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ABSTRACT

Diffusion policies (DP) have emerged as a leading paradigm for learning-based
robotic manipulation, offering temporally coherent action synthesis from high-
dimensional observations. However, despite their centrality to downstream tasks,
DPs exhibit fragile generalization capabilities. Minor variations in observations,
such as changes in lighting, appearance, or camera pose, can lead to significant
performance degradation, even when operating on familiar trajectories. To ad-
dress the issue, we introduce a factorized, fine-grained benchmark that isolates
the impact of individual perturbation factors on zero-shot generalization. Based
on it, we reveal camera pose as a dominant driver of performance degradation, ex-
plaining the pronounced drops observed at higher levels of domain randomization.
In this case, we propose Adaptive Mixing of non-Invariant (AMI) information, a
model-agnostic training strategy that requires no additional data and reinforces
invariant correlations while suppressing spurious ones. Across simulated evalua-
tions, AMI consistently and significantly outperforms strong baselines, mitigating
DP’s sensitivity to observation shifts and yielding robust zero-shot generaliza-
tion over diverse perturbation factors. We further validate these improvements
in real-world experiments by zero-shot deploying the policies in natural settings,
demonstrating their robustness to observation variations.

1 INTRODUCTION

With advances in teleoperation-based data collection and the scaling of expert demonstrations in
simulation (Fu et al., 2024; Liu et al., 2024; Mandlekar et al., 2023), imitation learning has become
a central role in robotic learning. A foundational approach is Behavior Cloning (BC), which maps
observations to actions and thereby casts policy learning as a supervised learning problem (Torabi
et al., 2018; Zhao et al., 2023; Lee et al., 2024). Recent BC research for robotics has proposed
diffusion policies with action chunking. Diffusion policy (Chi et al., 2023; Ze et al., 2024) has
become a pivotal paradigm for robotic manipulation, as their temporally coherent action synthesis
enables reliable control from high-dimensional observations. By modeling action distributions via
denoising diffusion conditioned on context, they deliver performance across manipulation tasks.

As a commonly used base model for robotic manipulation (Black et al., 2024; Liu et al., 2025),the
generalization of diffusion policies is severely challenged: when observations undergo shifts in
lighting or visual appearance, they can fail even on manipulation tasks following previously seen
trajectories. On the Domain Randomization benchmark (Geng et al., 2025), zero-shot evaluations
reveal a substantial degradation in generalization performance in the challenging high-level eval-
uation. Therefore, a natural challenge arises: Why do diffusion policies fail to generalize in
manipulation, and how can their generalization be enhanced?

To address this challenge, we identify the generalization gap for diffusion policy and introduce a fac-
torized, fine-grained evaluation benchmark to rigorously diagnose the causes of sharp generalization
drops, as shown in Figure 1. Benefiting from this fine-grained evaluation, we can more clearly ana-
lyze the factors affecting model generalization and set the stage for further exploration. Accordingly,
we aim to improve model generalization purely through algorithmic advances without increasing
data, and to validate these methods on the factorized evaluation benchmark. Supervision via em-
pirical risk minimization (ERM) (Vapnik, 1999) indiscriminately absorbs all correlations present in
the data, causing the model to fail under out-of-distribution (OOD) conditions (Table 2). Therefore,
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Figure 1: Motivation and overview of our work. Applying multiple appearance perturbations in
the OOD setting causes pronounced performance degradation, motivating the investigation of factors
influencing generalization and the exploration of strategies for improvement.

we aim to learn invariant correlations that are stable across environments to reduce overfitting and
thereby improve algorithmic generalization. Since OOD data are unseen, we introduce Adaptive
Mixing of non-Invariant (AMI) information to better isolate invariant signals, strengthen invariant
correlations, and enhance generalization.

In the first stage, we train an invariant correlation-extracting network (Invariant Net) us-
ing a mutual information-regularized supervision loss based on the information bottleneck princi-
ple (Tishby & Zaslavsky, 2015; Saxe et al., 2019), and simultaneously obtain a conventional network
(Normal Net) via standard supervised learning. Building on these two trained networks, we adopt
the weight subtraction approach to derive the Non-Invariant Net from the Normal Net and Invariant
Net. This operation is theoretically grounded in Neural Tangent Kernel (NTK) theory (Ilharco et al.,
2022; Jacot et al., 2018). Specifically, NTK posits that after training convergence, a neural network’s
output behaves as a local linear function of its weights; this linearity ensures weight modifications
like subtraction lead to predictable output changes without breaking the network. In the second
stage, the non-invariant information within the latent space extracted by the Non-Invariant Net
undergoes inter-batch mixing. The mixed information is then concatenated with the latent informa-
tion from the Invariant Net; subsequently, they are used to jointly predict the action and undergo
training. This process yields more robust and generalizable weights for the AMI algorithm.

The AMI algorithm is model-agnostic (model-free): it is a training strategy rather than an archi-
tectural change, capable of improving zero-shot generalization without modifying the model archi-
tecture or requiring additional data. Our algorithm significantly outperforms baseline approaches,
mitigating the lack of robustness of the diffusion policy to observation variations. A well-trained,
highly generalizable diffusion policy demonstrates strong performance in both real-world and sim-
ulated environments.

In this work, we systematically analyze generalization failures of diffusion policies, introduce a
factorized benchmark for rigorous evaluation, and propose a model-agnostic training strategy AMI
that improves zero-shot generalization without extra data or architectural changes. Our contributions
are summarized as follows:

• Generalization analysis: Camera pose perturbations are the main cause of sharp performance
drops in diffusion policy.

• Factorized benchmark: A fine-grained benchmark disentangles sources of observational varia-
tion, enabling systematic evaluation of robustness.

• Adaptive Mixing of Non-Invariant information (AMI): AMI isolates and adaptively mixes
invariant and non-invariant correlations, enhancing zero-shot generalization in both simulation
and real-world manipulation.

2 RELATED WORK

2.1 DIFFUSION POLICY

Imitation learning (Chi et al., 2023) has become a primary driver of progress in robotic manipulation,
strengthened by advances in large-scale teleoperation and simulation-based data collection. Within
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this paradigm, diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have inspired the de-
velopment of diffusion policies (DPs), which refine simple prior distributions into structured action
trajectories. This iterative formulation is particularly well-suited to robotic manipulation, where
policies must generate temporally consistent sequences from high-dimensional observations. Build-
ing on this insight, a growing body of work (Chen et al., 2025; Reuss et al., 2023; Ze et al., 2024;
Yang et al., 2024; Wu et al., 2025) has shown that DPs achieve remarkable success in mastering
complex manipulation skills from demonstrations.

More recently, research efforts have increasingly focused on improving generalization under dis-
tributional shifts with specialized perceptual inputs and structural priors. For instance, 3D Dif-
fusion Policy (Ze et al., 2024) leverages point clouds to strengthen spatial reasoning; Equi-
bot (Yang et al., 2024) integrates SIM(3)-equivariant architectures to enhance invariance; GenDP
and G3Flow (Wang et al., 2024b; Chen et al., 2025) embed 3D semantic fields into diffusion
processes; while Im2Flow2Act (Xu et al., 2024) incorporates self-supervised 2D flows, and Af-
fordDP (Wu et al., 2025) employs transferable affordances to facilitate generalization. However,
these approaches typically rely on introducing domain-specific information to externally regulate
the generalization capacity of diffusion policies. In contrast, our work undertakes a fine-grained
analysis of how individual perturbation factors influence policy performance. By decoupling these
factors, we abstract their compositional effects and reveal the intrinsic challenges of generaliza-
tion, which in turn form the foundation of our proposed approach that achieves enhanced robustness
without the need for additional training data.

2.2 GENERALIZATION IN ROBOTICS

In robotic imitation learning, achieving generalizable manipulation is a central research focus. Ex-
isting efforts can be broadly categorized into data-centric and algorithmic approaches.

Data-Centric Approaches. One mainstream strategy is to collect large-scale demonstrations from
diverse real-world environments (Zhao et al., 2024; O’Neill et al., 2024). However, this is often
impractical due to the high demands on time, labor, and computation. To response to this, simulated
environments are frequently leveraged to augment or substitute real-world data. Representative
techniques include domain randomization (DR) (Makoviychuk et al., 2021; Tobin et al., 2017) and
generative simulation methods (Wang et al., 2024a), which introduce variability in factors such as
lighting, object positions, and textures, exposing policies to diverse conditions during training. Nev-
ertheless, their performance is highly sensitive to the scale and fidelity of simulated data (Prakash
et al., 2019). They also require substantial computational resources (Akkaya et al., 2019) and may
lead to overly conservative policies (Zhao et al., 2020).

Algorithmic Approaches. One line of work aims to guide policies toward task-relevant factors
while minimizing distractions. Typical strategies include extracting object-centric features such as
object poses (Deng et al., 2020), keypoints (Huang et al., 2024), segmented point clouds (Zhu et al.,
2023), as well as incorporating affordance information into policy learning (Wu et al., 2025). A
second line of research seeks to enhance generalization by improving representations or introduc-
ing structured priors, for instance through disentangled visual embeddings, associative memory, or
equivariant neural architectures (Yang et al., 2024; Ren et al., 2025; Batra & Sukhatme, 2025). Such
designs enable policies to remain robust across diverse environments and invariant to scale, rotation,
and translation change Although these methods are effective in low-dimensional settings, they often
struggle to scale to high-dimensional action spaces or complex manipulation tasks, where unimodal
action distributions can hinder performance in uncertain environments.

3 METHOD

3.1 STAGE1: OBTAIN THE INVARIANT NET AND NON-INVARIANT NET

In the first stage, we learn the weights of the Invariant Net in Section 3.1.1 by optimizing a loss
function based on mutual information supervision of the Information Bottleneck. We then obtain
the weights of the Non-Invariant Net in Section 3.1.2 via vector subtraction between the Invariant
Net and the Normal Net.
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3.1.1 INVARIANT NET TRAINING

The Invariant Net is designed to extract task-critical invariant features for robotic manipulation
(e.g., spatial relationships between end-effectors and target objects) while suppressing environment-
dependent noise (e.g., lighting fluctuations, variations in object appearance). This capability is a
key prerequisite for mitigating generalization degradation under out-of-distribution (OOD) obser-
vation shifts. To this end, we adopt the Information Bottleneck (IB) principle to extract invariant
information for subsequent use.

Theoretical Rationale for IB-Based Invariant Learning. In robotic manipulation with diffusion
policies, the latent space often retains spurious visual correlations that are irrelevant to the task. Such
correlations hinder the ability of the model to capture invariant structures that consistently support
action prediction across diverse environments.

The Information Bottleneck (IB) principle provides a theoretically grounded way to isolate invariant
information. Let X denote the observation input, Z the latent representation extracted from the
diffusion policy, and A the action. The objective is to obtain a representation Z that filters out
environment-specific noise while retaining task-relevant predictive information. Formally, this can
be expressed as:

min
p(z|x)

I(X;Z) s.t. I(Z;A) ≥ κ, (1)

where I(·; ·) denotes mutual information and κ enforces sufficiency of Z for predicting A. By intro-
ducing a Lagrange multiplier β > 0, the constrained problem becomes an unconstrained objective:

LIB = βI(X;Z)− I(Z;A). (2)

Here, minimizing I(X;Z) encourages compression of nuisance correlations, while maximizing
I(Z;A) ensures retention of invariant information. Crucially, we apply the bottleneck not at the
raw encoder output but at the diffusion latent level, where temporal coherence and action-related dy-
namics are already embedded. This placement enhances the effectiveness of IB in isolating stable,
invariant correlations that generalize across observation shifts. (See A.1 for the detailed proof.)

Loss Function. The IB objective can be linked to entropy decomposition. Specifically,

I(Z;A) = H(A)−H(A|Z), (3)

so maximizing I(Z;A) reduces the conditional entropy H(A|Z), i.e., it lowers action uncertainty
given Z. This is approximated by a supervised regression loss between predicted and demonstrated
actions. For the compression term, I(X;Z) is intractable to compute directly. We approximate
it using a neural mutual information estimator (MINE) (Belghazi et al., 2018), parameterized as a
discriminator network.

Combining these elements, the training objective of the Invariant Net is:

LInvariant = E(X,A)

[
∥π(Z)−A∥2

]
+ β · Î(X;Z), (4)

where π(·) denotes the policy head and Î(X;Z) is an estimated mutual information regularizer. The
first term implements behavior cloning on diffusion latents, while the second enforces information
compression through the bottleneck principle.

Through this objective, the Invariant Net yields a latent representation Z that is both predictive and
invariant, preserving stable invariant features while suppressing environment-dependent noise. This
invariant representation forms the foundation on which the subsequent Non-Invariant Net operates
to disentangle residual non-invariant factors.

3.1.2 DERIVING THE NON-INVARIANT NET VIA WEIGHT SUBTRACTION

After obtaining the Invariant Net, which encodes stable invariant correlations, we next aim to isolate
the complementary non-invariant information. To this end, we construct the Non-Invariant Net by
applying weight subtraction between the Normal Net and the Invariant Net. This operation is the-
oretically justified by the local linearity guarantees of Neural Tangent Kernel (NTK) theory, which
ensure that weight differences translate into predictable functional differences after convergence.
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Invariant Weights as Task Vectors. The parameters of the Invariant Net can be interpreted as
a task vector in weight space: by training with the Information Bottleneck objective, this model
encodes the invariant correlations necessary for generalizable action prediction. In contrast, the
Normal Net encodes the full set of correlations present in the training data, including both invari-
ant and non-invariant components. Within the framework of task arithmetic, each such inductive
bias corresponds to a displacement in parameter space, and these displacements can be added or
subtracted to edit model behavior.

Weight Arithmetic and Functional Linearity. NTK theory states that at convergence, the output
of a sufficiently wide neural network behaves as a local linear function of its weights:

f(W +∆W,x) ≈ f(W,x) +∇W f(W,x)⊤∆W. (5)

This property guarantees that arithmetic operations on weights correspond to predictable edits in the
model’s function. In particular, adding a weight vector corresponds to composing the behaviors it
represents, while adding the negative of a weight vector corresponds to removing or canceling the
associated behavior.

Weight Subtraction for Non-Invariant Net. Let WNormal and WInvariant denote the parameters of
the Normal Net and the Invariant Net, respectively. Since WInvariant represents the invariant task
vector, subtracting it from WNormal removes the invariant contribution and leaves only the comple-
mentary components. We therefore define the Non-Invariant Net as:

WNon-Inv = WNormal −WInvariant. (6)

By the local linearity guarantees of NTK theory, this subtraction in weight space translates into an
approximate subtraction in function space:

fNon-Inv(x) ≈ fNormal(x)− fInvariant(x). (7)

Thus, the Non-Invariant Net isolates the residual correlations that are not captured by the invariant
representation, highlighting the complementary non-invariant factors. In the next stage, we will
adaptively mix these complementary invariant and non-invariant representations, ensuring that the
policy benefits from robust invariant structure while flexibly leveraging non-invariant cues when
helpful.

3.2 STAGE2: ADAPTIVE MIXING OF NON-INVARIANT INFORMATION TRAINING

3.2.1 THEORETICAL MOTIVATION.

To understand why mixing Non-Invariant information can improve generalization, we revisit the
classical formulations of Empirical Risk Minimization (ERM) and Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019).

ERM. Empirical Risk Minimization minimizes the average risk over all training samples:

RERM(w) =
1

n

n∑
i=1

ℓ(fw(xi), yi), (8)

where ℓ is the loss function. When training data come from multiple environments {e ∈ Etr}, ERM
implicitly fits to both invariant and environment-specific correlations, thus overfitting to spurious
signals.

IRM. Invariant Risk Minimization instead enforces that the same predictor w is simultaneously
optimal across all environments:

min
Φ,w

∑
e∈Etr

Re(w ◦ Φ) s.t. w ∈ argmin
w′

Re(w′ ◦ Φ), ∀e, (9)

where Φ denotes a feature extractor. This forces the representation to capture only invariant correla-
tions that remain predictive across environments, while discarding non-invariant ones.
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Limitation of Pure IRM/IB. While IRM guarantees invariance, it can be overly conservative: by
discarding all environment-dependent information, the learned model may under-utilize predictive
cues that, though spurious in some environments, still contain a useful signal in others. This leads
to underfitting and reduced performance when environments at test time are only partially aligned
with training invariants.

Why Mixing Helps. Invariant features provide the stable core required for robustness, but re-
lying solely on them can be overly conservative. Non-invariant features, on the other hand, may
contain complementary signals that improve prediction when used in a controlled manner. By se-
lectively reintroducing such signals on top of invariant representations, adaptive mixing reconciles
the ERM–IRM tradeoff: it preserves robustness while recovering useful predictive power, thus mo-
tivating the mixing strategies described next. (See for the detailed proof.)

3.2.2 ADAPTIVE MIXING METHOD.

We consider two complementary strategies for mixing non-invariant information with the invariant
representation. The first is a soft mixing scheme based on Adaptive Normalization, which modulates
feature-level statistics; the second is a hard mixing scheme that directly interpolates embeddings in
the latent space.

In-batch pairing and notation. At each iteration, we randomly sample a partner index j ̸= i via
an in-batch shuffle and form a pair (NIei, NIej). Here, NIei is the non-invariant embedding to be
mixed, and NIej is a reference embedding drawn from a shuffled sample j. The goal is to combine
information from both in order to construct a more stable and generalizable representation ˜NIei.

Soft Mixing via Adaptive Normalization. Adaptive Instance Normalization (AdaIN) (Huang &
Belongie, 2017; Zhou et al., 2021) provides a mechanism to align feature statistics between two
embeddings. It is defined as:

AdaIN(x, y) = σ(y) · x− µ(x)

σ(x)
+ µ(y), (10)

where µ(·) and σ(·) denote the mean and standard deviation along the feature dimension. This oper-
ation normalizes x and then rescales it using the statistics of y, thereby blending the two distributions
at the level of feature statistics.

In our setting, the affine parameters of the adaptive normalization layer are obtained by interpolating
the statistics of NIei and NIej :

γmix = λ · σ(NIei) + (1− λ) · σ(NIej), (11)
βmix = λ · µ(NIei) + (1− λ) · µ(NIej), (12)

where λ ∼ Beta(α, α) is a stochastic mixing coefficient sampled at each training iteration. Here α
is a hyperparameter controlling the concentration of the Beta distribution.

The resulting mixed representation is then given by:

˜NIei = AdaptiveMixing(NIei) = γmix ·
NIei − µ(NIei)

σ(NIei) + ε
+ βmix, (13)

with ε > 0 for numerical stability. This formulation softly blends the statistics of the current non-
invariant embedding and its shuffled partner.

Hard Mixing via Exponential Moving Average. Complementary to the above, we also adopt a
hard mixing scheme that directly interpolates between the raw embeddings:

˜NIei = EMAMixing(NIei) = λ ·NIei + (1− λ) ·NIej , (14)

where λ ∼ Beta(α, α) is a fixed or scheduled weight.

This EMA-style update serves as a direct convex combination between the current non-invariant
signal and the shuffled reference. Unlike adaptive normalization, which operates on feature statistics,
this hard mixing blends the embeddings themselves, enforcing stronger cross-environment coupling.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Benchmark settings for zero-shot and few-shot evaluations.
Task Train Traj. Perturbation Factors Eval Traj.
CloseBox 100 Camera pose, floor texture, scene lighting,

object appearance, table texture
100

StackCube 1000 (same as above) 100

Few-shot (per factor) 10 Same as zero-shot factors 100

3.2.3 JOINT PREDICTION WITH MIXED REPRESENTATIONS

After obtaining the invariant embedding Iei from the Invariant Net and the mixed non-invariant em-
bedding ˜NIei from the Adaptive Mixing, we integrate the two to form the final latent representation
for diffusion-based action prediction. This step ensures that the denoising model leverages robust
invariant structure while flexibly incorporating non-invariant cues when beneficial.

Fusion Mechanism. We concatenate the invariant and mixed non-invariant embeddings:

hi = [ Iei ∥ ˜NIei ], (15)

where [ · ∥ · ] denotes vector concatenation. The fused representation hi is then fed into the diffusion
model ϵθ(·) to predict the noise component at timestep t:

ϵ̂i = ϵθ(hi, t, cond), (16)

where t is the diffusion step and cond represents conditioning signals.

Loss Function. Following the standard Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al., 2020) objective, training minimizes the discrepancy between predicted and true noise:

LDP = E(x,a),ϵ,t

[
∥ϵ̂i − ϵ∥2

]
, (17)

where ϵ ∼ N (0, I) is Gaussian noise injected during the forward diffusion process. Since hi com-
bines both Iei and ˜NIei, the diffusion model is simultaneously exposed to invariant and adaptively
mixed non-invariant signals, leading to more robust denoising and improved policy generalization.

This joint representation completes Stage 2: by training the policy on fused embeddings, the model
learns to dynamically balance invariant and non-invariant information for robust action prediction
under distribution shifts.

4 EXPERIMENT

4.1 BENCHMARK SETTINGS

All data collection and model evaluations are conducted in Isaac Sim. To evaluate generalization,
we consider two evaluation protocols: zero-shot and few-shot, summarized in Table 1.

For the zero-shot setting, we train models using demonstration trajectories collected from the RL-
Bench dataset without perturbations, where the only position of the manipulated object varies. We
select three representative tasks: CloseBox (100 trajs) and StackCube (1000 trajs). During
evaluation, perturbations are introduced along the factors listed in Table 1 (e.g., camera pose, floor
texture, scene lighting, object appearance, table texture). Each task is evaluated with 100 trajectories;
for each trajectory, both the object placement and one of the perturbation factors are randomized.

For the few-shot setting, we additionally collect 10 demonstration trajectories for each perturbation
factor under the same task. These perturbed trajectories are then used for model training, while the
evaluation protocol follows the same procedure as in the zero-shot setting.

4.2 ZERO-SHOT GENERALIZATION

Analysis. Table 2 reports the success rates under different perturbation factors. For the
CloseBox task, all methods fail completely under camera pose perturbations, highlighting that

7
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Table 2: Zero-shot generalization success rates (%).
Task Method Camera

pose
Floor
texture

Scene
lighting

Object
appear-
ance

Table
texture

Average

CloseBox

Normal DP 0 29 4 6 20 11.8
Invariant Net 0 32 9 12 20 14.6
AMI (Hard) 0 37 16 13 27 18.6
AMI (Soft) 0 46 22 8 32 21.6

StackCube
Normal DP 0 1 0 0 0 0.2
Invariant Net 0 6 0 0 0 1.2
AMI (Hard) 0 16 0 1 0 3.4
AMI (Soft) 0 11 0 0 0 2.2

this factor introduces the most severe distribution shift. However, since the manipulated object in
this task is relatively large, the action space admits more tolerance, making generalization across
other factors (e.g., floor texture or table texture) relatively easier. In contrast, the StackCube task
involves stacking small cubes, which requires high-precision manipulation; as a result, the success
rates are significantly lower across all methods, suggesting that achieving zero-shot generalization
on fine-grained tasks remains extremely challenging. The Invariant Net improves stability over the
baseline by modest margins, especially under floor texture and object appearance changes, but the
overall difficulty difference between the two tasks is evident.

Effectiveness of AMI. Our proposed AMI strategy further boosts performance across most pertur-
bation types. On the CloseBox task, AMI (Soft) achieves the highest success rates on floor texture,
object appearance, and table texture perturbations, leading to a substantial improvement in the aver-
age performance (21% vs. 11.8% for the baseline). Even though camera pose remains unsolved, the
consistent gains on other factors demonstrate that AMI effectively leverages non-invariant informa-
tion without sacrificing robustness. Interestingly, we find that soft mixing provides stronger improve-
ments against peripheral observation shifts (e.g., background texture or lighting), but is less effective
when the appearance of the manipulated object itself changes. In contrast, hard mixing proves more
beneficial in handling object appearance variations, suggesting that the two variants capture com-
plementary aspects of robustness. On the more difficult StackCube task, where high-precision
manipulation of small cubes makes generalization particularly challenging, AMI still improves the
average success rate from 0.2% (baseline) to 3.4%. Although the absolute success rates remain
low, this relative improvement by more than an order of magnitude indicates that AMI can extract
complementary cues even in precision-demanding scenarios. these results validate adaptively mix-
ing invariant and non-invariant embeddings yields complementary benefits, translating into stronger
zero-shot generalization across both coarse-grained and fine-grained manipulation tasks.

Please see the few-shot generalization results in the B.2.

4.3 ABLATION STUDY

Effectiveness of hard mixing and soft mixing. Table 2 compares the performance of hard and
soft mixing under different perturbation factors. On the CloseBox task, both variants of AMI
clearly outperform the Normal DP and Invariant Net baselines. Soft mixing achieves the highest
average success rate (21%) by providing substantial gains on floor texture, scene lighting, and table
texture perturbations. In contrast, hard mixing performs slightly better on object appearance (13%
vs. 8% for soft mixing), suggesting that explicit separation of invariant and non-invariant features
is advantageous when dealing with appearance shifts. On the more challenging StackCube task,
success rates are overall much lower due to the precision required to manipulate small cubes. Nev-
ertheless, AMI (Hard) still yields the strongest performance (3.4% average), surpassing both the
baseline and AMI (Soft). These results indicate that while soft mixing excels at capturing peripheral
environmental variations, hard mixing is more effective when robustness to object appearance or
fine-grained control is critical.
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Figure 2: Real-world experiment illustration. The first row shows perturbation attacks on the
table texture to evaluate generalization. The second row shows perturbations applied to lighting
conditions, including variations in light color and intensity.
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Figure 3: Ablation of mixing probability.

Effect of mixing probability. Fig. 3 shows the ab-
lation study conducted on the CloseBox task under
the Floor texture perturbation in the zero-shot set-
ting. We vary the mixing probability (controlled by
the Beta distribution parameter) and record the suc-
cess rates. The curve exhibits a clear non-monotonic
trend: success rates remain relatively low when
the mixing probability is close to 0.1–0.3 (around
28 − 34%), indicating that insufficient mixing fails
to effectively utilize non-invariant information. Per-
formance improves substantially as the mixing prob-

ability increases to the mid range, peaking around 0.7 with a success rate of 46%. This suggests that
moderate stochastic mixing achieves the best balance between invariant stability and non-invariant
flexibility. However, when the mixing probability approaches 1.0, the performance drops again (to
about 41%), likely because overly aggressive mixing introduces excessive non-invariant noise. the
results confirm that the mixing probability is a critical hyperparameter: extremely small or large
values are suboptimal, whereas mid-range values achieve the most robust zero-shot generalization.

4.4 REAL WORLD ZERO-SHOT GENERALIZATION

In the real-world experiments, we validate our algorithm on two tasks: Unplug Charger and
Open Ricecooker. The training data follows the UMI-like format, where the observations are
fisheye images. Since our algorithm is observation-agnostic, we can perform zero-shot validation.

For the Unplug Charger task, we evaluate generalization by perturbing the table texture. Illus-
trations of different conditions are shown in the first row of Figure 2. For the Open Ricecooker
task, the input includes depth maps estimated by Depth Anything, which makes conventional dif-
fusion policies highly sensitive to lighting strength and color. We therefore evaluate robustness to
scene lighting perturbations on this task, with examples shown in the second row of Figure 2.

Our real-world videos are provided in the supplementary material. The videos show that the
standard Diffusion Policy can complete the tasks in environments matching the training distribution,
but fails once perturbations are introduced. In contrast, our AMI-trained algorithm continues to
operate successfully under OOD conditions, completing the manipulation tasks robustly.

5 CONCLUSION

In this work, we investigate why diffusion policies struggle under observation shifts and propose
AMI, a simple, model-agnostic strategy. By factorizing and adaptively mixing invariant and non-
invariant observation components, AMI improves robustness without sacrificing performance. Ex-
periments on simulation benchmarks and real robots show nearly 2× higher success on CloseBox
and 10× improvement on StackCube. Analysis identifies camera pose as the main failure mode.
Code and benchmarks will be released to support further research.
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ETHICAL STATEMENT

All samples used in the experiment strictly follow guidelines designed to exclude any harmful,
unethical, or offensive content. Furthermore, our benchmark does not involve any comparisons of
harmful, ethical, or offensive content.

REPRODUCIBILITY STATEMENT

We will release our code under an open-source license upon publication. The paper provides suf-
ficient details of the model architectures, training setup, and evaluation protocols to enable repro-
ducibility. We also specify the compute resources used, including GPU type, number of GPUs, and
training time. All datasets and baselines are publicly available under permissible licenses, and we
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A ADDITIONAL PROOF

Theorem A.1 (IB encourages invariant representations). Let the data-generating process admit a
factorization

X = S(Z1, Z2), (18)

where Z1 are invariant (task-relevant) latent variables and Z2 are non-invariant nuisance latents.
The target (action) A depends on X only through Z1:

A
∣∣ X d

= A
∣∣ Z1, (19)

i.e. A ⊥ X | Z1. Consider the Information Bottleneck (IB) objective that seeks a stochastic encoder
pϕ(z | x) minimizing
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min
pϕ(z|x)

I(X;Z) s.t. I(Z;A) ≥ κ, (20)

for some fixed κ > 0. Then, any minimizer (or encoder attaining the infimum) must not contain any
extra information about Z2 beyond what Z1 provides: formally, the optimal encoder can be chosen
so that

Z ←→ Z1 ←→ Z2 (21)

(i.e. I(Z;Z2 | Z1) = 0). In other words, the IB solution can be taken to depend on Z1 only, and
thus extracts an invariant representation.

Proof. We will prove the result by deriving several steps leading to the conclusion that any optimal
encoder will depend only on Z1.

Step 1: Data-processing lower bounds the compression cost. Since Z1 → X → Z forms a Markov
chain (via X = S(Z1, Z2)), by the data-processing inequality (DPI), we have

I(Z1;Z) ≤ I(X;Z). (22)

Thus, any encoder pϕ(z | x) that attains a given compression level I(X;Z) = I0 cannot convey
more information about Z1 than I0, and conversely, to ensure that the target action A is predicted
with sufficient accuracy, we need at least enough information about Z1:

I(Z;A) ≤ I(Z;Z1) ≤ I(X;Z). (23)

To meet the constraint I(Z;A) ≥ κ, the encoder must satisfy I(Z;Z1) ≥ κ′, for some κ′, where κ′

is determined by the dependence of Z1 on A.

Step 2: Any extra information about Z2 is ”wasteful” for the constraint. Suppose that the encoder
pϕ(z | x) satisfies the constraint I(Z;A) ≥ κ but also contains non-zero conditional information
about Z2 given Z1, i.e., I(Z;Z2 | Z1) > 0. We now show that this dependence on Z2 can be
eliminated without violating the constraint.

Consider a new encoder pϕ′(z | x) constructed by randomizing away the dependence on Z2 while
keeping the dependency on Z1 intact. Formally, we define pϕ′(z | x) as follows:

pϕ′(z | x) =
∫

pϕ(z | s(z1, z2)) dPZ2|Z1
(z2 | z1), (24)

where s(z1, z2) is a function mapping Z1 and Z2 to the space of observations X (i.e., X =
S(Z1, Z2)). This transformation effectively marginalizes out the dependence on Z2 while preserving
the conditional dependence on Z1.

Since pϕ′(z | z1) = pϕ(z | z1), the encoder pϕ′(z | x) keeps the same predictive power as pϕ(z | x):

Iϕ′(Z;A) = Iϕ(Z;A) ≥ κ, (25)

because A ⊥ X | Z1 and pϕ′(z | z1) = pϕ(z | z1). In other words, pϕ′(z | x) retains the same
predictive power for A as the original encoder, but crucially, it has no extra dependence on Z2.

Next, we show that this new encoder pϕ′(z | x) reduces the mutual information between X and Z
compared to pϕ(z | x). By the chain rule of mutual information, we have:

Iϕ′(X;Z) = Iϕ′(Z1;Z) ≤ Iϕ(X;Z), (26)

with strict inequality holding whenever Iϕ(Z;Z2 | Z1) > 0. This follows from the fact that
marginalizing out Z2 reduces the overall mutual information between X and Z.
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Step 3: Conclusion — minimizers depend only on the invariant factors. Since the new encoder
pϕ′(z | x) preserves the predictive information about A while reducing the mutual information
I(X;Z), the original encoder pϕ(z | x) cannot be optimal for the IB objective. In other words, the
optimal encoder must eliminate the extra dependency on Z2 and can be taken to depend on Z1 only.

Thus, the IB solution naturally encourages representations that capture invariant task-relevant in-
formation, discarding nuisance information that does not contribute to predicting A. Therefore, the
optimal representation learned by the IB objective can be interpreted as an invariant representation
of Z1.

Theorem A.2 (Generalization benefit of mixing non-invariant information). Let Zinv denote invari-
ant latent features, and Ze

ninv denote non-invariant features specific to environment e ∈ E . Suppose
a predictor trained by ERM uses both Zinv and Ze

ninv, while IRM discards Ze
ninv. Define the mixed

non-invariant representation

Z̃ninv = λZi
ninv + (1− λ)Zj

ninv, i ̸= j, λ ∼ Beta(α, α). (27)

Then training on the joint representation h = [Zinv, Z̃ninv] yields improved out-of-distribution (OOD)
generalization compared to pure ERM or IRM, since Z̃ninv reduces environment-specific variance
while retaining predictive signal.

Proof. We prove the claim in three steps.

Step 1 (Variance reduction). Consider the variance of the mixed non-invariant representation:

Var(Z̃ninv) = λ2Var(Zi
ninv) + (1− λ)2Var(Zj

ninv) + 2λ(1− λ)Cov(Zi
ninv, Z

j
ninv). (28)

Since Cov(Zi
ninv, Z

j
ninv) < min{Var(Zi

ninv),Var(Zj
ninv)} under domain shift, mixing strictly reduces

variance of domain-specific noise.

Step 2 (Invariance enrichment). IRM theory (Arjovsky et al., 2019) shows that predictors generalize
OOD if a representation elicits the same optimal classifier across environments. By mixing across
environments, Z̃ninv approximates an environment-averaged feature, making its correlations closer
to invariant.

Step 3 (Bias–variance tradeoff). ERM achieves low bias but high variance (overfitting spurious
features), while IRM achieves low variance but high bias (discarding useful information). Our
mixing strategy reduces the variance of non-invariant features while keeping part of their predictive
signal, thus striking a better balance between bias and variance.

Therefore, the combined representation h = [Zinv, Z̃ninv] improves generalization compared to ERM
or IRM alone. This aligns with the empirical findings of MixStyle and the theoretical guarantees of
IRM (Arjovsky et al., 2019).

Corollary A.3 (Soft Mixing via Adaptive Normalization). Under the setting of Theorem A.1, if the
non-invariant features are mixed at the level of their first- and second-order statistics (mean and
variance) as in Adaptive Instance Normalization (AdaIN), i.e.,

µmix = λµ(Zi
ninv) + (1− λ)µ(Zj

ninv), σmix = λσ(Zi
ninv) + (1− λ)σ(Zj

ninv), (29)

then the resulting normalized representation

Z̃ninv = σmix ·
Zi

ninv − µ(Zi
ninv)

σ(Zi
ninv)

+ µmix (30)

also reduces variance across environments while preserving predictive signal. Therefore, the gen-
eralization benefit of mixing non-invariant information holds for soft mixing. Proof follows directly
from the variance-reduction argument in Theorem 1.
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Corollary A.4 (Hard Mixing via Exponential Moving Average). Under the setting of Theorem A.1,
if the non-invariant embeddings are directly interpolated via an EMA-type update

Z̃ninv = αZi
ninv + (1− α)Zj

ninv, α ∈ [0, 1], (31)

then Z̃ninv lies in the convex hull of environment-specific representations, which reduces domain-
specific variance while keeping their predictive content. Therefore, the generalization benefit also
holds for hard mixing. Proof follows directly from the variance-reduction argument in Theorem 1.
Lemma A.5 (NTK view of adaptive mixing and its generalization effect). Let f(x;W ) be a network
trained to convergence at W ⋆, and consider its NTK linearization

f(x;W ) ≈ f(x;W ⋆) + ∇W f(x;W ⋆)⊤(W −W ⋆). (32)

Assume:

(A1) Feature-space splitting. The parameter space decomposes into orthogonal blocks W =
(Winv,Wninv) that induce two RKHSs with kernels

Kinv(x, x
′) =

〈
∇Winv

f(x), ∇Winv
f(x′)

〉
,

Kninv(x, x
′) =

〈
∇Wninv

f(x), ∇Wninv
f(x′)

〉
,

Kcross(x, x
′) = 0 (block-orthogonality).

(33)

(A2) Environment model. Training data come from environments e ∈ Etr with

x =
(
xinv, x

e
ninv

)
, (34)

where the invariant component has stable conditional label distribution P (y | xinv) across
e, while the non-invariant component xe

ninv (and its induced gradients) varies with e and has
environment-centered fluctuations:

Ee[∇Wninv
f(x)] = 0 for fixed xinv. (35)

(A3) Adaptive mixing. During training, a mixed representation is used by injecting a gated non-
invariant direction

fmix(x) ≈ finv(x) + λ∆fninv(x), (36)

equivalently a parameter update

Wmix = Winv + λ (Wninv −Winv), (37)

with λ ∼ Beta(α, α) independent of x.

Then the training dynamics of fmix are equivalent (in the NTK limit) to kernel regression in the
RKHS with effective kernel

Kmix(x, x
′) = Kinv(x, x

′) + E[λ]Kninv(x, x
′). (38)

Moreover, under (A2), Kmix preserves the invariant component while regularizing the non-invariant
component by a factor E[λ] ∈ (0, 1), which reduces the variance contributed by environment-
specific directions. Consequently, compared to ERM (Kinv + Kninv) and IRM (Kinv), the mix-
ture kernel Kmix achieves a better bias–variance trade-off and thus improves OOD generalization
whenever Kninv contains partially predictive yet environment-unstable directions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof sketch. Step 1: NTK linearization and kernel decomposition. By linearization at W ⋆,
f(x;W ) ≈ f(x;W ⋆) + Φ(x)⊤(W − W ⋆) with feature map Φ(x) = ∇W f(x;W ⋆). Under
(A1), Φ(x) = (Φinv(x),Φninv(x)) and the NTK decomposes as K(x, x′) = ⟨Φinv(x),Φinv(x

′)⟩+
⟨Φninv(x),Φninv(x

′)⟩ = Kinv +Kninv.

Step 2: Mixing as gated subspace expansion. The mixing update in (A3) yields the functional
perturbation

fmix(x)− finv(x) ≈ Φninv(x)
⊤ λ (Wninv −Winv), (39)

so the induced training kernel becomes Kmix(x, x
′) = Kinv(x, x

′) + λKninv(x, x
′) for a fixed λ.

Averaging over the stochastic gate gives E[Kmix] = Kinv + E[λ]Kninv.

Step 3: Variance control and OOD stability. By (A2), environment-induced fluctuations live primar-
ily in the Kninv-subspace and are centered across environments. Replacing Kninv with E[λ]Kninv

shrinks those unstable directions, reducing the variance of the estimator in that subspace (equiva-
lently, adding a data-augmentation-like noise that lowers the effective complexity). Thus, relative
to ERM (no shrinkage) the estimator suffers less OOD variance, and relative to IRM (full suppres-
sion) it retains useful predictive power present in Kninv. This achieves a strictly better bias–variance
trade-off whenever Kninv carries partially informative yet unstable correlations.

Conclusion. Therefore, in the NTK regime, adaptive mixing corresponds to kernel regression with
Kmix = Kinv + E[λ]Kninv, which preserves invariants while softly regularizing non-invariants,
supporting improved OOD generalization.

Remark. The result is agnostic to the specific realization of mixing (e.g., statistic-level AdaIN vs.
embedding-level EMA): both instantiate a gated projection onto the non-invariant NTK subspace,
differing only in how λ and the target directions are constructed.

B ADDITIONAL EXPERIMENTS

B.1 DETAILED EXPERIMENTAL SETTINGS

Our model and the associated algorithms were trained on a single NVIDIA A100 GPU with 80GB
of memory, and the training process lasted approximately 4 hours. Subsequently, model inference
and evaluation were performed on an NVIDIA RTX 4090 GPU with 24GB of memory.

B.2 FEW-SHOT GENERALIZATION

Camera pose Floor texture Scene lighting Object appearance Table texture
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Figure 4: Few-shot generalization on the CloseBox task. The figure illustrates the success rate
evolution of three algorithms when fine-tuned on five perturbation factors.

Setup. We further evaluate the few-shot generalization capability of different methods. For each
perturbation category, 10 demonstration trajectories with perturbations are collected for training,
while all policies are pre-trained on non-perturbed demonstrations. During fine-tuning, we save a
checkpoint every ten epochs, and report the success rates across checkpoints; the resulting curves
are shown in Fig. 4.

Analysis. Across the camera pose perturbation, none of the methods demonstrate strong few-shot
generalization, though AMI achieves slightly better performance. Since the few-shot generalization
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experiments employ the soft mixing variant of AMI, its performance on object appearance pertur-
bations is less competitive, which is consistent with the observation that soft mixing is weaker when
handling appearance shifts. In contrast, for scene lighting, all methods quickly achieve high gen-
eralization after seeing only ten examples, suggesting that this factor is easier to adapt to and may
provide insights into improving model robustness. Another notable observation is that AMI exhibits
a cold-start issue in the few-shot regime: its initial performance is not superior to other baselines,
although it eventually surpasses them as training progresses.

C USE OF LLMS

In this work, we employ large language models (LLMs) to automatically identify and correct gram-
matical errors, thereby improving the overall fluency and readability of the generated text.
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