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Figure 1: CreatiDesign generates high-quality graphic designs based on user-provided image assets
and semantic layouts, covering a wide range of categories such as movie posters, brand promotions,
product advertisements, and social media content.

ABSTRACT

Graphic design plays a vital role in visual communication across advertising,
marketing, and multimedia entertainment. Prior work has explored automated
graphic design generation using diffusion models, aiming to streamline creative
workflows and democratize design capabilities. However, complex graphic de-
sign scenarios require accurately adhering to design intent specified by multiple
heterogeneous user-provided elements (e.g. images, layouts, and texts), which
pose multi-condition control challenges for existing methods. Specifically, previ-
ous single-condition control models demonstrate effectiveness only within their
specialized domains but fail to generalize to other conditions, while existing multi-
condition methods often lack fine-grained control over each sub-condition and
compromise overall compositional harmony. To address these limitations, we
introduce CreatiDesign, a systematic solution for automated graphic design cov-
ering both model architecture and dataset construction. First, we design a unified
multi-condition driven architecture that enables flexible and precise integration
of heterogeneous design elements with minimal architectural modifications to
the base diffusion model. Furthermore, to ensure that each condition precisely
controls its designated image region and to avoid interference between conditions,
we propose a multimodal attention mask mechanism. Additionally, we develop a
fully automated pipeline for constructing graphic design datasets, and introduce
a new dataset with 400K samples featuring multi-condition annotations, along
with a comprehensive benchmark. Experimental results show that CreatiDesign
outperforms existing models by a clear margin in faithfully adhering to user intent.
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1 INTRODUCTION

Graphic design (Jobling & Crowley, 1996) is a fundamental vehicle for visual communication,
affective perception, and brand identity across advertising, marketing, and multimedia entertainment.

Recently, diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) have achieved remark-
able advances, especially in text-to-image generation (stability.ai, 2024; Labs, 2024), which can
produce visually compelling and semantically rich images. Leveraging these models to automate
graphic design—thereby streamlining creative workflows and democratizing design capabilities—has
attracted increasing attention (Gao et al., 2025a; Chen et al., 2025; Peng et al., 2025).

However, as illustrated in Figure 2, graphic design generation poses unique challenges because
it requires the precise control and harmonious arrangement of multiple heterogeneous elements,
typically comprising three categories: I) Primary visual elements, which act as visual focal points
and convey the central theme (e.g. product subjects, provided in image format); II) Secondary
visual elements, which offer contextual support and enrich the composition (e.g. decorative objects,
specified by semantic description and position in a layout); and III) Textual elements, which directly
convey essential information (e.g. slogans or product names, also provided as layout). This multi-
element nature introduces multi-condition control requirements for diffusion models, as it demands
both semantic and spatial fidelity to users’ design intent.

While several works have explored unleashing the potential of diffusion models for automatic
graphic design generation, three major challenges remain unresolved: I) How to integrate multiple
heterogeneous conditions in a unified manner. Previous expert models are typically tailored for only
a single type of condition, and often fail to follow other conditions. As illustrated in Figure 2, image-
driven models Wang et al. (2024b); Wu et al. (2025); Labs (2025) focus exclusively on aligning with
primary visual elements, whereas layout-driven models Peng et al. (2025); Ma et al. (2025b); Zhang
et al. (2024) are limited to following the semantic descriptions and spatial arrangements of secondary
visual or textual elements. Such biased capability often leads to reduced fidelity to user intent, as
highlighted by the red and purple masks. II) How to preserve fine-grained controllability for each
condition while achieving harmonious compositions. Existing multi-condition approaches (Xiao
etal., 2024; Gao et al., 2025a; goo, 2025; ope, 2025) lack accurate control over each sub-condition and
fail to effectively coordinate all elements, resulting in outputs that do not faithfully reflect user design
intent. IIT) How to construct large-scale, multi-element graphic design datasets in an automated
manner. Ready-to-use graphic design datasets with fine-grained, multi-condition annotations remain
scarce, which naturally prevents models from learning design capabilities.

To this end, we propose CreatiDesign, a systematic solution for intelligent graphic design generation
that addresses the aforementioned challenges through the following components: I) Unified multi-
condition driven architecture. CreatiDesign preserves the strong generative capabilities of text-to-
image diffusion models while unlocking their potential for graphic design with minimal architectural
modifications. Specifically, the native image encoder embeds the multi-subject image condition into
the latent space, while the semantic layout is processed by extracting textual features with the text
encoder and fusing them with positional information. After encoding all modalities into a unified
feature space, native multimodal attention (MM-Attention) is applied to enable deep integration and
interaction across modalities. This allows for unified and flexible multi-condition control over the
generated content. II) Efficient Multi-Condition Coordination. To ensure that each heterogeneous
condition precisely controls its designated image regions and to avoid mutual interference that could
compromise the unique characteristics of each condition, we introduce carefully designed attention
masks to regulate the interaction scope of each modality within the multimodal attention mechanism.
This design enables each condition to independently and efficiently control its target region, while
maintaining high overall compositional harmony. III) Automated Dataset Construction Pipeline.
We develop a fully automated pipeline for constructing graphic design datasets. This pipeline
consists of design theme generation and rendering, conditional image generation, and multi-element
annotation and filtering. As a result, we construct a training dataset containing 400K design samples
with multi-condition annotations, along with a comprehensive benchmark for rigorous evaluation.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Text-to-image (T2I) generation (Rombach et al., 2022; Podell et al., 2024; Saharia et al., 2022; Chen
et al., 2024c; Li et al., 2024) aims to generate visual content from textual descriptions, and has
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Figure 2: An overview of our motivation. Graphic design is a multi-condition driven generation
task that requires the precise and harmonious arrangement of heterogeneous elements, including
primary visual elements (provided as images with positions), as well as secondary visual and textual
elements (both specified by semantic descriptions and positions). Previous methods either support
only a single type of condition (e.g. image-driven or layout-driven models) or lack accurate control
over each sub-condition(e.g. multi-condition driven models), resulting in failure to strictly adhere to
user design intent, as highlighted by the rcd and masks.

achieved remarkable progress in both visual quality and semantic alignment. Recent advances, such
as SD3 series (Esser et al., 2024; stability.ai, 2024), CogView4 (THU, 2025), FLUX.1 (Labs, 2024),
HiDream (HiD, 2025), and Seedream series (Gong et al., 2025; Gao et al., 2025b), have pushed the
frontier further by leveraging Multimodal Diffusion Transformer architectures (MM-DiT). Despite
these advances, existing T2I models still struggle with fine-grained controllability, particularly in
scenarios where users wish to specify precise subject identities or detailed compositional layouts.

2.2 CONTROLLABLE IMAGE GENERATION

To achieve precise control, a variety of conditional image generation paradigms have been proposed,
including subject-driven (Ruiz et al., 2023; Cai et al., 2024; Tan et al., 2024; Shin et al., 2024;
Zhu et al., 2025; Labs, 2025; Wu et al., 2025; Wang et al., 2024b), layout-driven (Li et al., 2023;
Wang et al., 2024c; Zhou et al., 2024; Feng et al., 2024; Zhang et al., 2024; Peng et al., 2025;
Zhou et al., 2025; Ma et al., 2025b), and so on. These expert models excel at controlling specific
conditions—such as preserving the visual characteristics of the provided subjects or adhering to
layout specifications—but often fail to follow other conditions. In response, multi-condition driven
frameworks (Sun et al., 2024; Xiao et al., 2024; goo, 2025; ope, 2025; Wang et al., 2025a; Qin et al.,
2023; Hu et al., 2023; Zhao et al., 2023; Ran et al., 2024) have been introduced to jointly handle
heterogeneous user-provided conditions. However, these unified approaches often lack accurate
control over each sub-condition.

2.3 AUTOMATIC GRAPHIC DESIGN

Several works (Gao et al., 2025a; Wang et al., 2025b; Chen et al., 2025; Pu et al., 2025; Ma et al.,
2025a; Wang et al., 2024a; Liu et al., 2024; Chen et al., 2024b; Tuo et al., 2024) have attempted
to automate graphic design generation, aiming to streamline creative workflows and democratize
design capabilities. However, automatic graphic design introduces distinct challenges beyond general
text-to-image or controllable image generation, requiring models to precisely preserve user-specified
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Figure 3: An overview of the architecture. CreatiDesign integrates subjects and semantic layout
conditions through native multimodal attention. Multimodal attention mask ensures that each condi-
tion precisely controls its designated image regions while preventing leakage between conditions.

subjects, align secondary visual and textual elements with detailed semantic and spatial constraints,
and maintain overall visual coherence. Despite recent progress, most existing methods struggle to
meet all these demands simultaneously. This underscores the need for a unified, highly controllable,
and harmonious solution, which is exactly the goal of this paper.

3 METHOD

3.1 PROBLEM FORMULATION

This paper focuses on the task of graphic design generation, where each design typically comprises
multiple heterogeneous elements provided by the user, such as primary visual elements, secondary
visual elements, and textual elements, as illustrated in Figure 2. The key challenge is to accurately
and harmoniously integrate these user-specified elements—each representing distinct aspects of user
intent—into the generated image. Formally, the task can be defined as: I, = f(P, I, L), where I,
denotes the generated image, P is the global prompt describing the overall image, I represents the
multi-subject image condition (i.e., a set of primary visual elements). L denotes the semantic layout
condition, which consists of n elements, partitioned into two categories: secondary visual elements
and textual elements. Each layout element is defined by a pair (d;, b;), where d; is the semantic
description and b; is the spatial position (bounding box), formally expressed as:

L={l, =(d;,b;)}}_g, i € {secondary visual element, textual element}. (1)

i

In the following sections, we will introduce the key parts of CreatiDesign in detail.

3.2 UNIFIED MULTI-CONDITION DRIVEN ARCHITECTURE

In MM-DiT-based text-to-image models (e.g. FLUX.1 (Labs, 2024)), a text encoder (e.g. TS (Raffel
et al., 2020)) is employed to tokenize and encode the input prompt into a sequence of text tokens,
denoted as h,,. Concurrently, an image encoder (e.g. VAE (Kingma, 2013)) is utilized to encode the
ground-truth image into a latent representation z, which is subsequently partitioned into patches to
obtain image tokens, denoted as h,. These text and image tokens are then fed into MM-Attention,
which facilitates rich interactions between the textual and visual modalities, thereby enabling precise
control over the image content. Our approach aims to retain the strong capabilities of T2I models
while unlocking their potential for graphic design with minimal architectural modifications, as
illustrated in Figure 3.

Tokenize Multi-Subject Image Condition. We first pad the multi-subject image condition with a
background color (e.g. gray) and encode it using the native VAE. The encoded latent representation is
then partitioned into patches to obtain the subject tokens h.

Tokenize Semantic Layout Condition. For each element [; = (d;,b;) in the semantic layout
condition, we utilize the native T5 text encoder to extract the semantic feature hf from d;. For the
bounding box b;, we apply Fourier positional encoding (Mildenhall et al., 2021; Li et al., 2023) to
obtain the spatial feature k. The final layout token h! is obtained by concatenating h¢ and h® along
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the feature dimension, followed by a layout encoder (i.e. MLP): hi = MLP(Concat(h?, h?)). In
this way, layout tokens integrate semantic and spatial information.

Integrate Multi-Condition. After encoding the prompt, noise image, multi-subject image condition,
and semantic layout condition into tokens, denoted as h?, h*, h*, h!, we concatenate them along the
token dimension and feed the token sequence into a stack of MM-DiT Blocks. Each Block consists
of linear projection layers (for Q, K, V), multimodal attention (MM-Attention), and feed-forward
networks (FFN). Each type of tokens is linearly projected into its corresponding query, key, and value
spaces: Q*, K*, V* = Linear(h*), where * denotes the modality (layout, prompt, image, or subject).
For the layout tokens h' and subject tokens h°, we further adapt their representations using LoORA
modules deployed on the linear layer and adaptive layer normalization (AdaLN), enabling efficient
fine-tuning and alignment. The multimodal attention is then computed as:

K hP' R R = Attention([Q', Q7, Q%, Q°], [K!, K7, K=, K*], [V, VP, V=, V¢]). (2)
This design enables multiple conditions to control the image content. To avoid positional embedding
conflicts, such as between the noise image and image condition, or between the prompt and layout
condition, we adopt positional encoding shifts to the image and layout condition tokens (Tan et al.,
2024) to ensure clear separation in the token space. Overall, this architecture empowers the text-to-
image model with multi-condition control capabilities through minimal architectural modifications.

3.3 COLLABORATIVE MULTI-CONDITION CONTROL

Multi-condition driven methods may suffer from degraded controllability over each sub-condition.
We attribute this to the fact that the sub-condition is not precisely bound to its corresponding image
region and that there is semantic leakage among sub-conditions. To address this, we introduce a
multimodal attention mask within our architecture, consisting of a layout mask and a subject mask.

Layout Attention Mask. Given the user-specified bounding box b; for each semantic description
d;, we can precisely locate the target image region. Inspired by (Chen et al., 2024a), we construct a
layout mask such that each layout token A! is only allowed to attend to and be attended by the image
tokens h7 within its corresponding bounding box. This explicit attention modulation enhances the
spatial controllability. Furthermore, we block interactions among layout tokens themselves, between
layout tokens and subject tokens, and between layout tokens and prompt tokens, to prevent semantic
leakage and to ensure that each layout token retains its unique characteristics.

Subject Attention Mask. Based on the user-provided multi-subject image, we extract the spatial
location of each subject to form a subject mask. Each subject token h; is only permitted to interact
bidirectionally with the image tokens h within its own mask region, thereby achieving precise
subject injection. In addition, to preserve the integrity and distinctive features of the subject token h?,
we block its interactions with all irrelevant tokens, including layout tokens h!, prompt tokens h?, and
image tokens outside the target region of h°.

With the proposed multimodal attention masks, CreatiDesign allows each condition to precisely
and independently control its targeted image region without semantic leakage, thereby producing
controllable and harmonious graphic designs that closely match user intent.

4 GRAPHIC DESIGN DATASETS AND BENCHMARK

4.1 GRAPHIC DESIGN DATASETS

We propose a fully automatic dataset construction pipeline, as shown in Figure 4, to address the
scarcity of graphic design datasets with fine-grained, multi-condition annotations.

Design Theme Generation. Based on a design keywords bank covering common graphic design
elements (e.g. furniture, food, clothing efc.), we prompt a large language model (LLM, e.g. GPT-4) to
act as a professional designer and generate design themes that include descriptions of primary visual
elements, secondary visual elements, and textual elements.

Text Layer Rendering. Based on the design theme, we follow the Hierarchical Layout Genera-
tion (Cheng et al., 2025) (HLG) paradigm to generate a layout protocol of textual elements and a
detailed background description. A rendering engine then converts the layout protocol into an RGBA
image with accurately positioned foreground text.

Foreground-based Image Generation. To generate a visually coherent graphic design image, we
draw inspiration from LayerDiffuse (Zhang & Agrawala, 2024) and develop a foreground-conditioned
image generation model. Here, the RGBA text layer serves as the foreground, while the background
is generated based on the aforementioned description. Specifically, we incorporate foreground-LoRA
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Figure 4: Automated pipeline for graphic design dataset construction.

and background-LoRA modules into FLUX.1-dev and employ attention sharing to ensure seamless
integration of foreground and background elements.

Entity Annotation. We use GroundingSAM?2 (ide, 2024) to obtain bounding boxes and segmenta-
tion masks for all entities in the generated image. A vision-language model (OpenBMB, 2024) (VLM)
is then employed to generate fine-grained descriptions for each entity. Entities are categorized as
either primary or secondary visual elements. All primary visual elements are aggregated to form the
multi-subject image condition, while secondary visual elements, together with the textual elements
from the layout protocol, constitute the semantic layout condition.

Based on this automatic data construction pipeline, we synthesize graphic design samples at scale,
alleviating the data bottleneck for model training. As a result, we construct a new dataset of 400K
samples with annotations for various conditions.

4.2 GRAPHIC DESIGN BENCHMARK

To comprehensively evaluate graphic design generation under multiple conditions, we further con-
struct a rigorous benchmark consisting of 1,000 carefully curated samples. This benchmark is
designed to assess whether the generated results faithfully align with user intent—a critical require-
ment in practical graphic design scenarios.

The evaluation focuses on two key aspects, each with dedicated metrics: I) Multi-Subject Preser-
vation. When given multi-subject image conditions (i.e. primary visual elements), it is crucial to
strictly preserve the unique characteristics of each subject in the generated image. To quantify
this, we measure the similarity between each subject and its corresponding region (obtained via
bounding box priors or detected by GroundingDINO (Liu et al., 2023)) in the generated image
using both CLIP (Radford et al., 2021) similarity (CLIP-I) and DINO (Oquab et al., 2023) similarity
(DINO-I) scores. We further aggregate the DINO scores of all subjects by multiplication, denoted
as M-DINO (Wang et al., 2024b). Unlike averaging, M-DINO is more sensitive to the failure of
any single subject, providing a stricter assessment of subject preservation. II) Semantic Layout
Alignment. For the semantic layout condition, specifying the positions and attributes of secondary
visual elements and textual content, we assess alignment at spatial and semantic levels. For secondary
visual elements, we employ a vision-language model in a Visual Question Answering manner to
assess the spatial, color, textual, and shape attributes of each entity in the generated image (Zhang
et al., 2024; Wu et al., 2024). For textual elements, we use PaddleOCR (pad, 2025) to detect text
and calculate sentence accuracy (Sen. Acc), normalized edit distance (NED; i.e. 1 minus the edit
distance) (Gao et al., 2025a), and IoU (spatial score) between detected and ground-truth texts.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. 'We train our models on the 400K synthetic graphic design samples described in Section 4.1.
The validation set contains 1,000 samples, covering diverse numbers of primary visual subjects and
semantic layout annotations, enabling thorough evaluation of multi-condition controllability.

Evaluation Metrics. As described in Section 4.2, we evaluate model performance from two
perspectives—multi-subject preservation and semantic layout alignment—to assess whether the
generated designs accurately fulfill user intent. Additionally, to evaluate overall image quality, we
report IR Score (Xu et al., 2023) and PickScore (Kirstain et al., 2023), which jointly capture prompt
adherence, visual appeal, and compositional harmony across the entire image.

Implementation Details. We fine-tune FLUX.1-dev using LoRA with 256 rank, introducing
491.5M extra parameters (4.1% of FLUX’s 12B). We employ the AdamW optimizer with a fixed
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Table 1: Quantitative Results. We compare CreatiDesign with three types of previ-
ous SOTA models: multi-subject image-driven models , semantic layout-driven models , and

multi-condition driven models . The best results are shown in bold, and the top-3 results are
highlighted. Our proposed method significantly enhances the graphic design capabilities of the
baseline , achieves top-tier performance across all metrics, and shows a clear lead in average score.

Multi-Subject Preservation Semantic Layout Alignment .
Image Quality Avg.
Primary Visual Elements Secondary Visual Elements Textual Elements
CLIP-I DINO-I M-DINO Spatial Color Textual Shape Spatial Sen. Acc NED IR PickScore
UNO 7797 47.88 20.79 53.10 4344 4262 4130 1147 40.87 7451 61.06 21.67 4472

MS-Diffusion 84.75 74.13 44.34 49.54 3337 3489 3479 1.01 0.00 1021 46.64 21.03 36.23
FLUX.1-Fill  90.79 87.32 69.05 67.55 57.48 56.26 5575 1248 12.07 56.69 40.74 20.71  52.24

CreatiLayout 78.41 55.54 25.31 7742 63.07 62.67 6021 1859 1227 7421 5992 21.04 50.72

HiCo 7245 3447 11.59 79.69 6148 61.17 60.17 1.01 0.00 1498 -36.16 19.58 31.70
BizGen 79.86  53.08 2293 7984 6296 6286 61.01 5044 7589 94.61 3743 2148 5853
AnyText2 74.68 34.86 12.22 36.63 27.58 27.16 26.53 5395 956 4826 -2595 20.24  28.81
Emu2 73.96 45.17 19.92 60.81 4537 4620 44.06 0.20 0.00 13.81 -1.84 20.18  30.65

PosterMaker 90.45 87.72 69.56 56.36 45.37 4425 41.61 2842 0.70 28.62 31.62 2031 4542
OmniGen 82.15 58.83 30.86 53.92 4435 4446 4140 8.24 6.72  49.12 2294 20.62  38.63
Gemini2.0 81.46 57.23 29.68 59.41 5229 5249 5036 16.60 7138 88.71 2852 2123  50.78

FLUX.I-dev 7593 44.59 17.76 60.02 47.1 46.19 4476 1325 5795 81.52 5945 2148 47.50
CreatiDesign 89.39 86.48 65.75 7894 66.02 6694 6582 56.90 78.30 94.68 60.02 2149  69.28
VS. +13.46 +41.89 +47.99 +18.92 +18.92 +20.75 +21.06 +43.65 +20.35 +13.16 +1.17 +0.01 +21.78

learning rate of le-4, training for 100,000 steps with a batch size of 8 on 8 H20-96G GPUs over 4
days. We adopt a resolution bucketing strategy during training to support variable image sizes. The
image condition is set to half the target image size; each layout description is capped at 30 tokens,
with up to 10 layouts per image.

5.2 COMPARISON WITH PRIOR WORKS

Baseline Methods. We compare CreatiDesign with three types of previous SOTA models: multi-
subject image-driven models (Wu et al., 2025; Wang et al., 2024b; Labs, 2025), semantic layout-driven
models (Zhang et al., 2024; Ma et al., 2025b; Peng et al., 2025; Tuo et al., 2024), and multi-condition
driven models (Sun et al., 2024; goo, 2025; Xiao et al., 2024; Gao et al., 2025a).

Quantitative Comparison. As shown in Table 1, specialist models excel primarily on their targeted
control conditions—image-driven models can preserve subjects, while layout-driven models can
follow semantic layout control—but perform poorly when handling other conditions. Conversely,
previous multi-condition models often lack fine-grained control over each sub-condition, resulting
in lower subject preservation and semantic alignment. In contrast, CreatiDesign achieves precise,
balanced control across all conditions, as reflected in its top-tier performance across every sub-
condition and clear lead in average scores. Remarkably, this advanced graphic design capability is
achieved with minor architectural modifications to the base model FLUX.1-dev and only 4.1% extra
parameters were introduced, demonstrating both effectiveness and efficiency.

Qualitative Comparison. To further illustrate the advantages of CreatiDesign, Figure 7 presents
qualitative comparisons on challenging cases with multiple subjects and complex layouts. Existing
SOTA methods—including multi-condition driven models and single-condition experts—consistently
fall short in faithfully fulfilling user intent. Previous multi-condition models exhibit limited precision
in controlling sub-conditions, resulting in misplaced or inconsistent subjects (highlighted by purple
masks), as well as content or spatial misalignment in the layout (highlighted by red masks). Layout-
driven models like BizGen (Peng et al., 2025) can follow the layout but struggle with subject
consistency. Image-driven models such as FLUX.1-Fill (Labs, 2025) can preserve primary elements
but often misplace or incorrectly render textual elements. In contrast, CreatiDesign consistently
preserves the identity and position of all primary subjects, precisely aligns secondary and textual
elements within the layout, and ensures overall compositional harmony.

User Study. To comprehensively assess the practical effectiveness of CreatiDesign, we conducted
a user study involving feedback from both professional designers and general users. Specifically,
we solicited 50 evaluation reports on 30 diverse graphic design samples, comparing our method
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with several state-of-the-art baselines. As illustrated in Figure 5, participants rated the generated
designs on a scale of 1 to 10 across multiple criteria, including adherence to multi-subject image
conditions (position accuracy and subject preservation), alignment with semantic layout conditions
(position accuracy, attribute accuracy and text accuracy), and overall perceptual quality (prompt
following and visual quality). The statistical results demonstrate that CreatiDesign outperforms
previous methods in fine-grained controllability and overall visual appeal, delivering superior user
satisfaction in real-world graphic design scenarios.
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Figure 6: Comparison on Loop Editing. Cre-
atiDesign precisely follows editing commands
and maintains high consistency in non-edited ar-
eas. In contrast, Gemini2.0 frequently introduces
unwanted attribute changes to subjects or text.

5.3 FREE LUNCH: EXPANDING TO EDITING TASKS

As illustrated in Figure 6, CreatiDesign naturally extends beyond graphic design to a wide range of
editing tasks without extra retraining. We demonstrate this capability via editing a series of movie
posters. Initially, the user provides a global prompt, a multi-subject image condition (e.g. Hulk
and Iron Man), and a semantic layout specifying elements and their spatial positions (e.g. Captain
America and the “Avengers” title). CreatiDesign generates a high-quality poster P; that precisely
adheres to these controls. Subsequently, a sequence of editing operations is performed: first, by
treating the previously generated poster P; as the new image condition and introducing a new text
element “AGE OF ULTRON” with its desired position, CreatiDesign seamlessly inserts this subtitle
to produce P5; Next, by combining the Spider-Man image and its insertion mask with P» as the
image condition, CreatiDesign generates P3, achieving seamless integration of the new subject while
preserving character fidelity and overall visual harmony; finally, by combining Ps with the mask
of the edited region as the image condition, the subtitle is modified to “INFINITY WAR” (Fy).
Throughout these editing processes, CreatiDesign consistently maintains subject identity, achieves
accuracy layout control and overall visual harmony. In contrast, strong baselines such as Gemini2.0
frequently fail to preserve non-edited regions during sequential edits, often resulting in unwanted
attribute changes to subjects or text, highlighting a lack of strict adherence to user intent.

5.4 ABLATION STUDY

Table 2 and Figure 8 evaluate the contributions of the three key components—Layout Encoder
(LE), Layout Attention Mask (LAM), and Subject Attention Mask (SAM)—to the performance
of CreativeDesign from quantitative and qualitative perspectives, respectively. The LE fuses the
semantic features of the textual description with Fourier-encoded positional features and further aligns
them into layout tokens; removing LE leads to a clear drop in the accuracy of generated text. The
layout attention mask enables fine-grained spatial control by explicitly restricting each layout element
to modulate only its designated image region and preventing semantic leakage across layout elements;
removing LAM leads to imprecise placement of elements and increased confusion across different
layout regions, as demonstrated by the decrease in spatial alignment and attribute accuracy. Similarly,
the subject attention mask ensures that each subject token only interacts with its corresponding image
region and blocks interference from global prompts and layout conditions. Without SAM, we observe
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Figure 7: Quantitative Results. Compared with previous multi-condition or single-condition models,
CreatiDesign demonstrates stricter adherence to user intent, including high subject preservation and
precise layout alignment. : inconsistent or mispositioned subjects. : entities
with incorrect semantics or locations. : disharmonious background or foreground regions.

the degradation in subject consistency, such as the incorrect digits on clocks or altered popcorn color.
These results validate the effectiveness of each component in achieving faithful and controllable
graphic design generation.

Multi-Condition CreatiDesign wlo LE w/o LAM w/o SAM

Table 2: Ablation study: quantitative analy- — weas e
sis of key components in CreatiDesign. @5

Text: Time for Adventure!

Subject Preservation Semantic Layout Alignment

Visual Elements  Visual Elements Textual Elements

~ i
DINO M-DINO Spatial Attribute Spatial Sen. Acc - SN i - RN k- N b -
g ol =2 Il o
CreatiDesign 86.48 6575 7894 6626 56.90 78.30 [— = - = &

wio LE 8510 6296 8099 6924 5242 12.13 R _- s W

w/o LAM 85.79 64.28 66.94 56.19 20.16 68.41
w/o SAM 85.70 64.14 75.99 6490 5692 76.84

Figure 8: Qualitative Results of Ablation Study.

6 CONCLUSION

In this paper, we presented CreatiDesign, a systematic solution that empowers diffusion transformers
for intelligent and highly controllable graphic design generation. We designed a unified multi-
condition driven architecture that seamlessly integrates heterogeneous design elements. Furthermore,
we proposed a multimodal attention mask mechanism to ensure that each condition precisely controls
its designated image region and to prevent interference between conditions. In addition, we introduced
a fully automated pipeline for constructing large-scale, richly annotated graphic design datasets.
Extensive experiments demonstrated that CreatiDesign outperforms previous methods in subject
preservation, semantic layout alignment, and overall visual quality.

Limitation and Future Work. CreatiDesign faces challenges in accurately preserving facial details
and generating dense text, as our current dataset is not tailored for these scenarios. Improving
performance in such cases, either through dataset enhancement or model-level advances, represents
an important direction for future research.
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Figure 9: Quantitative results under detailed multi-condition inputs.
A APPENDIX

A.1 FURTHER DISCUSSION ON CONDITIONAL FLEXIBILITY

Although CreatiDesign supports multiple fine-grained conditional controls, if a user does not specify
all types of conditions—only provides one type of control, such as the subject image or semantic
layout—the model can still generate high-quality and coherent designs. These conditions collectively
serve as an upper-bound interface: the more information provided, the greater the controllability. Even
with minimal conditional input, the results remain reasonable, as the model can still follow the global
prompt for overall guidance. Besides, in real applications, CreatiDesign offers an intuitive interactive
canvas, allowing users to drag and drop primary subject images, optionally sketch bounding boxes
and enter their descriptions. We observe that the average interaction time per design is less than
20 seconds, making the workflow both efficient for casual users and sufficiently powerful for those
requiring pixel-level control.

A.2 MORE QUANTITATIVE RESULTS OF MULTI-CONDITION GENERATION

Figure 9 showcases more quantitative results illustrating CreatiDesign’s ability to generate high-
quality designs conditioned on multiple input conditions. In each example, the “Multi-condition” row
presents a combination of fine-grained controls, including subjects and semantic layouts. The “Output”
row shows the graphical design automatically generated by our model based on these conditions.
As demonstrated, CreatiDesign faithfully adheres to the provided multi-condition inputs, accurately
placing both textual and visual elements according to user intent. These results highlight the model’s
potential for automated creative design across a wide range of design scenarios.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Annotations Count Distribution Global Caption Length Distribution
(Total samples: 393,738) (Total samples: 393,738)
1 | 70000 i
H == Mean: 3.60 —— Mean: 92.77
100000 1 ~ Median: 3.00 ~— Median: 93.00
1
1 60000
1
1
1
80000 1
H 50000
1
1
1
> >
2 o000 g 40000
o g
3 3
& T
E E 30000
40000
20000
20000
10000
° 2 4 5 6 7 8 ° o 80 100 120
Number of Annotations Token Count (CLIP)
Text List Count Distribution Short Caption Length Distribution
(Total samples: 393,738) (Total samples: 393,738)
! : == Mean: 1.50 —— Mean: 15.74
200000 1 ~— - Median: 1.00 ~— - Median: 16.00
1
: 100000
175000 1
1
1
150000 : 80000
1
2 125000 ! ol
£ £
g $ 60000
& &
100000
£ H
75000 40000
50000
20000
25000
° 2 5 6 ° 20 100

3 4 20 60
Number of Text Items Token Count (CLIP)

Figure 10: Statistical analysis of the CreatiDesign dataset.

A.3 DATASET STATISTICS
Figure 10 illustrates the dataset statistics. The dataset averages 3.60 annotations and 1.50 text
instances per sample. Global prompts are provided in two formats for robustness. The long global

prompts consist of 92.77 tokens on average (Median: 93.00), whereas the short prompts have a mean
of 15.74 tokens.

A.4 LLM USAGE STATEMENT

Large Language Models (LLMs) were primarily used for language polishing, such as correcting
grammatical errors and enhancing sentence clarity.
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