Dependency Parsing with the Structuralized Prompt Template

Anonymous ACL submission

Abstract

Dependency parsing is a fundamental task in
natural language processing (NLP), aiming to
identify syntactic dependencies and construct
a syntactic tree for a given sentence. Tradi-
tional dependency parsing models typically
construct embeddings and utilize additional lay-
ers for prediction. We propose a novel depen-
dency parsing method that relies solely on an
encoder model with a text-to-text training ap-
proach. To facilitate this, we introduce a struc-
tured prompt template that effectively captures
the structural information of dependency trees.
Our method achieves the state-of-the-art perfor-
mance in UAS (97.41) and outperforms most
previous approaches in LAS (96.16) on the En-
glish Penn Treebank, despite relying solely on
a pre-trained model. Furthermore, this method
is highly adaptable to various pre-trained mod-
els across different target languages and train-
ing environments, allowing easy integration of
task-specific features.'

1 Introduction

Dependency parsing is a fundamental task in natu-
ral language processing (NLP) that analyzes syn-
tactic relationships between words in a sentence.
Figure 1 illustrates the traditional dependency pars-
ing pipeline. Traditionally, dependency parsing is
performed in two steps: (1) creating word-level
embeddings, and (2) identifying the head word of
each word along with its dependency relation using
the generated embeddings.

Previously, dependency parsing primarily relied
on simple pre-processed contextual vectors to ini-
tialize embeddings (Li et al., 2018; Strzyz et al.,
2019; Vacareanu et al., 2020). With the advent
of powerful pre-trained language models such as
BERT (Devlin et al., 2019), recent dependency
parsing approaches leverage these models to initial-

lh'ctps ://anonymous. 4open.science/r/
SPT-DP-C2C1

Previous Works

(Other Methods)

Embedding A B

Additional
Imformation
Vectors

Word
Level
Embedding

. md

T~
Pooling layer
Last / \ AN 1 \ 1 \

Hidden
States

Lg

7\

PLM
Token

Figure 1: A figure shows that pipeline of traditional
dependency parsing

ize word embeddings, achieving superior perfor-
mance compared to earlier methods (Amini et al.,
2023). In the second step of dependency parsing,
previous studies have shown that graph-based meth-
ods, such as biaffine (Dozat and Manning, 2017),
yield good performance in identifying relations.
Consequently, this approach was extended to learn
the subtree information of the dependency tree
(Yang and Tu, 2022). Since the structural char-
acteristics of dependency trees increased training
complexity, some studies use the sequence tagging
method for parsing (Li et al., 2018; Amini and Cot-
terell, 2022). These approaches add layers after
embedding construction and label the words into
structural information sequentially. In particular,
the hexatagging achieved SOTA performance by
generating structural information with a finite set of
tags through decoding (Amini et al., 2023). In ad-
dition, Lin et al. (2022) demonstrated that encoder-
decoder models effectively generate relation unit
texts from input, highlighting that parsing can be
performed solely using pre-trained models. This
study is particularly significant as it explores depen-
dency parsing by transforming modified text into

https://anonymous.4open.science/r/SPT-DP-C2C1
https://anonymous.4open.science/r/SPT-DP-C2C1

structured dependency output. However, the limita-
tion of this approach lies in the increased computa-
tional time required for parsing, as the number of
tokens grows due to the generation-based method.

In this paper, we propose a novel method to per-
form dependency parsing solely on pre-trained en-
coder models that are constructed by prompt en-
gineering using additional tokens as soft prompts.
We hypothesize that prompt engineering can effec-
tively convert the text-to-structure task in depen-
dency parsing to the text-to-text task by pre-trained
language models. Hence, the output text sequence
of the proposed method has to reflect the tree struc-
ture of dependency parsing well. To achieve this,
we design several soft prompts so that our model
can identify the structural information of the tree
structure, and then apply the Structuralized Prompt
Template (SPT) for each processing unit of de-
pendency parsing using the developed soft prompt.
We believe that prompt learning with the structural-
ized prompt template enables effective and efficient
dependency parsing only on the pre-trained lan-
guage models. Eventually, by learning through the
structuralized prompt template, the Structuralized
Prompt Template based Dependency Parsing (SPT-
DP) method achieves the high performance and
simplified training by reducing the gap between pre-
training and fine-tuning because it is based on only
the pre-trained language models for the text-to-text
task. As a result, our method achieves the state-
of-the-art (SOTA) performance in UAS (97.41)
and outperforms most existing approaches in LAS
(96.16) on the English Penn Treebank (PTB; Mar-
cus et al. (1993)). On the 2.2 version of Universal
Dependencies (UD 2.2; Nivre et al. (2018)), it ob-
tains the SOTA performance in 1 languages out of
12 languages when using the cross-lingual Roberta
model (Liu et al., 2019). Since our method uti-
lizes only a single encoder model, our approach
is faster than existing methods. In particular, it
achieves a 40x speed improvement compared to
DPSG, which employs a similar text-to-text ap-
proach. Furthermore, our method achieves a per-
formance comparable to that of the SOTA model
with a complicated and heavy architecture in the
Korean Sejong dataset.

2 Preliminaries

2.1 Dependency Parsing

Dependency parsing is the process of identifying
dependency relationships among words in a sen-

tence. Given a sentence S = (wq,wa, ..., wy),
the task is to derive the dependency relations,
Rs = (r1,79,...,1y), for each word. Each re-
lation, 7; = (H;, Lw, w Hi))’ consists of two com-
ponents: (1) the index of the head word H; and
(2) the dependency relation label L(wivai)» be-
tween w; and wp,, where L(wi,wHi) € Land L
is the set of predefined dependency relation la-
bels. This study focuses on syntactic dependency
parsing that analyzes grammatical dependency rela-
tions within sentences. Depending on the definition
of the syntactic dependency tree, each word has
exactly one parent node, ensuring a hierarchical
structure. Therefore, the ultimate goal of depen-
dency parsing is to analyze the sentence .S into the
form Sdep = {(wiaTi) | T = (HhL(wi,wHi))vi €
{1,2,...,n}}, where each word wj; is paired with
its corresponding dependency relation ;. 2

S = (He,loves, his, rabbits)

(2, nsubj)
(H 1 L(he,loves))

(2, dobj)
(H 4 L(Rabbits,laves))

(H3, L(sis Rabbits)

Word : w; | Index: i | Head: H; | Label: Ly, 4,)

he 1 2 [nsubj]
loves 2 O(root) [root]
his 3 4 [poss]
rabbits 4 2 [dobj]

Figure 2: Dependency Parsing Example

2.2 Prompt based tuning

Initially, the concept of a prompt emerged as
a method for training models, particularly to
bridge the gap between the pre-training and fine-
tuning stages. PET (Pattern-Exploiting Training)
proposed a method to reduce the gap between
pre-training and fine-tuning by using cloze-style
patterns instead of the traditional [CLS] token-
based classification approach in BERT (Schick and
Schiitze, 2021). This allows the pre-trained lan-
guage model to naturally adapt to classification
tasks. For example, in sentiment analysis, a sen-
tence like "This movie is really [MASK]." is used,
and the predicted probability of the [MASK] token
is used to determine its sentiment.

Subsequently, prompts have been explored in

Table 11 for a list of notations along with explanations.

combination with methods like PEFT (Parameter-
Efficient Fine-Tuning) to improve model efficiency
and task performance (Li and Liang, 2021; Lester
et al., 2021). In generative models like GPT-3
(Brown et al., 2020), text-based prompts are used
to guide and shape the outputs into task-specific
outputs.

In this study, prompts are used to provide addi-
tional linguistic hints, such as grammatical struc-
tures or contextual information, necessary for de-
pendency parsing. Specifically, prompts are added
to the encoder model through preprocessing. This
is done by concatenating prompt phrases, such as
task-specific instructions, to the original input sen-
tence. Prompts are applied to each word in the
input sentence as shown in the following formula-
tion:

P(S) = (T(u1),T(wa),...,T(wy)) (1)

where P(S) represents the transformed sentence
and T'(w;) is the prompt template applied to the
1-th word w;.

2.3 Pre-trained Language Model

Transformer-based pre-trained models are built
upon the following architectures:

* Encoder-based Models: These models en-
code input text to perform tasks like masked
token prediction or classification by adding
a linear layer. They are also widely used in
Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020) to extract representative embed-
dings for documents. X — X’

* Decoder-based Models: These models take
an initial token or prompt and generate tokens

sequentially through autoregressive decoding.
X =Y

The traditional approach to dependency parsing
involves extracting token-level embeddings from
encoder-based pre-trained models, integrating them
at the word level, and constructing word em-
beddings. These embeddings are then analyzed
through various methods to perform dependency
parsing. In this process, the performance of depen-
dency parsing heavily depends on how effectively
the encoder provides information relevant to syn-
tactic structures.

3 Structuralized Prompt Template

As aforementioned, traditional methods approach
dependency parsing by utilizing predefined embed-
dings processed through specific modules. How-
ever, Dependency Parsing via Sequence Generation
(DPSG) departed from this paradigm and intro-
duced a text-to-text dependency parsing method
(Lin et al., 2022). Despite its innovative nature,
DPSG faced limitations due to its generation-based
approach, which could produce unintended outputs.
In addition, the need to generate tokens one by one
resulted in slower processing speeds, especially
when processing additional tokens. To overcome
these challenges, we propose a novel approach that
leverages encoder models. Inspired by the ability of
encoders to facilitate text-to-text learning through
pre-training tasks such as Masked Language Mod-
eling (MLM), we devised a method to represent
dependency parsing information as text and apply it
during training. We call this method Structuralized
Prompt Template (SPT). Unlike traditional depen-
dency parsing, which treats text and dependency
structures as separate levels, SPT integrates de-
pendency information directly into text sequences.
This approach enables dependency parsing entirely
within the textual level by eliminating additional
integration steps and improving overall efficiency.

3.1 Dependency Parsing with Text
Representation

Basically, dependency parsing is the task of finding
a word with a dependency relation and determin-
ing its corresponding dependency relation label for
each word. To express the structured dependency
relationships through the prompt template for each
word, several conditions should be satisfied: 1)
each template must be distinguished by its pattern
through whole training, 2) it must be able to in-
dicate its index, 3) it must be able to refer to the
other word template with dependency relationship
through the output, and 4) it must be able to express
the dependency relation label through the output.
In the first condition, we ensure that the language
model can distinctly recognize each template by
following a consistent pattern rather than a spe-
cific token through all the training process. To
satisfy the second and third conditions, we add in-
dex prompts P4, that serve two roles: representing
the template and indicating the referred template’s
index. Because the P;;, prompts represent the in-
dex of templates in a formatted text sequence, each

Dependency
Tree

Pix Prmask Py Ppos

Output Tokens : Tokenized D

EETN (NS RN

PRP] | _He @ [2] [[0] | [root] J [VBZ] | _loves | [3] [[4] | [poss] } [PRPS] | _his | [4] [[2] | [dobj]] [NNS] | _rabbit s

LM HEAD
Encoder
[1] [HEAD] [DEP] [PRP] _He [2] [HEAD] [DEP] [vBz] _loves [31] [HEAD] [DEP] [PRPS] _his [4] [HEAD] [DEP] [NNS] _rabbit s
Dy (text): ["[1][HEAD][DEP][PRP]He[2 J[HEAD][DEP][VBZ]loves[3][HEAD][DEP][PRP$]his [4 J[HEAD][DEP][NNS]rabbits" }—/

Figure 3: Overview of the Structuralized Prompt Template based Dependency Parsing (SPT-DP) method.

template can refer to another template within a de-
pendency relation regardless of the input sequence
using the P;4, prompts. Finally, the fourth condi-
tion is resolved by adding the dependency relation
labels as prompt P. In addition, we add Ppog to
reflect information for part-of-speech (POS) analy-
sis. However, several challenges arise when using
this prompt approach for dependency parsing:

1. Semantic Representation Issues: If the
prompts are directly integrated into the
model’s existing vocabulary without introduc-
ing new tokens, it may disrupt the original
vocabulary structure, making it difficult to cap-
ture meaningful semantics.

2. Variability in Length: The explicit addition
of prompts, such as numerical indices and de-
pendency relation labels, causes variations in
the length of the enhanced sentence. Masking
these components can lead to further inconsis-
tencies in sequence length, which is critical
for learning in encoder models.

To address these issues, we propose to add each
prompt as a new token to the vocabulary. The above
prompts are individually added to the vocabulary
enclosed in []. This action allows them to be added
independently to the existing vocabulary without
any duplications. This approach allows the model’s
training process to be examined at the text level.
To avoid confusion, we clarify that the notations
Py , Pr, Ppos , and PMASK3 represent string
text encapsulated in square brackets [].

Pidz Pr Ppos
—N——
T(wi) = * [i] [Hi] [Lw; wy,)] [POSw,] wi”
~— "~ :
Paps Preg

2

3to be explained in Section 3.2.

D = (T(wy), T(ws), ... T(wy)) (3)

The final word-level prompt template is rep-
resented by Equation 2: for each word w;, four
prompts are added. In the first prompt [] is Ppps,
which represents the absolute index token indicat-
ing the index of each word in the sentence. The sec-
ond prompt [H;| is P,y that specifies the index of
the word referenced by the given word w;. The only
distinction between P, and P, is their positions
in the template; they serve different roles but share
the same tokens. That is why they are grouped
under P;4,. The third is the dependency relation
label [y, 4 Hi)]’ and the fourth contains [PO.S,,,]
that is POS-tag of w;. The proposed Structuralized
Prompt Template (SPT) can effectively incorpo-
rate the dependency parsing information into input
sentence using these prompts. That is, by applying
this template to every word in the sentence, we
construct a modified sentence D that encapsulates
dependency parsing information. From a certain
perspective, performing dependency parsing can
be regarded as transforming the original sentence
S into a Prompted sentence D.

Structuralized Prompt Template (word) ¥

[1] [2] [nsubj] | [PRP] T oee g

111 :Thefirst position’s P4, indicates the index of
aword in a sentence.

121 :Thesecond position’s P;g,, refers to the index
of another word that is related to the word.

nsubj] | : The third position’s P represents

the dependency label.
[PRP] | : The fourth position’s Ppggs contains pos-tag.
T Tn : Wordpiece tokens of word

Figure 4: A figure of word level SPT example

3.2 Prediction Task using Soft Prompts
Prrask : [HEAD] and [DEP]

For the training, Pj;ask, which contains the
[HEAD] and [DEP] tokens, serves as a soft prompt
and plays a role similar to the masked token in
the Masked Language Model (MLM) task. Since
performing dependency parsing involves predict-
ing [H;] and [L('wiﬂUH,L-)]’ the corresponding parts
in the equation are masked to enable the model to
learn by making predictions. In this process, [H;]
is masked as [HEAD] and [L, . Hi)] is masked as
[DEP], respectively. The P45k are also added
in the tokenizer’s vocab for prompt engineering.

ff& Prrask
M(T(wy)) = Ti] THEADI[DEP][POS,,Juw;”
(4)
Dy = (M(T(wy)), M(T(w2)), ,M(T(wn))s)
Q)

As aforementioned, the Py 45k are used to infer
two main prediction tasks for the head word and
the dependency relation label. They are arranged in
the second and third positions of the structuralized
prompt templates, forming a consistent pattern in
the input text sequence. In our approach, the model
is fine-tuned to predict head word and dependency
relation labels by the [HEAD] and [DEP] prompts.

Ultimately, the goal is to learn to reconstruct
the D from the masked input D, which has been
structured using prompts. This involves different
prediction mechanisms for encoder and decoder
models:

Encoder-only Models The encoder model learns
by reconstructing the masked input D), into its
original form D. Since the output sequence retains
the same structure as the input sequence, the model
effectively maps Dy back to D: Enc(Dy;) — D

Decoder-based Models In encoder-decoder
models, the encoder processes the masked input
Djs to generate a latent representation and the
decoder uses it to reconstruct . On the other
hand, Dj); of decoder-only models serves as a
prefix and it guides the decoder to generate the
unmasked D, autoregressively: Gen(Dys) — D

4 Prompt-based Training

As mentioned earlier, in the encoder model, train-
ing is conducted in an MLM manner, where the
input masked with Pysasx:[HEAD] and [DEP]
are used to predict reference indices P, s:[H;] and

dependency relation label Pr:[Ly, . Hi)] prompts.
Since we have added each prompt to the tokenizer,
the model is trained to output the corresponding
prompt IDs through the LM head. In the de-
coder model, the training process involves provid-
ing masked input and learning to generate the un-
masked text.

The loss function for training is calculated by
the following equations. In Equation 6, X,y is
the tokenized D, that is a concatenated sequence
of SPTs where [H;] and [Ly;, w,,)] are replaced by
[HEAD] and [DEP] prompts. In Equation 7, Y}4pe;
is the tokenized D that is the prompted sequence
based on SPT.

Since all the prompts are added to the tokenizer’s
vocabulary, the lengths of Xy, and Yigpe are
always the same, which is a crucial condition in
encoder-only models. In summary, the models
are trained with D), as input and D as the label.
Encoder-only models are trained with L.y, which
optimizes token prediction based on X+ follow-
ing BERT’s masked language modeling (MLM) for
bidirectional contextual learning. Decoder-based
models use L4, where each token y; is generated
sequentially based on X, and previous outputs
Y., following an autoregressive approach similar
to GPT. 0 is the parameter of model.

The objective function is based on Cross-
Entropy Loss, defined as follows:

Tokenize(Dyr) = Xipput = [%1, 2, ..., TN]
(6)
Tokenize(D) = Yigper = [Y1, Y2, -, yn] (7)

N
ﬁenc = - Z log P(yi’Xinput; 0) (8
i=1
N
Liee = — Z log P(yi|Xinput7 Yo 9) 9
i=1
In summary, L.y, and Lg.. correspond to Cross-
Entropy Loss, where the model optimizes token
prediction probabilities. In encoder-only models,
Lenc applies token-wise classification in an MLM
setting, while in decoder-based models, L 4. fol-
lows an autoregressive generation paradigm.

S Experiments

We first apply our approach to two datasets used in
previous studies, including PTB (Penn Treebank)
and UD 2.2 (Nivre et al., 2018) covering 12 lan-
guages. Since these datasets primarily consist of fu-
sional languages in which a single morpheme can

bg ca cs de en es fr it nl no ro ru Avg.
Dozat and Manning (2017)<$ 90.30 9449 92.65 8598 91.13 93.78 91.77 94.72 91.04 9421 87.24 94.53 91.82
Wang and Tu (2020)< 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Yang and Tu (2022)<> 91.10 9446 9257 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 9445 91.96
Lin et al. (2022)* 93.92 9375 9297 84.84 9149 9237 90.73 9459 92.03 9530 88.76 9525 92.17
Amini et al. (2023)<> 92.87 9379 92.82 85.18 90.85 93.17 91.50 94.72 91.89 9395 87.54 94.03 91.86
SPT-DP (XLM-RoBERTa-large) 92.63 9290 94.12 84.53 90.55 92.13 91.32 93.63 91.69 93.17 88.60 94.98 91.63
SPT-DP (global) 93.69 93.14 9323 84.02 90.12 9252 91.20 93.64 9198 9297 88.73 9427 91.63

Table 1: 12 languages’ LAS scores on the test sets in UD 2.2.) use multilingual BERT for embedding and * uses

T5-base model for sequence generation parsing. Best and second-best scores are in bold and underlined

PTB
Model UAS LAS
Zhou and Zhao (2019)* 97.0 9543
Mrini et al. (2020)* 97.42 96.26
Dozat and Manning (2017) 95.74 94.08
Wang and Tu (2020) 9691 95.34
Yang and Tu (2022) 97.24 95.73
Lin et al. (2022) 96.64 95.82
Amini et al. (2023) 974 964
SPT-DP (XLNet-large) 97.41 96.16

Table 2: Results on PTB dataset. * use additional con-
stituency parsing information so they are not compara-
ble to other methods.

encode multiple grammatical features, we extended
our experiments to agglutinative languages. Un-
like fusional languages, agglutinative languages ex-
press grammatical relationships through sequences
of distinct morphemes, which are carrying out their
individual function. For this, we select the Sejong
corpus, a Korean language dataset, as an agglutina-
tive language dataset.

5.1 Datasets

PTB This English data is preprocessed by Stan-
ford Parser v3.3.0 (de Marneffe and Manning,
2008) to convert it into CoNLL format, following
the approach of Mrini et al. (2020).

UD 2.2 This is composed of 12 languages from
UD dataset v2.2 and we follow previous work
(Amini et al., 2023) for data splitting and orga-
nizing. The POS tag information is not used for the
experiments by omitting Ppog in the template.
Sejong This is the Korean dataset and only the
POS tags of the first and last morphemes are used
for this experiment because Korean words consist
of multiple morphemes.

5.2 Pre-trained Language Models

Encoder-based Models XLNet-large, Multilin-
gual BERT, XLLM-RoBERTa-large, and RoBERTa

Decoder-based Models T5-base, BART-large,
LLaMA3.2-3B, and Qwen2.5-3B

5.3 Comparison Models

Zhou and Zhao (2019) and Mrini et al. (2020)
used additional constituency parsing information
so they are not comparable to other methods di-
rectly. Dozat and Manning (2017) introduced a bi-
affine model as a graph-based dependency parsing
approach. Wang and Tu (2020) proposed a second-
order graph-based method with message passing.
Yang and Tu (2022) developed a projective parsing
method based on headed spans. Lin et al. (2022)
introduced a sequence generation-based parsing
method, while Amini et al. (2023) leveraged struc-
tural tags and sequential tag decoding. Park et al.
(2019) and Lim and Kim (2021) constructed a de-
pendency parser using the Korean morpheme ver-
sion of BERT.

Model UAS LAS
Park et al. (2019) 94.06 92.00
Lim and Kim (2021) 94.76 92.79
SPT-DP 94.52 92.36

Table 3: Results on Sejong dataset

5.4 Evaluation Methods

Following Wang and Tu (2020) and Amini et al.
(2023), we report the Unlabeled Attachment Score
(UAS) and Labeled Attachment Score (LAS) for
PTB and UD2.2 evaluations, averaged over three
random seeds and excluding all punctuation marks.

5.5 Experimental Results

Table 2 presents the performance comparison of
different models on the PTB dataset. Our method
achieves the SOTA performance (97.41) in UAS
and competitive one (96.16) in LAS, even though it
only uses a pre-trained language model without
any additional complex modules. This highlights
the strength of our lightweight and efficient de-
sign among top-performing models.

‘ bg ca cs de en es fr it nl no ro ru ‘ Avg.

base | 92.63 9290 94.12 84.53 90.55 92.13 91.32 93.63 91.69 93.17 88.60 94.98 | 91.63
global | 93.69 93.14 93.23 84.02 90.12 92.52 9120 93.64 9198 92.97 88.73 94.27 | 91.63
unseen | 81.65 88.70 80.18 77.66 73.59 8841 83.70 83.20 7891 79.59 77.05 79.84 | 81.04

Table 4: LAS scores for the UD2.2 dataset. The first row lists the languages in the test set. base represents the
performance of a model trained individually for each language. global represents the performance of a single
multilingual model trained on all languages. unseen represents the performance of individual models trained on all
languages except for the test language, evaluating zero-shot transfer performance.

As shown in Table 1, XLM-RoBERTa-large,
achieves SOTA results on only one language (cs).
Since our approach solely relies on pre-trained lan-
guage models, its performance is inherently depen-
dent on the quality and coverage of those models.
That is a reason why the relatively weak results
are observed in the multilingual setting of UD 2.2,
where the language model was trained across mul-
tiple languages. Nevertheless, we think that the
overall performance remains reasonably strong.

In addition, we construct the global* model by
training on the entire languages of UD 2.2 dataset
and it leads to overall improvements in parsing
accuracy across many languages. On the other
hand, the results on the Sejong dataset (Table 3)
demonstrate that our method achieves performance
on par with more complex SOTA models, even
though it is based on lighter and more efficient
architecture for agglutinative languages.

6 Analysis

6.1 Unified Cross-lingual Dependency Parsing

Furthermore, our evaluation of language-specific
experiments on the UD 2.2 dataset is expanded
to cross-lingual experiments. Since the composi-
tion of dependency relation labels varies across
languages, we integrate dependency relation labels
from 12 languages into a shared vocabulary to con-
struct a unified model for cross-lingual dependency
parsing. We train a unified model using integrated
dependency labels, referred to as the global model
in Table 4. This cross-lingual model shows ro-
bust and competitive performance, even surpassing
the base’ model in several languages, as shown
in Table 4. For out-of-domain evaluation, we also
train an unseen model by excluding the target lan-
guage’s training data. Despite this, the unseen
model performs well, highlighting cross-lingual
correlations and the scalability of our approach.
All three models use XLM-RoBERTa-large as the

*This approach will be discussed in detail in 6.1
A model trained and tested on the same language.

backbone.

6.2 Length Robustness

In previous studies, dependency parsing first at-
tempt to represent the syntactic information of
words in a sentence by feeding the final hidden
states from the pre-trained model into additional
modules, and classifies each embedding or directly
compares the output embeddings of each word to
find dependency relations. In contrast, our study
newly defines and utilizes index prompts P;q,.(Ppps,
P.ct); Prey in SPT of a word indirectly and they
refer to the P, in SPT of another word to rep-
resent their dependency relations. Therefore, we
have to check out how the relations between P,
tokens are well trained by the proposed method.
Table 5 presents the performance according to sen-
tence length. Table 6 shows performance details

Sentence Length Range # of Sentences UAS LAS

1-10 270 97.40 | 96.30
11-20 764 97.70 | 96.36
21-30 778 97.46 | 96.20
3140 433 97.39 | 96.20
41-50 135 97.50 | 96.33
51-60 28 94.55 | 93.48
61-70 8 98.18 | 97.73

Table 5: Performance statistics based on sentence
length.

based on the index range of templates. We observe
that predictions for dependency relations involv-
ing higher indices tend to exhibit lower accuracy,
which we attribute to the data distribution in the
training set. To address this issue, we conducted
experiments under extreme conditions to explore
potential solutions (Table 7). we assumed that the
training data only contains sentences with 15 or
fewer words, and tested on sentences with lengths
up to 40. As expected, performance decreases be-
hind 15th position word. We attempt to extend
the length of sentence by concatenating the three
training sentences. After the usage of this extended
training data, we obtain a significant improvement

in performance as shown Table 7.

Index range # of Indices UAS LAS

1-10 21146 97.99 96.97
11-20 15972 97.20 95.71
21-30 8580 96.72 95.51
31-40 3131 97.06 95.53
41-50 752 96.01 95.08
51-60 151 95.36 94.70
61-70 17 100.00 | 100.00

Table 6: Statistics and performances according to index
ranges

Index Range Before Concatenated (after)
UAS LAS UAS LAS
1-10 92.50 89.36 | 88.53(-3.97) 79.33 (-10.03)
11-20 52.89 49.91 | 86.59 (+33.70) 76.20 (+26.29)
21-30 5.19 4.61 | 86.81 (+81.62) 76.01 (+71.40)
31-40 1.51 1.32 | 87.95 (+86.44) 76.85 (+75.53)

Table 7: Performance improvement after the usage of
multiple sentence concatenation.

6.3 Decoder-based Models

The proposed SPT-DP method entirely operates at
the text level and it enables our model to have both
of the easily applicable and trainable abilities. In
this section, we validate its feasibility on different
language model architectures, including encoder-
decoder models and decoder-only models. In these
models, their decoders generate dependency pars-
ing results of P..; and P, along with other input
sequence. The results are presented in Table 8.

Decoder-based Model UAS LAS
XLNet-large(encoder) 97.41 96.16
T5-base 95.30 93.86
Bart-large 95.84 94.73
Llama3.2-3B 94.55 93.27
Qwen2.5-3B 94,97 93.81

Table 8: Results on PTB with Decoder-based models

6.4 Ablation Study for Prompts

First, we aim to examine the impact of each pro-
posed prompt on parsing performance. We conduct
additional experiments by excluding each of P,
and Ppog to verify how important they are for de-
pendency parsing. As shown in the Table 9, the
role of POS information is not critical but P, has
a significant impact on performance. Intuitively,
when a physically referable index prompt F,s ex-
ists in the input, the model can effectively refer
it through transformer’s attention mechanism. A
detailed analysis is provided in Appendix E.

Method UAS LAS
SPT-DP 97.41 96.16
SPT-DP (w/o Ps) 96.29 (-1.13) 94.60(-1.60)
SPT-DP (w/o Ppog) 97.25(-0.17) 95.59(-0.61)

Table 9: Effect of prompts on PTB dataset.

6.5 Inference Efficiency

Hexatagging (Amini et al., 2023), which is utilizing
sequential labeling, achieves a processing speed 10
times faster than the biaffine model because it does
not require additional modules, and similarly to
our model, DPSG (Lin et al., 2022) also adopts a
text-to-text approach on generative model. As a
result, although our approach has to increase sen-
tence length due to added prompts, it obtains faster
inference speed than other conventional methods
because it relies solely on a pre-trained model.

Dataset Speed(sent/s)
SPT-DP Hexatagging DPSG
(XLNet-Large) (XLNet-Large) (T5-Base)
PTB-test 39.77 28.42 -
UD 2.2 (bg-dev) 38.58 - 0.85

Table 10: Processing speed (sentences per second) of
different models on PTB (test) and UD 2.2 (bg-dev)

7 Conclusions

In this paper, we introduce SPT-DP, as a structural-
ized prompt template-based dependency parsing
method. Our approach enables text-to-text depen-
dency parsing through prompt engineering by uti-
lizing additional tokens while relying solely on
pre-trained encoder models without requiring any
additional modules. Despite relying solely on a
pre-trained encoder model, our proposed method
achieves performance higher or similar to existing
models. Through experiments on the UD 2.2, we
integrated dependency relation labels to develop
a universal model applicable across 12 languages.
This model not only enables multi-language de-
pendency parsing within a single model but also
demonstrates the ability to generalize to unseen
languages to some extent. Finally, we applied our
method to decoder-based models, demonstrating its
applicability across different model types. There-
fore, our method has several strong points; it can
be easily applied to various pre-trained models ap-
propriate for the target language or training envi-
ronments, and it achieves fast inference speeds.

Limitations

In our method, there is a limitation with sequence
length. Due to the large number of prompts be-
ing added, memory consumption inevitably in-
creases. Although the model directly generates
outputs without relying on additional processing
pipelines—Ileading to faster inference—memory
usage remains a concern. Moreover, as discussed
in Section 6.5, there may be index positions that are
not well-trained depending on the sentence length.
While we have proposed a solution to this issue,
it clearly remains a challenge that needs to be ad-
dressed.

Ethics Statement

We perform dependency parsing using a pre-trained
model. The datasets may contain ethical issues or
biased sentences, but the model does not influence
them through dependency parsing.

References

Afra Amini and Ryan Cotterell. 2022. On parsing as
tagging. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 8884—8900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Afra Amini, Tianyu Liu, and Ryan Cotterell. 2023. Hex-
atagging: Projective dependency parsing as tagging.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1453-1464, Toronto, Canada.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1-8, Manchester, UK. Coling 2008
Organizing Committee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 32033214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Joonho Lim and Hyunki Kim. 2021. Korean depen-
dency parsing using token-level contextual represen-
tation in pre-trained language model. Journal of
KIISE Vol.48 No. 1, pages 27-34.

Boda Lin, Zijun Yao, Jiaxin Shi, Shulin Cao, Bing-
hao Tang, Si Li, Yong Luo, Juanzi Li, and Lei Hou.
2022. Dependency parsing via sequence generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 7339-7353, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.18653/v1/2023.acl-short.124
https://doi.org/10.18653/v1/2023.acl-short.124
https://doi.org/10.18653/v1/2023.acl-short.124
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/C18-1271
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10528066
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10528066
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10528066
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10528066
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10528066
https://doi.org/10.18653/v1/2022.findings-emnlp.543
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731-742, Online. Association for Com-
putational Linguistics.

Joakim Nivre et al. 2018. Universal dependencies 2.2.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Cheoneum Park, Changki Lee, Joonho Lim, and Hyunki
Kim. 2019. Korean dependency parsing with bert. In
Proc. of the KIISE Korea Computer Congress, pages
533-536.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255-269, Online. Association for Computa-
tional Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717-723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Robert Vacareanu, George Caique Gouveia Barbosa,
Marco A. Valenzuela-Escdrcega, and Mihai Sur-
deanu. 2020. Parsing as tagging. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 5225-5231, Marseille, France. Eu-
ropean Language Resources Association.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93-99, Suzhou, China. Association
for Computational Linguistics.

Songlin Yang and Kewei Tu. 2022. Headed-span-based
projective dependency parsing. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2188-2200, Dublin, Ireland. Association for Compu-
tational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In

10

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396—
2408, Florence, Italy. Association for Computational
Linguistics.

A Notations
B Implementation Details

For experiments for PTB, xlnet—large—cased6
are used. For experiments for UD 2.2, bert-
multilingual-cased’, xIm-roberta-large® and xInet-
large-cased are used. For decoder-based models,
T5-base’, Bart-large'?, Qwen2.5-3B!!, Llama3.2-
3B!? are used. For the Korean Sejong dataset,
RoBERTa-large'3, a pre-trained model for the Ko-
rean language, is used. Experiments are conducted
on an NVIDIA RTX A6000. The models are fine-
tuned with a batch size of 8, a learning rate of le-5,
and 10 training epochs. Training is performed us-
ing the linear scheduler and AdamW optimizer.

C Efficiency test

For the efficiency test between Hexatagging and
SPT-DP, we used the PTB test dataset to evaluate
the speed of dependency parsing. For the efficiency
test between DPSG and SPT-DP, we used the UD
2.2-bg dev dataset to evaluate the speed of depen-
dency parsing. We set the batch size to 1 and con-
ducted the experiment under the same conditions
using a single A6000 GPU.

D Decoder-based Model

Unlike encoders, the decoder-based model required
constrained generation. During the inference stage,
contents other than P,..y and P, were forcibly in-
serted into the sequence at intervals, allowing the
model to perform accurate dependency parsing in
a restricted environment.

E Analysis : Ablation Study for Prompts

To elaborate further, in experiments without P,,,
the order of the template implicitly replaced P,

6https://huggingface.co/xlnet—large—cased
"https://huggingface.co/
bert-base-multilingual-cased
Shttps://huggingface.co/FacebookAI/
x1lm-roberta-large
9https://huggingface.
Yhttps://huggingface.
"https://huggingface.
Zhttps://huggingface.
2-3B
Bhttps

co/google-t5/t5-base
co/facebook/bart-1large
co/Qwen/Qwen2.5-3B
co/meta-1lama/Llama-3.

://huggingface.co/klue/roberta-large

https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
http://hdl.handle.net/11234/1-2837
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE08763243
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://aclanthology.org/2020.lrec-1.643
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://huggingface.co/xlnet-large-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/FacebookAI/xlm-roberta-large
https://huggingface.co/FacebookAI/xlm-roberta-large
https://huggingface.co/google-t5/t5-base
https://huggingface.co/facebook/bart-large
https://huggingface.co/Qwen/Qwen2.5-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/klue/roberta-large

Notations Components Type Description

w; - String Text representation of i’th word in sentence

S w; String Sentence

H; - Integer Index of the head word

Liw,w w) - String Dependency relation label between w;w g,

T H;, L(w“u%) Set Dependency relation of w;

Rg Ti ' Set Dependency relations of sentence S

L Lw;w) Set Predefined dependency relation labels

Sdep Wi, T Set Sentence that include dependency parsing information

Pops B U P R Y Set of strings absolute index prompts that located at the first position of the prompt set.
Prey "[H11","[H2]",...,"[Hp]" Set of strings reference index prompts that located in the second position of the prompt set.
Py { Pabss Prey} Set of strings ~ String form of index prompts, indies are encapsulated with "[]"

P "[acomp]", "[advcl]", ..., "[xcomp]" Setof strings Prompt tokens of Dependency relation labels , string of labels are encapsulated with "[]"
Ppos "[NN]", "[NNP]", ..., "[WRB]" Set of strings Prompt tokens of pos-tags P, string of pos-tags are encapsulated with "[]"
Prrask "[HEAD]","[DEP]" Set of strings Masking prompts for training

D P42, Pr,Ppos,S String Structuralized Prompt Template

Dy Prrask Ppos,S String Masked Structuralized Prompt Template

Table 11: Notations

and was used for prediction. The experimental re-
sults (Table 9) indicate that the explicit presence
of P,;s (physically exists), allowing for direct ref-
erence, plays a crucial role in dependency parsing
through attention. In Figure 5, presents a heatmap
representation of attention scores across layers and
the cosine similarity of each hidden state. The at-
tention scores on the left show that as the layers
progress, the values converge, with the token in
P, exhibiting high attention scores toward Fpp; ,
which it is supposed to reference.

F Licenses

The PTB dataset is licensed under LDC User Agree-
ment. The UD 2.2 dataset is licensed under the
Universal Dependencies License Agreement.

11

Attention scores Cosine similarities Lower layers

Higher layers

Figure 5: A heatmap of Attention scores and cosine
similarities in hidden layer

12

	Introduction
	Preliminaries
	Dependency Parsing
	Prompt based tuning
	Pre-trained Language Model

	Structuralized Prompt Template
	Dependency Parsing with Text Representation
	Prediction Task using Soft Prompts PMASK : [HEAD] and [DEP]

	Prompt-based Training
	Experiments
	Datasets
	Pre-trained Language Models
	Comparison Models
	Evaluation Methods
	Experimental Results

	Analysis
	Unified Cross-lingual Dependency Parsing
	Length Robustness
	Decoder-based Models
	Ablation Study for Prompts
	Inference Efficiency

	Conclusions
	Notations
	Implementation Details
	Efficiency test
	Decoder-based Model
	Analysis : Ablation Study for Prompts
	Licenses

