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Abstract001

Dependency parsing is a fundamental task in002
natural language processing (NLP), aiming to003
identify syntactic dependencies and construct004
a syntactic tree for a given sentence. Tradi-005
tional dependency parsing models typically006
construct embeddings and utilize additional lay-007
ers for prediction. We propose a novel depen-008
dency parsing method that relies solely on an009
encoder model with a text-to-text training ap-010
proach. To facilitate this, we introduce a struc-011
tured prompt template that effectively captures012
the structural information of dependency trees.013
Our method achieves the state-of-the-art perfor-014
mance in UAS (97.41) and outperforms most015
previous approaches in LAS (96.16) on the En-016
glish Penn Treebank, despite relying solely on017
a pre-trained model. Furthermore, this method018
is highly adaptable to various pre-trained mod-019
els across different target languages and train-020
ing environments, allowing easy integration of021
task-specific features.1022

1 Introduction023

Dependency parsing is a fundamental task in natu-024

ral language processing (NLP) that analyzes syn-025

tactic relationships between words in a sentence.026

Figure 1 illustrates the traditional dependency pars-027

ing pipeline. Traditionally, dependency parsing is028

performed in two steps: (1) creating word-level029

embeddings, and (2) identifying the head word of030

each word along with its dependency relation using031

the generated embeddings.032

Previously, dependency parsing primarily relied033

on simple pre-processed contextual vectors to ini-034

tialize embeddings (Li et al., 2018; Strzyz et al.,035

2019; Vacareanu et al., 2020). With the advent036

of powerful pre-trained language models such as037

BERT (Devlin et al., 2019), recent dependency038

parsing approaches leverage these models to initial-039

1https://anonymous.4open.science/r/
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Figure 1: A figure shows that pipeline of traditional
dependency parsing

ize word embeddings, achieving superior perfor- 040

mance compared to earlier methods (Amini et al., 041

2023). In the second step of dependency parsing, 042

previous studies have shown that graph-based meth- 043

ods, such as biaffine (Dozat and Manning, 2017), 044

yield good performance in identifying relations. 045

Consequently, this approach was extended to learn 046

the subtree information of the dependency tree 047

(Yang and Tu, 2022). Since the structural char- 048

acteristics of dependency trees increased training 049

complexity, some studies use the sequence tagging 050

method for parsing (Li et al., 2018; Amini and Cot- 051

terell, 2022). These approaches add layers after 052

embedding construction and label the words into 053

structural information sequentially. In particular, 054

the hexatagging achieved SOTA performance by 055

generating structural information with a finite set of 056

tags through decoding (Amini et al., 2023). In ad- 057

dition, Lin et al. (2022) demonstrated that encoder- 058

decoder models effectively generate relation unit 059

texts from input, highlighting that parsing can be 060

performed solely using pre-trained models. This 061

study is particularly significant as it explores depen- 062

dency parsing by transforming modified text into 063
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structured dependency output. However, the limita-064

tion of this approach lies in the increased computa-065

tional time required for parsing, as the number of066

tokens grows due to the generation-based method.067

In this paper, we propose a novel method to per-068

form dependency parsing solely on pre-trained en-069

coder models that are constructed by prompt en-070

gineering using additional tokens as soft prompts.071

We hypothesize that prompt engineering can effec-072

tively convert the text-to-structure task in depen-073

dency parsing to the text-to-text task by pre-trained074

language models. Hence, the output text sequence075

of the proposed method has to reflect the tree struc-076

ture of dependency parsing well. To achieve this,077

we design several soft prompts so that our model078

can identify the structural information of the tree079

structure, and then apply the Structuralized Prompt080

Template (SPT) for each processing unit of de-081

pendency parsing using the developed soft prompt.082

We believe that prompt learning with the structural-083

ized prompt template enables effective and efficient084

dependency parsing only on the pre-trained lan-085

guage models. Eventually, by learning through the086

structuralized prompt template, the Structuralized087

Prompt Template based Dependency Parsing (SPT-088

DP) method achieves the high performance and089

simplified training by reducing the gap between pre-090

training and fine-tuning because it is based on only091

the pre-trained language models for the text-to-text092

task. As a result, our method achieves the state-093

of-the-art (SOTA) performance in UAS (97.41)094

and outperforms most existing approaches in LAS095

(96.16) on the English Penn Treebank (PTB; Mar-096

cus et al. (1993)). On the 2.2 version of Universal097

Dependencies (UD 2.2; Nivre et al. (2018)), it ob-098

tains the SOTA performance in 1 languages out of099

12 languages when using the cross-lingual Roberta100

model (Liu et al., 2019). Since our method uti-101

lizes only a single encoder model, our approach102

is faster than existing methods. In particular, it103

achieves a 40x speed improvement compared to104

DPSG, which employs a similar text-to-text ap-105

proach. Furthermore, our method achieves a per-106

formance comparable to that of the SOTA model107

with a complicated and heavy architecture in the108

Korean Sejong dataset.109

2 Preliminaries110

2.1 Dependency Parsing111

Dependency parsing is the process of identifying112

dependency relationships among words in a sen-113

tence. Given a sentence S = (w1, w2, . . . , wn), 114

the task is to derive the dependency relations, 115

RS = (r1, r2, . . . , rn), for each word. Each re- 116

lation, ri = (Hi, L(wi,wHi
)), consists of two com- 117

ponents: (1) the index of the head word Hi and 118

(2) the dependency relation label L(wi,wHi
), be- 119

tween wi and wHi , where L(wi,wHi
) ∈ L and L 120

is the set of predefined dependency relation la- 121

bels. This study focuses on syntactic dependency 122

parsing that analyzes grammatical dependency rela- 123

tions within sentences. Depending on the definition 124

of the syntactic dependency tree, each word has 125

exactly one parent node, ensuring a hierarchical 126

structure. Therefore, the ultimate goal of depen- 127

dency parsing is to analyze the sentence S into the 128

form Sdep = {(wi, ri) | ri = (Hi, L(wi,wHi
)), i ∈ 129

{1, 2, . . . , n}}, where each word wi is paired with 130

its corresponding dependency relation ri. 2 131

S = (He, loves, his, rabbits)

Word : wi Index : i Head : Hi Label : L(wi,wHi
)

he 1 2 [nsubj]

loves 2 0(root) [root]

his 3 4 [poss]

rabbits 4 2 [dobj]

Figure 2: Dependency Parsing Example

2.2 Prompt based tuning 132

Initially, the concept of a prompt emerged as 133

a method for training models, particularly to 134

bridge the gap between the pre-training and fine- 135

tuning stages. PET (Pattern-Exploiting Training) 136

proposed a method to reduce the gap between 137

pre-training and fine-tuning by using cloze-style 138

patterns instead of the traditional [CLS] token- 139

based classification approach in BERT (Schick and 140

Schütze, 2021). This allows the pre-trained lan- 141

guage model to naturally adapt to classification 142

tasks. For example, in sentiment analysis, a sen- 143

tence like "This movie is really [MASK]." is used, 144

and the predicted probability of the [MASK] token 145

is used to determine its sentiment. 146

Subsequently, prompts have been explored in 147

2Table 11 for a list of notations along with explanations.
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combination with methods like PEFT (Parameter-148

Efficient Fine-Tuning) to improve model efficiency149

and task performance (Li and Liang, 2021; Lester150

et al., 2021). In generative models like GPT-3151

(Brown et al., 2020), text-based prompts are used152

to guide and shape the outputs into task-specific153

outputs.154

In this study, prompts are used to provide addi-155

tional linguistic hints, such as grammatical struc-156

tures or contextual information, necessary for de-157

pendency parsing. Specifically, prompts are added158

to the encoder model through preprocessing. This159

is done by concatenating prompt phrases, such as160

task-specific instructions, to the original input sen-161

tence. Prompts are applied to each word in the162

input sentence as shown in the following formula-163

tion:164

P (S) = (T (w1), T (w2), . . . , T (wn)) (1)165

where P (S) represents the transformed sentence166

and T (wi) is the prompt template applied to the167

i-th word wi.168

2.3 Pre-trained Language Model169

Transformer-based pre-trained models are built170

upon the following architectures:171

• Encoder-based Models: These models en-172

code input text to perform tasks like masked173

token prediction or classification by adding174

a linear layer. They are also widely used in175

Dense Passage Retrieval (DPR) (Karpukhin176

et al., 2020) to extract representative embed-177

dings for documents. X → X ′178

• Decoder-based Models: These models take179

an initial token or prompt and generate tokens180

sequentially through autoregressive decoding.181

X → Y182

The traditional approach to dependency parsing183

involves extracting token-level embeddings from184

encoder-based pre-trained models, integrating them185

at the word level, and constructing word em-186

beddings. These embeddings are then analyzed187

through various methods to perform dependency188

parsing. In this process, the performance of depen-189

dency parsing heavily depends on how effectively190

the encoder provides information relevant to syn-191

tactic structures.192

3 Structuralized Prompt Template 193

As aforementioned, traditional methods approach 194

dependency parsing by utilizing predefined embed- 195

dings processed through specific modules. How- 196

ever, Dependency Parsing via Sequence Generation 197

(DPSG) departed from this paradigm and intro- 198

duced a text-to-text dependency parsing method 199

(Lin et al., 2022). Despite its innovative nature, 200

DPSG faced limitations due to its generation-based 201

approach, which could produce unintended outputs. 202

In addition, the need to generate tokens one by one 203

resulted in slower processing speeds, especially 204

when processing additional tokens. To overcome 205

these challenges, we propose a novel approach that 206

leverages encoder models. Inspired by the ability of 207

encoders to facilitate text-to-text learning through 208

pre-training tasks such as Masked Language Mod- 209

eling (MLM), we devised a method to represent 210

dependency parsing information as text and apply it 211

during training. We call this method Structuralized 212

Prompt Template (SPT). Unlike traditional depen- 213

dency parsing, which treats text and dependency 214

structures as separate levels, SPT integrates de- 215

pendency information directly into text sequences. 216

This approach enables dependency parsing entirely 217

within the textual level by eliminating additional 218

integration steps and improving overall efficiency. 219

3.1 Dependency Parsing with Text 220

Representation 221

Basically, dependency parsing is the task of finding 222

a word with a dependency relation and determin- 223

ing its corresponding dependency relation label for 224

each word. To express the structured dependency 225

relationships through the prompt template for each 226

word, several conditions should be satisfied: 1) 227

each template must be distinguished by its pattern 228

through whole training, 2) it must be able to in- 229

dicate its index, 3) it must be able to refer to the 230

other word template with dependency relationship 231

through the output, and 4) it must be able to express 232

the dependency relation label through the output. 233

In the first condition, we ensure that the language 234

model can distinctly recognize each template by 235

following a consistent pattern rather than a spe- 236

cific token through all the training process. To 237

satisfy the second and third conditions, we add in- 238

dex prompts Pidx that serve two roles: representing 239

the template and indicating the referred template’s 240

index. Because the Pidx prompts represent the in- 241

dex of templates in a formatted text sequence, each 242
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Figure 3: Overview of the Structuralized Prompt Template based Dependency Parsing (SPT-DP) method.

template can refer to another template within a de-243

pendency relation regardless of the input sequence244

using the Pidx prompts. Finally, the fourth condi-245

tion is resolved by adding the dependency relation246

labels as prompt PL. In addition, we add PPOS to247

reflect information for part-of-speech (POS) analy-248

sis. However, several challenges arise when using249

this prompt approach for dependency parsing:250

1. Semantic Representation Issues: If the251

prompts are directly integrated into the252

model’s existing vocabulary without introduc-253

ing new tokens, it may disrupt the original254

vocabulary structure, making it difficult to cap-255

ture meaningful semantics.256

2. Variability in Length: The explicit addition257

of prompts, such as numerical indices and de-258

pendency relation labels, causes variations in259

the length of the enhanced sentence. Masking260

these components can lead to further inconsis-261

tencies in sequence length, which is critical262

for learning in encoder models.263

To address these issues, we propose to add each264

prompt as a new token to the vocabulary. The above265

prompts are individually added to the vocabulary266

enclosed in []. This action allows them to be added267

independently to the existing vocabulary without268

any duplications. This approach allows the model’s269

training process to be examined at the text level.270

To avoid confusion, we clarify that the notations271

Pidx , PL , PPOS , and PMASK
3 represent string272

text encapsulated in square brackets [].273

T (wi) = “

Pidx︷ ︸︸ ︷
[ i ]︸︷︷︸
Pabs

[Hi]︸︷︷︸
Pref

PL︷ ︸︸ ︷
[L(wi,wHi

)]

PPOS︷ ︸︸ ︷
[POSwi ]wi”

(2)274

3to be explained in Section 3.2.

275

D = (T (w1), T (w2), ..., T (wn)) (3) 276

The final word-level prompt template is rep- 277

resented by Equation 2: for each word wi, four 278

prompts are added. In the first prompt [ i ] is Pabs, 279

which represents the absolute index token indicat- 280

ing the index of each word in the sentence. The sec- 281

ond prompt [Hi] is Pref that specifies the index of 282

the word referenced by the given word wi. The only 283

distinction between Pabs and Pref is their positions 284

in the template; they serve different roles but share 285

the same tokens. That is why they are grouped 286

under Pidx. The third is the dependency relation 287

label [L(wi,wHi
)], and the fourth contains [POSwi ] 288

that is POS-tag of wi. The proposed Structuralized 289

Prompt Template (SPT) can effectively incorpo- 290

rate the dependency parsing information into input 291

sentence using these prompts. That is, by applying 292

this template to every word in the sentence, we 293

construct a modified sentence D that encapsulates 294

dependency parsing information. From a certain 295

perspective, performing dependency parsing can 296

be regarded as transforming the original sentence 297

S into a Prompted sentence D. 298

Figure 4: A figure of word level SPT example
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3.2 Prediction Task using Soft Prompts299

PMASK : [HEAD] and [DEP]300

For the training, PMASK , which contains the301

[HEAD] and [DEP] tokens, serves as a soft prompt302

and plays a role similar to the masked token in303

the Masked Language Model (MLM) task. Since304

performing dependency parsing involves predict-305

ing [Hi] and [L(wi,wHi
)], the corresponding parts306

in the equation are masked to enable the model to307

learn by making predictions. In this process, [Hi]308

is masked as [HEAD] and [L(wi,wHi
)] is masked as309

[DEP], respectively. The PMASK are also added310

in the tokenizer’s vocab for prompt engineering.311

M(T (wi)) = “

Pabs︷︸︸︷
[ i ]

PMASK︷ ︸︸ ︷
[HEAD][DEP ][POSwi ]wi”

(4)312313

DM = (M(T (w1)),M(T (w2)), ...,M(T (wn)))
(5)314

As aforementioned, the PMASK are used to infer315

two main prediction tasks for the head word and316

the dependency relation label. They are arranged in317

the second and third positions of the structuralized318

prompt templates, forming a consistent pattern in319

the input text sequence. In our approach, the model320

is fine-tuned to predict head word and dependency321

relation labels by the [HEAD] and [DEP] prompts.322

Ultimately, the goal is to learn to reconstruct323

the D from the masked input DM , which has been324

structured using prompts. This involves different325

prediction mechanisms for encoder and decoder326

models:327

Encoder-only Models The encoder model learns328

by reconstructing the masked input DM into its329

original form D. Since the output sequence retains330

the same structure as the input sequence, the model331

effectively maps DM back to D: Enc(DM ) → D332

Decoder-based Models In encoder-decoder333

models, the encoder processes the masked input334

DM to generate a latent representation and the335

decoder uses it to reconstruct D. On the other336

hand, DM of decoder-only models serves as a337

prefix and it guides the decoder to generate the338

unmasked D, autoregressively: Gen(DM ) → D339

4 Prompt-based Training340

As mentioned earlier, in the encoder model, train-341

ing is conducted in an MLM manner, where the342

input masked with PMASK :[HEAD] and [DEP]343

are used to predict reference indices Pref :[Hi] and344

dependency relation label PL:[L(wi,wHi
)] prompts. 345

Since we have added each prompt to the tokenizer, 346

the model is trained to output the corresponding 347

prompt IDs through the LM head. In the de- 348

coder model, the training process involves provid- 349

ing masked input and learning to generate the un- 350

masked text. 351

The loss function for training is calculated by 352

the following equations. In Equation 6, Xinput is 353

the tokenized DM that is a concatenated sequence 354

of SPTs where [Hi] and [L(wi,wHi
)] are replaced by 355

[HEAD] and [DEP] prompts. In Equation 7, Ylabel 356

is the tokenized D that is the prompted sequence 357

based on SPT. 358

Since all the prompts are added to the tokenizer’s 359

vocabulary, the lengths of Xinput and Ylabel are 360

always the same, which is a crucial condition in 361

encoder-only models. In summary, the models 362

are trained with DM as input and D as the label. 363

Encoder-only models are trained with Lenc, which 364

optimizes token prediction based on Xinput follow- 365

ing BERT’s masked language modeling (MLM) for 366

bidirectional contextual learning. Decoder-based 367

models use Ldec, where each token yi is generated 368

sequentially based on Xinput and previous outputs 369

Y<i, following an autoregressive approach similar 370

to GPT. θ is the parameter of model. 371

The objective function is based on Cross- 372

Entropy Loss, defined as follows: 373

Tokenize(DM ) = Xinput = [x1, x2, ..., xN ]
(6) 374375

Tokenize(D) = Ylabel = [y1, y2, ..., yN ] (7) 376
377

Lenc = −
N∑
i=1

logP (yi|Xinput; θ) (8) 378

379

Ldec = −
N∑
i=1

logP (yi|Xinput, Y<i; θ) (9) 380

In summary, Lenc and Ldec correspond to Cross- 381

Entropy Loss, where the model optimizes token 382

prediction probabilities. In encoder-only models, 383

Lenc applies token-wise classification in an MLM 384

setting, while in decoder-based models, Ldec fol- 385

lows an autoregressive generation paradigm. 386

5 Experiments 387

We first apply our approach to two datasets used in 388

previous studies, including PTB (Penn Treebank) 389

and UD 2.2 (Nivre et al., 2018) covering 12 lan- 390

guages. Since these datasets primarily consist of fu- 391

sional languages in which a single morpheme can 392
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bg ca cs de en es fr it nl no ro ru Avg.
Dozat and Manning (2017)♢ 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Wang and Tu (2020)♢ 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Yang and Tu (2022)♢ 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
Lin et al. (2022)* 93.92 93.75 92.97 84.84 91.49 92.37 90.73 94.59 92.03 95.30 88.76 95.25 92.17
Amini et al. (2023)♢ 92.87 93.79 92.82 85.18 90.85 93.17 91.50 94.72 91.89 93.95 87.54 94.03 91.86
SPT-DP (XLM-RoBERTa-large) 92.63 92.90 94.12 84.53 90.55 92.13 91.32 93.63 91.69 93.17 88.60 94.98 91.63
SPT-DP (global) 93.69 93.14 93.23 84.02 90.12 92.52 91.20 93.64 91.98 92.97 88.73 94.27 91.63

Table 1: 12 languages’ LAS scores on the test sets in UD 2.2. ♢ use multilingual BERT for embedding and * uses
T5-base model for sequence generation parsing. Best and second-best scores are in bold and underlined

PTB
Model UAS LAS
Zhou and Zhao (2019)* 97.0 95.43
Mrini et al. (2020)* 97.42 96.26

Dozat and Manning (2017) 95.74 94.08
Wang and Tu (2020) 96.91 95.34
Yang and Tu (2022) 97.24 95.73
Lin et al. (2022) 96.64 95.82
Amini et al. (2023) 97.4 96.4
SPT-DP (XLNet-large) 97.41 96.16

Table 2: Results on PTB dataset. * use additional con-
stituency parsing information so they are not compara-
ble to other methods.

encode multiple grammatical features, we extended393

our experiments to agglutinative languages. Un-394

like fusional languages, agglutinative languages ex-395

press grammatical relationships through sequences396

of distinct morphemes, which are carrying out their397

individual function. For this, we select the Sejong398

corpus, a Korean language dataset, as an agglutina-399

tive language dataset.400

5.1 Datasets401

PTB This English data is preprocessed by Stan-402

ford Parser v3.3.0 (de Marneffe and Manning,403

2008) to convert it into CoNLL format, following404

the approach of Mrini et al. (2020).405

UD 2.2 This is composed of 12 languages from406

UD dataset v2.2 and we follow previous work407

(Amini et al., 2023) for data splitting and orga-408

nizing. The POS tag information is not used for the409

experiments by omitting PPOS in the template.410

Sejong This is the Korean dataset and only the411

POS tags of the first and last morphemes are used412

for this experiment because Korean words consist413

of multiple morphemes.414

5.2 Pre-trained Language Models415

Encoder-based Models XLNet-large, Multilin-416

gual BERT, XLM-RoBERTa-large, and RoBERTa417

Decoder-based Models T5-base, BART-large, 418

LLaMA3.2-3B, and Qwen2.5-3B 419

5.3 Comparison Models 420

Zhou and Zhao (2019) and Mrini et al. (2020) 421

used additional constituency parsing information 422

so they are not comparable to other methods di- 423

rectly. Dozat and Manning (2017) introduced a bi- 424

affine model as a graph-based dependency parsing 425

approach. Wang and Tu (2020) proposed a second- 426

order graph-based method with message passing. 427

Yang and Tu (2022) developed a projective parsing 428

method based on headed spans. Lin et al. (2022) 429

introduced a sequence generation-based parsing 430

method, while Amini et al. (2023) leveraged struc- 431

tural tags and sequential tag decoding. Park et al. 432

(2019) and Lim and Kim (2021) constructed a de- 433

pendency parser using the Korean morpheme ver- 434

sion of BERT. 435

Model UAS LAS
Park et al. (2019) 94.06 92.00
Lim and Kim (2021) 94.76 92.79
SPT-DP 94.52 92.36

Table 3: Results on Sejong dataset

5.4 Evaluation Methods 436

Following Wang and Tu (2020) and Amini et al. 437

(2023), we report the Unlabeled Attachment Score 438

(UAS) and Labeled Attachment Score (LAS) for 439

PTB and UD2.2 evaluations, averaged over three 440

random seeds and excluding all punctuation marks. 441

5.5 Experimental Results 442

Table 2 presents the performance comparison of 443

different models on the PTB dataset. Our method 444

achieves the SOTA performance (97.41) in UAS 445

and competitive one (96.16) in LAS, even though it 446

only uses a pre-trained language model without 447

any additional complex modules. This highlights 448

the strength of our lightweight and efficient de- 449

sign among top-performing models. 450
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bg ca cs de en es fr it nl no ro ru Avg.
base 92.63 92.90 94.12 84.53 90.55 92.13 91.32 93.63 91.69 93.17 88.60 94.98 91.63

global 93.69 93.14 93.23 84.02 90.12 92.52 91.20 93.64 91.98 92.97 88.73 94.27 91.63
unseen 81.65 88.70 80.18 77.66 73.59 88.41 83.70 83.20 78.91 79.59 77.05 79.84 81.04

Table 4: LAS scores for the UD2.2 dataset. The first row lists the languages in the test set. base represents the
performance of a model trained individually for each language. global represents the performance of a single
multilingual model trained on all languages. unseen represents the performance of individual models trained on all
languages except for the test language, evaluating zero-shot transfer performance.

As shown in Table 1, XLM-RoBERTa-large,451

achieves SOTA results on only one language (cs).452

Since our approach solely relies on pre-trained lan-453

guage models, its performance is inherently depen-454

dent on the quality and coverage of those models.455

That is a reason why the relatively weak results456

are observed in the multilingual setting of UD 2.2,457

where the language model was trained across mul-458

tiple languages. Nevertheless, we think that the459

overall performance remains reasonably strong.460

In addition, we construct the global4 model by461

training on the entire languages of UD 2.2 dataset462

and it leads to overall improvements in parsing463

accuracy across many languages. On the other464

hand, the results on the Sejong dataset (Table 3)465

demonstrate that our method achieves performance466

on par with more complex SOTA models, even467

though it is based on lighter and more efficient468

architecture for agglutinative languages.469

6 Analysis470

6.1 Unified Cross-lingual Dependency Parsing471

Furthermore, our evaluation of language-specific472

experiments on the UD 2.2 dataset is expanded473

to cross-lingual experiments. Since the composi-474

tion of dependency relation labels varies across475

languages, we integrate dependency relation labels476

from 12 languages into a shared vocabulary to con-477

struct a unified model for cross-lingual dependency478

parsing. We train a unified model using integrated479

dependency labels, referred to as the global model480

in Table 4. This cross-lingual model shows ro-481

bust and competitive performance, even surpassing482

the base5 model in several languages, as shown483

in Table 4. For out-of-domain evaluation, we also484

train an unseen model by excluding the target lan-485

guage’s training data. Despite this, the unseen486

model performs well, highlighting cross-lingual487

correlations and the scalability of our approach.488

All three models use XLM-RoBERTa-large as the489

4This approach will be discussed in detail in 6.1
5A model trained and tested on the same language.

backbone. 490

6.2 Length Robustness 491

In previous studies, dependency parsing first at- 492

tempt to represent the syntactic information of 493

words in a sentence by feeding the final hidden 494

states from the pre-trained model into additional 495

modules, and classifies each embedding or directly 496

compares the output embeddings of each word to 497

find dependency relations. In contrast, our study 498

newly defines and utilizes index prompts Pidx(Pabs, 499

Pref ); Pref in SPT of a word indirectly and they 500

refer to the Pabs in SPT of another word to rep- 501

resent their dependency relations. Therefore, we 502

have to check out how the relations between Pidx 503

tokens are well trained by the proposed method. 504

Table 5 presents the performance according to sen- 505

tence length. Table 6 shows performance details

Sentence Length Range # of Sentences UAS LAS
1–10 270 97.40 96.30
11–20 764 97.70 96.36
21–30 778 97.46 96.20
31–40 433 97.39 96.20
41–50 135 97.50 96.33
51–60 28 94.55 93.48
61–70 8 98.18 97.73

Table 5: Performance statistics based on sentence
length.

506
based on the index range of templates. We observe 507

that predictions for dependency relations involv- 508

ing higher indices tend to exhibit lower accuracy, 509

which we attribute to the data distribution in the 510

training set. To address this issue, we conducted 511

experiments under extreme conditions to explore 512

potential solutions (Table 7). we assumed that the 513

training data only contains sentences with 15 or 514

fewer words, and tested on sentences with lengths 515

up to 40. As expected, performance decreases be- 516

hind 15th position word. We attempt to extend 517

the length of sentence by concatenating the three 518

training sentences. After the usage of this extended 519

training data, we obtain a significant improvement 520
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in performance as shown Table 7.

Index range # of Indices UAS LAS
1-10 21146 97.99 96.97

11-20 15972 97.20 95.71
21-30 8580 96.72 95.51
31-40 3131 97.06 95.53
41-50 752 96.01 95.08
51-60 151 95.36 94.70
61-70 17 100.00 100.00

Table 6: Statistics and performances according to index
ranges

Index Range
Before Concatenated (after)

UAS LAS UAS LAS
1–10 92.50 89.36 88.53 (-3.97) 79.33 (-10.03)

11–20 52.89 49.91 86.59 (+33.70) 76.20 (+26.29)

21–30 5.19 4.61 86.81 (+81.62) 76.01 (+71.40)

31–40 1.51 1.32 87.95 (+86.44) 76.85 (+75.53)

Table 7: Performance improvement after the usage of
multiple sentence concatenation.521

6.3 Decoder-based Models522

The proposed SPT-DP method entirely operates at523

the text level and it enables our model to have both524

of the easily applicable and trainable abilities. In525

this section, we validate its feasibility on different526

language model architectures, including encoder-527

decoder models and decoder-only models. In these528

models, their decoders generate dependency pars-529

ing results of Pref and PL along with other input530

sequence. The results are presented in Table 8.531

Decoder-based Model UAS LAS
XLNet-large(encoder) 97.41 96.16
T5-base 95.30 93.86
Bart-large 95.84 94.73
Llama3.2-3B 94.55 93.27
Qwen2.5-3B 94.97 93.81

Table 8: Results on PTB with Decoder-based models

6.4 Ablation Study for Prompts532

First, we aim to examine the impact of each pro-533

posed prompt on parsing performance. We conduct534

additional experiments by excluding each of Pabs535

and PPOS to verify how important they are for de-536

pendency parsing. As shown in the Table 9, the537

role of POS information is not critical but Pabs has538

a significant impact on performance. Intuitively,539

when a physically referable index prompt Pabs ex-540

ists in the input, the model can effectively refer541

it through transformer’s attention mechanism. A542

detailed analysis is provided in Appendix E.543

Method UAS LAS
SPT-DP 97.41 96.16
SPT-DP (w/o Pabs) 96.29 (-1.13) 94.60(-1.60)
SPT-DP (w/o PPOS) 97.25(-0.17) 95.59(-0.61)

Table 9: Effect of prompts on PTB dataset.

6.5 Inference Efficiency 544

Hexatagging (Amini et al., 2023), which is utilizing 545

sequential labeling, achieves a processing speed 10 546

times faster than the biaffine model because it does 547

not require additional modules, and similarly to 548

our model, DPSG (Lin et al., 2022) also adopts a 549

text-to-text approach on generative model. As a 550

result, although our approach has to increase sen- 551

tence length due to added prompts, it obtains faster 552

inference speed than other conventional methods 553

because it relies solely on a pre-trained model. 554

Dataset
Speed(sent/s)

SPT-DP
(XLNet-Large)

Hexatagging
(XLNet-Large)

DPSG
(T5-Base)

PTB-test 39.77 28.42 -
UD 2.2 (bg-dev) 38.58 - 0.85

Table 10: Processing speed (sentences per second) of
different models on PTB (test) and UD 2.2 (bg-dev)

7 Conclusions 555

In this paper, we introduce SPT-DP, as a structural- 556

ized prompt template-based dependency parsing 557

method. Our approach enables text-to-text depen- 558

dency parsing through prompt engineering by uti- 559

lizing additional tokens while relying solely on 560

pre-trained encoder models without requiring any 561

additional modules. Despite relying solely on a 562

pre-trained encoder model, our proposed method 563

achieves performance higher or similar to existing 564

models. Through experiments on the UD 2.2, we 565

integrated dependency relation labels to develop 566

a universal model applicable across 12 languages. 567

This model not only enables multi-language de- 568

pendency parsing within a single model but also 569

demonstrates the ability to generalize to unseen 570

languages to some extent. Finally, we applied our 571

method to decoder-based models, demonstrating its 572

applicability across different model types. There- 573

fore, our method has several strong points; it can 574

be easily applied to various pre-trained models ap- 575

propriate for the target language or training envi- 576

ronments, and it achieves fast inference speeds. 577
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Limitations578

In our method, there is a limitation with sequence579

length. Due to the large number of prompts be-580

ing added, memory consumption inevitably in-581

creases. Although the model directly generates582

outputs without relying on additional processing583

pipelines—leading to faster inference—memory584

usage remains a concern. Moreover, as discussed585

in Section 6.5, there may be index positions that are586

not well-trained depending on the sentence length.587

While we have proposed a solution to this issue,588

it clearly remains a challenge that needs to be ad-589

dressed.590

Ethics Statement591

We perform dependency parsing using a pre-trained592

model. The datasets may contain ethical issues or593

biased sentences, but the model does not influence594

them through dependency parsing.595
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A Notations 746

B Implementation Details 747

For experiments for PTB, xlnet-large-cased6 748

are used. For experiments for UD 2.2, bert- 749

multilingual-cased7, xlm-roberta-large8 and xlnet- 750

large-cased are used. For decoder-based models, 751

T5-base9, Bart-large10, Qwen2.5-3B11, Llama3.2- 752

3B12 are used. For the Korean Sejong dataset, 753

RoBERTa-large13, a pre-trained model for the Ko- 754

rean language, is used. Experiments are conducted 755

on an NVIDIA RTX A6000. The models are fine- 756

tuned with a batch size of 8, a learning rate of 1e-5, 757

and 10 training epochs. Training is performed us- 758

ing the linear scheduler and AdamW optimizer. 759

C Efficiency test 760

For the efficiency test between Hexatagging and 761

SPT-DP, we used the PTB test dataset to evaluate 762

the speed of dependency parsing. For the efficiency 763

test between DPSG and SPT-DP, we used the UD 764

2.2-bg dev dataset to evaluate the speed of depen- 765

dency parsing. We set the batch size to 1 and con- 766

ducted the experiment under the same conditions 767

using a single A6000 GPU. 768

D Decoder-based Model 769

Unlike encoders, the decoder-based model required 770

constrained generation. During the inference stage, 771

contents other than Pref and PL were forcibly in- 772

serted into the sequence at intervals, allowing the 773

model to perform accurate dependency parsing in 774

a restricted environment. 775

E Analysis : Ablation Study for Prompts 776

To elaborate further, in experiments without Pabs, 777

the order of the template implicitly replaced Pabs 778

6https://huggingface.co/xlnet-large-cased
7https://huggingface.co/

bert-base-multilingual-cased
8https://huggingface.co/FacebookAI/

xlm-roberta-large
9https://huggingface.co/google-t5/t5-base

10https://huggingface.co/facebook/bart-large
11https://huggingface.co/Qwen/Qwen2.5-3B
12https://huggingface.co/meta-llama/Llama-3.

2-3B
13https://huggingface.co/klue/roberta-large
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Notations Components Type Description
wi - String Text representation of i’th word in sentence
S wi String Sentence
Hi - Integer Index of the head word
L(wi,wHi

) - String Dependency relation label between wiwHi

ri Hi, L(wi,wHi
) Set Dependency relation of wi

RS ri Set Dependency relations of sentence S
L L(wi,wHi

) Set Predefined dependency relation labels
Sdep wi, ri Set Sentence that include dependency parsing information
Pabs "[1]","[2]",. . . ,"[n]" Set of strings absolute index prompts that located at the first position of the prompt set.
Pref "[H1]","[H2]",. . . ,"[Hn]" Set of strings reference index prompts that located in the second position of the prompt set.
Pidx {Pabs, Pref} Set of strings String form of index prompts, indies are encapsulated with "[]"
PL "[acomp]", "[advcl]", . . . , "[xcomp]" Set of strings Prompt tokens of Dependency relation labels , string of labels are encapsulated with "[]"
PPOS "[NN]", "[NNP]", . . . , "[WRB]" Set of strings Prompt tokens of pos-tags P , string of pos-tags are encapsulated with "[]"
PMASK "[HEAD]","[DEP]" Set of strings Masking prompts for training
D Pidx,PL,PPOS ,S String Structuralized Prompt Template
DM PMASK ,PPOS ,S String Masked Structuralized Prompt Template

Table 11: Notations

and was used for prediction. The experimental re-779

sults (Table 9) indicate that the explicit presence780

of Pabs (physically exists), allowing for direct ref-781

erence, plays a crucial role in dependency parsing782

through attention. In Figure 5, presents a heatmap783

representation of attention scores across layers and784

the cosine similarity of each hidden state. The at-785

tention scores on the left show that as the layers786

progress, the values converge, with the token in787

Pref exhibiting high attention scores toward Pabs ,788

which it is supposed to reference.789

F Licenses790

The PTB dataset is licensed under LDC User Agree-791

ment. The UD 2.2 dataset is licensed under the792

Universal Dependencies License Agreement.793
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Figure 5: A heatmap of Attention scores and cosine
similarities in hidden layer
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