
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LORA MEETS RIEMANNION: MUON OPTIMIZER
FOR PARAMETRIZATION-INDEPENDENT LOW-RANK
ADAPTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

This work presents a novel, fully Riemannian framework for Low-Rank Adap-
tation (LoRA) that geometrically treats low-rank adapters by optimizing them di-
rectly on the fixed-rank manifold. This formulation eliminates the parametrization
ambiguity present in standard Euclidean optimizers. Our framework integrates
three key components to achieve this: (1) we derive Riemannion, a new Rie-
mannian optimizer on the fixed-rank matrix manifold that generalizes the recently
proposed Muon optimizer; (2) we develop a Riemannian gradient-informed LoRA
initialization, and (3) we provide an efficient implementation without prominent
overhead that uses automatic differentiation to compute arising geometric opera-
tions while adhering to best practices in numerical linear algebra. Comprehensive
experimental results on both LLM and diffusion model architectures demonstrate
that our approach yields consistent and noticeable improvements in convergence
speed and final task performance over both standard LoRA and its state-of-the-art
modifications.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language processing tasks Brown et al. (2020); Touvron et al. (2023a;b). However, the
computational and storage costs associated with training and deploying such models at scale pose
significant challenges. To reduce these costs, parameter-efficient fine-tuning techniques such as
low-rank adaptation (LoRA) Hu et al. (2022) have emerged as a practical solution. LoRA enables
efficient adaptation of pre-trained models by embedding learnable low-rank matrices into specific
weight updates, allowing most of the original parameters to remain frozen. In particular, the main
idea of LoRA is to fine-tune a pretrained model using a rank-r correction matrix ∆W :

W +∆W = W +AB⊤, A ∈ Rm×r, B ∈ Rn×r,

where W remains constant during training and A,B are optimized via gradient-based optimization
methods.

Despite its efficiency, the dominant practice of optimizing the LoRA factors (A,B) with Euclidean
optimizers such as SGD (Robbins & Monro, 1951), Adam (Kingma & Ba, 2014), Adagrad (Duchi
et al., 2011), RMSProp (Tieleman, 2012), etc. that misaligned with the geometry of the low-rank
constraint. The same update ∆W can be represented by infinitely many factorizations: for any
A ∈ Rm×r, B ∈ Rn×r and any invertible matrix S ∈ Rr×r, we may write:

∆W = AB⊤ = ÃB̃⊤, where Ã = AS, B̃ = BS−⊤. (1)

Ideally, training should be reparameterization (transformation) invariant: the update to ∆W must
not depend on which factorization (A,B) is used (Yen et al., 2024). Empirically, this lack of in-
variance manifests as unbalanced learning where one factor dominates and the other stalls, fragile
hyperparameter sensitivity, and path-dependent solutions. These issues have prompted geometry-
aware formulations. Riemannian treatments of low-rank models operate on the fixed-rank manifold
rather than the ambient factor space, projecting gradients to the tangent space and retracting back to
the manifold. Such steps can be implemented efficiently when r ≪ min{m,n} and avoid forming

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

full-size matrices. Within the LoRA literature, existing Riemannian approaches either use stan-
dard SGD-type optimizers Mo et al. (2025, LORO) or rely on the Adam (Zhang & Pilanci, 2024)
optimizer for auxiliary matrices within the chosen parameterization, which deviate them from the
Riemannian framework and introduce dependence on parameterization.

In this work, we introduce a fully Riemannian framework for training LoRA that optimizes the
adapter X=∆W directly on the fixed-rank matrix manifold

Mr = {X ∈ Rm×n : rank(X) = r},
eliminating factorization ambiguity by construction. Central to our approach is Riemannion, a new
Riemannian optimizer onMr that generalizes the recently proposed Muon optimizer (Jordan et al.,
2024) to the fixed-rank setting. In contrast to prior Riemannian LoRA variants that port Adam-
like mechanics to the manifold with ad hoc choices, our design inherits Muon’s geometry-aligned
normalization, yielding transformation invariance of the learned update. We further propose a Rie-
mannian gradient–informed initialization that places the initial adapter at a good location onMr,
and we provide a practical, low-overhead implementation that assembles projections, retractions,
and vector transports via automatic differentiation, also following best practices from numerical
linear algebra. Extensive experiments on LLM and diffusion architectures show consistent gains
in convergence speed and final task performance over standard LoRA and recent state-of-the-art
modifications.

Our contributions are as follows:

• Riemannion: Muon on the fixed-rank manifold. We derive Riemannion, the first opti-
mizer that generalizes Muon to the manifoldMr of fixed rank matrices.

• Riemannian gradient-informed initialization. We propose an initialization strategy
which yields best alignment between the initial Riemannian gradient and the Euclidean
gradient. We also propose an efficient way for this strategy by using a randomized SVD
algorithm with implicit matrix multiplication (Section 5). Finally, we show the connection
of this initialization to LoRA-GA.

• Efficient implementation with automatic differentiation. We pay special attention to
numerical implementation to make the method robust without any prominent overhead
compared to vanilla LoRA at small ranks.

• Comprehensive empirical validation. We showcase the performance of our framework
for fine-tuning LLMs and in subject-driven generation using diffusion models. Among
positive effects that we observe are: boost in target metrics, improved convergence, and
reduction of variance.

2 RELATED WORK

The problem of an optimal initial guess selection for low-rank LLM adaptation has been addressed
in a sequence of works: the authors Meng et al. (2024, PiSSA) have suggested a heuristic that
involves using a low-rank truncated SVD of pretrained parameters as an initial point for LoRA and
its orthogonal complement as frozen layer’s parameters, so that the tuning process starts without
changing the starting value of the loss function. A similar approach was implemented by Wang
et al. (2025, MiLoRA) with the main difference of optimizing the smallest singular components of
unadapted parameter matrix. A context-aware initialization was considered in (Yang et al., 2024,
CorDA) and (Parkina & Rakhuba, 2025, COALA) proposes a numerically robust inversion-free
framework for low-rank weighted approximations for this setting. Another idea is to initialize LoRA
with a subset of left and right singular vectors of a doubled-rank truncated SVD of the loss function
gradient at the starting parameters, proposed by Wang et al. (2024, LoRA-GA). We show direct
connection of this method to our Riemannian initialization strategy and propose how to additionally
significantly accelerate the computation of SVD using our approach. Attempting to overcome the
asymmetry in the initialization of vanilla LoRA fine-tuning process, (Hayou et al., 2024, LoRA+)
introduced a scale-free step size selection for LoRA factors.

Riemannian optimization is widely used for algorithms on matrix manifolds and allows for exploit-
ing task geometry or imposing additional constraints. For example, a Riemannian solution for the
extreme eigenpairs search problem was described in Absil et al. (2009); Baker (2008), a matrix

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

completion task, which is common in collaborative filtering for recommender systems, via opti-
mization on the fixed-rank manifold (Vandereycken, 2013), a Riemannian approach on the manifold
of matrices with orthonormal columns (the Stiefel manifold) was used by Wisdom et al. (2016) for
diminishing the problem of vanishing and exploding gradients in recurrent neural networks, etc.
The book Trendafilov & Gallo (2021) also presents a comprehensive description of useful mani-
folds for solutions of the data science problems. For the deeper understanding of applied differential
geometry techniques see the books Absil et al. (2009) and Boumal (2023).

The idea of using Riemannian optimization has recently started to emerge for the large language
models. For example, the fine-tuning of LLMs with the help of the Stiefel manifold was considered
in the work Hu et al. (2024). The authors of (Zhang & Pilanci, 2024) introduced the Riemannian
inspired modification of Adam. The authors of Mo et al. (2025, LORO) applied the Riemannian
optimization techniques for pretraining LLMs on the fixed-rank manifold. Parametrization that is
used in our work can potentially help in this setting as well, by additionally avoiding potential
overheads and instabilities, arising due the explicit inversion of Gram matrices.

3 PRELIMINARIES

3.1 MUON OPTIMIZER

Muon is an optimizer designed specifically for matrix-valued parameters in a network’s hidden lay-
ers. Empirically, it accelerates training on language and vision workloads while leaving scalar/vector
parameters and the input/output layers to a conventional optimizer such as AdamW. At a high
level, Muon takes the step that stochastic gradient descent with momentum (SGDM) would make
on a weight matrix and orthogonalizes that update before applying it. Orthogonalization acts as
a per-layer, per-step preconditioner that equalizes singular values of the update, which mitigates
the collapse of updates into a few dominant directions (Jordan et al., 2024). More specifically,
let W ∈ Rn×m be a hidden-layer weight. With gradient Gt = ∇WL(Wt) and momentum
Mt = βMt−1 +Gt, Muon computes

M̃t ≈ Ortho(Mt) and Wt+1 = Wt − η M̃t,

where Ortho(·) denotes the nearest semi-orthogonal matrix in Frobenius norm, i.e.,

Ortho(G) = argmax
O

{
∥O −G∥F : O⊤O = I or OO⊤ = I

}
. (2)

Computing Ortho(G) exactly amounts to taking the SVD G = USV ⊤ and returning UV ⊤, which
is too slow to do at every iteration. Muon instead applies a Newton–Schulz (NS) iteration that—after
normalizing G — implements a composition of a fixed low-degree polynomial in GG⊤ acting on
G and converges to UV ⊤. Leveraging efficient matrix multiplication operations results in a highly
performant iteration. We will write M̃t = NS(Mt) for short.

LMO interpretation. Muon’s step admits a clean linear minimization oracle (LMO) interpreta-
tion (Bernstein, 2025). Indeed, consider the operator-norm unit ball B2 = {X : ∥X∥2 ≤ 1}. The
linear minimization oracle (LMO) over B2 at matrix Mt given by its SVD Mt = USV ⊤ is

UV ⊤ ∈ Argmax
∥S∥2≤1

⟨Mt, S⟩. (3)

Applying Muon to LoRA. In LoRA, a frozen weight W0 ∈ Rn×m is adapted via a low-rank
update W = W0 +αBA with B ∈ Rn×r, A ∈ Rr×m and small r. Each trainable factor (A and B)
is a 2D parameter, so Muon can be applied per factor:

M
(A)
t ← βM

(A)
t−1 + ∇AL, At+1 ← At − ηA NS

(
M

(A)
t

)
,

M
(B)
t ← βM

(B)
t−1 +∇BL, Bt+1 ← Bt − ηB NS

(
M

(B)
t

)
.

Note that acting on the two factors separately makes Muon non–reparameterization-invariant: its
per-factor orthogonalization depends on arbitrary scalings or rotations, skewing the weight-space
step and often letting one factor dominate.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 RIEMANNIAN OPTIMIZATION

Let Mr = {X ∈ Rm×n : rank(X) = r} ⊆ Rm×n be a smooth manifold of fixed-rank matri-
ces (Lee, 2003, Example 8.14). Let every point X ofMr be equipped with a tangent plane TXMr.
Thinking geometrically, the tangent plane plays the role of the best local, flat approximation to this
curved set: if you “zoom in” at X , the manifold looks like a plane. We will now discuss how to
numerically parametrize points on a manifold and its tangent plane. Every rank-r matrix X ∈ Mr

can be represented using matrices AL ∈ Rm×r, Br ∈ Rn×r with orthonormal columns and a square
matrix G ∈ Rr×r as

X = ALGB⊤
R . (4)

For example, one may think of a thin SVD, in which case G becomes the diagonal matrix of singular
values, but other representations are also possible and will be convenient for our purposes. Using (4),
any tangent vector ξ ∈ TXMr can be represented in a matrix factorization format:

ξ =
[
Ȧ AL

] [
BR Ḃ

]⊤
, Ȧ⊤AL = 0, (5)

so that any tangent vector can be identified in terms of the tuple: (Ȧ, Ḃ). Since the factor matrices
contain 2r columns, we immediately have that rank ξ ≤ 2r. Another remarkable fact is that the
point X ∈ Mr itself lies in the TXMr with Ȧ = 0, Ḃ = B. Given a matrix Z ∈ Rm×n, its
orthogonal projection PTXMr

Z onto the tangent space TXMr (with the parameterization given in
(5)) can be computed as follows:

PTXMr
(Z) = ALA

⊤
LZ +

(
I −ALA

⊤
L

)
ZBRB

⊤
R . (6)

and, hence, can be represented in the form of (5) with Ȧ = (I −ALA
⊤
L)ZBR, and Ḃ = Z⊤AL.

Let F : Rm×n → R be a differentiable function with the Euclidean gradient ∇F ∈ Rm×n. Within
the Riemannian optimization framework, we solve the following task optimization problem:

min
X∈Mr

F (X).

When constructing the algorithms, we need to work with three key objects: Riemannian gradient,
retraction and vector transport. The Euclidean gradient is a direction of the steepest local increase F .
Therefore, it is common to use the Riemannian gradient — the direction of the steepest local increase
of corresponding smooth function value along the manifold, which lies in the tangent space (Absil
et al., 2009, chap. 3.6). Given the Euclidean gradient∇F , one may endow the tangent space TXMr

with a natural scalar product and derive a formula for the direction of the local steepest ascent of
F with respect to the manifold. This unique direction is called the Riemannian gradient and can be
computed as follows:

gradF (X) = PTXMr
(∇F (X)), X ∈Mr. (7)

A simple and robust retraction that maps a tangent step ξ (for example, ξ is a negative Riemannian
gradient) back to the manifold is the truncated SVD:

RX(ξ) ≡ R(X + ξ) = SVDr(X + ξ), (8)

i.e., the best rank-r approximation of X + ξ in Frobenius norm. Note that here we do not need to
compute the full SVD and can utilize low-rank structure of X and ξ, leading to O((m+ n)r2 + r3)
operations (Absil & Oseledets, 2015). Finally, because tangent spaces change from an optimization
step to step, momentum (an accumulated tangent vector) must be moved between them via a vector
transport. For embedded manifolds likeMr, a standard choice is the projection transport

TY→X(ξ) = PTXMr (ξ), ξ ∈ TYMr, (9)

which simply reprojects the same ambient matrix ξ onto the new tangent space at X .

4 RIEMANNION

In this section, we focus on the setting of parameter-efficient fine-tuning and, hence, to the fixed-rank
manifold. For fine-tuning of one layer the optimization problem becomes:

L(W +∆W)→ min
∆W∈Mr

,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

where L is a differentiable loss function. Note that optimizing on Mr removes the ambiguity
of factorized parameterizations, because all computations are carried out in the intrinsic space of
the product X rather than in any particular factorization. So the formulas we write below will
naturally be reparameterization-invariant. Let Gt = PTWMr

(∇L(Wt)) be the Riemannian gradient.
A Riemannian heavy-ball (Polyak, 1964) momentum step reads

Mt = β M̂t−1 + Gt, M̂t−1 = TWt−1→Wt(Mt−1), (10)
∆Wt+1 = R (∆Wt − ηMt) , (11)

with M0 = 0, momentum parameter β ∈ [0, 1), and stepsize η > 0.

Let us now discuss how to introduce a Muon-like variant of this iteration, which we refer to as
Riemannion. A direct projection onto the set of orthogonal matrices Ortho(Mt) presents two chal-
lenges. First, such a step does not respect the underlying Riemannian geometry. To address this,
we propose to find the best approximation of Ortho(Mt) on the tangent plane TWMr. Such a so-
lution is given via the projection onto the tangent plane PTWMr

(Ortho(Mt)). However, a second
issue arises: although this projection is low-rank, its computation remains inefficient because the
input matrix is of full rank. Let us notice that Mt ∈ T∆WtMr and, hence, is of rank at most 2r
(Section 3.2). At the same time, the LMO interpretation (Section 3.1) provides several admissible
low-rank solutions, including one where Orthor(·) replaces only the first 2r singular values with 1,
while all others are set to 0. Consequently, we obtain the following update rule:

M̃t = PT∆WtMr
(Orthor(Mt)). (12)

Note that Orthor(·) exactly preserves the column and row spaces of Mt ∈ T∆Wt
Mr. Consequently,

although PT∆WtMr
(Orthor(Mt)) does not yield singular values exactly equal to 1, in practice they

remain in a close proximity. This behavior is reminiscent of the Newton–Schulz iteration, which
likewise produces approximate singular values. To eliminate this inexactness and obtain an accurate
solution in the intersection of T∆Wt with the set of matrices whose first 2r singular values are exactly
1, one could formally apply the alternating projection method (Cheney & Goldstein, 1959; Boyd &
Dattorro, 2003, Theorem 4, Section 2):

M̃t = PT∆WtMr (Orthor(. . . PT∆WtMr (Orthor(Mt)))).

However, such a procedure is more computationally excessive, and our experiments indicate that it
has little to no impact on the overall convergence of the optimizer.

Algorithm 1 OrthoLR (efficient computation of Orthor(ξ) for ξ ∈ TXMr).

Require: ξ ∈ TXMr given by (Ȧ, Ḃ) from (5); AL, BR such that X = ALGB⊤
R as in (4)

Ensure: A ∈ Rm×2r, B ∈ Rm×2r: ABT = Ortho(ξ).
1: QL, TL = qr([AL, Ȧ]), QR, Tr = qr([Ḃ, BR]

⊤). // O
(
(m+ n)r2

)
2: UL, _, V ⊤

r = SVD
(
TL T⊤

R

)
. // O

(
r3
)

3: Ȧ = QLUL, Ḃ = QRVR. // O
(
(m+ n)r2

)
Algorithm 2 ProjectLR (efficient computation of PTXMr

(Z) for a rank-r′ matrix Z).

Require: A ∈ Rm×r′ , B ∈ Rn×r′ such that Z = AB⊤; AL, BR such that X = ALGB⊤
R as in (4).

Ensure: ξ = PTXMr (Z) given by (Ȧ, Ḃ) from (5).
1: Ȧ := (A−AR(A

⊤
RA))(B⊤BR), Ḃ := B(A⊤AL) // O((m+ n)r′

2
)

Let us finally show that M̃t from (12) can be computed efficiently using O((m+ n)r2 + r3) arith-
metic operations. Indeed, first of all we need to apply Orthor(·) to a tangent vector Mt. From (6),
we know that a tangent vector can be represented in a form of a rank-2r matrix. Such a representa-
tion can always be transformed into the compact SVD form with 2 QR decompositions and a single
full SVD of a 2r × 2r matrix, see Algorithm 1 called OrthoLR. As a next step, we need to project
the obtained result (decomposed matrix of rank 2r) onto the tangent plane. The operation can also
be done efficiently via (6) and is summarized in Algorithm 2 called ProjectLR.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

5 LOCALLY OPTIMAL INITIALIZATION (LOI)

Once the theoretical framework for the Riemannian optimizer is established, it is natural to consider
an initialization scheme that accounts for the underlying Riemannian geometry. Given any ∆W ∈
Mr, we may write

L(W) = L(W −∆W︸ ︷︷ ︸
W ′

+∆W) = L (W ′ +∆W) . (13)

This raises the question: how should ∆W be chosen to ensure the fastest loss decrease along the
manifold? The solution is to consider the following optimization task:

∆W
(0)
∗ ∈ Argmax

∆W∈Mr

∥PT∆WMr ∇WL(W)∥2F . (14)

Since PT∆WMr
is an orthogonal projection matrix to the tangent plane, the task (14) essentially

seeks for the point on the fixed-rank manifold, whose tangent space has most alignment with the
Euclidean gradient. In other words, this means that the direction of the steepest local function
decrease alongside the manifold is aligned with the full model tuning direction. The solution to this
task is presented in Theorem 5.1.
Theorem 5.1. Let the SVD of∇WL(W) be:

∇WL(W) = [U1,r Ur,2r U⊥]

[
Σ1,r 0 0
0 Σr,2r 0
0 0 Σ⊥

]
[V1,r Vr,2r V⊥]

⊤
,

and let also σ2r ̸= σ2r+1. Then any optimal solution ∆W
(0)
∗ to the problem (14) has the form:

∆W
(0)
∗ ∈

{
[U1,r, Ur,2rΣr,2r]

[
S11

S21

]
[C21 C22]

[
Σ1,rV

⊤
1,r

Vr,2r

] ∣∣∣∣∣
S =

[
S11 S12

S21 S22

]
∈ GL2r(R), S−1 =

[
C11 C12

C21 C22

]}
.

(15)

Proof. See Appendix A.

In our experiments, we use S =

[
αIr 0
0 Ir

]
, obtaining: ∆W

(0)
∗ = αU1,rV

⊤
r,2r ∈Mr, α ∈ R \ {0}.

Interestingly, Theorem 5.1 relates to the findings of Wang et al. (2024), although their analysis
neither adopts a Riemannian framework nor addresses parametrization-free optimization. Our op-
timizer further differs from Zhang & Pilanci (2024) and Mo et al. (2025, LORO) in that it avoids
inversion of the Gram matrix. As a result, the method remains stable as ∥∆W

(0)
∗ ∥ → 0. Empiri-

cal results indicate that initializing ∆W
(0)
∗ with a small norm leads to improved performance. The

procedure for selecting the scaling parameter α is described in Appendix E.

6 SINGLE BACKWARD-PASS GRADIENT TRICK

This section introduces an efficient method for computing gradient-times–matrix in a matrix-free
way, at a computational cost equivalent to a single backward pass. We then apply this technique in
both the LOI initialization procedure in Algorithm 3 and the Riemannion optimizer in Algorithm 4.

The calculation of the full fine-tuning loss gradient ∇WL (W) with pretrained parameters W ∈
Rm×n is computationally expensive. At the same time, for our framework we only need to compute
the products (∇WL (W)

⊤
M) or (∇WL (W)N) for some M ∈ Rm×r, N ∈ Rn×r. Using the

trick from (Novikov et al., 2022), we may calculate both quantities simultaneously using a single
forward-backward pass with a doubled rank representation.

First, we initialize differentiable parameters Z1 = 0 ∈ Rm×r and Z2 = 0 ∈ Rn×r and perform
a simple forward pass L := L

(
W + Z1N

⊤ +MZ⊤
2

)
. This step does not violate the pipelines of

LoRA framework since it is equivalent to a standard LoRA forward pass with special adapter:

Z1N
⊤ +MZ⊤

2 = [Z1 M] [N Z2]
⊤
= ÃB̃⊤, Ã ∈ Rm×2r, B̃ ∈ Rn×2r.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Then we invoke an autodiff algorithm for value L, which ensures us both:
∇Z1

L = ∇Z1
L
(
W + Z1N

⊤ +MZ⊤
2

)
|Z1=0,Z2=0 = ∇WL(W)N,

∇Z2L = ∇Z2L
(
W + Z1N

⊤ +MZ⊤
2

)
|Z1=0,Z2=0 = ∇WL(W)⊤M.

(16)

Note, that if ∆W = ALB
⊤ = AB⊤

R from W +∆W , then one may take N = BR,M = AL, Z1 =
0, Z2 = B, Y = W + ∆W and the exact same operations work. Notably, (16) is crucial for
computation of the Riemannian gradient in (6). Therefore the proposed approach is a key build-
ing block that allows us to avoid forming the full fine-tune gradient loss and effectively compute
matrix-matrix multiplications. This idea is the core for both: LOI initialization (Algorithm 3) and
Riemannion optimizer (Algorithm 4).

Randomized SVD for efficient initialization The computation of the 2r-truncated SVD of the
full loss gradient, as required by Theorem 5.1, has asymptotic complexityO(min{m,n}mn), which
may be infeasible for large-scale models. In addition, explicitly forming this gradient is itself com-
putationally expensive, and thus we need to avoid it in practice. To overcome this problem, we
propose to use a randomized SVD with power iterations (see (Halko et al., 2011)), which we also
enhance with our one-step gradient trick as is described in the Algorithm 3. In a nutshell, we need
to compute

(
∇WL(W)∇WL(W)⊤

)q
Y , where Y = ∇WL(W)Ω and Ω is sampled from standard

normal distribution. This iteration can be done in a robust manner using QR decompositions. The
steps 2, 4, 5, 6 correspond to a trick from (16).

Overall, the LOI search procedure has asymptotic complexityO((m+n)r2), plus 2(q+1) additional
backward passes. Moreover, since LOI search is executed only once before fine-tuning (which
typically involves thousands of backward passes), its runtime overhead is negligible, taking merely
0.25% of the total fine-tuning wall-clock time in our experiments. Section 7.1, about 2 thousand
optimization steps were carried out and Algorithm 3 accounted for merely 0.25% of the total fine-
tuning wall-clock time.

Algorithm 3 BackPropRSVD
Require: Weights W ∈ Rm×n, rank r ∈ N, oversampling parameter p, power-step parameter q.
Ensure: Randomized r-truncated SVD (Ur,Σr, Vr) of∇WL(W).

1: Choose k = r + p, Sample Ω ∈ Rn×k ∼ N (0, 1). // O (nr)
2: Y := qr(∇A L(W +AΩ⊤)|A=0).Q. // 1 backward pass +O

(
mr2

)
3: for i := 1, . . . , q do
4: Y := qr([∇B L(W + Y B⊤)|B=0]

⊤).Q. // 1 backward pass +O
(
nr2

)
5: Y := qr(∇A L(W +AY ⊤)|A=0).Q. // 1 backward pass+O

(
mr2

)
6: Y := [∇B L(W + Y B⊤)|B=0]

⊤. // 1 backward pass
7: U,Σ, V ⊤ := truncSVD (Y, r) . // O

(
nr2

)
8: Y U,Σ, V ⊤ // O

(
mr2

)
Efficient Riemannion implementation The Riemannion optimizer is presented in Algorithm 4.
Similar to vanilla Muon, it relies on a chosen Ortho procedure. Since the LoRA approach repre-
sents the fine-tuning shift ∆W with low-rank matrices, we employ an SVD-based Ortho procedure.
For computational efficiency, this procedure is adapted to the fixed-rank manifold, as described in
Section 4 and implemented in the OrthoLR (Algorithm 1).

In detail, in step 1 we calculate the Riemannian gradient components via a single backward call (16).
Then, in step 2 the algorithm transports the Heavy-Ball tangent direction to the current point via
Algorithm 2 that provides a simple but effective implementation of (6). In line 4, we compute the
final optimization direction on the tangent space of the given point with a Heavy-Ball momentum
coefficient β. In line 4-5 algorithm performs the Riemannion projection procedure and the retraction
iteration. The algorithm finalizes with saving the obtained minimization direction for momentum in
line 6 and calculating of a new point representation in step 7.

Overall, one iteration of the Riemannion loop has asymptotic complexity O((m + n)r2 + r3) and
additionally the same number of backward passes as vanilla LoRA. For comparison, the Euclidean
Muon optimizer for LoRA (Section 3.1) exhibits the same asymptotic complexity. The complete
framework and its time performance are summarized in Algorithm 5 and Appendix H.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Algorithm 4 One step of Riemannion

Require: Weight matrix W ′ ∈ Rm×n, rank r ∈ N, initial point AL, BR, Heavy-ball momentum
AHB, BHB, step size η, momentum coefficient β, weight decay coefficient γ.
Ensure: Tuning parameters ∆W ∗ ∈Mr.

1: Ȧ, Ḃ := ∇Z1
L
(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B ,

∇Z2
L
(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B . // 1 backward pass

2: Ȧprev, Ḃprev := ProjectLR ((AM, BM), AL, BR). // O
(
(m+ n)r2

)
3: Ȧ, Ḃ := βȦprev + (I −ALA

⊤
L)Ȧ, βḂprev + Ḃ // O

(
(n+m)r2

)
4: Ȧ, Ḃ := ProjectLR(OrthoLR(AL, BR, Ȧ, Ḃ, r,), AL, BR) // O

(
(m+ n)r2 + r3

)
5: U,Σ, V ⊤ := RetractionLR([−ηȦ, AL], [BR,−η(Ḃ + γBR)]) // O

(
(m+ n)r2 + r3

)
6: AHB, BHB := [Ȧ, AL], [BR, Ḃ]
7: AL, B := U,ΣV ⊤ // O

(
nr2

)

7 EXPERIMENTS

In this section, we also employ the term LOI (Locally Optimal Initialization), referring to the pro-
posed initialization scheme described in Section 5. This is done to distinguish between using Rie-
mannLoRA as an optimizer with zero initialization (as in basic LoRA) and RiemannLoRA-LOI,
which is the proposed combination of initialization and optimization. We conduct a series of LLM
fine-tuning experiments for different tasks. All of the experiments were computed on NVIDIA
V100-32Gb GPU and A100-80Gb GPU. We ran all the experiments within ∼ 2000 GPU hours.

7.1 COMMONSENSE REASONING FINE-TUNING

The results were obtained for the benchmark (Clark et al. (2019, BoolQ), Bisk et al. (2020, PIQA),
Sap et al. (2019, SIQA), Zellers et al. (2019, hellaswag), Sakaguchi et al. (2021, winogrande),Clark
et al. (2018, ARC), Mihaylov et al. (2018, OBQA)) common reasoning. The structure of the dataset
is described in Appendix D. In the following experiments we conduct a fine-tuning procedures for
multilayer perceptron (MLP) and attention layers of Llama 3 8b model (Dubey et al. (2024)).

The commonsense reasoning tasks comprise of 8 sub-tasks, each of them contains a predefined
training and a testing set. We follow the setting of Hu et al. (2023) and amalgamate the training
datasets from all 8 tasks to create the final training dataset and conduct evaluations on the indi-
vidual testing dataset for each task. The hyperparameter tuning protocol and the selected hyperpa-
rameters are provided in E. Table 1 contains the accuracy of the trained model’s responses on the
test dataset. Within the LoRA framework, the proposed Riemannian fine-tuning method delivers
clear performance gains. The Riemannion optimizer consistently outperforms LoRA, DoRA, and
achieves superior metric results compared to the standard Muon optimizer applied to LoRA factors
(see Section 3.1). Furthermore, relative to other Riemannian-geometry–aware approaches such as
RPrecAdamW (Zhang & Pilanci, 2024), our method also demonstrates better results. Finally, the
variance of outcomes for the proposed method is the smallest among all compared approaches.

Table 1: The average accuracy (in %) among 8 tasks of fine-tuned Llama 3-8b using different ap-
proaches, tested on Commonsense Reasoning benchmark. LoRA rank is set to 16.

Task BoolQ PIQA SIQA hella- wino- ARC-E ARC-C OBQA All
Initialization swag grande

Raw 65.0 76.6 73.0 66.1 61.3 92.5 82.3 79.6 74.5
Adam 74.8±1.9 89.8±0.9 82.6±0.6 96.2±0.3 87.9±1.2 92.4±0.7 84.9±0.7 88.5±0.4 87.1±0.6

DoRA 74.8±0.8 89.4±0.5 82.4±0.7 95.9±0.1 87.8±0.4 90.7±1.2 83.8±0.7 87.8±0.6 86.6±0.3

Muon 72.9±0.0 86.4±0.5 80.8±0.2 94.1±0.2 84.4±0.0 84.2±0.9 77.3±2.5 83.9±1.1 83.0±0.6

DoneRITE 72.2±0.3 88.6±0.1 82.0±0.6 95.1±0.1 85.6±0.2 87.7±1.5 79.3±2.6 85.7±0.5 84.5±0.5

RPrecAdamW 75.8±0.4 89.5±0.4 82.4±0.2 96.1±0.2 87.7±0.9 90.6±1.6 84.1±1.1 87.7±0.5 86.8±0.4

Riemannion 75.7±0.7 91.2±0.2 83.5±0.6 96.7±0.0 88.6±0.4 93.6±0.3 86.4±0.4 89.3±0.8 88.1±0.2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2: Visual results for Subject-driven generation on 600 training step.

7.2 SUBJECT-DRIVEN GENERATION

Subject-driven generation (Ruiz et al., 2023; Gal et al., 2023) is a task in which the user provides
several reference photos of an object, called a concept, and uses a diffusion model to generate this
concept with certain conditions (e.g., a textual prompt). One way to solve this task is to fine-tune
a pre-trained diffusion model using this small set of reference images. However, this technique
leads to a degradation in understanding of the conditions and to a fast overfitting of the concept.
Furthermore, it requires a high computational cost due to the large number of trainable parameters.
This is why previous works, such as (Qiu et al., 2023; Liu et al., 2024; Hu et al., 2022; Tewel et al.,
2023; Han et al., 2023; Gorbunov et al., 2024), propose training only a lightweight parameterization
for the base model. In this section, we demonstrate the performance of our parameterization in this
task.

In our experiments, we used Stable Diffusion 2 (Rombach et al., 2022) as the base model. We
choose LoRA Hu et al. (2022) as a baseline and train both models with ranks of 4, 8 and 16.

0.315 0.320 0.325 0.330 0.335
TS

0.50

0.55

0.60

0.72

0.65

IS

LoRA lr=2e-5
LoRA lr=4e-5
LoRA lr=8e-5
LoRA lr=2e-4
Ours lr=5e-6
Ours lr=1e-5
Ours lr=2e-5
Ours lr=4e-5

Figure 1: Comparison of text and image
similarities for LoRA and our method
with rank 4 at different learning rates on
400 step.

We predict the parameterization of the q, k, v, and
out.0 matrices in all attention layers. The Dreambooth
dataset (Ruiz et al., 2023) was used in all our experiments.
LoRA was trained using the Adam optimizer. In Figure
2, we present a visual comparison of LoRA with different
ranks. As can be seen, even for complex concepts such as
’robot toy’, our method requires only 600 steps to learn
the concept while preserving appropriate text similarity.
We found that for subject-driven generation tasks, the
lower the rank, the faster our method converges. To eval-
uate this, we also calculated metrics for different learning
rates on a subset of the Dreambooth dataset. We use CLIP
to measure text similarity and DINO to measure image
similarity. Figure 1 shows that, even with different learn-
ing rates, our method achieves more accurate results in
concept preservation. Further details and a visual com-
parison can be found in the Appendix F.

8 CONCLUSION

In this work, we propose a novel fully Riemannian framework that integrates a new muon-based opti-
mization method, locally-optimal initialization, and an efficient implementation. This integrated ap-
proach yields a reliable reparametrization-invariant method that outperforms competing approaches
on fine-tuning large language models (LLMs) and exhibits additional favorable properties for low-
rank approximations in diffusion models. Given the promising empirical results, a natural direction
for future research is to investigate the theoretical properties of the proposed method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

9 REPRODUCIBILITY STATEMENT

The hyperparameter selection procedure is described in Appendix E. The datasets used in the ex-
periments and the corresponding preprocessing steps are detailed in Appendix D. The proof of the
stated assumptions is provided in Appendix A. The hyperparameters for Subject-driven generation
task are provided in the Appendix F.

REFERENCES

P-A Absil and Ivan V Oseledets. Low-rank retractions: a survey and new results. Computational
Optimization and Applications, 62(1):5–29, 2015.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Christopher G Baker. Riemannian manifold trust-region methods with applications to eigenprob-
lems. The Florida State University, 2008.

Jeremy Bernstein. Deriving muon, 2025. URL https://jeremybernste.in/writing/
deriving-muon.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about Physical
Commonsense in Natural Language. In Proceedings of the AAAI conference on artificial intelli-
gence, number 05 in 34, pp. 7432–7439, 2020.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Stephen Boyd and Jon Dattorro. Alternating projections. 2003. URL https://web.
stanford.edu/class/ee392o/alt_proj.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ward Cheney and Allen A Goldstein. Proximity maps for convex sets. Proceedings of the American
Mathematical Society, 10(3):448–450, 1959.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pp. 2924–2936. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1300.
URL https://doi.org/10.18653/v1/n19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
lenge. CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan

10

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
https://web.stanford.edu/class/ee392o/alt_proj.pdf
https://web.stanford.edu/class/ee392o/alt_proj.pdf
https://doi.org/10.18653/v1/n19-1300
http://arxiv.org/abs/1803.05457

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
Llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=NAQvF08TcyG.

Mikhail Gorbunov, Nikolay Yudin, Vera Soboleva, Aibek Alanov, Alexey Naumov, and Maxim
Rakhuba. Group and shuffle: Efficient structured orthogonal parametrization. In Amir Glober-
sons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288,
2011. doi: 10.1137/090771806. URL https://doi.org/10.1137/090771806.

Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff:
Compact parameter space for diffusion fine-tuning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 7323–7334, 2023.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient Low Rank Adaptation of Large Mod-
els. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
NEv8YqBROO.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR, 1(2):3,
2022.

Jiang Hu, Jiaxi Cui, Lin Lin, Zaiwen Wen, Quanzheng Li, et al. Retraction-free optimization over
the Stiefel manifold with application to the loRA fine-tuning, 2024.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pp. 5254–5276. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.EMNLP-MAIN.319. URL https://doi.org/10.18653/
v1/2023.emnlp-main.319.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

John M Lee. Smooth manifolds. Springer, 2003.

11

https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=NAQvF08TcyG
https://doi.org/10.1137/090771806
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=7NzgkEdGyr.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models. Advances in Neural Information Processing
Systems, 37:121038–121072, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
pp. 2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260.
URL https://doi.org/10.18653/v1/d18-1260.

Zhanfeng Mo, Long-Kai Huang, and Sinno Jialin Pan. Parameter and Memory Efficient Pretraining
via Low-rank Riemannian Optimization. In The Thirteenth International Conference on Learning
Representations, 2025.

Alexander Novikov, Maxim Rakhuba, and Ivan Oseledets. Automatic differentiation for Rieman-
nian optimization on low-rank matrix and tensor-train manifolds. SIAM Journal on Scientific
Computing, 44(2):A843–A869, 2022.

Uliana Parkina and Maxim Rakhuba. Coala: Numerically stable and efficient framework for context-
aware low-rank approximation, 2025. URL https://arxiv.org/abs/2507.07580.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian
Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetun-
ing. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=K30wTdIIYc.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–
22510, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An Ad-
versarial Winograd Schema Challenge at Scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. SocialIQa: Com-
monsense Reasoning about Social Interactions. CoRR, abs/1904.09728, 2019. URL http:
//arxiv.org/abs/1904.09728.

Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. Key-locked rank one editing for text-to-
image personalization. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11, 2023.

12

https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/d18-1260
https://arxiv.org/abs/2507.07580
https://openreview.net/forum?id=K30wTdIIYc
http://arxiv.org/abs/1904.09728
http://arxiv.org/abs/1904.09728

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4(2):26, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Nickolay Trendafilov and Michele Gallo. Multivariate data analysis on matrix manifolds. Springer,
2021.

Bart Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal on
Optimization, 23(2):1214–1236, 2013.

Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. MiLoRA: Harnessing minor
singular components for parameter-efficient LLM finetuning. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL 2025 -
Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025, pp. 4823–4836.
Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.NAACL-LONG.248.
URL https://doi.org/10.18653/v1/2025.naacl-long.248.

Shaowen Wang, Linxi Yu, and Jian Li. LoRA-GA: Low-rank adaptation with gradient approxima-
tion. Advances in Neural Information Processing Systems, 37:54905–54931, 2024.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-Capacity
Unitary Recurrent Neural Networks. Advances in neural information processing systems, 29,
2016.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, and Bernard
Ghanem. CorDA: Context-oriented decomposition adaptation of large language models for task-
aware parameter-efficient fine-tuning. Advances in Neural Information Processing Systems, 37:
71768–71791, 2024.

Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh, and
Sanjiv Kumar. Lora done rite: Robust invariant transformation equilibration for lora optimization.
arXiv preprint arXiv:2410.20625, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–
4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
https://doi.org/10.18653/v1/p19-1472.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned loRA for fine-tuning foundation
models. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

13

https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2025.naacl-long.248
https://doi.org/10.18653/v1/p19-1472

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A INITAL POINT SEARCH

In this section we introduce the proof of Theorem 5.1

Proof. In order to represent the optimization task (14) in a more simple way, we will use a slightly
different formula for the projection of the full loss gradient onto the tangent space of the fixed-rank
manifold. Let

∆W = ALB
⊤ = AB⊤

R ∈Mr,

and the tangent space is parametrized as follows

T∆WMr = {ȦB⊤
R +ALḂ

⊤ | Ḃ ∈ Rn×r, Ȧ ∈ Rm×r, A⊤
L Ȧ = 0},

then one may derive an orthogonal projection formula for any matrix Z (see, e.g. (Boumal, 2023,
eq. 7.53))

PT∆WMr
Z = Z − (I −ALA

⊤
L)Z(I −BRB

⊤
R) ∈ T∆WMr.

As the tangent space is a linear space, the operation of orthogonal projection can be written as an
optimization task

PT∆WMr
Z = argmin

ξ∈T∆WMr

∥Z − ξ∥2F . (17)

Since

∥∇L∥2F = ∥ (∇L− PT∆WMr
∇L) + PT∆WMr

∇L∥2F =

= ∥∇L − PT∆WMr
∇L∥2F + ∥PT∆WMr

∇L∥2F + 2⟨∇L − PT∆WMr
∇L, PT∆WMr∇L⟩

= ∥∇L − PT∆WMr
∇L∥2F + ∥PT∆WMr

∇L∥2F + 2⟨PT∆WMr
(∇L− PT∆WMr

∇L) ,∇L⟩
= ∥∇L − PT∆WMr∇L∥2F + ∥PT∆WMr∇L∥2F + 2⟨PT∆WMr∇L− PT∆WMr∇L︸ ︷︷ ︸

=0

,∇L⟩

= ∥∇L − PT∆WMr
∇L∥2F + ∥PT∆WMr

∇L∥2F

so the optimization task (14) is equivalent to

∥∇L − PT∆WMr
∇L∥2F → min

∆W
,

which, in turn, using (17) is equivalent to the task

min
∆W

min
ξ∈T∆WMr

∥∇L − ξ∥2F .

Due to the fact that every vector of the tangent space is an element of a set of all matrices with 2r-
bounded rankM≤2r, one may use the Eckart-Young-Mirsky theorem (see (Eckart & Young, 1936))
to obtain the following lower bound:

∥∇L − PT∆WMr∇L∥2F ≥ ∥∇L− truncSVD (∇L, 2r)∥F ,∀ ∆W ∈Mr, ξ ∈ T∆WMr. (18)

But it is possible to ensure ∆W
(0)
∗ ∈ Mr and ξ∗ ∈ T∆W

(0)
∗
Mr which turn the inequality (18) into

the equality. One may take

∆W
(0)
∗ = AL(αB)⊤ = αU1,rV

⊤
r,2r = (αA)B⊤

R , α ∈ R,

ξ∗ = ȦB⊤
R +ALḂ

⊤ = (Ur,2rΣr,2r)B
⊤
R +AL (Σ1,rV1,r)

⊤
= truncSVD (∇L, 2r).

Note, that Ȧ⊤AL = 0. So the initialization ∆W
(0)
∗ ensures that truncSVD (∇L, 2r) lies in the

tangent space T
∆W

(0)
∗
Mr, which means that the first step of the RiemannLoRA Algorithm 6 will

get the Riemannian gradient equal to truncSVD (∇L, 2r).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

To generalize the result, we should change the parametrization of the tangent space. Because of
the fact that each of the tangent vectors ξ lies in M≤2r, we may use an unconstrained skeleton
decomposition (without constraints for Ȧ and AL):

ξ∗ =
[
A∗, Ȧ∗

] [Ḃ⊤
∗

B⊤
∗

]
=

[
A∗, Ȧ∗

]
I2r

[
Ḃ⊤

∗
B⊤

∗

]
=

=
[
A∗, Ȧ∗

]
S S−1

[
Ḃ⊤

∗
B⊤

∗

]
, S ∈ R2r×2r, detS ̸= 0.

Representing S and its inverse as block matrices:

S =

[
S11 S12

S21 S22

]
, S−1 =

[
C11 C12

C21 C22

]
,

one arrives to 15:

ξ∗ =
[
A∗, Ȧ∗

] [S11 S12

S21 S22

] [
C11 C12

C21 C22

] [
Ḃ∗ B∗

]⊤
,

∆W
(0)
∗ =

[
A′

∗, Ȧ
′
∗
] [S11

S21

]
[C21 C22]

[
Ḃ′

∗ B′
∗
]⊤

.

To derive the version that is utilized in practice, one may take S to be block-diagonal with S11 =
αIr, S22 = Ir, α ∈ R.

B RIEMANNION WITH LOI

The complete framework is summarized in Algorithm 5, which consists of an LOI initialization step
followed by max_iters iterations of the Riemannion optimizer.

Specifically, the first 3 lines are dedicated to the computation of LOI via BackPropRSVD for given
layer weights and oversampling parameter p, that increases the accuracy of the singular approx-
imation. The 4-th step initializes Heavy-Ball momentum matrices. Therefore, the asymptotical
complexity of this stage is determined by the complexity of Algorithm 3.

Algorithm 5 Riemannion with LOI

Require: Weights W ∈ Rm×n, rank r ∈ N, step size η, momentum coefficient β, weight decay
coefficient γ, oversampling parameter p, power-step parameter q.
Ensure: Tuning parameters ∆W ∗ ∈Mr.
Function:

1: AL, _, B⊤ := BackPropRSVD(2r, p, q,L,W). // O
(
(m+ n)r2

)
2: AL, B

⊤ := AL[: , : r], B[: , r :]⊤.
3: W ′ := W −ALB

⊤. // O (mn)
4: AHB, BHB := 0, 0.
5: for i := 0, . . . , max_iters do
6: BR := qr (B) .Q. // O

(
nr2

)
7: Ȧ := ∇Z1L

(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B . // = ∇WL(W)BR

8: Ḃ := ∇Z2
L
(
W ′ + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B . // = ∇WL(W)⊤AL

9: Ȧprev, Ḃprev := ProjectLR ((AM, BM), AL, BR). // O
(
(m+ n)r2

)
10: Ȧ, Ḃ := βȦprev + (I −ALA

⊤
L)Ȧ, βḂprev + Ḃ // O

(
(n+m)r2

)
11: Ȧ, Ḃ := ProjectLR

(
OrthoLR

(
AL, BR, Ȧ, Ḃ, r,

)
, AL, BR

)
// O

(
(m+ n)r2 + r3

)
12: U,Σ, V ⊤ := RetractionLR

([
−ηȦ, AL

]
,
[
BR,−η(Ḃ + γBR)

])
// O

(
(m+ n)r2 + r3

)
13: AHB, BHB := [Ȧ, AL], [BR, Ḃ]
14: AL, B := U,ΣV ⊤ // O

(
nr2

)
15: return AL, B.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

C RIEMANN-SGD ALGORITHM

In Algorithm 6, we present the RiemannSGD version of the fine-tuning algorithm. The first steps
are dedicated to the computation of the optimal initialization using BackPropRSVD(Algorithm
3). After initialization, the algorithm follows an Adam-like procedure adapted to the Riemannian
setting: it maintains exponentially smoothed estimates of momentum and gradient norms (4th step).
The overall cycle encapsulates the computation of the Riemannian gradient at the current point(steps
7−8), the update of the adaptive momentum terms via ProjectLR(Algorithm 2), and the retraction
step that projects the updated tangent direction back onto the manifold(steps 15−17). This approach
has asymptotical complexity ofO((m+n)r2+r3) and (2(q+1)+max_iters) amount of backward
calls.

Algorithm 6 RiemannSGD with LOI

Require: Weights W ∈ Rm×n, rank r ∈ N, step size η, momentum coefficient β, oversampling
parameter p, power-step parameter q, simulate_Adam, Adam momentum coefficient γ.
Ensure: Tuning parameters ∆W ∗ ∈Mr.
Function:

1: AL, _, B⊤ := BackPropRSVD(2r, p, q,L,W). // O
(
(m+ n)r2

)
2: AL, B

⊤ := AL[: , : r], B[: , r :]⊤.
3: W ′ := W −ALB

⊤. // O (mn)
4: AHB, BHB, SA, SB := 0.
5: for i := 0, . . . , max_iters do
6: BR := qr (B) .Q. // O

(
nr2

)
7: Ȧ := ∇Z1

L
(
W + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B .

8: Ḃ := ∇Z2
L
(
W + Z1B

⊤
R +ALZ

⊤
2

)
|Z1=0,Z2=B .

9: Ȧprev, Ḃprev := ProjectLR ((AHB, BHB), AL, BR) . // O
(
(m+ n)r2

)
10: Ȧ, Ḃ := βȦprev + (1− β)(I −ALA

⊤
L)Ȧ, βḂprev + (1− β)Ḃ // O

(
nr2

)
11: if simulate_Adam then
12: SA, SB := γ∥Ȧ∥F + (1− γ)SA, γ∥Ḃ∥F + (1− γ)SB // O ((m+ n)r)

13: Ȧ, Ḃ := Ȧ/SA, Ḃ/SB // O ((m+ n)r)

14: U,Σ, V ⊤ := RetractionLR
([

ηȦ, AL

]
,
[
BR, ηḂ +B

])
// O

(
(m+ n)r2 + r3

)
15: AHB, BHB := [Ȧ, AL], [BR, Ḃ]
16: AL, B := U,ΣV ⊤ // O

(
nr2

)
17: return AL, B.

Table 2: The average accuracy (in %) among 8 tasks of fine-tuned Llama 3.2-1b using different SGD
variants, tested on Commonsense Reasoning benchmark. The «R-» prefix stands for Riemannian,
the postfix «-LOI» stands for locally optimal initialization. LoRA rank is set to 16. In all experiments
excpet for «-LOI» the A factor in AB⊤ has orthonormal columns and B is zero.

Task BoolQ PIQA SIQA hella- wino- ARC-E ARC-C OBQA All
Initialization swag grande

Raw 40.1 55.4 50.3 25.8 50.0 61.9 41.8 42.8 46.0
LoRA 64.0±0.2 75.3±0.3 69.6±0.4 82.2±0.1 53.0±1.0 75.4±1.7 56.5±0.6 67.1±2.3 67.9±0.4

LoRA-LOI 64.9±0.4 76.8±0.3 71.2±2.2 84.1±0.1 56.7±0.6 77.0±4.2 61.1±3.6 68.9±3.3 70.1±1.6

RSLoRA 64.5±0.2 77.2±0.3 68.1±0.8 86.3±0.1 58.2±0.5 76.5±1.5 58.6±2.9 70.0±1.9 70.0±0.8

RiemannLoRA 65.1±0.4 77.7±0.3 69.1±1.5 85.8±0.2 58.5±0.4 74.4±1.9 56.9±1.3 69.3±2.5 69.6±0.9

RiemannLoRA-LOI 65.2±0.4 79.4±0.4 75.6±0.4 87.3±0.1 62.4±0.4 79.9±0.8 63.6±1.9 73.8±0.5 73.4±0.3

D DATASET

D.1 COMMONSENSE REASONING

Following the approach of Hu et al. (2023), we combine the training datasets from all 8 tasks to
form the final training set and evaluate performance on each task’s individual test dataset. We adopt

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

queries structure from Hu et al. (2023) to Llama 3.2 instruct template. The prompt structure is
demonstrated in Table 3.

E HYPERPARAMETERS

For each optimization method, we carefully preselected the learning rate (step size). For the Rie-
mannion method, we set the momentum to 0.9, and for the Muon method, we set the momentum to
0.95. In both cases, we additionally tuned the weight-decay hyperparameter (see Algorithm 4). The
final choices of these hyperparameters are summarized in Table 4.

In the Commonsense reasoning benchmark, the hyperparameters are reported in Table 5 for the
SGD-like methods and in Table 4 for the Adam-like methods. For the LOI method, we selected the
following hyperparameters: the backprop RSVD oversampling parameter was set to rk = 16, the
backprop powerstep parameter was set to q = 1, and the multiplier α was set to −0.01√

r
.

The non-tuned hyperparameters used for experiments on the Commonsense Reasoning dataset are
presented in 6.

F SUBJECT-DRIVEN GENERATION

Training details We used Stable Diffusion-2-base model with a batch size of 4 for all experiments.
For both methods, we set the betas to 0.9 and 0.999 and the weight decay to 0.1. In all variations
of our approach, we set q = 15, p = rank and α = − 1√

rank
. We used a learning rate of 2e-5 to train

both our and the LoRA models, which were used to generate images shown in Figures 2 and 3.

Evaluation details We used the DreamBooth dataset, which contains 25 different prompts and 30
various concepts. Due to computational costs, we only used half of the proposed concepts to evaluate
metrics: can, candle, cat, cat2, colorful_sneaker, dog2, dog3, dog5, dog6, dog7,
dog8, fancy_boot, grey_sloth_plushie, pink_sunglasses, vase. To measure the
similarity between the original concept and the generated images, we used Image Similarity (IS): we
synthesized 30 images for the base prompt «a photo of a V*» and 10 images for each of 25 editing
prompts (like «a V* on top of a dirt road»). We then measured the average pairwise cosine similarity
with reference photos of the concept using the DINO model. To check the correspondence between
the generated images and the textual prompts, we calculated Text Similarity (TS): we evaluated each
concept with each of 25 prompts, synthesizing 10 images per prompt, and calculating the average
pairwise cosine similarity with the prompts using the CLIP ViTB/32 model.

Additional results Figure 3 shows an additional visual comparison of our method and LoRA
after 600 training steps. As can be seen, our method learns the concept much faster than the original
LoRA, while preserving editing capabilities.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ABLATION STUDY ON INITIALIZATION

The fine-tuning optimization was carried out by AdamW (Loshchilov & Hutter (2019)) First of
the first, for every approach tested we preselected a suitable optimization step sizes. The list of
all selected hyper-parameters for each method is specified in the Appendix E. Table 7 contains the
accuracy of the trained model’s responses on the test dataset. The notation «LoRA-A» in the table
means the utilization of the vanilla LoRA with non-zero A, the notation «LoRA-B» means the same
with non-zero B, the notations «Stiefel-A» and «Stiefel-B» indicate vanilla LoRA with orthonormal
initialization (for matrix A and B respectively). The naming of «Stiefel-both» involves taking the
factors A,B with orthonormal columns and with initialization like in (13).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 3: The structure of the queries for the Commonsense reasoning dataset

Task Role Fine-tuning Data Template

BoolQ system Please answer the following question with True or False.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Answer format: True/False

assistant The correct answer is [ANSWER]

PIQA system Please choose the correct solution to the question.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Solution1: [SOLUTION_1]
Solution2: [SOLUTION_2]
Answer format: Solution1/Solution2

assistant The correct answer is [ANSWER]

SIQA system Please choose the correct answer to the question
based on the context provided.
Follow the answer format, full answer not needed.

user Context: [CONTEXT]
Question: [QUESTION]
A: [ANSWER_A]
B: [ANSWER_B]
C: [ANSWER_C]
Answer format: A/B/C

assistant The correct answer is [ANSWER]

hellaswag system Please choose the correct ending to complete the given sentence.
Follow the answer format, full answer not needed.

user [ACTIVITY_lABEL]: [CONTEXT]
Ending1: [ENDING_1]
Ending2: [ENDING_2]
Ending3: [ENDING_3]
Ending4: [ENDING_4]
Answer format: Ending1/Ending2/Ending3/Ending4

assistant The correct answer is [ANSWER]

winogrande system Please choose the correct answer to fill
in the blank to complete the given sentence.
Follow the answer format, full answer not needed.

user Sentence: [SENTENCE]
Option1: [OPTION_1]
Option2: [OPTION_2]
Answer format: Option1/Option2

assistant The correct answer is [ANSWER]

ARC-e & ARC-c system Please choose the correct answer to the question.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: Answer1/Answer2/Answer3/Answer4

assistant The correct answer is [ANSWER]

OBQA system Please choose the correct answer to the question.
Follow the answer format, full answer not needed.

user Question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: Answer1/Answer2/Answer3/Answer4

assistant The correct answer is [ANSWER]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 4: The parameters for different Adam variants for fine-tuning on the Commonsense reasoning
dataset

Optimizer learning rate weight decay

Adam 0.0002 0.01
DoRA 0.0003 0.01
Muon 0.0005 0.2
DoneRITE 0.0005 0.0001
RPrecAdamW 0.0005 0.5
Riemannion 0.0001 0.00316

Table 5: The parameters for different SGD variants (RiemannLoRA with simulate_Adam flag
disabled) for fine-tuning on the Commonsense reasoning dataset

Optimizer learning rate

LoRA 0.1
LoRA-LOI 0.06
RSLoRA 0.1
RiemannLoRA 0.1
RiemannLoRA-LOI 0.07

Table 6: Other non-tuned hyperparameter configurations for experiments on Commonsense reason-
ing dataset

Dataset Commonsense reasoning
Hyperparameters

Rank r 16
Dropout 0.05
LR Scheduler Linear
Batch size 64
Epochs 2
Warmup ratio 0.1

Table 7: The average accuracy among 8 tasks of fine-tuned Llama 3.2-1b via Adam using different
LoRA initialization variants, tested on Commonsense reasoning benchmark. «LOI» stands for lo-
cally optimal initialization. LoRA rank is set to 16.

Task BoolQ PIQA SIQA hella- wino- ARC- ARC- OBQA All
Initialization swag grande E C

Raw 40.1 55.4 50.3 25.8 50.0 61.9 41.8 42.8 46.0
LoRA-A 66.2 80.2 76.0 87.0 65.1 78.4 63.6 76.3 74.1
LoRA-B 65.9 77.9 74.2 82.9 61.2 73.9 60.6 72.2 71.1
Pissa 66.4 80.1 75.6 87.6 63.1 77.6 64.3 75.0 73.7
Stiefel-A 65.4 79.5 74.9 87.2 62.4 79.3 62.3 75.5 73.3
Stiefel-B 66.4 80.6 76.0 87.5 64.3 78.5 64.9 74.6 74.1
Stiefel-both 66.3 79.7 75.8 86.4 64.0 78.3 62.4 73.9 73.4
LOI 65.6 81.3 75.7 87.7 65.7 77.9 65.0 75.2 74.3
LoRA-GA 65.4 77.1 74.9 84.5 58.3 75.4 61.9 72.2 71.2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 3: Additional visual comparison of our method and LoRA, checkpoint 600

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

8 16 32 64 128
Batch size

0

5

10

15

20

25

30

35

2.5

7.5

12.5

17.5

22.5

27.5

32.5

O
ve

rh
ea

d
(%

)

Relative overhead on Llama-3-8b

r
4
8
16

Figure 4: Relative Time Cost
(
calculated as (TRiemannion − TAdam)

/
TAdam

)
of Riemannion vs.

Adam during Llama 3-8B fine-tuning, as a function of LoRA rank and batch size.

H COMPUTATIONAL COST

To measure execution time, we used a virtual server instantiated on a compute node equipped with an
Intel Xeon Gold 6240R CPU and Nvidia Tesla V100 GPU. The virtual machine was
provisioned with 8 CPU cores, 16 GB of RAM and a single Tesla V100 GPU. Experiments were
executed using the Hugging Face transformers library; timing corresponds to the execution
time of the trainer.train() call. Measurements were conducted according to the following
procedure. For each combination of method, LoRA adapter rank, and batch size, four timing runs
were performed and the minimum execution time was selected. The measured quantity was the time
spent on 16 optimizer steps. Time spent on initialization was excluded. For each combination of rank
and batch size, execution times for each of the methods were measured sequentially. In the present
work, rank refers to the rank of the LoRA adapter, and method denotes one of two optimization
schemes: Adam (baseline) and Riemannion (proposed method).

Figure 4 shows the relative increase in per-step execution time of the proposed Riemannion method
compared with Adam, computed as

I LLM USAGE

We used an LLM only for minor language polishing to improve readability and grammar; it was not
involved in research ideation, methodology, analysis, or substantive writing, and all research ideas
and arguments were developed entirely by the authors.

21

	Introduction
	Related Work
	Preliminaries
	Muon optimizer
	Riemannian optimization

	Riemannion
	Locally optimal initialization (LOI)
	Single backward-pass gradient trick
	Experiments
	Commonsense reasoning fine-tuning
	Subject-driven generation

	Conclusion
	Reproducibility Statement
	Inital point search
	Riemannion with LOI
	Riemann-SGD Algorithm
	Dataset
	Commonsense reasoning

	Hyperparameters
	Subject-driven generation
	Additional experimental results
	Ablation study on initialization

	Computational cost
	LLM usage

