∂ze+i
·
∂ze+i
∂Θ

︸ ︷︷ ︸
Positive Relation

+

k∑

j=1


∂ℓ(Θ;Ei)

∂ze−ij

·
∂ze−ij
∂Θ




︸ ︷︷ ︸
Negative Relations

]
. (2)

The challenge comes from the fact that practical sampling of negative relations is usually coupled
with positive relations in the same mini-batch. As a result, removing or adding a positive relation
e ∈ E will not only change the tuple Ei that contains e but also potentially affect other tuples in
B. The impact on multiple terms in the sum of gradients in Eq. (2) prohibits us from properly
controlling the sensitivity of g(B) by clipping each individual gradient g(Ei).

Specifically, for a mini-batch B, negative relations in Eq. (1) are typically sampled by two methods
(also illustrated in Fig. 1, Right): Random Negative Sampling is a widely used method for negative
sampling (Yang et al., 2024). Given a positive relation e+i = (u,w), it uniformly samples negative
relations containing either entity u or w from the complement set Ē =

(V
2

)
\E , e.g., e−ij = (u, v) ∈

Ē . This method requires access to E to compute Ē for negative sampling and makes the sampled
negative relations dependent on the positive relations that share common entities. If an originally
negative relation (u, v) is added as a positive relation to E , all tuples in B that previously sampled
(u, v) as negative relations will change. In the worst case, it may affect the entire mini-batch,
introducing large sensitivity that cannot be properly controlled via per-sample gradient clipping. In-
batch Negative Sampling is another even more widely adopted method for training large models due
to its computational efficiency (Chen et al., 2020; You et al., 2020; Gao et al., 2021) but suffers from
a similar issue. It does not need the access of E for negative sampling. Instead, it implicitly samples
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negatives by pairing all other positive relations sampled in the same mini-batch with one end of e+i
as negative relations. This could be as bad as impacting the whole mini-batch when perturbing one
positive relation: If a positive relation e+i ∈ B is removed, the loss of every other tuple Ej in B will
be impacted as the entities in e+i may be used to form the negative relations in Ej .

3.2 PRIVACY-PRESERVING RELATIONAL LEARNING

To address the challenges, we propose to decouple the negative sampling from the set of positive
relations. The idea is simple but effective. Specifically, for each tuple Ei, we sample negative
relations for contrast by randomly pairing one end of the positive relation e+i with entities sampled
uniformly at random from the whole entity set V . This method neither needs access to the relation
set E nor leverages other positive relations in the same mini-batch for negative sampling, which
eliminates the coupling effect aforementioned in Sec. 3.1. Note that this pairing strategy may
generate negative relations (u, v) that are actually positive relations (u, v) ∈ E but with a low
probability. Fortunately, our experiments show this does not obviously hurt the model performance.

Now, removing or adding a positive relation will change at most one tuple Ei in a mini-batch, and
hence, by clipping the norm of the gradient of each tuple g(Ei), we are able to bound the sensitivity
of the gradient sum g(B): The k-many negative relations {e−ij}kj=1 also contribute to the gradient
computation g(B), but in this new strategy, they only depend on the positive relation e+i in the same
tuple and their effect is bounded through clipping g(Ei). This sampling method is compatible with
DP-SGD: Each aggregated gradient g(Ei) in a mini-batch is clipped and noised as

g̃(B) = 1

b

[ ∑

Ei∈B
Clip (g(Ei), C) +N (0, σ2C2I)

]
. (3)

With decoupled negative sampling and gradient obfuscation via Eq. (3), the privacy analysis of
standard DP-SGD holds for relational learning, since each relation e ∈ E influences the gradient
sum at most C. The full pipeline to achieve (ϵ, δ)-DP for relational learning is described in Alg. 1.

However, per-sample gradients are practically hard to compute as the gradient coming from each
training sample needs to be properly tracked. This becomes even more challenging in relational
learning. Modern privacy libraries such as Opacus (Yousefpour et al., 2021) support hooking the
parameter gradient through a training sample when one sample takes only one data point. However,
for relational learning, they can be only used to hook the parameter gradient through each entity
g(u|e′, Ei) =

∂ℓ(Θ;Ei)
∂ze′

· ∂ze′
∂hu
· ∂hu

∂Θ during a backward pass (Yousefpour et al., 2021). This means
that the gradient g(Ei) of model parameters through one tuple needs to be calculated through mul-
tiple entities in this tuple, i.e., g(Ei) =

∑
e′∈Ei

∑
u∈e′ g(u|e′, Ei). Computing and caching each

g(u|e′, Ei) incurs significant computational overhead for tuples of large sizes k. This issue becomes
more serious for training large models. Next, we aim to address this computational problem.

3.3 EFFICIENT PRIVACY COMPUTING IN RELATIONAL LEARNING

Modern graph and relational datasets involve entities with rich textual attributes (Jin et al., 2023a),
which makes finetuning LLMs a great application for our privacy-preserving relational learning
pipeline. However, this introduces a further challenging issue in computation when we work with
LLMs. Specifically, when applying DP-SGD to the models that take in multiple tokens, such as
Transformers (Vaswani et al., 2017), the parameter gradient through each token prediction will be
hooked. This means when our method is applied to LLMs, the parameter gradient through each
token m in each entity u is actually hooked, which introduces huge memory consumption. Prior
works (Lee & Kifer, 2021; Li et al., 2021) proposed some strategies to address this issue for LLM
finetuning on plain text data, but we find that these techniques are insufficient for relational learning:
Relational learning introduces another dimension of tuple size k as discussed in Sec. 3.2.

Next, we present a customized approach for efficiently computing the per-tuple gradient g(E) for
linear and embedding layers of Transformers in relational learning, which leverages the low-rank
characterization of per-sample gradient (Goodfellow, 2015) and the structure of the per-tuple gradi-
ent g(E) in relational learning.
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Algorithm 1: Model Fine-tuning on Relational Data with Differential Privacy
Input: pretrained model fΘ (e.g., LLMs), graph G = (V, E , X), scoring function Γ, loss
function ℓ; Parameters: learning rate ηt, batch size b, number of negative samples k, gradient
norm threshold C, noise multiplier σ or privacy budget ϵ.
Initialize find the optimal value of σ via calibration if ϵ is given.
for t = 1 to T do

Subsampling
I. Randomly sample Bt from E with sampling ratio b/|E|.
II. For each sampled positive relation e+i in the batch, randomly sample k entities (vi1 , . . . , vik)
without replacement from V and pair them with one end of e+i as negatives {e−ij}kj=1, which
forms a tuple of k + 1 relations as Ei = (e+i , {e−ij}kj=1).

Compute & Aggregate Gradient
gt(Ei) =

∑
e′∈Ei

∑
u∈e′

∂ℓ(Θ;Ei)
∂ze′

· ∂ze′
∂hu
· ∂hu

∂Θ , where ze′ = Γ(hu,hv) for relation e′ = (u, v)

and hu = fΘ(Xu) for entity u.
Gradient Clipping & Add Privacy Noise & Update Parameters

g̃t ← 1
b

[∑
Ei∈Bt

[gt(Ei)/max (1, ||gt(Ei)||2/C)] +N (0, σ2C2I)
]

Θt+1 ← Θt − ηtg̃t

end for
Output ΘT and calculate the overall privacy cost (ϵ, δ) using an accounting method if σ is given.

For a linear layer in Transformers, its weight matrix is W ∈ Rp×d, where d, q are the input and
output dimensions, respectively. For a tuple E, let a ∈ RK×M×d denote the concatenated input,
which contains K = 2(k + 1) entities, and each entity is associated with M tokens. Let s ∈
RK×M×p be the output, where si,j = Wai,j corresponds to the j-th token of the i-th entity in the
tuple E. Denote the gradient w.r.t. si,j as ri,j = ∂ℓ(Θ;E)

∂si,j
. Then, the gradient of W through si,j

can be represented as ∇W|si,j ℓ = ∂ℓ(Θ;E)
∂si,j

· ∂si,j∂W = ri,ja
T
i,j ∈ Rp×d. To compute the per-tuple

gradient w.r.t. W, i.e.,
∑K

i=1

∑M
j=1∇W|si,j ℓ, it is costly to first compute ri,ja

T
i,j for each token

and then compute the sum. Instead, a cheaper way is to record r = [· · · , ri,j , · · · ] ∈ RK×M×p and
a = [· · · ,ai,j , · · · ] ∈ RK×M×d, and compute ra⊤ to accomplish the sum. This strategy can reduce
the memory cost fromO(KMpd) toO(KM(p+ d)+ pd). In our experiments that use Llama2-7B
(Touvron et al., 2023), K ∈ [10, 34] and M = 32 while p = d = 4096 in attention blocks and
p = 32000, d = 4096 in the embedding block. So, pd ≫ KM(p + d) and thus the overall saving
based on the above approach is a factor of O(KM). In addition, some PEFT techniques such as
LoRA (Hu et al., 2021) can be incorporated into the pipeline to further reduce the memory cost to
O(KM(p+ d+ 2r) + (p+ d)r), where r is the rank of adjustment△W for parameter W.

4 EXPERIMENTS

Problem Setting & Datasets Our experiment design aims to simulate widely encountered sce-
narios in relational learning, where the relational data used for enhancing models contain sensitive
or proprietary information that needs to be protected, such as in applications of e-commerce (Peng
et al., 2024), finance (Wu et al., 2023; Ouyang et al., 2022), and healthcare (Gao et al., 2023).
We consider two specific use cases: Cross-category recommendation - When launching new prod-
uct lines, RecSys models often face the problem of lacking historical data for prediction (e.g., co-
purchase), which can be alleviated by leveraging user purchase history of complementary categories,
but these co-purchase relations contain sensitive user behaviors. Cross-regional model deployment
- Financial institutions operate in multiple locations, and their service models (e.g., fraud detection)
are normally trained on transaction data collected from major markets and then deployed to multiple
regions after fine-tuning, but this practice is often challenged by regional data protection regulations.

To simulate these scenarios, we focus on feature-rich real-world datasets and select two publicly
available text-attributed graphs with millions of entities/relations: the e-commerce network from
Amazon (AMAZ) (McAuley et al., 2015) and the academic network from Microsoft Academic
Graph (MAG) (Sinha et al., 2015). In the AMAZ dataset, each entity is a shopping item, and the
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Table 1: Dataset statistics and experimental setup for evaluation.
Dataset #Entity #Relation #Entity (Test) #Classes #Relation (Test) Test Domain

AMAZ-Cloth 960,613 4,626,125 476,510 9 10,000 AMAZ-Sports
AMAZ-Sports 357,936 2,024,691 129,669 16 10,000 AMAZ-Cloth
MAG-USA 132,558 702,482 6,653 40 63,635 MAG-CHN
MAG-CHN 101,952 285,991 6,534 40 34,603 MAG-USA

relation between them indicates that they are co-purchased by customers. AMAZ is divided into
two domains based on the item category: clothing and sports. In the MAG dataset, each entity is a
research paper, and the relation between them reflects one cites the other. MAG is split into two do-
mains based on the region of main authors: USA and China. In total, four domain-specific subgraphs
(see Table 1) are used to privately fine-tune models through relational learning and benchmark their
performance on the corresponding test domains for relation prediction and entity classification.

The following questions are to be answered for private relational learning:

• Q1 Can the target model privately fine-tuned on relations from the training graph learn generaliz-
able relational knowledge and benefit downstream relational learning tasks on new test domains?

• Q2 How does the parameter in relational learning - negative sampling size k impact the results?
How does the selection of other hyperparameters, such as the batch size, the learning rate, and
privacy hyperparameters σ, C, impact the results in relational learning? Does it follow the same
principles in the non-relational learning (Li et al., 2021)?

4.1 EXPERIMENTAL SETTINGS

Pretrained Models Off-the-shelf pretrained language models: BERT (Devlin et al., 2018), a lan-
guage model pretrained with masked language modeling (MLM) and next sentence prediction objec-
tives on Wikipedia and BookCorpus, with parameters of 110M (base) and 340M (large). SciBERT
(Beltagy et al., 2019) is trained on 1.14M paper abstracts and full text from Semantic Scholar un-
der the same pertaining strategies as BERT. LinkBERT (Yasunaga et al., 2022b) is pretrained with
MLM as BERT and the relation-based objective for predicting linked documents. Note that some
documents and relations in the MAG dataset may be used during the pretraining of SciBERT and
LinkBERT, which potentially causes some data leakage. Llama2-7B (Touvron et al., 2023) is one of
the most popular open-source pretrained and fine-tuned LLMs with 7 billion parameters.

Task Settings The public pretrained models are fine-tuned under the supervision of relational in-
formation by Alg. 1 with the InfoNCE loss and DP-Adam (see Alg. 3) 1. The privacy loss is
tracked through PRV accounting (Gopi et al., 2021). Following existing work on private fine-tuning
of LLMs (Li et al., 2021; Yu et al., 2021), we consider privacy levels ϵ ∈ {4, 10} and δ = 1

|Etrain| for
a training set of size |Etrain|. We tune hyperparameters based on the InfoNCE loss under given pri-
vacy parameters. Privately fine-tuned models are deployed to the corresponding test domains (e.g.,
trained on relations from AMAZ-Cloth and tested on AMAZ-Sports) under the settings of zero-shot
and 16-shot for relation prediction, and 8-shot for entity classification. For relation prediction, we
use ranking metrics of top@1 precision (PREC@1) and mean reciprocal rank (MRR) to evaluate
each model on in-batch negative samples with a batch size of 256, the same as Jin et al. (2023b).
For entity classification, Macro-F1 and Micro-F1 are used. Other details are left in Appx. C.

Baselines To the best of our knowledge, our approach is the first for relational learning with dif-
ferential privacy. To compare with relevant and feasible privacy-preserving techniques that satisfy
DP for relational data, we apply the standard randomized response (RR) baseline to the relation set
E and then perform model fine-tuning on the processed relation set that achieves ϵ-DP. Given an
entity u, for each pair (u, v), v ∈ V, v ̸= u, we apply the randomized response mechanism (Dwork
et al., 2014): with probability p = 1/(1 + exp(ϵ)), the relation label of (u, v) is flipped; otherwise,
the original label is kept. Note that this baseline requires Θ(N2) time complexity and drastically
increases the number of relations for smaller ϵ, which greatly limits its applicability.

1DP has the post-processing property (Dwork et al., 2014), resulting in the same privacy guarantees for
DP-SGD and DP-Adam using the same obfuscated gradient information after the Gaussian mechanism. We
use DP-Adam as the default optimizer as in previous works (Li et al., 2021; Yu et al., 2021).
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Table 2: Results on zero-shot relation prediction with private relational learning.

Privacy Method MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports
PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR

zero-shot

BERT.base 4.41 9.94 6.48 12.69 14.90 22.41 8.36 14.04
base model BERT.large 2.00 5.48 2.71 6.39 5.72 10.11 3.78 7.37

SciBERT 8.70 17.12 13.89 23.96 - - - -
LinkBERT.large 1.09 4.01 1.46 4.75 4.01 8.60 2.06 5.37
Llama2-7B 4.24 8.68 5.21 9.71 19.45 27.41 6.13 10.11

BERT.base 28.07 39.11 41.93 53.91 36.13 47.07 29.84 39.61
BERT.large 26.37 37.73 40.90 53.16 36.89 47.50 29.30 39.76ϵ =∞
Llama2-7B 32.80 46.67 45.65 58.59 41.01 52.39 29.21 41.44

BERT.base 3.28 8.70 5.10 11.47 19.97 29.76 8.03 13.73
BERT.large 5.67 11.75 8.65 15.43 22.81 32.31 7.36 12.15ϵ = 10 (RR)
Llama2-7B 13.64 22.33 9.92 16.67 30.39 41.48 19.63 27.66

ϵ = 10 (Ours)
BERT.base 23.29 33.98 35.64 47.74 32.63 43.17 26.66 36.76
BERT.large 22.71 33.76 35.18 47.03 31.20 41.28 28.18 38.68
Llama2-7B 24.07 37.53 34.58 48.76 40.16 51.25 29.54 39.90

ϵ = 4 (Ours)
BERT.base 22.08 32.69 31.42 43.54 33.24 43.67 26.82 36.80
BERT.large 21.78 32.60 34.84 46.62 29.73 39.63 27.63 38.06
Llama2-7B 22.55 35.47 32.50 46.68 39.67 51.09 29.25 39.35

4.2 EVALUATION OF PRIVATELY FINE-TUNED MODELS

In this section, we study the performance of pretrained language models privately fine-tuned on
text-attributed graphs for relation prediction and entity classification on new test domains. The scale
of privacy noise σ and the exact privacy loss ϵ on relational data used for training each model are
reported in Table 8, Appx. D.

Relation Prediction aims to estimate the likelihood of forming a relationship between two entities
with specific semantics. Under the zero-shot setting, all pretrained language models are privately
fine-tuned on relations from the training graph and then are directly deployed on the test domain
for inference. This is often faced in cold-start recommendation problems, where the test domain
lacks relational information. Results of zero-shot relation prediction in Table 2 show that using co-
purchase/citation relations from training graphs to fine-tune language models through our approach
can improve their base models’ performance on new test domains under DP guarantee ϵ = {4, 10}.
There is only a modest performance drop compared to the non-private fine-tuned baselines (ϵ =∞),
which is much smaller than all training on relational sets processed by the randomized response
mechanism (not computationally feasible for ϵ = 4). This observation validates the effectiveness
of privacy-preserving relational learning. Decoder-only LLMs tend to perform worse than encoder
models in embedding text (Li & Li, 2023; BehnamGhader et al., 2024), as reflected in the com-
parison between their base models in Table 2. Through (private) relation learning, Llama2-7B can
also generate rich contextual representations to predict relations and outperform the widely used
BERT-based encoder. Next, we consider the few-shot setting used for cases like cross-regional
model deployment, which is often limited by resource or relational data scarcity. Here, the model
obtained above is fine-tuned using 16 training and 16 validation relations from the test domain. Ta-
ble 3 shows that if further few-shot fine-tuning is allowed, privately fine-tuned language models still
outperform their base models, in particular providing better performance on the MAG dataset than
SciBERT/LinkBERT models pretrained on documents and their relations in scientific domains.

Entity Classification This task aims to investigate whether injecting relational information helps
language models classify text-attributed entities in adjacent new domains. This is motivated by the
above relation prediction results, where introducing structural knowledge between entities can go
beyond contextual semantics and help models refine their internal representations of entities across
domains. Here, the language model is used as an encoder, and a classifier is attached to take entity
embeddings as input for classification. We freeze the parameters of language models and only use
few-shot examples to initialize the classifier. The entity classes are coarse-grained category names
from AMAZ and MAG networks, where 8 labeled training and 8 validation entities of each class are
used for training, and thousands of new entities are used for testing. Table 4 shows the quality of
entity embeddings from the models privately fine-tuned on relational data is better than those directly
generated from their base models, except for AMAZ-cloth. The performance drop on AMAZ-cloth
is due to the potential misalignment between the objective of relation-based fine-tuning and entity
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Table 3: Results on 16-shot relation prediction with private relational learning.

Privacy Model MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports
PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR

few-shot

BERT.base 10.24 18.94 17.10 27.84 20.42 29.74 14.70 23.46
base model BERT.large 6.57 13.88 9.61 17.75 19.57 28.69 11.23 17.80

SciBERT 22.27 34.24 32.42 46.10 - - - -
LinkBERT.large 21.76 31.93 35.09 47.80 13.41 19.24 23.21 30.95
Llama2-7B 6.21 12.26 6.29 11.51 20.25 28.42 7.17 11.79

BERT.base 27.28 38.61 39.15 51.28 33.45 44.42 29.57 39.71
BERT.large 26.19 37.69 37.91 49.93 34.60 45.48 29.85 40.79ϵ =∞
Llama2-7B 35.45 49.30 45.89 58.84 41.42 52.59 31.92 44.83

ϵ = 4 (Ours)
BERT.base 24.56 35.55 33.62 45.72 33.40 44.23 28.64 38.34
BERT.large 23.09 34.21 37.23 48.65 30.39 40.78 27.80 37.87
Llama2-7B 22.88 35.94 32.07 46.22 39.94 51.10 29.78 40.27

Table 4: Results on 8-shot entity classification with private relational learning.
Privacy Model MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

few-shot

BERT.base 2.40 3.06 2.08 3.18 9.75 16.31 7.26 8.39
base model BERT.large 2.89 4.97 2.83 3.44 4.44 15.32 1.07 2.28

SciBERT 4.70 10.01 5.14 6.51 - - - -
LinkBERT 0.81 1.32 1.45 1.77 10.45 36.06 0.16 10.90
Llama2-7B 9.3 11.43 8.76 8.64 38.41 60.01 32.26 49.14

ϵ =∞
BERT.base 2.02 2.88 1.88 2.23 29.05 31.37 17.50 19.81
BERT.large 6.88 11.57 4.90 5.32 26.31 35.59 23.53 24.42
Llama2-7B 14.97 18.77 11.52 10.85 32.94 50.65 57.53 63.15

ϵ = 4 (Ours)
BERT.base 3.61 8.49 2.40 4.74 23.42 26.43 17.87 18.63
BERT.large 6.31 11.16 3.07 6.45 16.77 22.98 21.71 22.67
Llama2-7B 16.55 18.59 13.56 13.29 35.43 54.85 44.74 50.47

classification, which has been observed by Xie et al. (2023) in the non-private relational learning
setting and by Li et al. (2021) in the private non-relational setting.

4.3 UTILITY, PRIVACY AND COMPUTATIONAL EFFICIENCY TRADE-OFFS

In this section, we study the trade-offs between utility, privacy, and complexity in private relational
learning. We first investigate the hyperparameters of negative sampling, batch size, and learning rate
in a realistic setting, where the training steps are fixed. Fig. 2 (Left) shows the impact of negative
sampling in relational learning: increasing k generally improves model performance while with a
rapidly decreasing marginal benefit. To achieve a trade-off between performance and complexity,
the optimal region is located at k ∈ [4, 8]. Fig. 2 (Middle) shows the effect of batch size b on
different models under the same privacy parameters: larger b leads to better model performance and
quick convergence, especially for Llama2-7B. This observation is consistent with non-relational pri-
vate learning, where increasing b achieves a better signal-to-noise ratio between the sum of clipped
gradients and the Gaussian noise added in Eq. (3). The joint effect of batch size b and learning
rate η is further studied and depicted in Fig. 3 (Left), Appx. E: larger batches and learning rates
together lead to good performance under fixed training steps, which echoes the findings in privately
fine-tuning LLMs on standard text data (Li et al., 2021). The main obstacle to using larger b is the
linearly increased computational and memory cost in privacy computing.

Next, we study how privacy parameters impact model utility. Fig. 2 (Right) plots the privacy-utility
curve of BERT.base on zero-shot relation prediction over MAG-USA/CHN datasets under different
privacy budgets ϵ by adjusting noise multiplier σ while keeping other parameters constant. In this
case, the scale of privacy noise solely determines the privacy leakage, where the model performance
decays proportionally to the increased noise added to clipped gradients. The norm clipping threshold
C does not affect the privacy budget ϵ here, but is crucial to the utility performance of DP models
(Bu et al., 2024), and its impact on relational learning tasks is shown in Fig. 3 (Right), Appx. E.
Picking a threshold C that is larger than the actual gradient norm means that most clipping in Eq. (3)
is not effective, and the noise σC is added more than necessary. In general, small values of C work
better for relational learning, which aligns with the general practice and observation of DP learning
on non-relational data in both vision and language tasks (Tramer & Boneh, 2020; Li et al., 2021).
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Figure 2: Effects of negative sample k, batch size b, and noise multiplier σ in private relational
learning for zero-shot relation prediction.

5 RELATED WORK

LLMs with Relational Data Extensive work has focused on using relational data to enhance foun-
dation models, especially for fine-tuning LLMs on graphs. These methods can be classified into
two types. Objective-based: Yasunaga et al. (2022b); Duan et al. (2023); Xie et al. (2023) pro-
posed to associate entity representations from LLMs with relational information by optimizing the
objective based on specific graph tasks. E.g., relation prediction is a typical task in unsupervised
graph learning, as adopted in this work. Graph-encoder-based: Chien et al. (2021); Yasunaga et al.
(2022a); Zhu et al. (2023); Xie et al. (2023); Jin et al. (2023b) pair LLMs with a graph encoder
(e.g., GNNs (Kipf & Welling, 2017)) to incorporate relational information in an end-to-end manner,
where LLMs act as feature extractors for textual attributes, and their output with associated relations
is fed into GNNs for aggregation and prediction. These models may be privatized by combining the
approach proposed in this work with the privatized method for GNNs (Sajadmanesh et al., 2023;
Chien et al., 2024), though the entire pipeline could be complex and beyond the scope of this work.

Privacy-preserving Graph Learning Significant research has focused on privacy-preserving graph
embedding and learning algorithms with DP guarantees (Li et al., 2023b). Daigavane et al. (2021)
proposed a privacy-preserving approach for training GNNs via extensions of DP-SGD. Olatunji
et al. (2021) adopted teacher-student models to enable the DP release of GNNs. Sajadmanesh et al.
(2023) improved utility-privacy trade-offs by decoupling feature propagation and network training,
and their work further got extended in subsequent studies (Sajadmanesh & Gatica-Perez, 2024;
Chien et al., 2024). These methods specialize in generating private node representations, which do
not mitigate privacy risks when relations that involve multiple entities are used for supervision.

Privacy-preserving for LLMs Data privacy in LLMs focuses on safeguarding sensitive information
that could be exposed during operations (Yao et al., 2024). Recent efforts have utilized DP-SGD for
both pretraining and fine-tuning LLMs. For instance, Anil et al. (2021) trained a privacy-preserving
BERT-Large model from scratch. However, due to the resource-intensive nature of LLMs, the focus
has shifted towards private fine-tuning of publicly pretrained models. Hoory et al. (2021) explored
private full fine-tuning of BERT models with domain-specific data, while further advancements in
this field include the works of Basu et al. (2021); Kerrigan et al. (2020); Senge et al. (2021); Li
et al. (2021). There is also growing interest in efficient fine-tuning techniques. Yu et al. (2021)
applied parameter-efficient fine-tuning (PEFT) methods for private fine-tuning of LLMs, and Li
et al. (2021) introduced ghost clipping to accelerate gradient clipping in DP-SGD. However, these
methods primarily address privacy concerns for standard text data. In contrast, our work extends
these privacy-preserving approaches to relational data, filling an important gap in this research area.

6 CONCLUSION

Leveraging relational data to enhance AI models holds great promise. This work proposes a novel
privacy-preserving training pipeline that addresses the unique privacy and computational challenges
in relational learning by decoupling the dependencies in sampled relations for training and exploit-
ing the structure of individual gradients for efficient clipping. We consider scenarios frequently
encountered in applying relational learning to fine-tune pretrained models and enforce privacy guar-
antees on the relationships used for training. Our study on private relational learning shows that
fine-tuning pretrained language models with our approach can significantly improve their perfor-
mance on new test domains while keeping the relational data used for training private. We further
explore the privacy, utility, and computational efficiency trade-offs and conduct an extensive study
on hyperparameter selection for private learning on relational data.
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privacy and analytical moments accountant. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1226–1235. PMLR, 2019.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 28, 2014.

15

https://openreview.net/pdf?id=10iA3OowAV3
https://openreview.net/pdf?id=10iA3OowAV3


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Rongzhe Wei, Eli Chien, and Pan Li. Differentially private graph diffusion with applications in
personalized pageranks. Advances in Neural Information Processing Systems, 2024.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

Tong Wu, Yunlong Wang, Yue Wang, Emily Zhao, and Yilian Yuan. Leveraging graph-based hi-
erarchical medical entity embedding for healthcare applications. Scientific reports, 11(1):5858,
2021.

Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing Ping, Sheng
Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training on a large graph corpus
can help multiple graph applications. arXiv preprint arXiv:2306.02592, 2023.

Depeng Xu, Shuhan Yuan, Xintao Wu, and HaiNhat Phan. Dpne: Differentially private network em-
bedding. In Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference,
PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II 22, pp. 235–246.
Springer, 2018.

Runhua Xu, Nathalie Baracaldo, and James Joshi. Privacy-preserving machine learning: Methods,
challenges and directions. arXiv preprint arXiv:2108.04417, 2021.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Zhen Yang, Ming Ding, Tinglin Huang, Yukuo Cen, Junshuai Song, Bin Xu, Yuxiao Dong, and Jie
Tang. Does negative sampling matter? a review with insights into its theory and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D Manning,
Percy S Liang, and Jure Leskovec. Deep bidirectional language-knowledge graph pretraining.
Advances in Neural Information Processing Systems, 35:37309–37323, 2022a.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang. Linkbert: Pretraining language models with
document links. arXiv preprint arXiv:2203.15827, 2022b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
differential privacy library in pytorch. arXiv preprint arXiv:2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Sen Zhang and Weiwei Ni. Graph embedding matrix sharing with differential privacy. IEEE Access,
7:89390–89399, 2019.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D
Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models. In Inter-
national Conference on Learning Representations, 2022.

Xuanzhi Zheng, Guoshuai Zhao, Li Zhu, Jihua Zhu, and Xueming Qian. What you like, what
i am: online dating recommendation via matching individual preferences with features. IEEE
Transactions on Knowledge and Data Engineering, 35(5):5400–5412, 2022.

Jing Zhu, Xiang Song, Vassilis N Ioannidis, Danai Koutra, and Christos Faloutsos. Touchup-
g: Improving feature representation through graph-centric finetuning. arXiv preprint
arXiv:2309.13885, 2023.

A MORE RELATED WORK

Private Graph Embedding Methods Graph embedding encodes nodes into low-dimensional vec-
tors, preserving topological information (Hamilton et al., 2017). Xu et al. (2018) proposed a pri-
vate network embedding method using objective perturbation in DeepWalk (Perozzi et al., 2014)
but faced scalability issues for complex sensitivity calculations. Zhang & Ni (2019) addressed
these issues by applying a Lipschitz condition (Raskhodnikova & Smith, 2016) and gradient clip-
ping. Epasto et al. (2022); Wei et al. (2024) studied DP PageRank methods, which can be leveraged
to generate DP graph embedding as well. These methods specialize in preventing privacy leakage
during generating node embeddings but do not mitigate privacy risks when relations that involve
multiple entities are used for supervision.

Contrastive Learning with Differential Privacy Existing studies on private contrastive learning
aim to eliminate the risk of sample correlation in contrastive loss and thus protect the privacy of
individual training samples. Li et al. (2022) proposed to add privacy noise to the similarity ma-
trix between pairs of inputs to reduce the sensitivity of gradients w.r.t. the contrastive loss. Kong
et al. (2023) extended it to similarity-based loss functions by bounding the pairwise similarity gra-
dients. Bao et al. (2024) proposed to train vision models with the mixup technique under DP by
leveraging augmentation multiplicity. These methods focus on privately learning representations of
non-relational samples by contrastive views but cannot be used to address the privacy challenge of
relation coupling in training models on relational data.

B STANDARD DP LEARNING PIPELINES

DP-SGD (see Alg. 2) (Song et al., 2015; Abadi et al., 2016) is proposed for training deep learning
models on (non-relational) samples with a privacy guarantee. DP-Adam (see Alg. 3) works simi-
larly as regular Adam (Kingma & Ba, 2014) but performs updates and moment accumulation with
privatized gradients. The gradient privatization part is the same as that performed in DP-SGD, where
the privacy analysis and guarantees for DP-SGD still hold for DP-Adam due to the post-processing
property of DP (Dwork et al., 2014).

C EXPERIMENTAL DETAILS

Datasets Item and paper titles are used as textual attributes associated with the entities in the
Amazon e-commerce network (AMAZ) (McAuley et al., 2015)) and the Microsoft Academic Graph
(MAG) 2 (Sinha et al., 2015), respectively. OpenAlex API 3 (Priem et al., 2022) is used to ob-
tain metadata of papers in MAG as the Microsoft Academic service has been retired. For some
items/papers, we concatenate their titles with the corresponding description/abstract following Jin
et al. (2023b), since the title is too short. The max length of the input sequence M is set to 32. The
semantics of relational information used for supervision are “item-co-purchased-item” and “paper-
cited-paper” for AMAZ and MAG networks, respectively. To mimic the case in cross-category
recommendation, two subgraphs are selected from AMAZ to that only contain items belonging to

2ODC-BY License, refer to https://opendatacommons.org/licenses/by/1-0/
3CC0 License, refer to https://creativecommons.org/public-domain/cc0/

17

https://opendatacommons.org/licenses/by/1-0/
https://creativecommons.org/public-domain/cc0/


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Algorithm 2: DP-SGD from Abadi et al. (2016)

Input: Training data x1, . . . , xN , loss function L(Θ) = 1
N

∑
i L(Θ, xi); Parameters: learning

rate ηt, batch size b, gradient norm threshold C, noise multiplier σ or privacy budget ϵ.
Initialize find the optimal value of σ via calibration if ϵ is given.
for t = 1 to T do

Subsampling
Randomly sample Bt with sampling probability b/N

Compute Gradient
For each xi ∈ Bt, compute gt(xi)← ∇ΘtL(Θt, xi)

Gradient Clipping
ḡt(xi)← gt(xi)/

[
max

(
1, ||gt(xi)||2

C

)]

Add Noise
g̃t ← 1

b

[∑
i ḡt(xi) +N (0, σ2C2I)

]
Parameter Update

Θt+1 ← Θt − ηtg̃t

end for
Output ΘT and calculate the overall privacy cost (ϵ, δ) using an accounting method if σ is given.

Algorithm 3: DP-Adam (Kingma & Ba, 2014; Abadi et al., 2016)

Input: Training data x1, . . . , xN , loss function L(Θ) = 1
N

∑
i L(Θ, xi); Parameters: learning

rate ηt, batch size b, gradient norm threshold C, noise multiplier σ or privacy budget ϵ, initial
moment estimates m0, v0, exponential decay rates β1, β2, avoid division-by-zero constant γ.
Initialize find the optimal value of σ via calibration if ϵ is given.
for t = 1 to T do

Subsampling
Randomly sample Bt with sampling probability b/N

Compute Gradient
For each xi ∈ Bt, compute gt(xi)← ∇Θt

L(Θt, xi)
Gradient Clipping

ḡt(xi)← gt(xi)/
[
max

(
1, ||gt(xi)||2

C

)]

Add Noise
g̃t ← 1

b

[∑
i ḡt(xi) +N (0, σ2C2I)

]
Parameter AdamUpdate

mt+1 ← β1 ·mt + (1− β1) · g̃t, vt+1 ← β2 · vt + (1− β2) · g̃2
t

m̂t+1 ← mt+1/(1− βt
1), v̂t+1 ← vt+1/(1− βt

2)

Θt+1 ← Θt − ηt · m̂t+1/
(√

v̂t+1 + γ
)

end for
Output ΘT and calculate the overall privacy cost (ϵ, δ) using an accounting method if σ is given.

the category of clothing (AMAZ-Cloth) and sports (AMAZ-Sports). For entity classification, the
class names of the AMAZ dataset are listed in Table 5. Based on the geographic metadata of paper-
authors, we select two subgraphs from MAG containing papers written by authors from the United
States (MAG-USA) and China (MAG-CHN) to simulate the case in cross-regional model deploy-
ment. The coarse-grained class of papers is refined by selecting Top-K-occurrence of 349-class
obtained from Open Graph Benchmark 4 (Hu et al., 2020) and merging the other classes into one.

Environment We use a server with two AMD EPYC 7543 CPUs, 512GB DRAM, and NVIDIA
Quadro RTX 6000 (24GB) GPUs for BERT-based models and A100 (80GB) GPUs for Llama2-7B
models. The codebase is built on PyTorch 2.1.2, Transformers 4.23.0, PEFT 0.10.0, and Opacus
1.4.1. The source code is attached and should be paired with the Transformers and PEFT packages
from HuggingFace and the Opacus library specified above.

4ODC-BY License
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Table 5: Class names of the AMAZ dataset.
AMAZ-Cloth AMAZ-Sports

Label Name Label Name

0 girls 0 accessories
1 men 1 action sports
2 novelty 2 boating & water sports
3 luggage 3 clothing
4 baby 4 cycling
5 fashion watches 5 baby
6 shoes 6 exercise & leisure sports
7 boys 7 fan shop
8 adidas 8 golf

9 hunting & fishing & game room
10 outdoor gear
11 fitness
12 paintball & airsoft
13 racquet sports
14 snow sports
15 team sports

Table 6: Hyperparameter search range for different models.
Target Model BERT.base BERT.large Llama2-7B

DP Guarantee (ϵ, δ) (-,1/|Etrain|) (-,1/|Etrain|) (-,1/|Etrain|)
Clipping threshold C 1 1 1
Noise multiplier σ [0.3, 0.5] [0.3, 0.5] [0.3, 0.5]

LoRA rank r {2,4,8,16} {2,4,8,16} {2,4,8,16}
LoRA alpha α 16 16 16
LoRA dropout [0, 0.2] [0, 0.2] [0, 0.2]
Target module query, key, value, dense query, key, value, dense q proj, v proj

Batch size B {8, 16, 32, 64} {8, 16, 32, 64} {12, 16, 32, 64, 128}
Learning rate η [10−4, 10−6] [10−4, 10−6] [10−4, 10−6]
LR scheduler linear linear cosine
Weight decay λ [0, 10−3] [0, 10−3] 0
Negative sample k {4, 6, 8, 16} {4, 6, 8, 16} {4, 8, 12, 16}

Table 7: Model card of pretrained language models.
Backbone Model License Model Card

BERT.base Apache License 2.0 https://huggingface.co/google-bert/bert-base-uncased
BERT.large Apache License 2.0 https://huggingface.co/google-bert/bert-large-uncased
SciBERT Apache License 2.0 https://huggingface.co/allenai/scibert_scivocab_uncased
LinkBERT.large Apache License 2.0 https://huggingface.co/michiyasunaga/LinkBERT-large
Llama2-7B Meta Community License https://huggingface.co/meta-llama/Llama-2-7b-hf
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Table 8: Privacy loss ϵ of model fine-tuning (LoRA rank r) on relational data.

Privacy Model
MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports

σ ϵ r σ ϵ r σ ϵ r σ ϵ r

ϵ = 10
BERT.base 0.32 9.95 4 0.32 8.74 2 0.3 9.71 2 0.3 9.06 8
BERT.large 0.34 8.72 4 0.33 8.56 2 0.3 9.94 8 0.32 7.69 8
Llama2-7B 0.378 7.91 4 0.357 8.16 4 0.326 8.50 8 0.315 8.83 8

ϵ = 4
BERT.base 0.42 3.30 8 0.4 3.99 2 0.4 3.34 2 0.4 2.65 2
BERT.large 0.42 3.82 4 0.41 3.32 2 0.376 4.00 8 0.4 3.27 2
Llama2-7B 0.456 3.97 4 0.433 4.00 4 0.4 4.00 8 0.4 3.88 8

Private Fine-tuning We use DP-Adam, a variant from DP-SGD, as the default optimizer for up-
dating model parameters in a privacy-preserving manner: given privacy parameters of noise multi-
plier σ (or calibrated σ if ϵ is explicitly provided) and gradient norm clipping threshold C, with a
learning rate η from 1e-4 to 1e-6, first 10% as warm-up steps, weight decay from 0 to 1e-3.
The test batch is set to 256 for relation prediction, which follows Jin et al. (2023b) that uses in-batch
negatives for computing ranking metrics. For large pretrained models where the desired batch size
exceeds the physical memory limit of GPU VRAM, we use gradient accumulation over multiple
mini-batches to simulate training at the expected batch size. We search optimal training hyperpa-
rameters with the InfoNCE loss under given privacy parameters, where their ranges are summarized
in Table 6. All pretrained model weights are publicly available and directly downloaded from Hug-
gingface under proper licenses listed in Table 7.

Inference Setting Once the model is privately fine-tuned on relational data, it is deployed for
inference under two settings for relation prediction and entity classification on the corresponding
test domains (see Table 1):

• Zero-shot, where the model is directly used without further training on samples from the test
domain. This setting is only applied for relation prediction: the dot product between entity em-
beddings is used as the scoring function for inference, which contains no additional parameters.

• Few-shot, where limited labels from the test domain are provided to further fine-tune the target
models obtained after private relational learning. This setting is used for both relation prediction
and entity classification (the classifier requires some labels for initializing parameters), corre-
sponding to the data scarcity scenario from the test domain and limited resources to perform full
domain-specific fine-tuning.

D DETAILS FOR STUDIES IN SECTION 4.2

After privately fine-tuning target models on realtions from the training graph, we use the PRV ac-
counting (Gopi et al., 2021) to track privacy loss and convert it to (ϵ, δ)-DP. Table 8 summarizes the
values of noise multiplier σ used and the actual privacy loss ϵ on relational data used for training
each model one epoch, which corresponds to the results reported in Table 2 under the zero-shot set-
ting and in Tables 3, 4 under the few-shot setting. Models under the few-shot setting have the same
privacy loss as zero-shot since the examples used for further fine-tuning are non-private from the
test domain. The scale of noise Cσ determines the privacy budget in DP-SGD, where higher privacy
noise leads to lower privacy leakage ϵ. Training with the same scale of privacy noise may result in
different ϵ reported in Table 8: different batch sizes b (sampling ratio p = b/|E|) and numbers of
iterations T used in training affect the privacy accounting in DP-SGD (Balle & Wang, 2018).

E ADDITIONAL RESULTS FOR STUDIES IN SECTION 4.3

Fig. 3 (Left) shows the joint effect of learning rate η and batch size b for BERT.base over zero-
shot relation prediction on AMAZ-cloth under the same privacy parameters: larger batches and
learning rates together lead to good performance (diagonal area) under fixed training steps. This
observation aligns with the findings in privately fine-tuning LLMs on standard text data (Li et al.,
2021). Fig. 3 (Right) shows the impact of norm clipping threshold C for BERT.base on zero-shot

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

16 32 64 128 256 512
batch size b

1e
-3

5e
-4

1e
-4

5e
-5

1e
-5

5e
-6

le
ar

ni
ng

 ra
te

 

2.54 2.52 7.11 32.9741.9543.83

3.59 28.2340.8244.4344.3544.86

43.1443.1943.5543.8843.7543.84

42.8042.9543.0743.2043.1442.97

40.3340.4040.5040.3039.6738.50

36.7536.1635.5034.2132.1829.39 5

10

15

20

25

30

35

40

M
RR - Bert.base (cloth)

2000 4000 6000 8000 10000 12000 14000 16000
Step

0.10

0.15

0.20

0.25

0.30

0.35

M
od

el
 P

er
fo

rm
an

ce
 (M

RR
)

The Effect of Clipping Norm Threshold C
 BERT.base (MAG-USA) with =0.32, B=16

C=0.1
C=1
C=10
C=100

2500 5000 7500 10000 12500 15000 17500 20000
Step

0.15
0.20
0.25
0.30
0.35
0.40
0.45

M
od

el
 P

er
fo

rm
an

ce
 (M

RR
)

The Effect of Clipping Norm Threshold C
 BERT.base (MAG-CHN) with =0.32, B=16

C=0.1
C=1
C=10
C=100

Figure 3: Effects of learning rate η and batch size b (Left), and clipping norm threshold C (Right)
in private relational learning for zero-shot relation prediction.

relation prediction over MAG-USA/CHN datasets, while other hyperparameters remain the same.
The threshold C does not affect the privacy budget ϵ here but is crucial to the utility performance of
DP models (Bu et al., 2024). Picking a threshold C larger than the actual gradient norm means that
most clipping in Eq. (3) is not effective, and the scale of noise σC is added more than necessary.
E.g., C = 100 always performs the worst in Fig. 3 (Right). In general, small values of C work
better for relational learning as suggested in the general practice and observation of DP learning on
non-relational data (Tramer & Boneh, 2020; Li et al., 2021).

F SCOPE AND LIMITATION

Our proposed pipeline aims at private relational learning, with applications in fine-tuning pretrained
large models when relational information indicated by graph edges is used for supervision in a
privacy-preserving manner. Due to resource constraints and the intensity of privacy computing for
large pretrained models, we choose parameter-efficient fine-tuning over full parameter fine-tuning.
Our privacy setting only targets protecting the relationships between entities used for training and
assumes the pretrained model weights are risk-free since they are publicly accessible. The two
relational datasets of e-commerce and academic networks used in the experiment are open source
and widely adopted in the community. The textual attributes associated with them are the titles
and descriptions of shopping items and the titles and abstracts of research papers, respectively, and
neither of them contains harmful, offensive, or biased language.
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