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Abstract

Graph representation learning methods are highly effective
in handling complex non-Euclidean data by capturing intri-
cate relationships and features within graph structures. How-
ever, traditional methods face challenges when dealing with
heterogeneous graphs that contain various types of nodes
and edges due to the diverse sources and complex nature
of the data. Existing Heterogeneous Graph Neural Networks
(HGNNs) have shown promising results but require prior
knowledge of node and edge types and unified node fea-
ture formats, which limits their applicability. Recent advance-
ments in graph representation learning using Large Language
Models (LLMs) offer new solutions by integrating LLMs’
data processing capabilities, enabling the alignment of vari-
ous graph representations. Nevertheless, these methods often
overlook heterogeneous graph data and require extensive pre-
processing. To address these limitations, we propose a novel
method which leverages the strengths of both LLM and GNN,
allowing for the processing of graph data with any format and
type of nodes and edges without the need for type informa-
tion or special preprocessing. Our method employs LLM to
automatically summarize and classify different data formats
and types, aligns node features, and uses a specialized GNN
for targeted learning, thus obtaining effective graph represen-
tations for downstream tasks. Theoretical analysis and exper-
imental validation have demonstrated the effectiveness of our
method.

Code, Datasets and Appendix —
https://github.com/zch65458525/GHGRL/tree/main

Introduction
Graph representation learning methods are highly effec-
tive for processing complex non-Euclidean data, as they
can model intricate relationships within graph structures.
However, real-world scenarios often involve heterogeneous
graph data, which consists of various types of nodes and
edges due to the diverse sources and complexity of the data
(Wang et al. 2023b). Examples include social network analy-
sis (Qiu et al. 2018; Li and Goldwasser 2019), recommenda-
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tion systems (Fan et al. 2019b; Yang et al. 2015), and traffic
prediction (Guo et al. 2019). General graph representation
learning methods often struggle to handle this heterogeneity.
Therefore, developing methods that can effectively process
and learn from graphs with diverse node and edge types is
essential to broaden the applicability of graph representation
learning and enhance its capability to manage complex data.

To overcome these difficulties, Heterogeneous Graph
Neural Networks (HGNNs) have been developed and shown
promising results (Hong et al. 2020; Dong, Chawla, and
Swami 2017; Yang et al. 2022). HGNNs are designed to pro-
cess graphs with varying node and edge types using special-
ized techniques, including both metapath-based (Wang et al.
2019; Fu et al. 2020) and metapath-free approaches (Fan
et al. 2019a). These works leverage meta-path-based aggre-
gation, attention mechanisms, and embedding techniques to
effectively manage the diversity of nodes and edges, en-
abling the processing of heterogeneous graph data. How-
ever, HGNNs have limitations that restrict their applicability
in scenarios where prior knowledge of node and edge types
or consistent node feature formats is unavailable. For exam-
ple, in open-source intelligence analysis, IoT log analysis, or
monitoring malicious internet activities, the unpredictable,
diverse, and dynamic nature of the data poses significant
challenges in identifying and labeling node types.

Recently, the emergence of graph representation learning
methods based on LLMs (Devlin et al. 2019; Brown et al.
2020) has provided new solutions to the aforementioned
problems. These methods integrate the background knowl-
edge and data processing capabilities of LLMs into graph
representation learning, allowing for the alignment of var-
ious types of graph representations based on LLMs (Chen
et al. 2023; Huang et al. 2023). These approaches can han-
dle diverse graph data, achieving significant results in the
field of graph representation learning and providing direc-
tions for building foundational models in this area. How-
ever, these methods primarily focus on handling different
types of homogeneous graph representation learning tasks
and overlook the importance of processing heterogeneous
graph data. Nevertheless, an effective method capable of
processing such data without the need for additional data
cleaning and annotation is highly necessary. At the same
time, these methods often require a certain degree of pre-
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Node Type C

Heterogeneous Graph Neural Networks

Handle Heterogeneous Graph  ✘

Handle Different Formats of Data  ✓ 

Extra Type Information is Not Needed  ✓

LLM-based Graph Representation Learning

Handle Heterogeneous Graph  ✓

Handle Different Formats of Data  ✓ 

Extra Type Information is Not Needed  ✓

Our Proposed Method

Handle Heterogeneous Graph  ✓

Handle Different Formats of Data  ✘ 

Extra Type Information is Not Needed  ✘

(a) The left side of the figure shows the form of input graph data for
HGNN, where nodes of different colors represent different types of
heterogeneous nodes. The labels for node type and edge type in the
graph indicate the required type information for the input data. The
right side outlines its characteristics.
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LLM-based Graph Representation Learning

Handle Heterogeneous Graph  ✓

Handle Different Formats of Data  ✓ 

Extra Type Information is Not Needed  ✓

Our Proposed Method

Handle Heterogeneous Graph  ✓

Handle Different Formats of Data  ✘ 

Extra Type Information is Not Needed  ✘

(b) Similar to the above figure, the left side of the figure shows the
form of input graph data for LLM-based graph representation learn-
ing, where nodes of different shapes represent different forms of
node attributes.
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LLM-based Graph Representation Learning
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Extra Type Information is Not Needed  ✓

Our Proposed Method

Handle Heterogeneous Graph  ✓

Handle Different Formats of Data  ✘ 

Extra Type Information is Not Needed  ✘

(c) Demonstration and summary of our method, following the same
demonstration format as the two figures above.

Figure 1: Demonstration of different methods.

processing of the graph data, which limits their practical ap-
plication. Figure 1(a) and 1(b) provide a practical illustration
of these methods.

To address these challenges, we propose a novel
Generalized Heterogeneous Graph Representation
Learning (GHGRL) method. GHGRL integrates the
strengths of both LLMs and GNNs to process graph data in
a more generalized manner. As demonstrated in Figure 1(c),
GHGRL can handle graph data with nodes and edges of any
format and type, without requiring explicit type information
or special pre-processing of the data. Specifically, GHGRL
utilizes LLMs to process the training data by automatically
summarizing and classifying the various data formats and
types present in the graph. Subsequently, LLMs are used
to align node features across different formats, generating
representation vectors for node attributes. Next, we employ
our specially designed GNN to perform targeted learning on
the graph data based on the types and estimations derived
from the LLM, thereby obtaining graph representations
suitable for downstream tasks.

Contributions:

• We propose a novel method that combines LLM and
GNN to process heterogeneous graph data without re-
quiring node and edge type information. Additionally,

this method can handle scenarios where node attributes
are not uniform.

• We present the specific implementation of the aforemen-
tioned method and conduct theoretical analysis and vali-
dation of its performance.

• We developed more challenging datasets to rigorously
test the proposed method. Additionally, we validated
our approach using widely adopted heterogeneous graph
datasets to ensure robustness and reliability.

Related Works
Heterogeneous Graph Representation Learning. Het-
erogeneous graph representation learning methods are cate-
gorized into metapath-based and metapath-free approaches.
Metapath-based methods use heterogeneous graph neural
networks to aggregate and integrate semantic features (Yun
et al. 2019; Zhang et al. 2019; Wang et al. 2019; Fu et al.
2020; Bing et al. 2023; Yang et al. 2023). HetGNN (Zhang
et al. 2019) uses random walks and node type aggregation.
HAN (Wang et al. 2019) and MAGNN (Fu et al. 2020)
use metapaths for semantic differentiation and propagation.
SeHGNN (Yang et al. 2023) extends receptive fields with
long metapaths and transformer-based modules. Metapath-
free methods embed semantic information using attention
mechanisms (Zhu et al. 2019; Fan et al. 2019a; Hong et al.
2020; Lv et al. 2021; Zhou et al. 2023; He et al. 2024a).
HGB (Lv et al. 2021) uses a multi-layer GAT network for
node distinction. PSHGCN (He et al. 2024a) uses positive
spectral heterogeneous graph convolution to learn valid het-
erogeneous graph filters. These methods all require prior
knowledge of node and edge types and are typically used on
datasets where these types are known. However, this limita-
tion restricts the application of these methods in the broader
field of data mining.

LLMs for Graphs. With the emergence of various LLM
methods, the use of LLMs for graph representation learn-
ing is becoming a research hotspot. Relevant studies can be
classified into two types. One type enriches node represen-
tation based on prompt learning and processes graph data
tasks using GNN (Fatemi, Halcrow, and Perozzi 2023; Chen
et al. 2023; Huang et al. 2023, 2024; Liu et al. 2024; Tang
et al. 2024). The other type converts graph data into text for
LLM processing (Ai et al. 2023; Wang et al. 2023a; Guo,
Du, and Liu 2023; Sun et al. 2023; Luo et al. 2024; Tan
et al. 2024). These methods handle homogeneous data and
require pre-standardized representation of node information,
limiting their application in data mining. To address this, our
proposed method is designed to integrate LLMs to handle
heterogeneous graph attributes of any format and type with-
out prior knowledge, expanding the application scope in data
mining. Please refer to Appendix A for an extended related
work.

Methodology
Our proposed GHGRL framework aims to enhance learn-
ing on heterogeneous graphs using LLMs, thereby making
the processing capabilities more generalized. Specifically,
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Figure 2: The framework of the proposed method. The snowflake symbol represents the fixed model parameters, while the
flame represents the model parameters involved in training.

for a heterogeneous graph G = {V, E}, G contains various
types of nodes with different representation formats. Addi-
tionally, the edges between adjacent nodes may also possess
different types. Moreover, the types of nodes and edges are
unknown to us. Our goal is to construct a model that can
effectively handle G and accomplish graph representation
learning tasks. To achieve this, GHGRL is divided into the
following three modules: 1) Type Generation, which identi-
fies all possible node types based on node attributes; 2) LLM
Processing, which estimates the specific type of each node
and generates node representation vectors using LLMs; and
3) Learning with GNN, which leverages the acquired node
types and representations for graph learning with a specially
designed GNN. During the GNN learning process, different
types of edges are distinguished, and message passing is ex-
ecuted accordingly. Figure 2 demonstrates the framework of
GHGRL.

Type Generation
First, since we do not have access to the number of node
types in the dataset or detailed information about them, we
opt to generate these types directly. We create two categories
of node type set: the format-based set Φfmt and the content-
based set Φcont. Specifically, we randomly select a subset

of node attribute samples, denoted as X̃ = {xi}|X̃|
i=1, from

the training set and input them into the LLM, allowing it to
analyze and identify the node types present in the dataset.
We use Llama 3 (Dubey et al. 2024) as our backbone LLM.
The number of selected samples, |X̃|, is determined by the
maximum input sequence length of the LLM.

As a result, we obtain the generated format types set
Φfmt = {sfmt

j }mfmt

j=1 , where each sfmt
j represents a generated

string-formatted node format type name, represented in text
format, such as “noun” or “detail description”. Similarly, the
generated content types set is Φcont = {scont

j }mcont

j=1 , where
each scont

j denotes a generated string-formatted node content
type name, also represented in text format, such as “paper
concerning deep learning” or “paper concerning biology”.
The parameters mfmt and mcont are hyperparameters con-
trolling the size of Φfmt and Φcont, respectively. Formally,
we have:{

Φfmt,Φcont} = LLM
(
X̃,mfmt,mcont, PG

)
, (1)

where PG denotes the type generation prompt. Please refer
to Appendix C for details.

LLM Processing
Subsequently, we process the data with the LLM to acquire
node features, estimating the format type and content type
of each node’s attribute features. Based on Φfmt and Φcont,
we conduct analysis upon each node v’s feature xv . We ob-
tain five different outputs: description text hdesc

v of node v,
format type estimation result ϕfmt(v), format type estima-
tion confidence score cfmt(v), content type estimation result
ϕcont(v), content type estimation confidence score ccont(v),
description text hreas

v of the estimation reasons. ϕfmt(v) de-
notes the index of the estimated format type of node v within
Φfmt, while ϕcont(v) denotes the index of the estimated con-
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tent type of node v within Φcont. Formally, we have:{
hdesc
v , ϕfmt(v), cfmt(v), ϕcont(v), ccont(v),hreas

v

}
=

LLM
(
xv,Φ

fmt,Φcont, PP
)
. (2)

We ensure that the LLM outputs as much information
about the node attributes as possible by modifying the
prompts. Please refer to Appendix C for details. In addition
to node descriptions, we also require the model to provide
a reasoning description for its estimation of the node types.
This approach allows the model to refine and optimize the
modeling of heterogeneous graphs.

Subsequently, we adopt a language model sentence trans-
former (Reimers and Gurevych 2019) to generate fixed-
length node representation based on both hdesc

v and hreas
v ,

formally, we have:

hv = s(hdesc
v ,hreas

v ), (3)

where s(·) denotes the sentence transformer model. hv will
be utilized as the node feature in the subsequent modules.

Learning with GNN
To integrate LLM estimates into graph representation learn-
ing, we specifically designed a novel Parameter Adaptive
GNN (PAGNN) to maximize the utilization of LLM out-
puts for graph data processing. Part of the PAGNN structure
is determined by the LLM outputs. Specifically, each layer
of PAGNN includes three components: a format alignment
block based on format type, a heterogeneous processing
block based on content type, and a regular learning block.
These components will be introduced in detail below.

Format alignment block. The purpose of this block is
to align node features represented in different forms. This
block utilizes matrix W fmt ∈ R|Φfmt|×din×dfmt

and Bfmt ∈
R|Φfmt|×dfmt

as the network parameters, where din and dfmt de-
note the input and output feature width of this block, |Φfmt|
is the number of format types. Subsequently, with the input
node representation matrix H , where H ∈ R|V|×xfmt

, |V| is
the number of nodes, for all v ∈ {1, 2, ..., |V|} the block
performs the following calculation:

H fmt [v] = δ
(
H [v]W fmt [ϕfmt(v)] +Bfmt [ϕfmt(v)]

)
, (4)

where W fmt [ϕfmt(v)] and Bfmt [ϕfmt(v)] denote the ϕfmt(v)-th
elements of W fmt and Bfmt along the first dimension, re-
spectively. H fmt [v] denotes the v-th vector within H fmt. This
design ensures that all nodes with the same type utilize the
same set of parameters, while nodes with different types uti-
lize different sets of parameters. Due to the potential inaccu-
racy and possible misjudgment of node type estimation by
LLM, we further introduce the generated confidence score
cfmt(v) and adjust the blocks based on this score. We opti-
mize Equation 4 to generate a formal representation of the
block with the added confidence score as follows:

H fmt [v] = δ
(
cfmt (v)

(
H [v]W fmt [ϕfmt(v)] +Bfmt [ϕfmt(v)]

)
+(

1− cfmt (v)
)
H [v]

)
, (5)

where cfmt(v) is the aforementioned format type confidence
score of v. δ(·) denotes the activate function. This design
ensures that the effect of W fmt [ϕfmt(v)] decreases as the con-
fidence score decreases.

Content processing block. This block trails the format
alignment block. It processes node features of different gen-
erated node content types and then conducts message pass-
ing between them. The pattern of information transmission
between different nodes may vary. Conventional heteroge-
neous graph representation learning methods often use meta
paths or predefined edge types to address this issue (Wang
et al. 2019; Fu et al. 2020; Yang et al. 2023). However, since
we cannot obtain this information, we can only differenti-
ate information transmission based on the node content type
generated by the LLM. Specifically, the content processing
block first conducts the following calculation:

Hcont [v] = δ
(
ccont(v)

(
H fmt [v]W cont [ϕcont(v)]

+ Bcont [ϕcont(v)]
))

, (6)

where ccont(v) is the aforementioned content type confidence
score of v, W cont ∈ R|Φcont|×dfmt×dcont

and Bcont ∈ R|Φcont|×dcont

are parameter matrices. dcont denotes the feature width of
each representation vector within Hcont [v]. The content pro-
cessing block then conducts message passing with Hcont:

H̃cont [v] = αHcont [v] +

AGG
(
Hcont [u]W̃ cont [ϕ(v)], u ∈ N (v)

)
, (7)

where α be a hyperparameter to control the proportion
of original node features, parameter matrix W̃ cont ∈
R|Φcont|×dcont×dcont

. AGG(·) aggregates the features from
neighbors. We adopt dcont again as the output feature width
of content processing block. Equation 6 and 7 actually en-
sure that during the aggregation operation, the node rep-
resentations are multiplied by the corresponding parameter
matrices according to the content type of the source and tar-
get nodes of the edges. This, in turn, ensures that the entire
data aggregation process maximally distinguishes between
different node types and edge types.

Regular learning block. This block follows the first two
blocks and can be formally represented as follows.

H rgn [v] = δ

(
H̃cont [v]W rgn +

AGG
(
H̃cont [u]W rgn, u ∈ N (v)

))
, (8)

which is similar to a regular GCN layer, adopting the same
method for data propagation to learn the common features
present in the data. W rgn ∈ Rdcont×drgn

is the parameter ma-
trix. drgn denotes the output feature width of this block.

The aforementioned blocks form a PAGNN layer. Our
model is composed of multiple PAGNN layers, and we re-
move the format alignment block and the content processing
block after the lfmt layer and lcont layer respectively, as the
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heterogeneity of node features is sufficiently represented by
that point. lfmt ≤ lcont ≤ L, where L is the total number of
network layers. Please refer to Appendix D for details.

Analysis
In this section, we further analyze the proposed method by
examining how GHGRL effectively learns various types of
semantics. This capability helps to mitigate semantic confu-
sion, which can arise from the over-smoothing common in
conventional graph representation learning methods. Such
over-smoothing can be problematic when dealing with com-
plex heterogeneous graph data (Zhou et al. 2023). We adopt
a simplified graph convolution model g(·) (Kipf and Welling
2017) for this type of analysis, the layer structure of which
can be represented as follows:

h(l+1)
v = h(l)

v +AGG
(
h(l)
u W (l), u ∈ N (v)

)
, (9)

where h
(l+1)
v and h

(l)
v denote the output representation of

node v of layer l and l+1 respectively. Several related works
(Zhou et al. 2023; Li, Han, and Wu 2018) have demonstrated
that this model can effectively represent the properties of dif-
ferent types of graph neural networks, making it widely ap-
plicable in the analysis of the over-smoothing characteristics
of graph neural networks. Furthermore, it bears significant
similarity to our model’s architecture.

GNN models generally suffer from over-smoothing (Chen
et al. 2020; Geerts and Reutter 2022). Specifically, for graph
convolution model g(·) with L layers and graph G =
{V, E}, we can represent the limitation of g when L → +∞:

lim
L→+∞

g(V, E) =
[
h
(L)
1 h

(L)
2 · · · h

(L)
|V|

]⊤
, (10)

where h
(L)
v denotes the L-th layer output representation of

node v. For any node i and j within G, h(L)
i and h

(L)
j are

linearly dependent. Yet, our proposed GHGRL could avoid
such over-smoothing. To prove this, we construct a simpli-
fied model g̃(·) of GHGRL, l-th layer of g̃(·) possesses the
following form:

h(l+1)
v = h(l)

v +

AGG
(
h(l)
u W [ϕ(v)] +B[ϕ(v)], u ∈ N (v)

)
. (11)

The input of g̃(·) are node features extracted from LLM f(·).
Subsequently, we propose the following theorem.
Theorem 1. Given a connected graph G = {V, E} with
node features {xi}|V|

i=1 and LLM f(·), g̃(·) can avoid the
over-smoothing described in Equation 10 for the node fea-
tures, i.e., we have:

lim
L→+∞

g̃({f(xj)}|V|
j=1, E) =

[
h̃
(L)
1 h̃

(L)
2 · · · h̃

(L)
|V|

]⊤
,

(12)
where for node i and j that satisfying ϕ(i) ̸= ϕ(j), h̃i and
h̃j are linearly independent.

The proof can be found in Appendix B.1. Theorem 1
demonstrates through the model in Equation 11 that our

method effectively prevents over-smoothing among differ-
ent types of nodes. This ensures that the model preserves
the distinctive features between various node types. More-
over, this differentiation is automatically derived based on
the judgments produced by an LLM, ensuring that our model
can leverage the knowledge of the LLM for type estimation.
Consequently, this facilitates relation learning training based
on the structure of the GHGRL.
Corollary 2. Given the conditions in Theorem 1, if node i
and j satisfied ϕ(i) = ϕ(j), i and j do not share same set
of neighbors, then h̃

(L)
i and h̃

(L)
j are not necessarily linear

dependent for L → +∞.

The proof can be found in Appendix B.2. Corollary 2 fur-
ther demonstrates that our proposed method not only pre-
vents over-smoothing between different types of heteroge-
neous nodes, but also ensures that over-smoothing does not
necessarily occur between nodes of the same type. In such
cases, whether over-smoothing occurs depends on the types
of adjacent nodes and network parameters. This means the
network can adaptively make node features similar or dif-
ferent based on specific circumstances, rather than caus-
ing all node features to converge to the same value due
to over-smoothing. As shown in (Li, Han, and Wu 2018),
a 3-layer GCN can already experience over-smoothing on
certain datasets. With two aggregations per layer, our 3-
layer PAGNN is equivalent to a 6-layer GCN (Please re-
fer to Section Experiments for details), heightening the risk
of over-smoothing. We analyzed inter-type node similarity
across layers and compared our method to GHGRL without
PAGNN (GHGRL w/o P). The results below confirm that
over-smoothing occurs, and our method effectively prevents
it.

Method Layer 1 Layer 2 Layer 3 Layer 4
GHGRL w/o P -0.151 0.327 0.702 0.882
GHGRL -0.133 0.174 0.311 0.395

Table 1: Mean cosine similarity between each type’s average
feature vector and the overall mean, indicating the degree of
over-smoothing on the IMDB dataset.

Experiments
Comparison with State of the Art methods
Baselines. For baseline methods, we compared our ap-
proach with three categories of baselines: 1) general GNN
backbone networks, including GCN (Kipf and Welling
2017) and GAT (Velickovic et al. 2018), 2) HGNN meth-
ods, including HAN (Wang et al. 2019), MAGNN (Fu et al.
2020), SeHGNN (Yang et al. 2023) and PSHGCN (He et al.
2024a) and 3) more generalized graph representation learn-
ing methods that combines GNN and LLM, including TAPE
(He et al. 2024b), OFA (Liu et al. 2024), and GOFA (Kong
et al. 2024).

Datasets. We utilized existing commonly used hetero-
geneous and homogeneous graph representation learning
datasets, as well as more challenging heterogeneous graph
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Datasets IMDB (10% Training) IMDB (40% Training) DBLP (10% Training) DBLP (40% Training)
Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
GCN 57.47±0.72 58.43 ±1.15 60.13±0.76 60.38±1.19 89.09±0.32 89.8±0.34 88.94±0.38 89.61±0.40
GAT 60.12±0.79 60.79±1.26 62.85±1.28 63.1±0.83 89.66±0.26 90.93±0.23 91.40±0.19 91.79±0.21
HAN 61.28±0.12 61.26±0.15 62.78±0.38 62.15±0.26 91.23±0.51 92.10±0.62 91.92±0.48 92.52±0.59
MAGNN 57.78±2.85 57.97±1.82 59.92±1.24 60.07±0.89 92.24±0.49 92.70±0.51 93.21±0.42 93.68±0.43
SeHGNN 61.23±0.46 62.74±0.37 62.62±0.35 65.34±0.30 93.74±0.28 94.19±0.24 94.48±0.12 94.85±0.15
PSHGCN 61.35±0.79 62.25±0.42 67.21±0.66 67.55±0.56 92.89±0.09 93.46±0.07 93.98±0.12 94.29±0.10
HAN-w 58.31±0.32 58.26±0.31 59.83±0.33 59.02±0.35 87.54±0.78 87.93±0.58 88.16±0.68 88.64±0.69
MAGNN-w 57.02±1.23 57.36±0.86 59.44±1.06 59.76±0.93 90.24±0.49 90.65±0.63 90.32±0.77 91.32±0.82
SHEGNN-w 59.56±0.78 61.30±1.34 61.76±0.62 65.24±0.73 89.32±0.28 89.96±0.24 91.57±0.21 91.71±0.22
PSHGCN-w 59.68±0.55 61.04±0.36 65.52±0.52 66.03±0.44 89.78±0.23 90.46±0.25 91.58±0.12 91.93±0.10

Table 2: Comparative experiment results for IMDB and DBLP datasets. Bold denotes the best performance, underline denotes
the second best. “-w” denotes results of HGNN method without type information.

Datasets ACM (10% Training) ACM (40% Training)
Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1
GCN 89.47±0.23 90.23±0.24 89.19±0.28 89.95±0.27
GAT 92.23±0.96 92.27±0.95 92.26±0.86 92.38±0.81
HAN 90.58±0.40 90.56±0.39 92.70±0.45 92.75±0.42
MAGNN 89.46±0.64 89.71±0.53 91.25±0.24 91.33±0.35
SeHGNN 92.06±0.32 92.10±0.32 93.38±0.30 93.44±0.36
PSHGCN 91.07±0.26 91.00±0.24 93.78±0.23 93.77±0.19
HAN-w 90.08±0.34 90.02±0.32 91.98±0.38 91.86±0.37
MAGNN-w 88.95±0.18 89.26±0.20 91.23±0.16 91.33±0.25
SHEGNN-w 91.87±0.48 91.81±0.36 92.45±0.42 92.50±0.44
PSHGCN-w 91.01±0.26 90.97±0.24 92.97±0.23 93.02±0.19
TAPE 78.26±0.95 78.63±0.97 88.91±0.76 88.81±0.62
OFA 72.63±0.23 72.34±0.16 80.32±0.24 80.65±0.28
GOFA 78.91±0.56 78.92±0.73 84.28±0.33 84.21±0.79
GHGRL 92.71±0.36 92.69±0.30 94.21±0.44 94.63±0.42

Table 3: Comparative experiment results for ACM datasets.
Bold denotes the best performance, underline denotes the
second best. “-w” denotes results of HGNN method without
type information.

datasets that we newly constructed. Specifically, we em-
ployed the IMDB, DBLP, ACM (Zhang et al. 2019) and
Wiki-CS (Mernyei and Cangea 2020) datasets , and we re-
ported the test accuracy under varying amounts of train-
ing data. Additionally, we constructed two new datasets,
the Random Information Replacement on IMDB (IMDB-
RIR) and the Random Information Deletion on DBLP
(DBLP-RID): We utilized both commonly used heteroge-
neous graph representation learning datasets and more chal-
lenging datasets that we newly constructed. Specifically,
we employed the IMDB, DBLP, and ACM datasets (Zhang
et al. 2019), and reported the test accuracy with vary-
ing amounts of training data. Additionally, we constructed
two new datasets: IMDB dataset with Random Information
Replacement (IMDB-RIR) and DBLP dataset with Random
Information Deletion (DBLP-RID).

• IMDB-RIR. Based on the IMDB dataset, we performed
searches on Google using the textual information of the
nodes in the IMDB dataset. We then saved the top 10
search results for each node. Subsequently, we randomly
selected results from these top 10 and used them to re-

place the node attributes in the IMDB dataset. As a re-
sult, the constructed dataset contains information in vari-
ous uncertain formats, thereby increasing the complexity
of the tasks.

• DBLP-RID. Based on the DBLP dataset, we randomly
deleted portions of the node textual information, creating
a new graph dataset with partially missing node informa-
tion.

These datasets introduce further diversity into heteroge-
neous datasets and are utilized for extra comparison. Further
details can be found in Appendix D.1.

Settings. We followed the basic settings outlined in OFA
(Liu et al. 2024) and used Llama 3 (Dubey et al. 2024) as
the LLM for both our method and the baseline methods to
ensure a fair comparison. Additionally, we adjusted the pro-
portion of training data in the datasets to compare test results
under different conditions. For all experimental results, we
conducted five independent runs and reported the mean ±
standard deviation. The specific experimental setup, includ-
ing hyperparameters and the environment used, is detailed
in Appendix D.

Results on heterogeneous graph datasets. Table 2 and
3 demonstrate the results of experiments on IMDB, DBLP,
and ACM. Since our approach does not use the node type
or edge type information included in the heterogeneous
graph datasets as input, for better analysis, we compared our
method with HGNN baselines that both use and do not use
this information. We mark the methods that do not utilize
this information with “-w”. In the results, we can see that our
method achieves either the best performance or performance
comparable to methods that use additional type information
on all datasets, demonstrating the capability of GHGRL.

Results on heterogeneous graph datasets with extra di-
versity. Table 4 demonstrates the results of experiments
on IMDB-RIR and DBLP-RID. We denote r as the propor-
tion of newly constructed data used in the dataset, e.g., 20%
denotes we utilize 20% of the total amount of newly con-
structed data. Since within IMDB-RIR and DBLP-RID, the
node features have been modified by the additional informa-
tion we introduced, they no longer adhere to a standard for-
mat. Consequently, GNN and HGNN-based methods can no
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Datasets IMDB-RIR (r=20%) IMDB-RIR (r=100%) DBLP-RID (r=20%) DBLP-RID (r=100%)
Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
Llama3 40.25±0.95 39.35±0.90 39.51±0.81 39.77±0.51 36.56±1.15 46.16±0.95 43.51±1.39 43.73±0.56
TAPE 48.59±1.10 48.71±0.61 40.88±0.74 40.57±0.62 54.87±0.84 54.71±1.11 50.24±0.51 50.65±0.66
OFA 20.44±0.12 20.78 ±0.26 21.13±0.12 21.21±0.12 31.35±0.08 31.83±0.17 30.52±0.25 30.23±0.27
GOFA 33.18±0.62 33.91±0.81 29.16±0.79 29.09±0.67 40.75±0.58 40.28±0.89 37.11±0.87 37.32±0.78
GHGRL 75.15±0.43 75.35 ±0.77 74.53±0.56 74.83±0.52 93.47±0.21 93.72±0.25 91.20±0.78 91.83±0.92

Table 4: Comparative experiment results for heterogeneous graph datasets with extra diversity. Bold denotes the best perfor-
mance, underline denotes the second best.

Datasets IMDB-RIR (r=20%) IMDB-RIR (r=60%) IMDB-RIR (r=100%)
Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
GCN + LLM 64.26±0.14 64.16±0.29 59.18±0.63 60.98±0.71 58.41±0.35 58.59±0.71
GAT + LLM 65.28±0.60 65.30±0.70 65.84±0.76 65.77±0.81 65.25±0.57 65.42±0.28
HAN + LLM 64.89±0.83 65.07±0.23 64.59±0.63 64.60±0.55 63.81±0.46 63.90±0.30
MAGNN + LLM 61.88±0.56 61.92±0.47 61.42±0.46 61.36±0.87 61.34±0.19 61.32±0.52
SeHGNN + LLM 68.35±0.50 68.82±0.34 68.21±0.81 68.62±0.64 67.76±0.44 68.06±0.33
PSHGCN + LLM 71.83±0.23 72.18±0.47 72.36±0.78 72.77±0.91 72.28±0.60 72.65±0.14
HAN-w + LLM 63.41±0.90 63.52±0.38 63.29±0.89 63.30±0.08 63.88±0.63 63.01±0.24
MAGNN-w + LLM 61.84±0.32 61.87±0.16 60.58±0.51 60.71±0.86 61.24±0.11 61.33±0.68
SeHGNN-w + LLM 66.24±0.57 66.33±0.37 66.02±0.26 66.09±0.35 65.79±0.39 65.92±0.71
PSHGCN-w + LLM 71.43±0.32 71.53±1.12 70.89±0.38 71.07±0.21 70.21±1.06 70.43±0.83
GHGRL 75.15±0.43 75.35±0.77 74.72±0.45 75.00±0.42 74.93±0.46 75.15±0.51

Table 5: Comparative experiment results for HGNNs attached with LLM modules (marked with “+ LLM”). Bold denotes the
best performance, underline denotes the second best.

Dataset Wiki-CS
Metrics Macro-F1 Micro-F1
GCN 69.78±0.53 75.10±0.58
GAT 70.88±0.50 78.04±0.63
TAPE 77.30±0.59 77.24±0.67
OFA 77.69±0.12 78.32±0.15
GOFA 78.65±0.68 78.74±0.95
GHGRL 80.69±0.60 81.39±0.27

Table 6: Comparative experimental results for the homoge-
neous dataset. Bold indicates the best performance, while
underline indicates the second best.

longer process this information without additional help, so
we did not include comparisons with these methods. Addi-
tionally, we used our LLM, Llama 3, to directly classify the
nodes. Here, we can see that while LLM-based methods can
somewhat handle our newly constructed dataset, GHGRL
still achieved the best performance, significantly surpassing
other baseline methods and demonstrating its capability.

Furthermore, in Table ??, we also integrated the LLM
processing module we used into other HGNN methods to
output unified features for further comparison on the IMDB-
RIR dataset. As shown in the results, even under these con-
ditions, GHGRL still achieved the best performance, sig-
nificantly outperforming other methods. This demonstrates
the strong compatibility between our PAGNN and the LLM
module.

Results on homogeneous graph dataset. We also
conducted method comparisons on homogeneous graph
datasets. The results within Table 6 show that GHGRL can

achieve better performance on homogeneous graphs as well,
indicating that its mechanism positively enhances graph rep-
resentation learning even on standard homogeneous graph
data. Further experimental results can be found in Appendix
E.

In-Depth Analysis

(a) Input. (b) LLM Pro-
cessed.

(c) Output.

Figure 3: Data representations at different stages of the
model after dimensionality reduction using the t-SNE
method. Different colors represent distinct types of nodes.

(a) Input. (b) LLM Pro-
cessed.

(c) Output.

Figure 4: Data representations at different stages of the
model after dimensionality reduction using the t-SNE
method. Different colors represent distinct classes of nodes.
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(c) ACM.

Figure 5: Demonstration of different methods.

Feature visualization. We visualized the node features of
the model at different stages on the ACM dataset using the
t-SNE method, as shown in Figures 3 and 4. From these fig-
ures, it is evident that at the input stage, the node features are
highly mixed. However, after being processed by the LLM,
these features display multiple dispersed clusters. This indi-
cates that the LLM has leveraged its knowledge to perform a
more detailed grouping of the samples. However, this group-
ing does not align with the desired three-class categorization
of the nodes, as some node features remain intermixed. Fi-
nally, after processing by PAGNN, our model successfully
categorizes the nodes into three distinct groups according to
their classes, demonstrating that PAGNN has further refined
the information extracted from the LLM’s output, ultimately
leading to a more optimal result.

LLM processing analysis. Here, we report the statistics
on the match between the node types estimated by the model
and the actual node types in the IMDB, DBLP, and ACM
datasets. The proportion of correctly classified types for each
category is summarized in Figure 5. It is evident that our
model does not accurately estimate all types. This reveals an
interesting phenomenon: our LLM Processing module clas-
sifies nodes in the dataset based on its own internal knowl-
edge. Moreover, the results of the aforementioned compar-
ative experiments demonstrate that our model outperforms
other models, indicating that GHGRL effectively leverages
PAGNN to adapt to the estimations made by the LLM Pro-
cessing module. As a result, even when there is a discrep-
ancy between the classification and the actual dataset, our
model can still achieve satisfactory performance.

Conclusion
In this paper, we propose an innovative approach called GH-
GRL, which integrates LLM and GNN using an adaptive
parameter selection method. This approach enhances the
generalization capability for handling heterogeneous graph
data, offering a new perspective for processing more com-
plex and irregularly structured graph data.
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