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ABSTRACT

This work presents a novel, fully Riemannian framework for Low-Rank Adap-
tation (LoRA) that geometrically treats low-rank adapters by optimizing them di-
rectly on the fixed-rank manifold. This formulation eliminates the parametrization
ambiguity present in standard Euclidean optimizers. Our framework integrates
three key components to achieve this: (1) we derive Riemannion, a new Rie-
mannian optimizer on the fixed-rank matrix manifold that generalizes the recently
proposed Muon optimizer; (2) we develop a Riemannian gradient-informed LoRA
initialization, and (3) we provide an efficient implementation without prominent
overhead that uses automatic differentiation to compute arising geometric opera-
tions while adhering to best practices in numerical linear algebra. Comprehensive
experimental results on both LLM and diffusion model architectures demonstrate
that our approach yields consistent and noticeable improvements in convergence
speed and final task performance over both standard LoRA and its state-of-the-art
modifications.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language processing tasks Brown et al. (2020); Touvron et al. (2023a;b). However, the
computational and storage costs associated with training and deploying such models at scale pose
significant challenges. To reduce these costs, parameter-efficient fine-tuning techniques such as
low-rank adaptation (LoRA) Hu et al. (2022) have emerged as a practical solution. LoRA enables
efficient adaptation of pre-trained models by embedding learnable low-rank matrices into specific
weight updates, allowing most of the original parameters to remain frozen. In particular, the main
idea of LoRA is to fine-tune a pretrained model using a rank-r correction matrix ∆W :

W +∆W = W +AB⊤, A ∈ Rm×r, B ∈ Rn×r,

where W remains constant during training and A,B are optimized via gradient-based optimization
methods.

Despite its efficiency, the dominant practice of optimizing the LoRA factors (A,B) with Euclidean
optimizers such as SGD (Robbins & Monro, 1951), Adam (Kingma & Ba, 2014), Adagrad (Duchi
et al., 2011), RMSProp (Tieleman, 2012), etc. that misaligned with the geometry of the low-rank
constraint. The same update ∆W can be represented by infinitely many factorizations: for any
A ∈ Rm×r, B ∈ Rn×r and any invertible matrix S ∈ Rr×r, we may write:

∆W = AB⊤ = ÃB̃⊤, where Ã = AS, B̃ = BS−⊤. (1)

Ideally, training should be reparameterization (transformation) invariant: the update to ∆W must
not depend on which factorization (A,B) is used (Yen et al., 2024). Empirically, this lack of in-
variance manifests as unbalanced learning where one factor dominates and the other stalls, fragile
hyperparameter sensitivity, and path-dependent solutions. These issues have prompted geometry-
aware formulations. Riemannian treatments of low-rank models operate on the fixed-rank manifold
rather than the ambient factor space, projecting gradients to the tangent space and retracting back to
the manifold. Such steps can be implemented efficiently when r ≪ min{m,n} and avoid forming
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full-size matrices. Within the LoRA literature, existing Riemannian approaches either use stan-
dard SGD-type optimizers Mo et al. (2025, LORO) or rely on the Adam (Zhang & Pilanci, 2024)
optimizer for auxiliary matrices within the chosen parameterization, which deviate them from the
Riemannian framework and introduce dependence on parameterization.

In this work, we introduce a fully Riemannian framework for training LoRA that optimizes the
adapter X=∆W directly on the fixed-rank matrix manifold

Mr = {X ∈ Rm×n : rank(X) = r},
eliminating factorization ambiguity by construction. Central to our approach is Riemannion, a new
Riemannian optimizer onMr that generalizes the recently proposed Muon optimizer (Jordan et al.,
2024) to the fixed-rank setting. In contrast to prior Riemannian LoRA variants that port Adam-
like mechanics to the manifold with ad hoc choices, our design inherits Muon’s geometry-aligned
normalization, yielding transformation invariance of the learned update. We further propose a Rie-
mannian gradient–informed initialization that places the initial adapter at a good location onMr,
and we provide a practical, low-overhead implementation that assembles projections, retractions,
and vector transports via automatic differentiation, also following best practices from numerical
linear algebra. Extensive experiments on LLM and diffusion architectures show consistent gains
in convergence speed and final task performance over standard LoRA and recent state-of-the-art
modifications.

Our contributions are as follows:

• Riemannion: Muon on the fixed-rank manifold. We derive Riemannion, the first opti-
mizer that generalizes Muon to the manifoldMr of fixed rank matrices.

• Riemannian gradient-informed initialization. We propose an initialization strategy
which yields best alignment between the initial Riemannian gradient and the Euclidean
gradient. We also propose an efficient way for this strategy by using a randomized SVD
algorithm with implicit matrix multiplication (Section 5). Finally, we show the connection
of this initialization to LoRA-GA.

• Efficient implementation with automatic differentiation. We pay special attention to
numerical implementation to make the method robust without any prominent overhead
compared to vanilla LoRA at small ranks.

• Comprehensive empirical validation. We showcase the performance of our framework
for fine-tuning LLMs and in subject-driven generation using diffusion models. Among
positive effects that we observe are: boost in target metrics, improved convergence, and
reduction of variance.

2 RELATED WORK

The problem of an optimal initial guess selection for low-rank LLM adaptation has been addressed
in a sequence of works: the authors Meng et al. (2024, PiSSA) have suggested a heuristic that
involves using a low-rank truncated SVD of pretrained parameters as an initial point for LoRA and
its orthogonal complement as frozen layer’s parameters, so that the tuning process starts without
changing the starting value of the loss function. A similar approach was implemented by Wang
et al. (2025, MiLoRA) with the main difference of optimizing the smallest singular components of
unadapted parameter matrix. A context-aware initialization was considered in (Yang et al., 2024,
CorDA) and (Parkina & Rakhuba, 2025, COALA) proposes a numerically robust inversion-free
framework for low-rank weighted approximations for this setting. Another idea is to initialize LoRA
with a subset of left and right singular vectors of a doubled-rank truncated SVD of the loss function
gradient at the starting parameters, proposed by Wang et al. (2024, LoRA-GA). We show direct
connection of this method to our Riemannian initialization strategy and propose how to additionally
significantly accelerate the computation of SVD using our approach. Attempting to overcome the
asymmetry in the initialization of vanilla LoRA fine-tuning process, (Hayou et al., 2024, LoRA+)
introduced a scale-free step size selection for LoRA factors.

Riemannian optimization is widely used for algorithms on matrix manifolds and allows for exploit-
ing task geometry or imposing additional constraints. For example, a Riemannian solution for the
extreme eigenpairs search problem was described in Absil et al. (2009); Baker (2008), a matrix
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completion task, which is common in collaborative filtering for recommender systems, via opti-
mization on the fixed-rank manifold (Vandereycken, 2013), a Riemannian approach on the manifold
of matrices with orthonormal columns (the Stiefel manifold) was used by Wisdom et al. (2016) for
diminishing the problem of vanishing and exploding gradients in recurrent neural networks, etc.
The book Trendafilov & Gallo (2021) also presents a comprehensive description of useful mani-
folds for solutions of the data science problems. For the deeper understanding of applied differential
geometry techniques see the books Absil et al. (2009) and Boumal (2023).

The idea of using Riemannian optimization has recently started to emerge for the large language
models. For example, the fine-tuning of LLMs with the help of the Stiefel manifold was considered
in the work Hu et al. (2024). The authors of (Zhang & Pilanci, 2024) introduced the Riemannian
inspired modification of Adam. The authors of Mo et al. (2025, LORO) applied the Riemannian
optimization techniques for pretraining LLMs on the fixed-rank manifold. Parametrization that is
used in our work can potentially help in this setting as well, by additionally avoiding potential
overheads and instabilities, arising due the explicit inversion of Gram matrices.

3 PRELIMINARIES

3.1 MUON OPTIMIZER

Muon is an optimizer designed specifically for matrix-valued parameters in a network’s hidden lay-
ers. Empirically, it accelerates training on language and vision workloads while leaving scalar/vector
parameters and the input/output layers to a conventional optimizer such as AdamW. At a high
level, Muon takes the step that stochastic gradient descent with momentum (SGDM) would make
on a weight matrix and orthogonalizes that update before applying it. Orthogonalization acts as
a per-layer, per-step preconditioner that equalizes singular values of the update, which mitigates
the collapse of updates into a few dominant directions (Jordan et al., 2024). More specifically,
let W ∈ Rn×m be a hidden-layer weight. With gradient Gt = ∇WL(Wt) and momentum
Mt = βMt−1 +Gt, Muon computes

M̃t ≈ Ortho(Mt) and Wt+1 = Wt − η M̃t,

where Ortho(·) denotes the nearest semi-orthogonal matrix in Frobenius norm, i.e.,

Ortho(G) = argmax
O

{
∥O −G∥F : O⊤O = I or OO⊤ = I

}
. (2)

Computing Ortho(G) exactly amounts to taking the SVD G = USV ⊤ and returning UV ⊤, which
is too slow to do at every iteration. Muon instead applies a Newton–Schulz (NS) iteration that—after
normalizing G — implements a composition of a fixed low-degree polynomial in GG⊤ acting on
G and converges to UV ⊤. Leveraging efficient matrix multiplication operations results in a highly
performant iteration. We will write M̃t = NS(Mt) for short.

LMO interpretation. Muon’s step admits a clean linear minimization oracle (LMO) interpreta-
tion (Bernstein, 2025). Indeed, consider the operator-norm unit ball B2 = {X : ∥X∥2 ≤ 1}. The
linear minimization oracle (LMO) over B2 at matrix Mt given by its SVD Mt = USV ⊤ is

UV ⊤ ∈ Argmax
∥S∥2≤1

⟨Mt, S⟩. (3)

Applying Muon to LoRA. In LoRA, a frozen weight W0 ∈ Rn×m is adapted via a low-rank
update W = W0 +αBA with B ∈ Rn×r, A ∈ Rr×m and small r. Each trainable factor (A and B)
is a 2D parameter, so Muon can be applied per factor:

M
(A)
t ← βM

(A)
t−1 + ∇AL, At+1 ← At − ηA NS

(
M

(A)
t

)
,

M
(B)
t ← βM

(B)
t−1 +∇BL, Bt+1 ← Bt − ηB NS

(
M

(B)
t

)
.

Note that acting on the two factors separately makes Muon non–reparameterization-invariant: its
per-factor orthogonalization depends on arbitrary scalings or rotations, skewing the weight-space
step and often letting one factor dominate.
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3.2 RIEMANNIAN OPTIMIZATION

Let Mr = {X ∈ Rm×n : rank(X) = r} ⊆ Rm×n be a smooth manifold of fixed-rank matri-
ces (Lee, 2003, Example 8.14). Let every point X ofMr be equipped with a tangent plane TXMr.
Thinking geometrically, the tangent plane plays the role of the best local, flat approximation to this
curved set: if you “zoom in” at X , the manifold looks like a plane. We will now discuss how to
numerically parametrize points on a manifold and its tangent plane. Every rank-r matrix X ∈ Mr

can be represented using matrices AL ∈ Rm×r, Br ∈ Rn×r with orthonormal columns and a square
matrix G ∈ Rr×r as

X = ALGB⊤
R . (4)

For example, one may think of a thin SVD, in which case G becomes the diagonal matrix of singular
values, but other representations are also possible and will be convenient for our purposes. Using (4),
any tangent vector ξ ∈ TXMr can be represented in a matrix factorization format:

ξ =
[
Ȧ AL

] [
BR Ḃ

]⊤
, Ȧ⊤AL = 0, (5)

so that any tangent vector can be identified in terms of the tuple: (Ȧ, Ḃ). Since the factor matrices
contain 2r columns, we immediately have that rank ξ ≤ 2r. Another remarkable fact is that the
point X ∈ Mr itself lies in the TXMr with Ȧ = 0, Ḃ = B. Given a matrix Z ∈ Rm×n, its
orthogonal projection PTXMr

Z onto the tangent space TXMr (with the parameterization given in
(5)) can be computed as follows:

PTXMr
(Z) = ALA

⊤
LZ +

(
I −ALA

⊤
L

)
ZBRB

⊤
R . (6)

and, hence, can be represented in the form of (5) with Ȧ = (I −ALA
⊤
L )ZBR, and Ḃ = Z⊤AL.

Let F : Rm×n → R be a differentiable function with the Euclidean gradient ∇F ∈ Rm×n. Within
the Riemannian optimization framework, we solve the following task optimization problem:

min
X∈Mr

F (X).

When constructing the algorithms, we need to work with three key objects: Riemannian gradient,
retraction and vector transport. The Euclidean gradient is a direction of the steepest local increase F .
Therefore, it is common to use the Riemannian gradient — the direction of the steepest local increase
of corresponding smooth function value along the manifold, which lies in the tangent space (Absil
et al., 2009, chap. 3.6). Given the Euclidean gradient∇F , one may endow the tangent space TXMr

with a natural scalar product and derive a formula for the direction of the local steepest ascent of
F with respect to the manifold. This unique direction is called the Riemannian gradient and can be
computed as follows:

gradF (X) = PTXMr
(∇F (X)), X ∈Mr. (7)

A simple and robust retraction that maps a tangent step ξ (for example, ξ is a negative Riemannian
gradient) back to the manifold is the truncated SVD:

RX(ξ) ≡ R(X + ξ) = SVDr(X + ξ), (8)

i.e., the best rank-r approximation of X + ξ in Frobenius norm. Note that here we do not need to
compute the full SVD and can utilize low-rank structure of X and ξ, leading to O((m+ n)r2 + r3)
operations (Absil & Oseledets, 2015). Finally, because tangent spaces change from an optimization
step to step, momentum (an accumulated tangent vector) must be moved between them via a vector
transport. For embedded manifolds likeMr, a standard choice is the projection transport

TY→X(ξ) = PTXMr (ξ), ξ ∈ TYMr, (9)

which simply reprojects the same ambient matrix ξ onto the new tangent space at X .

4 RIEMANNION

In this section, we focus on the setting of parameter-efficient fine-tuning and, hence, to the fixed-rank
manifold. For fine-tuning of one layer the optimization problem becomes:

L(W +∆W )→ min
∆W∈Mr

,

4
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where L is a differentiable loss function. Note that optimizing on Mr removes the ambiguity
of factorized parameterizations, because all computations are carried out in the intrinsic space of
the product X rather than in any particular factorization. So the formulas we write below will
naturally be reparameterization-invariant. Let Gt = PTWMr

(∇L(Wt)) be the Riemannian gradient.
A Riemannian heavy-ball (Polyak, 1964) momentum step reads

Mt = β M̂t−1 + Gt, M̂t−1 = TWt−1→Wt(Mt−1), (10)
∆Wt+1 = R (∆Wt − ηMt) , (11)

with M0 = 0, momentum parameter β ∈ [0, 1), and stepsize η > 0.

Let us now discuss how to introduce a Muon-like variant of this iteration, which we refer to as
Riemannion. A direct projection onto the set of orthogonal matrices Ortho(Mt) presents two chal-
lenges. First, such a step does not respect the underlying Riemannian geometry. To address this,
we propose to find the best approximation of Ortho(Mt) on the tangent plane TWMr. Such a so-
lution is given via the projection onto the tangent plane PTWMr

(Ortho(Mt)). However, a second
issue arises: although this projection is low-rank, its computation remains inefficient because the
input matrix is of full rank. Let us notice that Mt ∈ T∆WtMr and, hence, is of rank at most 2r
(Section 3.2). At the same time, the LMO interpretation (Section 3.1) provides several admissible
low-rank solutions, including one where Orthor(·) replaces only the first 2r singular values with 1,
while all others are set to 0. Consequently, we obtain the following update rule:

M̃t = PT∆WtMr
(Orthor(Mt)). (12)

Note that Orthor(·) exactly preserves the column and row spaces of Mt ∈ T∆Wt
Mr. Consequently,

although PT∆WtMr
(Orthor(Mt)) does not yield singular values exactly equal to 1, in practice they

remain in a close proximity. This behavior is reminiscent of the Newton–Schulz iteration, which
likewise produces approximate singular values. To eliminate this inexactness and obtain an accurate
solution in the intersection of T∆Wt with the set of matrices whose first 2r singular values are exactly
1, one could formally apply the alternating projection method (Cheney & Goldstein, 1959; Boyd &
Dattorro, 2003, Theorem 4, Section 2):

M̃t = PT∆WtMr (Orthor(. . . PT∆WtMr (Orthor(Mt)))).

However, such a procedure is more computationally excessive, and our experiments indicate that it
has little to no impact on the overall convergence of the optimizer.

Algorithm 1 OrthoLR (efficient computation of Orthor(ξ) for ξ ∈ TXMr).

Require: ξ ∈ TXMr given by (Ȧ, Ḃ) from (5); AL, BR such that X = ALGB⊤
R as in (4)

Ensure: A ∈ Rm×2r, B ∈ Rm×2r: ABT = Ortho(ξ).
1: QL, TL = qr([AL, Ȧ]), QR, Tr = qr([Ḃ, BR]

⊤). // O
(
(m+ n)r2

)
2: UL, _, V ⊤

r = SVD
(
TL T⊤

R

)
. // O

(
r3
)

3: Ȧ = QLUL, Ḃ = QRVR. // O
(
(m+ n)r2

)
Algorithm 2 ProjectLR (efficient computation of PTXMr

(Z) for a rank-r′ matrix Z).

Require: A ∈ Rm×r′ , B ∈ Rn×r′ such that Z = AB⊤; AL, BR such that X = ALGB⊤
R as in (4).

Ensure: ξ = PTXMr (Z) given by (Ȧ, Ḃ) from (5).
1: Ȧ := (A−AR(A

⊤
RA))(B⊤BR), Ḃ := B(A⊤AL) // O((m+ n)r′

2
)

Let us finally show that M̃t from (12) can be computed efficiently using O((m+ n)r2 + r3) arith-
metic operations. Indeed, first of all we need to apply Orthor(·) to a tangent vector Mt. From (6),
we know that a tangent vector can be represented in a form of a rank-2r matrix. Such a representa-
tion can always be transformed into the compact SVD form with 2 QR decompositions and a single
full SVD of a 2r × 2r matrix, see Algorithm 1 called OrthoLR. As a next step, we need to project
the obtained result (decomposed matrix of rank 2r) onto the tangent plane. The operation can also
be done efficiently via (6) and is summarized in Algorithm 2 called ProjectLR.
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5 LOCALLY OPTIMAL INITIALIZATION (LOI)

Once the theoretical framework for the Riemannian optimizer is established, it is natural to consider
an initialization scheme that accounts for the underlying Riemannian geometry. Given any ∆W ∈
Mr, we may write

L(W ) = L(W −∆W︸ ︷︷ ︸
W ′

+∆W ) = L (W ′ +∆W ) . (13)

This raises the question: how should ∆W be chosen to ensure the fastest loss decrease along the
manifold? The solution is to consider the following optimization task:

∆W
(0)
∗ ∈ Argmax

∆W∈Mr

∥PT∆WMr ∇WL(W )∥2F . (14)

Since PT∆WMr
is an orthogonal projection matrix to the tangent plane, the task (14) essentially

seeks for the point on the fixed-rank manifold, whose tangent space has most alignment with the
Euclidean gradient. In other words, this means that the direction of the steepest local function
decrease alongside the manifold is aligned with the full model tuning direction. The solution to this
task is presented in Theorem 5.1.
Theorem 5.1. Let the SVD of∇WL(W ) be:

∇WL(W ) = [U1,r Ur,2r U⊥]

[
Σ1,r 0 0
0 Σr,2r 0
0 0 Σ⊥

]
[V1,r Vr,2r V⊥]

⊤
,

and let also σ2r ̸= σ2r+1. Then any optimal solution ∆W
(0)
∗ to the problem (14) has the form:

∆W
(0)
∗ ∈

{
[U1,r, Ur,2rΣr,2r]

[
S11

S21

]
[C21 C22]

[
Σ1,rV

⊤
1,r

Vr,2r

] ∣∣∣∣∣
S =

[
S11 S12

S21 S22

]
∈ GL2r(R), S−1 =

[
C11 C12

C21 C22

]}
.

(15)

Proof. See Appendix A.

In our experiments, we use S =

[
αIr 0
0 Ir

]
, obtaining: ∆W

(0)
∗ = αU1,rV

⊤
r,2r ∈Mr, α ∈ R \ {0}.

Interestingly, Theorem 5.1 relates to the findings of Wang et al. (2024), although their analysis
neither adopts a Riemannian framework nor addresses parametrization-free optimization. Our op-
timizer further differs from Zhang & Pilanci (2024) and Mo et al. (2025, LORO) in that it avoids
inversion of the Gram matrix. As a result, the method remains stable as ∥∆W

(0)
∗ ∥ → 0. Empiri-

cal results indicate that initializing ∆W
(0)
∗ with a small norm leads to improved performance. The

procedure for selecting the scaling parameter α is described in Appendix E.

6 SINGLE BACKWARD-PASS GRADIENT TRICK

This section introduces an efficient method for computing gradient-times–matrix in a matrix-free
way, at a computational cost equivalent to a single backward pass. We then apply this technique in
both the LOI initialization procedure in Algorithm 3 and the Riemannion optimizer in Algorithm 4.

The calculation of the full fine-tuning loss gradient ∇WL (W ) with pretrained parameters W ∈
Rm×n is computationally expensive. At the same time, for our framework we only need to compute
the products (∇WL (W )

⊤
M) or (∇WL (W )N) for some M ∈ Rm×r, N ∈ Rn×r. Using the

trick from (Novikov et al., 2022), we may calculate both quantities simultaneously using a single
forward-backward pass with a doubled rank representation.

First, we initialize differentiable parameters Z1 = 0 ∈ Rm×r and Z2 = 0 ∈ Rn×r and perform
a simple forward pass L := L

(
W + Z1N

⊤ +MZ⊤
2

)
. This step does not violate the pipelines of

LoRA framework since it is equivalent to a standard LoRA forward pass with special adapter:

Z1N
⊤ +MZ⊤

2 = [Z1 M ] [N Z2]
⊤
= ÃB̃⊤, Ã ∈ Rm×2r, B̃ ∈ Rn×2r.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Then we invoke an autodiff algorithm for value L, which ensures us both:
∇Z1

L = ∇Z1
L
(
W + Z1N

⊤ +MZ⊤
2

)
|Z1=0,Z2=0 = ∇WL(W )N,

∇Z2L = ∇Z2L
(
W + Z1N

⊤ +MZ⊤
2

)
|Z1=0,Z2=0 = ∇WL(W )⊤M.

(16)

Note, that if ∆W = ALB
⊤ = AB⊤

R from W +∆W , then one may take N = BR,M = AL, Z1 =
0, Z2 = B, Y = W + ∆W and the exact same operations work. Notably, (16) is crucial for
computation of the Riemannian gradient in (6). Therefore the proposed approach is a key build-
ing block that allows us to avoid forming the full fine-tune gradient loss and effectively compute
matrix-matrix multiplications. This idea is the core for both: LOI initialization (Algorithm 3) and
Riemannion optimizer (Algorithm 4).

Randomized SVD for efficient initialization The computation of the 2r-truncated SVD of the
full loss gradient, as required by Theorem 5.1, has asymptotic complexityO(min{m,n}mn), which
may be infeasible for large-scale models. In addition, explicitly forming this gradient is itself com-
putationally expensive, and thus we need to avoid it in practice. To overcome this problem, we
propose to use a randomized SVD with power iterations (see (Halko et al., 2011)), which we also
enhance with our one-step gradient trick as is described in the Algorithm 3. In a nutshell, we need
to compute

(
∇WL(W )∇WL(W )⊤

)q
Y , where Y = ∇WL(W )Ω and Ω is sampled from standard

normal distribution. This iteration can be done in a robust manner using QR decompositions. The
steps 2, 4, 5, 6 correspond to a trick from (16).

Overall, the LOI search procedure has asymptotic complexityO((m+n)r2), plus 2(q+1) additional
backward passes. Moreover, since LOI search is executed only once before fine-tuning (which
typically involves thousands of backward passes), its runtime overhead is negligible, taking merely
0.25% of the total fine-tuning wall-clock time in our experiments. Section 7.1, about 2 thousand
optimization steps were carried out and Algorithm 3 accounted for merely 0.25% of the total fine-
tuning wall-clock time.

Algorithm 3 BackPropRSVD
Require: Weights W ∈ Rm×n, rank r ∈ N, oversampling parameter p, power-step parameter q.
Ensure: Randomized r-truncated SVD (Ur,Σr, Vr) of∇WL(W ).

1: Choose k = r + p, Sample Ω ∈ Rn×k ∼ N (0, 1). // O (nr)
2: Y := qr(∇A L(W +AΩ⊤)|A=0).Q. // 1 backward pass +O

(
mr2

)
3: for i := 1, . . . , q do
4: Y := qr([∇B L(W + Y B⊤)|B=0]

⊤).Q. // 1 backward pass +O
(
nr2

)
5: Y := qr(∇A L(W +AY ⊤)|A=0).Q. // 1 backward pass+O

(
mr2

)
6: Y := [∇B L(W + Y B⊤)|B=0]

⊤. // 1 backward pass
7: U,Σ, V ⊤ := truncSVD (Y, r) . // O

(
nr2

)
8: Y U,Σ, V ⊤ // O

(
mr2

)
Efficient Riemannion implementation The Riemannion optimizer is presented in Algorithm 4.
Similar to vanilla Muon, it relies on a chosen Ortho procedure. Since the LoRA approach repre-
sents the fine-tuning shift ∆W with low-rank matrices, we employ an SVD-based Ortho procedure.
For computational efficiency, this procedure is adapted to the fixed-rank manifold, as described in
Section 4 and implemented in the OrthoLR (Algorithm 1).

In detail, in step 1 we calculate the Riemannian gradient components via a single backward call (16).
Then, in step 2 the algorithm transports the Heavy-Ball tangent direction to the current point via
Algorithm 2 that provides a simple but effective implementation of (6). In line 4, we compute the
final optimization direction on the tangent space of the given point with a Heavy-Ball momentum
coefficient β. In line 4-5 algorithm performs the Riemannion projection procedure and the retraction
iteration. The algorithm finalizes with saving the obtained minimization direction for momentum in
line 6 and calculating of a new point representation in step 7.

Overall, one iteration of the Riemannion loop has asymptotic complexity O((m + n)r2 + r3) and
additionally the same number of backward passes as vanilla LoRA. For comparison, the Euclidean
Muon optimizer for LoRA (Section 3.1) exhibits the same asymptotic complexity. The complete
framework and its time performance are summarized in Algorithm 5 and Appendix H.
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Algorithm 4 One step of Riemannion

Require: Weight matrix W ′ ∈ Rm×n, rank r ∈ N, initial point AL, BR, Heavy-ball momentum
AHB, BHB, step size η, momentum coefficient β, weight decay coefficient γ.
Ensure: Tuning parameters ∆W ∗ ∈Mr.

1: Ȧ, Ḃ := ∇Z1
L
(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B ,

∇Z2
L
(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B . // 1 backward pass

2: Ȧprev, Ḃprev := ProjectLR ((AM, BM), AL, BR). // O
(
(m+ n)r2

)
3: Ȧ, Ḃ := βȦprev + (I −ALA

⊤
L )Ȧ, βḂprev + Ḃ // O

(
(n+m)r2

)
4: Ȧ, Ḃ := ProjectLR(OrthoLR(AL, BR, Ȧ, Ḃ, r, ), AL, BR) // O

(
(m+ n)r2 + r3

)
5: U,Σ, V ⊤ := RetractionLR([−ηȦ, AL], [BR,−η(Ḃ + γBR)]) // O

(
(m+ n)r2 + r3

)
6: AHB, BHB := [Ȧ, AL], [BR, Ḃ]
7: AL, B := U,ΣV ⊤ // O

(
nr2

)

7 EXPERIMENTS

In this section, we also employ the term LOI (Locally Optimal Initialization), referring to the pro-
posed initialization scheme described in Section 5. This is done to distinguish between using Rie-
mannLoRA as an optimizer with zero initialization (as in basic LoRA) and RiemannLoRA-LOI,
which is the proposed combination of initialization and optimization. We conduct a series of LLM
fine-tuning experiments for different tasks. All of the experiments were computed on NVIDIA
V100-32Gb GPU and A100-80Gb GPU. We ran all the experiments within ∼ 2000 GPU hours.

7.1 COMMONSENSE REASONING FINE-TUNING

The results were obtained for the benchmark (Clark et al. (2019, BoolQ), Bisk et al. (2020, PIQA),
Sap et al. (2019, SIQA), Zellers et al. (2019, hellaswag), Sakaguchi et al. (2021, winogrande),Clark
et al. (2018, ARC), Mihaylov et al. (2018, OBQA)) common reasoning. The structure of the dataset
is described in Appendix D. In the following experiments we conduct a fine-tuning procedures for
multilayer perceptron (MLP) and attention layers of Llama 3 8b model (Dubey et al. (2024)).

The commonsense reasoning tasks comprise of 8 sub-tasks, each of them contains a predefined
training and a testing set. We follow the setting of Hu et al. (2023) and amalgamate the training
datasets from all 8 tasks to create the final training dataset and conduct evaluations on the indi-
vidual testing dataset for each task. The hyperparameter tuning protocol and the selected hyperpa-
rameters are provided in E. Table 1 contains the accuracy of the trained model’s responses on the
test dataset. Within the LoRA framework, the proposed Riemannian fine-tuning method delivers
clear performance gains. The Riemannion optimizer consistently outperforms LoRA, DoRA, and
achieves superior metric results compared to the standard Muon optimizer applied to LoRA factors
(see Section 3.1). Furthermore, relative to other Riemannian-geometry–aware approaches such as
RPrecAdamW (Zhang & Pilanci, 2024), our method also demonstrates better results. Finally, the
variance of outcomes for the proposed method is the smallest among all compared approaches.

Table 1: The average accuracy (in %) among 8 tasks of fine-tuned Llama 3-8b using different ap-
proaches, tested on Commonsense Reasoning benchmark. LoRA rank is set to 16.

Task BoolQ PIQA SIQA hella- wino- ARC-E ARC-C OBQA All
Initialization swag grande

Raw 65.0 76.6 73.0 66.1 61.3 92.5 82.3 79.6 74.5
Adam 74.8±1.9 89.8±0.9 82.6±0.6 96.2±0.3 87.9±1.2 92.4±0.7 84.9±0.7 88.5±0.4 87.1±0.6

DoRA 74.8±0.8 89.4±0.5 82.4±0.7 95.9±0.1 87.8±0.4 90.7±1.2 83.8±0.7 87.8±0.6 86.6±0.3

Muon 72.9±0.0 86.4±0.5 80.8±0.2 94.1±0.2 84.4±0.0 84.2±0.9 77.3±2.5 83.9±1.1 83.0±0.6

DoneRITE 72.2±0.3 88.6±0.1 82.0±0.6 95.1±0.1 85.6±0.2 87.7±1.5 79.3±2.6 85.7±0.5 84.5±0.5

RPrecAdamW 75.8±0.4 89.5±0.4 82.4±0.2 96.1±0.2 87.7±0.9 90.6±1.6 84.1±1.1 87.7±0.5 86.8±0.4

Riemannion 75.7±0.7 91.2±0.2 83.5±0.6 96.7±0.0 88.6±0.4 93.6±0.3 86.4±0.4 89.3±0.8 88.1±0.2
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Figure 2: Visual results for Subject-driven generation on 600 training step.

7.2 SUBJECT-DRIVEN GENERATION

Subject-driven generation (Ruiz et al., 2023; Gal et al., 2023) is a task in which the user provides
several reference photos of an object, called a concept, and uses a diffusion model to generate this
concept with certain conditions (e.g., a textual prompt). One way to solve this task is to fine-tune
a pre-trained diffusion model using this small set of reference images. However, this technique
leads to a degradation in understanding of the conditions and to a fast overfitting of the concept.
Furthermore, it requires a high computational cost due to the large number of trainable parameters.
This is why previous works, such as (Qiu et al., 2023; Liu et al., 2024; Hu et al., 2022; Tewel et al.,
2023; Han et al., 2023; Gorbunov et al., 2024), propose training only a lightweight parameterization
for the base model. In this section, we demonstrate the performance of our parameterization in this
task.

In our experiments, we used Stable Diffusion 2 (Rombach et al., 2022) as the base model. We
choose LoRA Hu et al. (2022) as a baseline and train both models with ranks of 4, 8 and 16.

0.315 0.320 0.325 0.330 0.335
TS

0.50

0.55

0.60

0.72

0.65

IS

LoRA lr=2e-5
LoRA lr=4e-5
LoRA lr=8e-5
LoRA lr=2e-4
Ours lr=5e-6
Ours lr=1e-5
Ours lr=2e-5
Ours lr=4e-5

Figure 1: Comparison of text and image
similarities for LoRA and our method
with rank 4 at different learning rates on
400 step.

We predict the parameterization of the q, k, v, and
out.0 matrices in all attention layers. The Dreambooth
dataset (Ruiz et al., 2023) was used in all our experiments.
LoRA was trained using the Adam optimizer. In Figure
2, we present a visual comparison of LoRA with different
ranks. As can be seen, even for complex concepts such as
’robot toy’, our method requires only 600 steps to learn
the concept while preserving appropriate text similarity.
We found that for subject-driven generation tasks, the
lower the rank, the faster our method converges. To eval-
uate this, we also calculated metrics for different learning
rates on a subset of the Dreambooth dataset. We use CLIP
to measure text similarity and DINO to measure image
similarity. Figure 1 shows that, even with different learn-
ing rates, our method achieves more accurate results in
concept preservation. Further details and a visual com-
parison can be found in the Appendix F.

8 CONCLUSION

In this work, we propose a novel fully Riemannian framework that integrates a new muon-based opti-
mization method, locally-optimal initialization, and an efficient implementation. This integrated ap-
proach yields a reliable reparametrization-invariant method that outperforms competing approaches
on fine-tuning large language models (LLMs) and exhibits additional favorable properties for low-
rank approximations in diffusion models. Given the promising empirical results, a natural direction
for future research is to investigate the theoretical properties of the proposed method.
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9 REPRODUCIBILITY STATEMENT

The hyperparameter selection procedure is described in Appendix E. The datasets used in the ex-
periments and the corresponding preprocessing steps are detailed in Appendix D. The proof of the
stated assumptions is provided in Appendix A. The hyperparameters for Subject-driven generation
task are provided in the Appendix F.
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A INITAL POINT SEARCH

In this section we introduce the proof of Theorem 5.1

Proof. In order to represent the optimization task (14) in a more simple way, we will use a slightly
different formula for the projection of the full loss gradient onto the tangent space of the fixed-rank
manifold. Let

∆W = ALB
⊤ = AB⊤

R ∈Mr,

and the tangent space is parametrized as follows

T∆WMr = {ȦB⊤
R +ALḂ

⊤ | Ḃ ∈ Rn×r, Ȧ ∈ Rm×r, A⊤
L Ȧ = 0},

then one may derive an orthogonal projection formula for any matrix Z (see, e.g. (Boumal, 2023,
eq. 7.53))

PT∆WMr
Z = Z − (I −ALA

⊤
L )Z(I −BRB

⊤
R ) ∈ T∆WMr.

As the tangent space is a linear space, the operation of orthogonal projection can be written as an
optimization task

PT∆WMr
Z = argmin

ξ∈T∆WMr

∥Z − ξ∥2F . (17)

Since

∥∇L∥2F = ∥ (∇L− PT∆WMr
∇L) + PT∆WMr

∇L∥2F =

= ∥∇L − PT∆WMr
∇L∥2F + ∥PT∆WMr

∇L∥2F + 2⟨∇L − PT∆WMr
∇L, PT∆WMr∇L⟩

= ∥∇L − PT∆WMr
∇L∥2F + ∥PT∆WMr

∇L∥2F + 2⟨PT∆WMr
(∇L− PT∆WMr

∇L) ,∇L⟩
= ∥∇L − PT∆WMr∇L∥2F + ∥PT∆WMr∇L∥2F + 2⟨PT∆WMr∇L− PT∆WMr∇L︸ ︷︷ ︸

=0

,∇L⟩

= ∥∇L − PT∆WMr
∇L∥2F + ∥PT∆WMr

∇L∥2F

so the optimization task (14) is equivalent to

∥∇L − PT∆WMr
∇L∥2F → min

∆W
,

which, in turn, using (17) is equivalent to the task

min
∆W

min
ξ∈T∆WMr

∥∇L − ξ∥2F .

Due to the fact that every vector of the tangent space is an element of a set of all matrices with 2r-
bounded rankM≤2r, one may use the Eckart-Young-Mirsky theorem (see (Eckart & Young, 1936))
to obtain the following lower bound:

∥∇L − PT∆WMr∇L∥2F ≥ ∥∇L− truncSVD (∇L, 2r)∥F ,∀ ∆W ∈Mr, ξ ∈ T∆WMr. (18)

But it is possible to ensure ∆W
(0)
∗ ∈ Mr and ξ∗ ∈ T∆W

(0)
∗
Mr which turn the inequality (18) into

the equality. One may take

∆W
(0)
∗ = AL(αB)⊤ = αU1,rV

⊤
r,2r = (αA)B⊤

R , α ∈ R,

ξ∗ = ȦB⊤
R +ALḂ

⊤ = (Ur,2rΣr,2r)B
⊤
R +AL (Σ1,rV1,r)

⊤
= truncSVD (∇L, 2r).

Note, that Ȧ⊤AL = 0. So the initialization ∆W
(0)
∗ ensures that truncSVD (∇L, 2r) lies in the

tangent space T
∆W

(0)
∗
Mr, which means that the first step of the RiemannLoRA Algorithm 6 will

get the Riemannian gradient equal to truncSVD (∇L, 2r).
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To generalize the result, we should change the parametrization of the tangent space. Because of
the fact that each of the tangent vectors ξ lies in M≤2r, we may use an unconstrained skeleton
decomposition (without constraints for Ȧ and AL):

ξ∗ =
[
A∗, Ȧ∗

] [Ḃ⊤
∗

B⊤
∗

]
=

[
A∗, Ȧ∗

]
I2r

[
Ḃ⊤

∗
B⊤

∗

]
=

=
[
A∗, Ȧ∗

]
S S−1

[
Ḃ⊤

∗
B⊤

∗

]
, S ∈ R2r×2r, detS ̸= 0.

Representing S and its inverse as block matrices:

S =

[
S11 S12

S21 S22

]
, S−1 =

[
C11 C12

C21 C22

]
,

one arrives to 15:

ξ∗ =
[
A∗, Ȧ∗

] [S11 S12

S21 S22

] [
C11 C12

C21 C22

] [
Ḃ∗ B∗

]⊤
,

∆W
(0)
∗ =

[
A′

∗, Ȧ
′
∗
] [S11

S21

]
[C21 C22]

[
Ḃ′

∗ B′
∗
]⊤

.

To derive the version that is utilized in practice, one may take S to be block-diagonal with S11 =
αIr, S22 = Ir, α ∈ R.

B RIEMANNION WITH LOI

The complete framework is summarized in Algorithm 5, which consists of an LOI initialization step
followed by max_iters iterations of the Riemannion optimizer.

Specifically, the first 3 lines are dedicated to the computation of LOI via BackPropRSVD for given
layer weights and oversampling parameter p, that increases the accuracy of the singular approx-
imation. The 4-th step initializes Heavy-Ball momentum matrices. Therefore, the asymptotical
complexity of this stage is determined by the complexity of Algorithm 3.

Algorithm 5 Riemannion with LOI

Require: Weights W ∈ Rm×n, rank r ∈ N, step size η, momentum coefficient β, weight decay
coefficient γ, oversampling parameter p, power-step parameter q.
Ensure: Tuning parameters ∆W ∗ ∈Mr.
Function:

1: AL, _, B⊤ := BackPropRSVD(2r, p, q,L,W ). // O
(
(m+ n)r2

)
2: AL, B

⊤ := AL[ : , : r], B[ : , r : ]⊤.
3: W ′ := W −ALB

⊤. // O (mn)
4: AHB, BHB := 0, 0.
5: for i := 0, . . . , max_iters do
6: BR := qr (B) .Q. // O

(
nr2

)
7: Ȧ := ∇Z1L

(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B . // = ∇WL(W )BR

8: Ḃ := ∇Z2
L
(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B . // = ∇WL(W )⊤AL

9: Ȧprev, Ḃprev := ProjectLR ((AM, BM), AL, BR). // O
(
(m+ n)r2

)
10: Ȧ, Ḃ := βȦprev + (I −ALA

⊤
L )Ȧ, βḂprev + Ḃ // O

(
(n+m)r2

)
11: Ȧ, Ḃ := ProjectLR

(
OrthoLR

(
AL, BR, Ȧ, Ḃ, r,

)
, AL, BR

)
// O

(
(m+ n)r2 + r3

)
12: U,Σ, V ⊤ := RetractionLR

([
−ηȦ, AL

]
,
[
BR,−η(Ḃ + γBR)

])
// O

(
(m+ n)r2 + r3

)
13: AHB, BHB := [Ȧ, AL], [BR, Ḃ]
14: AL, B := U,ΣV ⊤ // O

(
nr2

)
15: return AL, B.
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C RIEMANN-SGD ALGORITHM

In Algorithm 6, we present the RiemannSGD version of the fine-tuning algorithm. The first steps
are dedicated to the computation of the optimal initialization using BackPropRSVD(Algorithm
3). After initialization, the algorithm follows an Adam-like procedure adapted to the Riemannian
setting: it maintains exponentially smoothed estimates of momentum and gradient norms (4th step).
The overall cycle encapsulates the computation of the Riemannian gradient at the current point(steps
7−8), the update of the adaptive momentum terms via ProjectLR(Algorithm 2), and the retraction
step that projects the updated tangent direction back onto the manifold(steps 15−17). This approach
has asymptotical complexity ofO((m+n)r2+r3) and (2(q+1)+max_iters) amount of backward
calls.

Algorithm 6 RiemannSGD with LOI

Require: Weights W ∈ Rm×n, rank r ∈ N, step size η, momentum coefficient β, oversampling
parameter p, power-step parameter q, simulate_Adam, Adam momentum coefficient γ.
Ensure: Tuning parameters ∆W ∗ ∈Mr.
Function:

1: AL, _, B⊤ := BackPropRSVD(2r, p, q,L,W ). // O
(
(m+ n)r2

)
2: AL, B

⊤ := AL[ : , : r], B[ : , r : ]⊤.
3: W ′ := W −ALB

⊤. // O (mn)
4: AHB, BHB, SA, SB := 0.
5: for i := 0, . . . , max_iters do
6: BR := qr (B) .Q. // O

(
nr2

)
7: Ȧ := ∇Z1

L
(
W + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B .

8: Ḃ := ∇Z2
L
(
W + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B .

9: Ȧprev, Ḃprev := ProjectLR ((AHB, BHB), AL, BR) . // O
(
(m+ n)r2

)
10: Ȧ, Ḃ := βȦprev + (1− β)(I −ALA

⊤
L )Ȧ, βḂprev + (1− β)Ḃ // O

(
nr2

)
11: if simulate_Adam then
12: SA, SB := γ∥Ȧ∥F + (1− γ)SA, γ∥Ḃ∥F + (1− γ)SB // O ((m+ n)r)

13: Ȧ, Ḃ := Ȧ/SA, Ḃ/SB // O ((m+ n)r)

14: U,Σ, V ⊤ := RetractionLR
([

ηȦ, AL

]
,
[
BR, ηḂ +B

])
// O

(
(m+ n)r2 + r3

)
15: AHB, BHB := [Ȧ, AL], [BR, Ḃ]
16: AL, B := U,ΣV ⊤ // O

(
nr2

)
17: return AL, B.

Table 2: The average accuracy (in %) among 8 tasks of fine-tuned Llama 3.2-1b using different SGD
variants, tested on Commonsense Reasoning benchmark. The «R-» prefix stands for Riemannian,
the postfix «-LOI» stands for locally optimal initialization. LoRA rank is set to 16. In all experiments
excpet for «-LOI» the A factor in AB⊤ has orthonormal columns and B is zero.

Task BoolQ PIQA SIQA hella- wino- ARC-E ARC-C OBQA All
Initialization swag grande

Raw 40.1 55.4 50.3 25.8 50.0 61.9 41.8 42.8 46.0
LoRA 64.0±0.2 75.3±0.3 69.6±0.4 82.2±0.1 53.0±1.0 75.4±1.7 56.5±0.6 67.1±2.3 67.9±0.4

LoRA-LOI 64.9±0.4 76.8±0.3 71.2±2.2 84.1±0.1 56.7±0.6 77.0±4.2 61.1±3.6 68.9±3.3 70.1±1.6

RSLoRA 64.5±0.2 77.2±0.3 68.1±0.8 86.3±0.1 58.2±0.5 76.5±1.5 58.6±2.9 70.0±1.9 70.0±0.8

RiemannLoRA 65.1±0.4 77.7±0.3 69.1±1.5 85.8±0.2 58.5±0.4 74.4±1.9 56.9±1.3 69.3±2.5 69.6±0.9

RiemannLoRA-LOI 65.2±0.4 79.4±0.4 75.6±0.4 87.3±0.1 62.4±0.4 79.9±0.8 63.6±1.9 73.8±0.5 73.4±0.3

D DATASET

D.1 COMMONSENSE REASONING

Following the approach of Hu et al. (2023), we combine the training datasets from all 8 tasks to
form the final training set and evaluate performance on each task’s individual test dataset. We adopt

16
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queries structure from Hu et al. (2023) to Llama 3.2 instruct template. The prompt structure is
demonstrated in Table 3.

E HYPERPARAMETERS

For each optimization method, we carefully preselected the learning rate (step size). For the Rie-
mannion method, we set the momentum to 0.9, and for the Muon method, we set the momentum to
0.95. In both cases, we additionally tuned the weight-decay hyperparameter (see Algorithm 4). The
final choices of these hyperparameters are summarized in Table 4.

In the Commonsense reasoning benchmark, the hyperparameters are reported in Table 5 for the
SGD-like methods and in Table 4 for the Adam-like methods. For the LOI method, we selected the
following hyperparameters: the backprop RSVD oversampling parameter was set to rk = 16, the
backprop powerstep parameter was set to q = 1, and the multiplier α was set to −0.01√

r
.

The non-tuned hyperparameters used for experiments on the Commonsense Reasoning dataset are
presented in 6.

F SUBJECT-DRIVEN GENERATION

Training details We used Stable Diffusion-2-base model with a batch size of 4 for all experiments.
For both methods, we set the betas to 0.9 and 0.999 and the weight decay to 0.1. In all variations
of our approach, we set q = 15, p = rank and α = − 1√

rank
. We used a learning rate of 2e-5 to train

both our and the LoRA models, which were used to generate images shown in Figures 2 and 3.

Evaluation details We used the DreamBooth dataset, which contains 25 different prompts and 30
various concepts. Due to computational costs, we only used half of the proposed concepts to evaluate
metrics: can, candle, cat, cat2, colorful_sneaker, dog2, dog3, dog5, dog6, dog7,
dog8, fancy_boot, grey_sloth_plushie, pink_sunglasses, vase. To measure the
similarity between the original concept and the generated images, we used Image Similarity (IS): we
synthesized 30 images for the base prompt «a photo of a V*» and 10 images for each of 25 editing
prompts (like «a V* on top of a dirt road»). We then measured the average pairwise cosine similarity
with reference photos of the concept using the DINO model. To check the correspondence between
the generated images and the textual prompts, we calculated Text Similarity (TS): we evaluated each
concept with each of 25 prompts, synthesizing 10 images per prompt, and calculating the average
pairwise cosine similarity with the prompts using the CLIP ViTB/32 model.

Additional results Figure 3 shows an additional visual comparison of our method and LoRA
after 600 training steps. As can be seen, our method learns the concept much faster than the original
LoRA, while preserving editing capabilities.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ABLATION STUDY ON INITIALIZATION

The fine-tuning optimization was carried out by AdamW (Loshchilov & Hutter (2019)) First of
the first, for every approach tested we preselected a suitable optimization step sizes. The list of
all selected hyper-parameters for each method is specified in the Appendix E. Table 7 contains the
accuracy of the trained model’s responses on the test dataset. The notation «LoRA-A» in the table
means the utilization of the vanilla LoRA with non-zero A, the notation «LoRA-B» means the same
with non-zero B, the notations «Stiefel-A» and «Stiefel-B» indicate vanilla LoRA with orthonormal
initialization (for matrix A and B respectively). The naming of «Stiefel-both» involves taking the
factors A,B with orthonormal columns and with initialization like in (13).
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Table 3: The structure of the queries for the Commonsense reasoning dataset

Task Role Fine-tuning Data Template

BoolQ system Please answer the following question with True or False.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Answer format: True/False

assistant The correct answer is [ANSWER]

PIQA system Please choose the correct solution to the question.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Solution1: [SOLUTION_1]
Solution2: [SOLUTION_2]
Answer format: Solution1/Solution2

assistant The correct answer is [ANSWER]

SIQA system Please choose the correct answer to the question
based on the context provided.
Follow the answer format, full answer not needed.

user Context: [CONTEXT]
Question: [QUESTION]
A: [ANSWER_A]
B: [ANSWER_B]
C: [ANSWER_C]
Answer format: A/B/C

assistant The correct answer is [ANSWER]

hellaswag system Please choose the correct ending to complete the given sentence.
Follow the answer format, full answer not needed.

user [ACTIVITY_lABEL]: [CONTEXT]
Ending1: [ENDING_1]
Ending2: [ENDING_2]
Ending3: [ENDING_3]
Ending4: [ENDING_4]
Answer format: Ending1/Ending2/Ending3/Ending4

assistant The correct answer is [ANSWER]

winogrande system Please choose the correct answer to fill
in the blank to complete the given sentence.
Follow the answer format, full answer not needed.

user Sentence: [SENTENCE]
Option1: [OPTION_1]
Option2: [OPTION_2]
Answer format: Option1/Option2

assistant The correct answer is [ANSWER]

ARC-e & ARC-c system Please choose the correct answer to the question.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: Answer1/Answer2/Answer3/Answer4

assistant The correct answer is [ANSWER]

OBQA system Please choose the correct answer to the question.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: Answer1/Answer2/Answer3/Answer4

assistant The correct answer is [ANSWER]
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Table 4: The parameters for different Adam variants for fine-tuning on the Commonsense reasoning
dataset

Optimizer learning rate weight decay

Adam 0.0002 0.01
DoRA 0.0003 0.01
Muon 0.0005 0.2
DoneRITE 0.0005 0.0001
RPrecAdamW 0.0005 0.5
Riemannion 0.0001 0.00316

Table 5: The parameters for different SGD variants (RiemannLoRA with simulate_Adam flag
disabled) for fine-tuning on the Commonsense reasoning dataset

Optimizer learning rate

LoRA 0.1
LoRA-LOI 0.06
RSLoRA 0.1
RiemannLoRA 0.1
RiemannLoRA-LOI 0.07

Table 6: Other non-tuned hyperparameter configurations for experiments on Commonsense reason-
ing dataset

Dataset Commonsense reasoning
Hyperparameters

Rank r 16
Dropout 0.05
LR Scheduler Linear
Batch size 64
Epochs 2
Warmup ratio 0.1

Table 7: The average accuracy among 8 tasks of fine-tuned Llama 3.2-1b via Adam using different
LoRA initialization variants, tested on Commonsense reasoning benchmark. «LOI» stands for lo-
cally optimal initialization. LoRA rank is set to 16.

Task BoolQ PIQA SIQA hella- wino- ARC- ARC- OBQA All
Initialization swag grande E C

Raw 40.1 55.4 50.3 25.8 50.0 61.9 41.8 42.8 46.0
LoRA-A 66.2 80.2 76.0 87.0 65.1 78.4 63.6 76.3 74.1
LoRA-B 65.9 77.9 74.2 82.9 61.2 73.9 60.6 72.2 71.1
Pissa 66.4 80.1 75.6 87.6 63.1 77.6 64.3 75.0 73.7
Stiefel-A 65.4 79.5 74.9 87.2 62.4 79.3 62.3 75.5 73.3
Stiefel-B 66.4 80.6 76.0 87.5 64.3 78.5 64.9 74.6 74.1
Stiefel-both 66.3 79.7 75.8 86.4 64.0 78.3 62.4 73.9 73.4
LOI 65.6 81.3 75.7 87.7 65.7 77.9 65.0 75.2 74.3
LoRA-GA 65.4 77.1 74.9 84.5 58.3 75.4 61.9 72.2 71.2
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Figure 3: Additional visual comparison of our method and LoRA, checkpoint 600
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Figure 4: Relative Time Cost
(
calculated as (TRiemannion − TAdam)

/
TAdam

)
of Riemannion vs.

Adam during Llama 3-8B fine-tuning, as a function of LoRA rank and batch size.

H COMPUTATIONAL COST

To measure execution time, we used a virtual server instantiated on a compute node equipped with an
Intel Xeon Gold 6240R CPU and Nvidia Tesla V100 GPU. The virtual machine was
provisioned with 8 CPU cores, 16 GB of RAM and a single Tesla V100 GPU. Experiments were
executed using the Hugging Face transformers library; timing corresponds to the execution
time of the trainer.train() call. Measurements were conducted according to the following
procedure. For each combination of method, LoRA adapter rank, and batch size, four timing runs
were performed and the minimum execution time was selected. The measured quantity was the time
spent on 16 optimizer steps. Time spent on initialization was excluded. For each combination of rank
and batch size, execution times for each of the methods were measured sequentially. In the present
work, rank refers to the rank of the LoRA adapter, and method denotes one of two optimization
schemes: Adam (baseline) and Riemannion (proposed method).

Figure 4 shows the relative increase in per-step execution time of the proposed Riemannion method
compared with Adam, computed as

I LLM USAGE

We used an LLM only for minor language polishing to improve readability and grammar; it was not
involved in research ideation, methodology, analysis, or substantive writing, and all research ideas
and arguments were developed entirely by the authors.
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