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Abstract

Machine Learning (ML) is increasingly employed to generate phenotypes for ge-
netic discovery, either by imputing existing phenotypes into larger cohorts or by cre-
ating novel phenotypes. While these ML-derived phenotypes can significantly increase
sample size, and thereby empower genetic discovery, they can also inflate the false dis-
covery rate (FDR). Recent research has focused on developing estimators that leverage
both true and machine-learned phenotypes to properly control the type-I error. Our
work complements these efforts by exploring how the true positive rate (TPR) and
FDR depend on the causal relationships among the inputs to the ML model, the true
phenotypes, and the environment.

Using a simulation-based framework, we study architectures in which the machine-
learned proxy phenotype is derived from biomarkers (i.e. inputs) either causally up-
stream or downstream of the target phenotype. We show that no inflation of the false
discovery rate occurs when the proxy phenotype is generated from upstream biomark-
ers, but that false discoveries can occur when the proxy phenotype is generated from
downstream biomarkers. Next, we show that power to detect variants truly associated
with the target phenotype depends on its heritability and correlation with the proxy
phenotype. However, the source of the correlation is key to evaluating a proxy pheno-
type’s utility for genetic discovery. We demonstrate that evaluating machine-learned
proxy phenotypes using out-of-sample predictive performance (e.g. phenotypic corre-
lation) provides a poor lens on utility. This is because overall predictive performance
does not differentiate between genetic and environmental correlation. In addition to
parsing these properties of machine-learned phenotypes via simulations, we further
illustrate them using real-world data from the UK Biobank.
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1 Introduction

Genome-wide association studies (GWAS) identify genetic variations that are associated with
a particular phenotype, and have revolutionized our understanding of the genetic architec-
ture of complex traits and diseases [1]. This approach has successfully uncovered numerous
genetic variants that contribute to the risk of complex disorders, paving the way for precision
medicine and targeted therapeutic interventions. The advent of large-scale biobanks has fur-
ther propelled the field of genetic discovery by providing structured, well-powered, data sets
with genotypes and deep phenotyping for hundreds of thousands of individuals [2, 3, 4, 5].
The quality and unprecedented scale of these data sets have empowered researchers to detect
genetic variants with ever smaller effect sizes while capturing an ever greater proportion of
complex trait heritability [6].

Despite the size and scope of population-based biobanks, the challenge of data sparsity per-
sists. Many phenotypes of interest are measured for only a subset of participants, and only
a fraction of participants will develop any given disease, limiting the effective sample size
available for GWAS in observational biobanks. This sparsity can meaningfully diminish
the power to detect associations for complex traits with modest genetic effects. To address
this limitation, researchers increasingly turn to machine learning (ML) to impute missing
phenotypic values from the available data. These ML imputation approaches have been
shown to improve genetic discovery for difficult to ascertain phenotypes, such as the opti-
cal cup-to-disc ratio, thoracic aortic diameter, major depression, and hepatic fat percentage
[7, 8, 9, 10, 11, 12, 10].

When performing GWAS on predicted or imputed outcomes, the relationship between geno-
type and the imputed phenotype may differ both quantitatively and qualitatively (i.e. in
existence or direction) from that between genotype and the target outcome [13, 14, 15]. Dis-
tortion of the genotype-phenotype relationship due to imputation can lead to inflated type I
error, due to the detection of signals that spuriously associate with the imputed phenotype
but not the true phenotype, and compromise the utility of downstream analyses that depend
on unbiased effect size estimation, such as polygenic scoring. Recent work [16, 17, 13, 14, 15]
has focused on developing methods to address these challenges and minimize the risk of false
discoveries. Specifically, these methods aim to provide unbiased estimation for the effect of
genotype on the target outcome that is robust to the accuracy or quality of the imputa-
tion model. In doing so, these methods guarantee valid inference, but may forego power as
compared with the simpler strategy of proxy GWAS (Figure 1), where the machine-learned
proxy phenotype is studied in place of the original phenotype.

This work is intended to complement the recent work in prediction-based inference by study-
ing how the power and false discovery rate of proxy GWAS depend on the causal relationships
among genotypes, the true phenotype, and the variables the enter the imputation model,
which we describe as biomarkers. The remainder of this paper is organized as follows. Sec-
tion 2 describes our simulation framework and details of the real data analysis. Section 3
includes our case-studies on simulated and real data. We first contrast proxy phenotypes
imputed from upstream versus downstream biomarkers in terms of their power for detecting
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true positive association and their FDR. Second, we examine how heritability of the true
phenotype and its correlation with the proxy phenotype affect power to recover true positive
associations. Third, we decompose the phenotypic correlation, assessing the dependence of
the true positive rate (TPR) and the FDR on genetic versus environmental correlations. We
conclude with the implications of our case-studies for practice.

2 Data and Methods

2.1 Real-world dataset

The UK Biobank (UKB) is a large-scale prospective cohort study and biomedical database
containing detailed genetic and health information on approximately 500,000 individuals
from the United Kingdom, aged between 40 and 69 years at the time of recruitment [18].
The UKB resource encompasses a wide variety of data on health-related outcomes, including
hospital records, cancer registries, death records, and physical measurements, as well as self-
reported health questionnaires. Additionally, the resource contains a vast array of biological
measurements such as blood, urine, and saliva biochemistry.

2.2 Methods for simulated traits

2.2.1 Simulating traits with a specified heritability and genetic correlation

Let G denote a vector of J genetic variants in linkage equilibrium, with elements Gj ∼
Binom(2, p), where p is the minor allele frequency. G can contain both causal and non-
causal variants for biomarkers and phenotypes. Let Sbio and Spheno denote the indices of the
causal variants for biomarkers and phenotypes. Non-causal variants have effect sizes of zero
and are therefore not included in either Sbio or Spheno. The sets Sbio and Spheno may or may
not overlap.

For the jth variant causal for biomarkers, let βbio,j denote an nbio×1 vector representing the
non-zero effects of the jth variant on the nbio biomarkers. Similarly, let βpheno,j denote the
npheno×1 vector of non-zero effects for the jth variant in Spheno on the npheno phenotypes. We
assume that for each causal variant, the vectors βbio,j and βpheno,j follow a joint multivariate
normal distribution: (

βbio,j

βpheno,j

)
∼ N

{
0,

(
Σbio Σbio,pheno

Σ⊤
bio,pheno Σpheno

)}
. (1)

Here, Σbio is an nbio × nbio diagonal matrix with the variances of the effect sizes for each
biomarker on the diagonal. The diagonal elements Σbio,kk = σ2

bio,k determine the contribu-
tion of the jth genetic variant to the heritability of the kth biomarker. Likewise, Σpheno is
a npheno × npheno diagonal matrix with the effect size variances for each phenotype on the
diagonal. The diagonal elements Σpheno,kk = σ2

pheno,k determine the contribution of the ge-
netic variance to the heritability of the kth phenotype. Lastly, Σbio,pheno is the nbio × npheno

matrix where each element Σbio,pheno,kk′ represents the covariance between the effect sizes of
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the kth biomarker and the k′th phenotype due to the jth causal variant.

The final nbio × 1 biomarker vector and npheno × 1 phenotype vector are generated as:

b =
∑
j∈Sbio

Gjβbio,j + ϵbio, (2)

p =
∑

j∈Spheno

Gjβpheno,j + ϵpheno. (3)

The environmental components are simulated as:(
ϵbio
ϵpheno

)
∼ N

{
0,

(
Σϵ,bio 0
0 Σϵ,pheno

)}
.

Here Σϵ,bio and Σϵ,pheno are diagonal nbio × nbio and npheno × npheno matrices defining the
environmental contributions to the variances of biomarkers and phenotypes respectively.

2.2.2 Generating downstream traits with specified degree of environmental in-
fluence and direct genetic effects

When generating downstream phenotypes pdown, we first simulate upstream biomarkers bup
following (2), then construct the phenotypes as follows:

pdown = Abiobup +
∑

j∈Spheno,down

Gjβpheno,down,j + ϵpheno,down (4)

Here Abio is an npheno × nbio matrix representing a linear relationship between upstream
biomarkers and downstream phenotypes, Spheno,down is the set of indices for the variants in
G with direct causal effects on the downstream phenotype, βpheno,down,j is an npheno × 1
vector of random effect sizes drawn from a N (0,Σpheno,down) distribution, where Σpheno,down

is a diagonal matrix, and ϵpheno,down is an npheno × 1 residual drawn from a N (0,Σϵ,down)
distribution, where Σϵ,down is again a diagonal matrix. The diagonal elements of Σpheno,down

determine the contribution of direct genetic effects to the variance of pdown, while those of
Σϵ,down determine the contribution of environmental effects.

Analogously, to generate downstream biomarkers bdown, we first simulate upstream pheno-
types pup following (3), then construct the biomarkers as follows:

bdown = Aphenopup +
∑

j∈Sbio,down

Gjβbio,down,j + ϵbio,down (5)

Here Apheno is an nbio × npheno matrix representing a linear relationship between upstream
phenotypes and downstream biomarkers, Sbio,down is the set of indices for the variants in G
with direct causal effects on the downstream biomarkers, βbio,down,j is an nbio × 1 vector of
random effect sizes drawn from a N (0,Σbio,down) distribution, and ϵbio,down is an nbio × 1
residual drawn from a N (0,Σϵ,down) distribution.
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2.2.3 Heritability and Genetic Correlation Estimation

The heritability for each biomarker and phenotype was estimated as the proportion of the
phenotypic variance explained by the genetic variants. For a set of N individuals with
J genetic variants, the genotype matrix is denoted by G ∈ RN×J . Let βbio ∈ Rnbio×J and
βpheno ∈ Rnpheno×J be the matrices of genetic effects for nbio biomarkers and npheno phenotypes
respectively. The heritability of biomarkers (h2

bio) and phenotypes (h2
pheno) are calculated as

follows:

h2
bio =

Var
(
Gβ⊤

bio

)
Var (B)

, h2
pheno =

Var
(
Gβ⊤

pheno

)
Var (P)

, (6)

where B ∈ RN×nbio and P ∈ RN×npheno are the matrices of biomarker values and phenotypic
values, respectively.

The genetic correlation among biomarkers (ρB), among phenotypes (ρP), and between
biomarkers and phenotypes (ρBP) for shared genetic variants were calculated as:

ρbio = Corr
(
βbio,βbio

)
, ρpheno = Corr

(
βpheno,βpheno

)
, ρbio,pheno = Corr(βbio,βpheno),

where, for example, the correlation is calculated as:

ρbio,pheno,kk′ = Corr(βbio,k,βpheno,k′)

2.2.4 Association testing for simulated traits

Genome-wide association testing for simulated traits was conducted using per-variant linear
regression analyses. Specifically, the kth biomarker bk or phenotype pk was associated with
the jth column of the genotype matrix Gj according to the model:

E(yk|Gj) = α0 + αGGj,

where yk ∈ RN×1 is either bk or pk, α0 is an intercept, αG is the genetic effect. For each Gj,
representing a single genetic variant, the null hypothesis H0 : αG = 0 was evaluated via a
standard Wald test. Genome-wide significance was declared at the Bonferroni threshold of
0.05/J , where J is the total number of variants tested for association.

Across a simulated GWAS, the true positive rate (TPR) was defined as the ratio of the
number of causal variants that reached genome-wide significance to the total number of
causal variants, The false discovery (FDR) was defined as ratio of the number of non-causal
variants that reached genome-wide significance to the total number of variants that reach
genome-wide significance.
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2.3 Methods for real data experiments

2.3.1 Genetic data processing and analyses

To avoid confounding due to population structure, the UK Biobank (UKB) was subset
to unrelated subjects of White-British ancestry [19, 18]. Imputed genotypes were filtered
to those having a minor allele frequency > 1%, INFO score > 0.8, and Hardy-Weinberg
equilibrium P > 1 × 10−10. The following standard covariates were included in all GWAS:
age, sex, genotyping array, and the top 20 genetic principal components [18]. Genome-wide
association studies (GWAS) and clumping were performed using PLINK (v1.9) [20]. GWAS
for quantitative traits were performed with linear regression models, and GWAS for binary
traits with logistic regression models. Genetic correlation between two traits was estimated
using LDSC v1.0.1 with default settings [21].

2.3.2 Phenotype preparation

Height (UKB: 50), weight (UKB: 21002), and circulating urate (UKB: 30880) were obtained
directly from the UKB, filtered non-missing values, and rank-normal transformed [22]. As
algorithmically-defined gout was not directly available from UKB, a gout phenotype was
constructed following [23]. Specifically, a patient was labeled as having gout if they satisfied
at least one of: (1) self-reported gout (code: 1466; UKB: 20002), (2) had an ICD10 code for
gout (code: M10; UKB: 41202, 41204, 41270), (3) reported taking allopurinol (1140875408),
sulfinpyrazone (1140909890), or colchicine (1140875486) in field 20003, and (4) did not have
a hospital diagnosis of leukaemia or lymphoma (codes: C81–C96).

2.3.3 Generating proxy phenotypes with specified target-phenotype correlation

A noisy phenotype Yρ having specified correlation ρ with a target phenotype Y can be
generated via:

Yρ = ρ · Y +
√

1− ρ2 · ϵ, ϵ ∼ N (0, 1). (7)

Here ρ ∈ [0, 1] controls the expected correlation between Yϵ and Y , and ϵ is mean-zero noise
generated independently of Y .

2.3.4 Generating a purely environmental proxy phenotype

To construct an imputed phenotype with minimal autosomal heritability, a linear model was
fit to predict circulating creatinine (UKB: 30700), a byproduct of protein catabolism, on the
basis of age (UKB: 21022), genetic sex (UKB: 22001), and daily alcohol intake, computed
as in [24]. The model inputs included polynomial features up to 2nd degree, including all
quadratic terms and pairwise interactions:

Creatinine ∼ (Age, Sex,Alcohol Intake)⊗2

To modulate their association with measured creatinine Y , the predicted creatinine levels Ŷ
were standardized to have mean 0 and unit variance, then corrupted by introducing noise as
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in (7).

3 Results

3.1 Downstream vs. Upstream Biomarkers for imputation - which
to use?

We first explored how the causal relationship of biomarkers to the true phenotype affects
genetic discovery when a machine-learned proxy phenotype, imputed from biomarkers, is
studied in place of the true phenotype. Figure 2 depicts the causal diagrams for the dif-
ferent data generating processes studied, along with the empirical true positive rate (TPR)
and the false discovery rate (FDR) as a function of the heritability of the true phenotype P
and the mean heritability of the biomarkers. We consider four scenarios, in each case using
GWAS on the proxy phenotype P ∗ as a means of identifying genetic variants associated with
the true phenotype P . In scenarios (A) and (B), the biomarkers B utilized to generate the
proxy phenotype lie upstream of the true phenotype on the causal pathway. In (A), the
effect of genotype on the true phenotype is fully mediated by the biomarkers, whereas in
(B) genotype affects P both directly and indirectly via B. In both (A) and (B), the FDR
is zero. This is because all variants causal for the biomarkers are in fact causal for the true
phenotype when B lies upstream P on the causal pathway. However, scenarios (A) and (B)
differ with respect to the TPR. When the effect of genotype is fully mediated by biomarkers
as in (A), all variants causal for true phenotype are also causal for the biomarkers. Thus,
by studying a proxy phenotype P ∗ that is a composite of B, it should be possible to recover
all variants causal for P . As the sample size and biomarker heritability increase, the TPR
in scenario (A) will approach 1. In contrast, when the effect of genotype is only partially
mediated by the biomarkers as in (B), there exist variants with effects on P that do not have
effects on B. Even with increasing sample size and biomarker heritability, it is not expected
that variants whose effects on P are not mediated by B can be detected by studying P ∗. In
general, the TPR in (B) will be bounded above by the fraction of variants causal for the true
phenotype whose effects are mediated by the biomarkers included in the proxy phenotype.

In scenarios (C) and (D), the biomarkers B utilized to generate the proxy phenotype lie
downstream of the true phenotype on the causal pathway. In (C), the effect of genotype
on the biomarkers is fully mediated by the true phenotype, while in (D) G affects B both
directly and via P . In both (C) and (D) the TPR is high, and will approach 1 as the
sample size and biomarker heritability increase. This is because all variants causal for the
true phenotype are ultimately causal for the collection of biomarkers. Thus, by studying
a proxy phenotype derived from the downstream biomarkers, all variants causal for P can
be detected. Where (C) and (D) differ is with respect to the FDR. In (C), there are no
variants with effects on B that do not have effects on P . Consequently, the FDR is again
zero. However, when the effect of genotype on the biomarkers is only partially mediated by
the true phenotype as in (D), there exist variants with effects on B that do not have effects
on P . Such variants, which are not relevant to P , are expected to surface in GWAS of P ∗ as
sample size and biomarker heritability increase. In general, the FDR in (D) will be bounded
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below by the fraction of variants causal for the biomarkers included in the proxy phenotype
whose effects are not mediated by the true phenotype.

To illustrate the ideas examined by these simulations, we considered GWAS of two pairs of
traits whose causal relationship is well established: Urate → Gout and Height → Weight.
For clarity, we consider the simplest possible case, where a single trait directly serves as
the proxy for another. GWAS were conducted among 350K unrelated subjects in the UK
Biobank, and results were clumped to identify independent (R2 ≤ 0.1) genome-wide signifi-
cant (GWS; P < 5× 10−8) loci. Loci for the target trait are considered true positives while
loci for the proxy trait are considered predicted positives. Overlap analysis was performed
to determine how many loci for the target trait were overlapped by a locus for the proxy
trait, and vice versa, from which the empirical TPR and FDR were calculated.

In the case of urate and gout, there were 956 loci for urate and 47 loci for gout. The small
number of loci for the latter is attributable to gout being binary rather than continuous, and
having low prevalence in our cohort (7.5K cases, 1.5% of the cohort). Viewing urate as the
proxy phenotype and gout as the true phenotype, all 47 loci for gout were overlapped by a
locus for urate, giving an empirical TPR of 100% (47/47 loci). Of the 956 loci for urate, 590
(61.7%) did not overlap with a locus for gout. There are two possible explanations for the
appearance of nominal false positives in the setting of an upstream proxy phenotype. If the
measured circulating urate phenotype is truly causal for gout, then the 590 loci detected for
urate but not gout are in fact causal for gout, and the latter GWAS simply lacked power to
detect them. Alternatively, the measured circulating urate phenotype may be insufficiently
specific, for example because only the concentration of urate in the synovial fluid contributes
to gout pathogenesis. Causally, this would correspond to a diagram like that in Figure S1,
where B1 (e.g. synovial urate) is the biomarker directly on the causal path for gout, and B2

(e.g. circulating urate) is a genetically correlated biomarker not on the causal path. Studying
a proxy phenotype based on B2 would still allow for detection of true positives G12 affecting
both B1 and B2, but will miss true positives G1 affecting B1 and not B2 while introducing
the possibility of detecting false positive variants G2 that affect B2 and not B1.

In the case of height and weight, there were 4100 loci for height and 1118 loci for weight.
To complement the analysis of urate and gout, we consider weight as a downstream proxy
for height. Among the 4100 loci for height, 2308 were overlapped by a locus for weight,
for an empirical TPR of 56.3%. Meanwhile, among the 1118 loci for weight, 321 did not
overlap a locus for height, for an empirical FDR of 28.7%. Since any locus that affects
height should have an effect on weight, failure to detect some height loci via weight is likely
due to lack of power, perhaps because more of the variation in weight is attributable to the
environment. Consistent with this hypothesis, the heritability of height, as estimated by LD
score regression applied to our summary statistics, was 41.5%, compared with only 24.2%
for weight. Conversely, those loci for weight that do not overlap a locus for height may affect
weight via a pathway other than height, for instance by changing body composition.

7



3.2 Recovery of true positive variants depends on target pheno-
type heritability and proxy phenotype correlation

We next examine how the TPR depends on the quality of the proxy phenotype, as quan-
tified by its phenotypic correlation with the true phenotype. For the simulation study, we
focus on a data generating process in Figure 3A, where the proxy phenotype P ∗ is imputed
from a biomarker B purely downstream of the true phenotype P . Other data generating
processes lead to qualitatively similar conclusions. In the simulation, there are two sources
of environmental variation, E1 affecting P , and E2 affecting B. We examine how the TPR
depends on the heritability of P and the correlation between P and P ∗. This correlation
is in turn determined by the relative influence of P versus E2 on the biomarker that enters
the imputation model. For simplicity, we let B itself act as the proxy phenotype. The re-
sults, presented in Figure 3B, demonstrate that success in recovering the causal variants
increases with the heritability of the true phenotype and with the correlation of P with
P ∗. Intuitively, the TPR increases as the variation in the proxy phenotype explained by the
variants G causal for the true phenotype P increases. The TPR decreases as more of the
variation in P ∗ is explained by the environment, either due to having a noisier phenotype
(E1) or due to having a noisier biomarker (E2).

To illustrate these trends with real data, we selected multiple phenotypes from [25] with
heritabilities ranging from 5% for chronological age to 41% for mean platelet volume. Down-
stream proxy phenotypes having specified correlation with the true phenotype were generated
by adding mean-zero noise to the true phenotype, via equation (7), such that the correlation
between P and P ∗ was set to ρ ∈ (0.05, 0.10, . . . , 0.95). The TPR was measured as the
proportion of phenotype genome-wide significant for the original P recovered via GWAS of
P ∗. The results, depicted in Figure 3C, recapitulate the trends from the simulation study.
Recovery of the variants causal for the original phenotype increased with the heritability of
P and with the correlation between P and P ∗.

3.3 Why phenotypic correlation is a misleading indicator of utility
for genetic discovery

The previous experiment suggests that power to detect genetic variants associated with the
target phenotype P by means of a proxy phenotype P ∗ generally increases with the pheno-
typic correlation between P and P ∗. However, as we show next, the source of this correlation
matters. A proxy phenotype whose correlation with the target is purely environmental rather
than genetic in origin will not assist in identifying genetic variants associated with P , regard-
less of the correlation between P and P ∗. To illustrate this, we simulated a target phenotype
P and a biomarker B according to the data generating process in Figure 4A. In contrast to
our previous case studies, here the biomarker is neither directly upstream nor downstream
of the target phenotype. The proportion of variants having causal effects on both P and B
was varied between 0% and 100%, as was the magnitude of the environmental correlation.
The heritabilities of both P and B were fixed at 50%, and the genetic correlation of P and B
across the subset of variants causal for both phenotypes was fixed at ρ = 0.5. The biomarker
served as the proxy phenotype.

8



Figure 4B illustrates how the phenotypic correlation between P and P ∗ increases with both
the proportion of shared causal variants and with the environmental correlation. Figures
4C and 4D demonstrate that increasing the phenotypic correlation by increasing the pro-
portion of shared causal variants increases the TPR and decreases the FDR. Meanwhile,
increasing the phenotypic correlation by increasing the environmental correlation has no
impact on either the TPR or FDR. Taken together, these results imply that having high
phenotypic correlation with the target phenotype is not sufficient for a proxy phenotype to
be useful for genetic discovery. In fact, having a high phenotype correlation is also not nec-
essary. Proxy phenotypes with only modest phenotypic correlation but high genetic overlap
(i.e. phenotypes in the upper left of Figure 4B) will provide greater TPRs and lower FDRs
than phenotypes with high phenotypic correlations but poor genetic overlap (i.e. phenotypes
in the lower right of Figure 4B).

To emphasize the distinction between genetic and environmental correlation, we simulated a
phenotype PG that was predominantly genetic in origin (99% heritability) and a phenotype
PE that was entirely environmental in origin (0% heritability). The data generating processes
are shown in Figure 5A. A biomarker for PG was created by adding noise to the genetic
component of PG, and a biomarker for PE was created by adding noise to the environmental
component of PE. Figure 5B demonstrates that the genetic correlation of the P ∗

G with PG

and of P ∗
E with PE is stable across a broad range of phenotypic correlations. This means

that phenotypic correlation is not an effective substitute for genetic correlation. To illustrate
this point with real world data, we constructed a proxy for a highly heritable phenotype by
adding noise to a polygenic score (PGS) of height, and a proxy for a minimally heritable
phenotype by adding noise to creatinine levels imputed from age, genetic sex, and estimated
alcohol intake; creatinine levels are known to be strongly influenced by alcohol intake [26, 27].
Figure 5C demonstrates that, as in the simulation study, phenotypic correlation can be
toggled independently of genetic correlation. Consequently, we argue that ‘test set R2’, a
common metric for evaluating machine-learning predictions in traditional settings [28], is a
poor measure of imputation quality in the context of genetic discovery because it fails to
disentangle the genetic signal from the environmental noise.

4 Conclusions

Machine-learning (ML) based imputation presents both opportunities and challenges for
genetic discovery. The ability to accurately impute difficult-to-ascertain phenotypes from
available surrogate data enables researchers to fill in missing values and augment data sets
with unmeasured phenotypes of interest. However, care is needed to ensure the validity of the
inferred genetic relationships when conducting genetic association studies with the outputs
of ML-models [13, 14, 15]. Here we considered the increasingly common practice of perform-
ing GWAS on machine-learned proxy phenotypes. Our analyses of simulated and real data
illustrate that considering the causal relationships among genotypes, the phenotype of inter-
est, and any biomarkers input to an ML model is essential to understanding the operating
characteristics of proxy GWAS. For example, when the imputation is based on biomarkers
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known to lie on the causal upstream path of the target phenotype, we can be confident that
any associations detected will be relevant to the phenotype of interest. Conversely, when the
biomarkers are causally downstream of the target phenotype, proxy GWAS will retain power
for detecting true positives but will likely incur contamination by false discoveries. Our work
suggests that selecting the appropriate biomarkers for imputation is non-trivial and highly
consequential. While using upstream biomarkers for imputation tends to offer better control
over false discovery rates, downstream biomarkers can potentially provide higher power for
detection, albeit with increased risk of false positives. The strategic choice between these
options requires careful consideration of the trade-offs involved and expert knowledge of the
underlying pathophysiology of disease. While the true causal relationships between biomark-
ers and phenotypes may not be always known, large scale mendelian randomization analysis
across all biomarkers can provide a rough approximation of what biomarkers might be up-
stream and which ones might be downstream.

We also demonstrated that although having a higher correlation between the target and
proxy phenotypes is generally desirable, the source of the correlation is more important than
its magnitude. A proxy phenotype with lower absolute phenotypic correlation that is driven
predominantly by genetic overlap will provide greater utility for target-phenotype genetic
discovery than a proxy phenotype with higher absolute phenotypic correlation that is driven
predominantly by environmental factors. This finding cautions against use of the test set R2

as a solitary measure of phenotype quality due to its inability to differentiate between ge-
netic and environmental correlations. When evaluating machine-learned proxy phenotypes,
having high genetic correlation with the target phenotype is the most desirable scenario, as
it suggests the target and proxy phenotypes share many associated variants in common, and
that the estimated directions of effect are consistent. Conversely, having a high phenotypic
correlation but low genetic correlation is undesirable, as it suggests the correlation is driven
by environmental factors, and that many variants associated with the proxy phenotype may
not be relevant to the target phenotype. Global genetic correlation, however, is an imperfect
indicator of whether a candidate proxy phenotype has high genetic overlap with the target
phenotype, as shown by recent work on retinal epithelium pigmentation versus thickness
[29]. For the purposes of genetic discovery, the ideal proxy phenotype will associate with
all variants that affect the target phenotype, and no variants that do not affect the target
phenotype, but need not have the same magnitude or direction of effect. Adding the latter
requirements (i.e. same magnitude and direction of effect) would imply a strong (global)
genetic correlation with the target and proxy phenotypes.

While this paper has focused on applications of ML in imputing unmeasured or missing
target phenotypes, another emerging use of ML in GWAS is to derive lower dimensional
representations of high dimensional phenotypes [12, 30, 31, 32, 33, 34]. Due to the difference
in the problem specification, careful consideration is likely needed to define what constitute
true and false positives for such phenotypes. An important direction of future work is to
explore the causal considerations that determine the utility of representation phenotypes for
genetic discovery.
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Figures

Figure 1: Typical setup for machine learning (ML)-assisted proxy GWAS. Within
a labeled training data set, surrogate biometric data (e.g. biomarkers) is utilized to develop
models for imputing the target phenotype. Once trained, the model extrapolates phenotypic
labels across a larger dataset, augmenting the effective sample size for genome-wide associa-
tion studies (GWAS). Since the predicted labels are used in place of measured, ground-truth
labels, this strategy is referred to as proxy GWAS. The goal is to leverage the imputed proxy
phenotype to identify genetic variants associated with the original target phenotype.
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(A) Upstream biomarkers

(B) Upstream biomarker with direct genetic effect

(C) Downstream biomarkers

(D) Downstream biomarkers with direct genetic effects

Figure 2: The operating characteristics of proxy GWAS depend on the causal
relationship between the true and proxy phenotypes. Four different causal scenarios
are show. In (A) and (B), the biomarkers B causally upstream of the true phenotype P , while
in (C) and (D) the biomarkers are causally downstream. In all cases, the proxy phenotype
P ∗ is derived from the biomarkers. The edges in the causal diagrams on the left show direct
effects. The true positive rate in the central column is the proportion of variants causal for
P that are detected by GWAS for P ∗. The false discovery rate in the right column is the
proportion of genome-wide significant variants for P ∗ that are not causal for P .
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Figure 3: True positive rate increases with target phenotype heritability and
proxy phenotype correlation. (A) Causal diagram for the data generating process used
in the simulation study. Here G is genotype, P is the true phenotype, which is affected by
environmental factor E1, B is the biomarker, which is affected by environmental factor E2,
and P ∗ is the proxy phenotype. (B-C) True positive rate as the proportion of causal variants
for P recovered as a function of the heritability of P and the phenotypic correlation between
P and P ∗. (B) presents results on simulated data, and (C) on real data, where mean-zero
noise was introduced to control the correlation between the true and proxy phenotypes.
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(A) Data Generating Process (B) Phenotypic Correlation

(C) True Positive Rate (D) False Discovery Rate

Figure 4: Common genetic basis rather than raw phenotypic correlation deter-
mines utility for genetic discovery. (A) Causal diagram for the data generating process.
Here G is genotype, E is the environment, P is the target phenotype, B is the biomarker,
and P ∗ is the proxy phenotype. Both P and B have a heritability of h2 = 50% and a genetic
correlation of zero. The proportion of variants affecting both P and B and the environmental
correlation were each varied between 0 and 100%. (B) Phenotypic correlation as a function
of the proportion of shared variants and the environmental correlation. (C) True positive
rate and (D) false discovery rate as a function of the proportion of shared variants and the
environmental correlation.
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(A) Data Generating Process

(B) Simulated Data (C) Real Data

Figure 5: Phenotypic correlation can vary independently of genetic correlation.
(A) Causal diagram for the data generating process. HereG is genotype, PG and PE represent
a phenotype that is predominantly genetic or environmental in origin, respectively, P ∗

G and
P ∗
E are corresponding proxy phenotypes, B is a biomarker, and E is environmental noise. (B)

and (C) show genetic correlation versus phenotypic correlation for simulated (B) and real
(C) data. For the real data setting, a proxy for a highly heritable phenotype was created by
adding noise to a polygenic score for height, and a proxy for a minimally heritable phenotype
was created by adding noise to circulating createnine imputed from age, genetic sex, and
estimated alcohol intake.

19


	Introduction
	Data and Methods
	Real-world dataset
	Methods for simulated traits
	Simulating traits with a specified heritability and genetic correlation
	Generating downstream traits with specified degree of environmental influence and direct genetic effects
	Heritability and Genetic Correlation Estimation
	Association testing for simulated traits

	Methods for real data experiments
	Genetic data processing and analyses
	Phenotype preparation
	Generating proxy phenotypes with specified target-phenotype correlation
	Generating a purely environmental proxy phenotype


	Results
	Downstream vs. Upstream Biomarkers for imputation - which to use?
	Recovery of true positive variants depends on target phenotype heritability and proxy phenotype correlation
	Why phenotypic correlation is a misleading indicator of utility for genetic discovery

	Conclusions

