What Makes Graph Neural Networks Miscalibrated?
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Abstract

Given the importance of getting calibrated predictions and reliable uncertainty
estimations, various post-hoc calibration methods have been developed for neural
networks on standard multi-class classification tasks. However, these methods
are not well suited for calibrating graph neural networks (GNNs), which presents
unique challenges such as accounting for the graph structure and the graph-induced
correlations between the nodes. In this work, we conduct a systematic study on
the calibration qualities of GNN node predictions. In particular, we identify five
factors which influence the calibration of GNNs: general under-confident tendency,
diversity of nodewise predictive distributions, distance to training nodes, relative
confidence level, and neighborhood similarity. Furthermore, based on the insights
from this study, we design a novel calibration method named Graph Attention
Temperature Scaling (GATS), which is tailored for calibrating graph neural net-
works. GATS incorporates designs that address all the identified influential factors
and produces nodewise temperature scaling using an attention-based architecture.
GATS is accuracy-preserving, data-efficient, and expressive at the same time. Our
experiments empirically verify the effectiveness of GATS, demonstrating that it can
consistently achieve state-of-the-art calibration results on various graph datasets
for different GNN backbones ]

1 Introduction

Graph-structured data, such as social networks, knowledge graphs and internet of things, have wide-
spread presence and learning on graphs using neural networks has been an active area of research. For
node classification on graphs, a wide range of graph neural network (GNN) models, including GCN
[L1], GAT [32] and GraphSAGE [7]], have been proposed to achieve high classification accuracy.

This said, high accuracy is not the only desideratum for a classifier. Especially, reliable uncertainty
estimation is crucial for applications like safety critical tasks and active learning. Neural networks
are known to produce poorly calibrated predictions that are either overconfident or under-confident
[5,133]]. To mitigate this issue a variety of post-hoc calibration methods [} 15} 35} (30} 6] have been
introduced over the last few years for calibrating neural networks on standard multi-class classification
problems. However, calibration of GNNss, in the context of node classification on graphs, is currently
still an underexplored topic. While it is possible to apply existing calibration methods designed for
multi-class classification to GNNs in a nodewise manner, this does not address the specific challenges
of node classification on graphs. Especially, node predictions in a graph are not i.i.d. but correlated,
and we are tackling a structured prediction problem [20]. A uniform treatment when calibrating
node predictions would fail to account for the structural information from graphs and the non i.i.d.
behavior of node predictions.
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Our contribution. In this work, we focus on calibrating GNNs for the node classification task
[L1, 32]. First, we aim at understanding the specific challenges posed by GNNs by conducting
a systematic study on the calibration qualities of GNN node predictions. Our study reveals five
factors that influence the calibration performance of GNNs: general under-confident tendency,
diversity of nodewise predictive distributions, distance to training nodes, relative confidence level,
and neighborhood similarity. Second, we develop Graph Attention Temperature Scaling (GATS)
approach, which is designed in a way that accounts for the aforementioned influential factors. GATS
generates nodewise temperatures that calibrate GNN predictions based on the graph topology. Third,
we conduct a series of GNN calibration experiments and empirically verify the effectiveness of GATS
in terms of calibration, data-efficiency, and expressivity.

2 Related work

For standard multi-class classification tasks, a variety of post-hoc calibration methods have been
proposed in order to make neural networks uncertainty aware: temperature scaling (TS) [5], ensemble
temperature scaling (ETS) [35]], multi-class isotonic regression (IRM) [35]], Dirichlet calibration [135]],
spline calibration [6], etc. Additionally, calibration has been formulated for regression tasks [[13].
More generally, instead of transforming logits after training a classifier, a plethora of methods exists
that modify either the model architecture or the training process itself. This includes methods that are
based on Bayesian paradigm [[L0, (1} 14} [17}134]], evidential theory [25l], adversarial calibration [29] and
model ensembling [16]. One common caveat of these methods is the trade-off between accuracy and
calibration, which oftentimes do not go hand in hand. Post-hoc methods like temperature scaling, on
the other hand, are accuracy preserving. They ensure that the per node logit rankings are unaltered.

Calibration of GNNS is currently a substantially less explored topic. Nodewise post-hoc calibration
on GNNs using methods developed for the multi-class setting has been empirically evaluated by
Teixeira et al. [28]. They show that these methods, which perform uniform calibration of nodewise
predictions, are unable to produce calibrated predictions for some harder tasks. Wang et al. [33]
observe that GNNs tend to be under-confident in contrast to the majority of multi-class classifiers,
which are generally overconfident [5]. Based on their findings, Wang et al. [33] propose the CaGCN
approach, which attaches a GCN on top of the backbone GNN for calibration. Some approaches
improve the uncertainty estimation of GNNs by adjusting model training. This includes Bayesian
learning approaches [37, |8] and methods based on the evidential theory [38, [27].

3 Problem setup for GNN calibration

We consider the problem of calibrating GNNs for node classification tasks: given a graph G =
(V, ), the training data consist of nodewise input features {z; };cy € X and ground-truth labels
{yitiec € Y = {1,..., K} for a subset L C V of nodes, and the goal is to predict the labels
{yi}icu € Y for the rest of the nodes Y = V' \ L. A graph neural network tackles the problem
by producing nodewise probabilistic forecasts p;. These forecasts yield the corresponding label
predictions g; := argmax, p;(y) and confidences ¢; := max, p;(y). The GNN is calibrated when
its probabilistic forecasts are reliable, e.g., for predictions with confidence 0.8, they should be correct
80% of the time. Formally, a GNN is perfectly calibrated [33]] if

Vee[0,1], Py =9il¢i =c)=c (1)

In practice, we quantify the calibration quality with the expected calibration error (ECE) [2115]. We
follow the commonly used definition from Guo et al. [5] which uses a equal width binning scheme to
estimate calibration error for any node subset A/ C V: the predictions are regrouped accordlng to M
equally spaced confidence intervals, i.e. (By, ..., Bys) with By, = {j € N'| 2L < ¢; < 2} and
the expected calibration error of the GNN forecasts is defined as

ECE = Z N acc(By,) — conf(B,,)|, with (2)
m=1 ‘ |
acc(Bn,) = 3 Z ) and conf(B,,) B Z éi. 3)
| m‘ 1€Bm, ‘ | i€Bm



4 Factors that influence GNN calibration

To design calibration methods adapted to GNNs, we need to figure out the particular factors that
influence the calibration quality of GNN predictions. For this we train a series of GCN [11]]
and GAT [32] models on seven graph datasets: Cora [24], Citeseer [24], Pubmed [18], Amazon
Computers [26], Amazon Photo [26]], Coauthor CS [26]], and Coauthor Physics [26]. We summarize
the dataset statistics in Appendix [A.1] Details about model training are provided in Appendix [A.2] for
reproducibility. To compare with the standard multi-class classification case, we additionally train
ResNet-20 [9] models on the CIFAR-10 image classification task [12]] as a reference.

Our experiments uncover five decisive factors that affect the calibration quality of GNNs. In the
following we discuss them in detail.

4.1 General under-confident tendency
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Figure 1: Reliability diagrams of GCN models trained on various graph datasets. We see a general
tendency of under-confident predictions (plots above the diagonal) except the Physics dataset. This is
in contrast to the overconfident behavior of multi-class image classification using CNNs (in gray).

Starting with a global perspective, we notice that GNNs tend to produce under-confident predictions.
In Figure[T|we plot the reliability diagrams [19] for results on different graph datasets using GCN.
Similar to Wang et al. [33]], we see a general trend of under-confident predictions for GNNs. This is
in contrast to the standard multi-class image classification case which has overconfident behavior.
Also, it is interesting to see that this under-confident trend can be more or less pronounced depending
on the dataset. For Coauthor Physics, the predictions are well calibrated and have no significant bias.

Results using GAT models lead to similar conclusions and are provided in Appendix [B}

4.2 Diversity of nodewise predictive distributions
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Figure 2: Entropy distributions of GCN predictions on graph datasets. Compared to the standard
classification case, GNN predictions tend to be more dispersed, reflecting their disparate behaviors.



Contrary to the standard multi-class case, GNN outputs can have varying roles depending on their
positions in the graph, which means that their output distributions could exhibit dissimilar behaviors.
This is empirically evident in Figure 2] where we visualize the entropy distributions of GCN output
predictions v.s. the standard multi-class results (GAT results are available in Appendix [B.2). We see
that the entropies of GNN outputs have more spread-out distributions, which indicates that they have
distinct roles and behaviors in graphs.

In terms of GNN calibration, this observation implies that uniform node-agnostic adjustments like
temperature scaling [S]] might be insufficient for GNNs, whereas nodewise adaptive approaches could
be beneficial.

4.3 Distance to training nodes
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Figure 3: Nodewise calibration error of GCN results depending on the minimum distance to training
nodes. We observe that training nodes and their neighbors tend to be better calibrated.

A graph provides additional structural information for its nodes. One insightful feature is the minimum
distance to training nodes. We discover that nodes with shorter distances, especially the training
nodes themselves and their direct neighbors, tend to be better calibrated.

To evaluate the calibration quality nodewise, we propose the nodewise calibration error, which is
based on the binning scheme used to compute the global expected calibration error (ECE) 211 [5]: for
each node, we find its corresponding bin depending on its predicted confidence, and the calibration
error of this bin is assigned to be its nodewise calibration error.

Using this nodewise metric, in Figure [3| we visualize the influence of minimum distance to training
nodes on the nodewise calibration quality (c.f. Appendix [B.3|for GAT results). We see that nodes
close to training ones typically have lower nodewise calibration error. This suggests that minimum
distance to training nodes can be useful for GNN calibration.

4.4 Relative confidence level
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Figure 4: Nodewise calibration error of GCN results depending on the relative confidence level. We
observe that nodes which are less confident than their neighbors tend to have worse calibration.

Another important structural information is the neighborhood relation. We find out that the relative
confidence level §¢; of a node 4, i.e., the difference between the nodewise confidence ¢; and the
average confidence of its neighbors
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has an interesting correlation to the nodewise calibration quality. In Figure f] we show the relation
between the relative confidence level of a node and its nodewise calibration error (c.f. Appendix
for GAT results). Especially, We observe that nodes which are less confident than their neighbors
tend to have worse calibration, and it is in general desirable to have comparable confidence level w.r.t.
the neighbors. For GNN calibration, the relative confidence level d¢; can be a useful node feature to
consider.



4.5 Neighborhood similarity
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Figure 5: Nodewise calibration error of GCN results depending on the node homophily. Nodes with
strongly agreeing neighbors tend to have significantly lower calibration errors.

Furthermore, we find that different neighbors tend to introduce distinct influences. For assortative

graphs which are the focus of this work, we find out that calibration of nodes are affected by node

homophily, i.e., whether a node tends to have the same label prediction as its neighbors. For a node

with n, agreeing neighbors and ny disagreeing ones, we measure the node homophily as
Ng + 1)

ng + 1 ’

where positive values indicate greater ratio of agree neighbors and vice versa.

Node homophily = log ( 5)

Figure [5]summarizes the variation of nodewise calibration error w.r.t. the node homophily for different
graph datasets (c.f. Appendix for GAT results). We find out that nodewise calibration errors tend
to decrease significantly for nodes with strongly agreeing neighbors. This suggests that neighborhood
predictive similarity should be considered when doing GNN calibration.

5 Graph attention temperature scaling (GATS)

Based on the findings in Section |4} we design a new post-hoc calibration method, named Graph
Attention Temperature Scaling (GATS), which is tailored for GNNs.

5.1 Formulation and design of GATS

To obtain a calibration method that is adapted to the graph structure G = (V, £) and reflects the
observed influential factors in Section 4] the graph attention temperature scaling approach extends the
temperature scaling [5]] method to produce a distinct temperature 7; for each node ¢ € V. T; is then
used to scale the uncalibrated nodewise output logits z; and produce calibrated node predictions p;
Vi €V, p; =softmax (%) (6)

%

Formulation of 7;. The nodewise temperature 7; should address the five factors discussed in
Sectiond] We achieve this via the following considerations:

* We introduce a global bias parameter 7} to account for the general under-confident tendency;

* To tackle the diverse behavior of node predictions, we learn a nodewise temperature contri-
bution 7; based on the predicted nodewise logits z;;

» To incorporate the relative confidence w.r.t. neighbors, we introduce 6¢; from Eq. [4]as an
additional contribution term scaled by a learnable coefficient w;

* To model the influence of neighborhood similarity, we use an attention mechanism [31] to
aggregate neighboring contributions 7; with attention coefficients ¢; ; depending on the
output similarities between the neighbors ¢ and j;

Distance to training nodes is used to introduce a nodewise scaling factor v; to adjust the
node contribution and the aggregation process. It is learnable for training nodes and their
direct neighbors and fixed to 1 for the rest:

¢,  if 4 is a training node
Yi = S Yn, if ¢ is a neighbor of training node , -, y, learnable parameters.  (7)

1 otherwise

)
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Figure 6: Illustration of graph attention temperature scaling (GATS) for a graph with four nodes
where node 2 is a training node and node 1 is the target node which aggregates information from the
other three nodes. GATS incorporates the five factors discussed in Section[d]and produces nodewise
temperatures 7; using the graph structure and an attention mechanism.

Putting together the above components, the nodewise temperature 7; has the following expression:

H
. 1 R h
VieV, T;= T hE 1 softplus (w 0¢; + ,gﬁ(,) QG5 Y Tj ) + Th. 8)
= Jjen(e

Here we have a multi-head formulation where h indicates the h-th attention head, and 7(7) denotes
the neighbors of node ¢ including self-loop. We uses 8 heads (H = 8), which works well in practice.

(c.f. Section[6.3])

Defining 7. Nodewise contribution 7/ are computed as the outputs of parameterized linear layers

#"(-; 0) which take transformed nodewise output logits Z; as input
Vi€ V,Vhe[LH), '=¢"(%;0") = (0")" Z ©)

The transformed nodewise output logits z; are produced as follows: we first normalize the original
logits z; to range [0, 1], then sort the classwise logits for each node. This makes the linear layers
¢" focus on the general logit distributions rather than class predictions. A similar idea has been
explored by Rahimi et al. [23]], where they show that intra order-preserving functions improve the
model calibration. Here we find out that this sorting-based transformation helps GATS to learn useful
representations of nodewise contributions Tih. (c.f. Section )

Defining o; ;. The attention coefficients «; ; are defined based on the neighbor similarity, which
is determined by the inner product between rescaled nodewise logits z; /7; and z;/~;. Inspired by
Velickovi¢ et al. [32]], we compute the attention coefficients o ; as follows:

1
;i) icn) = softmax ( leak ReLU( 2 % ) 1o
(aij)jen Jen(i) ( Y Vi Vi ])

5.2 Calibration properties of GATS

Zhang et al. [35] propose three desiderata for calibration methods: accuracy-preserving, data-efficient,
and expressive. GATS fulfills all of them:

* GATS is accuracy-preserving: since all node predictions are scaled by inverse temperatures
1/T; which are positive scalars, the order of output logits is preserved;

* GATS is data-efficient. It is a parametric calibration model with C' - H + 4 learnable
parameters (1o, w, V¢, Yn, (Gh)1§ h<H). According to Zhang et al. [35]], parametric methods
are already data-efficient;

* GATS is expressive, as it produces nodewise temperatures 7; adapted to the graph structure.

Experiments in Section [6.2]empirically confirm the data-efficiency and expressivity of GATS.



5.3 Comparison with CaGCN

It is interesting to compare our proposed GATS approach to the CaGCN method proposed by Wang
et al. [33]], since both approaches aim at calibrating GNNs, and both make use of the graph structure
to produce nodewise temperatures. While CaGCN uses a GCN to generate nodewise temperatures
straightforwardly, GATS uses an attention mechanism which differentiates the influence from various
neighbors. GATS also integrates a series of careful designs following the insights from the study in
Section[d} Experiments in Section shows that GATS tends to produce better calibration results
compared to CaGCN.

6 Experiments

To evaluate the performance of GATS on GNN calibration and understand the effects of its designs, we
conduct a series of experiments for baseline comparison and ablation study. We use two representative
GNNSs: GCN and GAT, which are trained on the seven aforementioned graph datasets plus a larger
graph, CoraFull [2], for post-hoc calibration. We display the ECE results with M = 15 bins. We use
the expected calibration error (ECE) [21 S]] with M = 15 bins as an evaluation metric, and follow
an experimental protocol similar to Kull et al. [[15[14]: For all the experiments, we randomly split
the labeled/unlabeled (15%/85%) data five times, and use three-fold internal cross-validation of the
labeled data to train the GNNs and the calibrators. We also utilize five random initializations, resulting
in 75 total runs for each experiment. We provide detailed experimental settings in Appendix

6.1 Performance comparison

We benchmark GATS against existing baselines on a variety of GNN calibration tasks. We compare
GATS with the following baselines:

* Temperature scaling (TS) [5] simply uses a global temperature to scale the logits.

* Vector scaling (VS) [3] scales the logits separately over the class dimension and additionally
introduces a classwise bias for the recalibrated output logits.

* Ensemble temperature scaling (ETS) [35]] learns a mixture of uncalibrated, TS-calibrated,
and uniform probabilistic outputs.

* GCN as a calibration function (CaGCN) [33] is specifically designed for calibrating
GNN:ss. It uses a GCN on top to generate nodewise temperatures.

Additionally, we also report the ECEs of uncalibrated predictions as a reference. Among the above
baselines, TS, VS, and ETS are calibration methods designed for standard classification cases and
operate on nodes uniformly. CaGCN on the other hand performs separate nodewise adjustments and
uses the graph structure, similar to our proposed GATS approach.

For the post-hoc calibration experiments, we fix the weight of the trained GNN backbones and adjust
the parameters of the calibration methods on the validation set. Negative log-likelihood is chosen as
the objective for the calibration process. We provide details of method configurations and calibration
settings in Appendix [A.3] Table[I|summarizes the calibration results.

Overall, we observe that GATS consistently produces well-calibrated predictions for all graph datasets
and GNN backbones. Except for the GAT model trained on Pubmed (3rd best) and the GCN model
trained on Amazon Computers (2nd best), GATS achieves the highest calibration quality in all cases.

Also, it is interesting to see that for all cases the best result is achieved by methods which use the
graph structure and produce adapted adjustments for different nodes. This demonstrates the necessity
of designing calibration methods that address the unique challenges posed by GNN calibration.

Although CaGCN can get the best results for Pubmed using GAT and Amazon Computers using
GCN, we see that its performance is rather unstable for different scenarios, and sometimes it can
even produce worse calibration results than the uncalibrated baseline. Using their proposed margin-
based loss did not help in our settings. We suspect that CaGCN might have an overly complex
architecture for the task, and it cannot differentiate neighborhood influences with the common
normalized adjacency matrix. Our proposed GATS model does not have this issue. It has consistent
and good calibration performance in all cases.



Table 1: GNN calibration results in terms of ECE (in percentage, lower is better) of GATS and other
baseline methods on various graph datasets. Overall, GATS achieves state-of-the-art performance,

getting the best results in most scenarios. Also, all

best results are achieved by methods that consider

the graph structure. This shows the need for dedicated methods to tackle GNN calibration.

Dataset Model Uncal TS VS ETS CaGCN GATS
Cor GCN  13.044£522 3924129 4364134 3794135 529+1.47 3.64+1.34
ora GAT 23314181 3.694090 3.30+1.12 3.54+1.01 4.09+1.06 3.1840.90
Citeseer GCN  10.66+5.92 5.15+1.50 4.92+1.44 4.65+1.69 6.86+1.41 4.43+1.30
esee GAT  22.8843.53 4744147 4254+148 4.11+£1.64 575+131 3.86+1.56
Pubmed GCN  7.1841.51 1264028 1464029 1244030 1.0940.52 0.98+0.30
GAT 12324080 1.1940.36 1.0040.32 1204032 0.98+0.31 1.03+0.32
Computers  GCN 3.00+£0.80  265+057  270+0.63  2.58+0.70  1.7240.53  2.23+0.49
pu GAT  1.8840.82 1.63+£046 1.674+0.52 1.54+0.67 2.03+£0.80 1.39+0.39
Phot GCN  224+1.03 1.6840.63 1.7540.63 1.68+0.89 1.9940.56 1.51-0.52
oto GAT  2.02+1.11 1.6140.63 1.6340.69 1.67+0.73 2.10+0.78 1.48+0.61
cs GCN 1654092  098+027 0964030 0.94+024 227+1.07 0.8840.30
GAT  1.40+£125 0934034 0.874+035 0.88+0.33 2.524+1.04 0.81+0.30
Phusics GCN 0524029 0.514+0.19 0.48+0.16 0.5240.19 0.9440.51 0.46+0.16
yst GAT 0454021 0504021 0524020 0.5040.21 1.174042 0.42+0.14
CoraFull GCN 6504126 5544043 5.76+0.42 5384049 5864252 3.76+0.74
oraku GAT 4734139  4.00+0.50 4.1740.43 3.8940.56 6.55+3.69 3.54+0.63

We also observe that the results tend to have high variations, since GNN backbones tend to predict

highly varying results when trained with different
the reliability of the results by averaging over a
random splits for each case.

6.2 Data-efficiency and expressivity of GATS

Furthermore, we analyze the data-efficiency and
the expressivity of GATS for GNN calibration.
For this we reuse the GNN models trained on the
CoraFull dataset, and consider the influence of
calibration sample size on the GNN calibration
performance. For comparison we also report the
corresponding results using ensemble temperature
scaling and CaGCN. Figure [7] visualizes the re-
sults with GCN backbone. The results for GAT
backbone are summarized in Appendix

Overall, we see that GATS is both data-efficient
and expressive. It requires few calibration sam-
ples to get decent calibration performance. This
is in contrast to CaGCN which needs more than
5% of nodes for calibration to get acceptable re-
sults. Compared to ETS, GATS is more expressive
and has a considerably lower calibration error for
CoraFull, which is a large graph dataset.

6.3 Ablation study

initial weights and random splits [26]. We ensure
total of 75 runs with various initial weights and

T

T T T T
0 5 10 15 20 25

Calibration Dataset Size (%)

30

Figure 7: ECEs (in percentage) on CoraFull for
ETS, CaGCN, and GATS using various amounts
of calibration data. We see that GATS is data-
efficient and expressive for GNN calibration.

To empirically analyze the effect of various GATS design choices, we conduct a series of ablation
study experiments in this section. Overall, we notice that all designs are advantageous and removing
any of them leads to a general decrease in performance.



Table 2: Ablation study results in terms of ECE (in percentage) for various GATS designs. Overall,
all designs are beneficial and removing any of them leads to worse results in general.

Dataset  Model wlo Ty w/o 7; w/o §¢; w/o attention ~ w/o sorting GATS
Cora GCN 3724120 3.80+£151 3.71+1.18  3.634+1.48  435+1.77 3.64+1.34
GAT  3.25+1.00 3.464+1.00 324+0.89 3.694096  4.184+1.70 3.1840.90
Citescer OCN 550176 4731145  449+130  495£1.56  5.87+1.99  4.43+1.30
CSCT GAT  3.56+1.73 4394146 3.87+1.55 4814154 4994234  3.86+1.56
Photo GCN  2204+0.88 1.60+£0.64 1.54+0.52  1.594+0.67  1.68+0.61 1.5140.52

GAT  2.37£1.01 1.53£0.63 1.47+0.62 1.62+0.66 1.77£0.70  1.484+0.61

Effect of global bias 7;. We consider the effect of global bias T by comparing to a GATS variant
without it (i.e., setting Top = 0 in Eq. (). Its results are collected in column “w/o Ty of Table
Overall we see that a learnable bias Ty is beneficial in most cases.

Effect of nodewise scaling factor ;. The nodewise scaling factors ~y; provide custom adjustment
for training nodes and their neighbors. Removing its influence can be done by fixing all ~; to one in
Egs. (8) and (I0). The results of the variant without +; are recorded in column “w/o ;" of Table
They are worse in general, suggesting that nodewise scaling factors ; are indeed helpful.

Effect of relative confidence level 6¢;. To evaluate the impact of introducing nodewise relative
confidence level 6¢;, we create a GATS variant where w in Eq. @) is fixed to zero, which effectively
removes the influence of the relative confidence level 6¢;. In column “w/o §¢;” of Table[2] we have
the results corresponding to this variant, which is in general slightly worse than the standard GATS
which includes 6¢;.

Effect of attention-based aggregation. To understand the role played by the attention mechanism,
we create a GATS variant which completely removes the attention related term (3 jen(i) Qg Vi Tjh)

from Eq. (8). Its performance is shown in column “w/o attention” of Table[2] Again, we observe that
removing the attention-based component tends to worsen the calibration performance.

Effect of logit sorting. GATS uses normalized and sorted logits Z; as input to generate nodewise
temperature contributions 7. And we find that this sorting transform is essential for learning good

representations of 7/*. In column “w/o sorting” of Table 2| we have the results for GATS variants

which uses the logits without sorting to compute 7/*. And we observe that this deteriorates the
calibration performance.

Table 3: Calibration results (ECE in percentage) of GATS models with different numbers of attention
heads. 8 attention heads are sufficient for optimal GNN calibration results.

Number of Heads
1 2 4 8 16

GCN  3.95+145 3.75£1.42 3.79+145 3.66+1.33 3.50£1.25

Dataset  Model

Cora GAT  348+122 3.494+1.18 3.43+1.15 3204090 3.31+0.74
Cit GCN 4744143 4774166 4704152 4434130 4.42+1.04

Heseel GAT  4.53+1.66 4574155 4.20+£1.50 3.864+1.56 4.20+1.54
Photo GCN 1514054 1544059 1.5240.58 1.514+0.52 1.50+0.51

GAT  1.52+0.61 1.52+£0.65 1.53+£0.60 1.48+0.61 1.5040.60

Effect of attention head count H. Finally, we analyze the influence of multi-head count H on the
GNN calibration results. For this we run a series of experiments using GATS models with 1, 2, 4, 8,
and 16 attention heads. The results are collected in Table [3] We see that for GCN backbones, GATS
models with more attention heads tend to get better results. However, for GAT backbones, using 16
heads results in worse performance compared to 8 heads. Accounting also for the fact that doubling



the attention head count effectively doubles the computational requirements, 8 attention heads is a
decent general setting for GATS.

7 Conclusion

In this work, we tackle the GNN calibration problem. We conduct a systematic study to analyze the
calibration properties of GNNs predictions. Our study reveals five influential factors and manifests the
unique challenges raised by GNN calibration. Based on the insights from our studies, we propose a
novel calibrator, GATS, which accounts for the identified factors and is tailored for calibrating GNNss.
GATS is accuracy-preserving, data-efficient, and expressive at the same time. Our experiments
demonstrate that GATS achieves state-of-the-art performance for GNN calibration on various graph
datasets and for different GNN backbones.

Our work focuses on the node classification tasks for assortative graphs, where neighbors tend to
agree with each other. It is thus important to realize that the validity of the conclusions from Section[d]
is limited to the assortative case, and might no longer hold for disassortative graphs [39, [22]. It can
be an interesting future work to conduct similar studies for GNN calibration in the heterophilous
case, especially when more established GNN architectures are available. More generally, devising
calibration methodologies for other graph learning tasks such as link prediction [36] and graph
classification [3]] could also be an interesting direction for future research.
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