
Under review as a conference paper at ICLR 2021

UNSUPERVISED CLASS-INCREMENTAL LEARNING
THROUGH CONFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

While many works on Continual Learning have shown promising results for mitigat-
ing catastrophic forgetting, they have relied on supervised training. To successfully
learn in a label-agnostic incremental setting, a model must distinguish between
learned and novel classes to properly include samples for training. We introduce
a novelty detection method that leverages network confusion caused by training
incoming data as a new class. We found that incorporating a class-imbalance during
this detection method substantially enhances performance. The effectiveness of our
approach is demonstrated across a set of image classification benchmarks: MNIST,
SVHN, CIFAR-10, CIFAR-100, and CRIB.

1 INTRODUCTION

The development of continually learning systems remains to be a major obstacle in the field of artificial
intelligence. The primary challenge is to mitigate catastrophic forgetting: learning new tasks while
maintaining the ability to perform old ones. This domain of research is often referred to as Continual
Learning, Lifelong Learning, Sequential Learning, or Incremental Learning: each with subtleties in
the learning environment and training process, but most with the use of supervision (De Lange et al.
(2020)).

Recently, Stojanov et al. (2019) introduced a novel unsupervised class-incremental learning problem
motivated by the desire to simulate how children’s play behaviors support their ability to learn object
models (IOLfCV). Here, sequential tasks take the form of exposures. Each exposure is comprised of
a set of images that pertains to a single class that is hidden from the learner. Exposure boundaries, the
transition from one exposure to the next, are known. The model trained in this setting, is analogous
to a young child that has been placed in a playpen with a set of new toys. The child steadily gathers
information over time by picking up, examining, and putting down new/old objects continuously.
Similar to how the child does not have any guidance to the toys they will examine, the agent does not
have access to the exposure’s identity during training.

To learn in the unsupervised class-incremental setting, an agent must conduct two procedures
successfully. Given a new learning exposure, the key step is to perform novelty detection: to
identify whether an exposure corresponds to a class that has been learned. If the agent determines
that an exposure is familiar, the second step is to identify its label such that the exposure can be
leveraged to update the model. Both procedures must be performed reliably. Otherwise, the novelty
detection mistakes will result in label noise that distorts the learned model, increasing the likelihood
of subsequent mistakes.

Deep neural networks are known to make overconfident decisions for anomalous data distributions
that were not seen during training (Hendrycks & Gimpel (2016)). To address this problem, research
related to out-of-distribution (OOD) detection have utilized supervised methods (Liang et al. (2017);
Alemi et al. (2018)) and unsupervised methods (Choi & Jang (2018); Hendrycks et al. (2018); Serrà
et al. (2019)). Works related to open set recognition have also addressed the OOD problem by
applying distance-based thresholds computed from known class scores (Scheirer et al. (2012; 2014)).
The work by Stojanov et al. (2019) applies a similar method to the unsupervised incremental setting
by computing class features produced from a set of supervised samples. In contrast, we propose a
model, Incremental Learning by Accuracy Performance (iLAP), that determines class novelty and
identity by considering performance changes of previously learned tasks when an incoming set of
exposure images are trained under a new label.
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Instead of using a distance-based metric, our novelty detection threshold relies on the percentage
of accuracy that was maintained by performing a model update using the incoming exposure. This
poses several practical advantages: First, the threshold value does not rely on supervised samples
and is more intuitive (Section 3.3). Second, the performance of our method is independent of the
sequence of the incoming exposure classes (Section 5.2). Finally, the model is able to distinguish
between similar classes more reliably (Section 5.3).

From our experiments, we demonstrate that the confusion resulting from training with label am-
biguity results in a more reliable signal for novelty detection in comparison to previous methods.
We demonstrate that our technique is more robust and results in substantial performance gains in
comparison to various baselines. Furthermore, despite the absence of labels, our model was able to
perform similarly to supervised models under several benchmarks.

In summary, this work provides three contributions:

• We present a novel framework, iLAP, that achieves learning in the unsupervised class-
incremental environment where the exposure identities are unknown.

• We demonstrate that by including a class-imbalance technique, our unsupervised method is
able to closely match supervised performance for several image classification benchmarks
trained in the incremental setting.

• We identify failure cases that are overlooked by traditional OOD methods that leverage
distance-based thresholds.

2 RELATED WORKS

Introduced by Stojanov et al. (2019), the unsupervised class-incremental setting contains a set of
sequential tasks that are single-class exposures; classes pertaining to the exposures may repeat and
are unknown. This is not to be mistaken with unsupervised continual learning (UCL) where task
boundaries and task identities are unavailable (Lee et al. (2020); Smith & Dovrolis (2019); Rao et al.
(2019)). Our work presents an agent that is able to leverage the boundary information from the
unsupervised class-incremental environment to achieve performances that are close to models trained
under supervision.

2.1 CONTINUAL LEARNING/INCREMENTAL LEARNING

Prior works in this field primarily aim to improve a model’s ability to retain information while
incorporating new tasks (Goodfellow et al. (2013); Parisi et al. (2019); Rebuffi et al. (2017); Lopez-
Paz & Ranzato (2017); Aljundi et al. (2018); Castro et al. (2018)). Typically, these models reside
in learning settings where both task labels and task boundaries are available. Methods include
replay techniques, the usage of artifacts and generated samples to refresh a model’s memory (Kamra
et al. (2017); Wu et al. (2018); Rolnick et al. (2019); Shin et al. (2017); Wu et al. (2019)), and
regularization-based practices, the identification and preservation of weights that are crucial for the
performance of specific tasks (Kirkpatrick et al. (2017); Zenke et al. (2017); Yoon et al. (2017)). In
contrast to prior works, our method addresses incremental learning in a setting where exposure labels
are unavailable.

2.2 UNSUPERVISED CONTINUAL LEARNING

Recently, a series of works tackle the UCL problem where task boundaries and task identities are
unknown. Smith & Dovrolis (2019) performs novelty detection by analyzing an input image through
a series of receptive fields to determine if an input patch is an outlier. Meanwhile, CURL proposes a
method to learn class-discriminative representations through a set of shared parameters (Rao et al.
(2019)). CN-DPM, introduces an expansion-based approach that utilizes a mixture of experts to
learn feature representations (Lee et al. (2020)). Although CN-DPM performs in a task-free setting,
incoming tasks are multi-class and individual class labels are provided. This supervision is required
to train the existing experts and determine when a new one is needed. While boundary information is
not required for these works, the performances are far below supervised baselines (77.7% on and
MNIST 13.2% Omniglot) (Rao et al. (2019)).
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Figure 1: Incoming exposures are split into Ei
train and Ei

val. E
i
train is aggregated with Ptrain and is

used for detection training. L̂ is updated with samples from Ei
train labeled as K̂ + 1. The change in

model accuracy is assessed using Pval to identify novelty and class identity. Finally, L is updated
with the predicted label; samples from Ei

train and Ei
val are saved to their respective exemplars.

2.3 OUT-OF-DISTRIBUTION DETECTION

This ongoing area of research aims to detect outliers in training and testing data. Current approaches
can be largely categorized by statistical, distance-based, and deep learning methods (Eskin (2000);
Yamanishi et al. (2004); Knorr et al. (2000); Hautamaki et al. (2004); Sabokrou et al. (2018); Kliger
& Fleishman (2018)). Recent techniques involve using a threshold to determine class novelty from
network confidence values (Hendrycks & Gimpel (2016)). ODIN uses input perturbations to increase
softmax scores for neural networks to distinguish in-distribution images from out-of-distribution
images (Liang et al. (2017)). DeVries & Taylor (2018) incorporates a confidence branch to obtain
out-of-distribution estimations. Our method (iLAP) is the first to incorporate a threshold value that is
dependent on class-accuracy changes caused by data poisoning.

3 APPROACH

In this section, we provide an overview of our method. We begin by identifying the learning setting,
followed by details of our training process. Finally, insights for choosing threshold values are
provided.

3.1 SETTING

In the unsupervised class-incremental setting, a learner L perceives an input stream of exposures
denoted as E1, E2, ..., En. Each exposure contains a set of images, Ei = {ei1, ei2, ..., eini

}, eij ∈
RC×H×W , where C, H , and W are the number of channels, height, and width of the input image
respectively. Each exposure belongs to a single class yi ∈ N, which has been sampled from class
distribution P (C). For each Ei, L does not have knowledge of the true class label yi. Two exemplars,
Ptrain = (P 1

train, P
2
train, ..., P

K̂
train) and Pval = (P 1

val, P
2
val, ..., P

K̂
val), are maintained at all times,

where K̂ denotes the total number of classes L has currently determined. The exemplars are used to
store samples from the exposure for replay and accuracy assessment. The sizes of both exemplars,∣∣P i

train

∣∣ and
∣∣P i

val

∣∣, are bounded per class.
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3.2 DETECTION TRAINING

For each incoming exposure, the model is tasked to determine whether the class associated with the
exposure was learned previously. Our solution is to perform a model update by treating the incoming
exposure as a new class, we coin this technique detection training. Under the circumstances that the
exposure class is repeated, the performance for the previously learned class would suffer drastically
after training. The reason for this behavior is because the model has associated two different labels to
a similar class distribution.

During detection training, L̂, a copy of L is produced. The incoming exposure is assigned with label
K̂ + 1. Train-validation split is performed on the incoming exposure to obtain Etrain and Eval, and
are aggregated with exemplars Ptrain and Pval respectively. The combined samples are used to train
L̂ via validation-based early stopping. We denote the vector {∆ŷ}ŷ∈[K̂] to represent the percentage
decrease of the class accuracies (computed using Pval) before and after the update. If max({∆ŷ})
exceeds a threshold, θ, the incoming exposure is likely to have been learned by L. In this case, the
correct identity pertaining to the exposure is arg maxŷ∈[K̂] ∆ŷ . Otherwise, if θ is unsatisfied, K̂ + 1

is the appropriate label for the new class.

3.3 CLASS-IMBALANCE FOR DETECTION TRAINING

Figure 2: Graphs depicting the average accuracy decrease for repeated vs. non-repeated classes at
various values of class-imbalance. As the ratio of class-imbalance increases, the accuracy change
for non-repeated classes remains low, with the exception at high ratios when very few samples are
present during the model update (red). The accuracy decrease for repeated classes is amplified as the
ratio of class-imbalance increases (blue).

Introducing a class-imbalance during detection training creates a more distinct decision boundary
by exacerbating the class-accuracy drop for repeated exposures. Consider a theoretical case where
an optimal model has learned K̂ classes. The incoming exposure, Ei, contains a distribution that is
equal to that of some previously learned class ŷi. If the model were updated with equal samples of
Ei labeled K̂ + 1, and P ŷi

train labeled ŷi, the accuracy for class ŷi would become ambiguous during
validation (ŷi≈ 50%, K̂ + 1≈ 50%). However, if the model were updated with a greater sample of
K̂ + 1 labels, the accuracy drop for class ŷi would be considerably larger because K̂ + 1 would be
favored during inference.

L̂ has the option to use an imbalanced dataset during detection training where a fraction of the size
for each class from Ptrain are used in comparison to the size of Etrain. Let P i

sampled ⊂ P i
train, the

class-imbalance ratio λ is:

λ = 1−
|P i

sampled|
|Etrain|

(1)

In Figure 2, we use Fashion-MNIST (Xiao et al. (2017)) and Imagenette (Howard) to obtain a
general value for λ and θ for our experiments with other datasets. Performance drops are tracked for
the repeated class and non-repeated classes during detection training with various values of λ. The
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goal is to maximize the performance loss for the repeated class while maintaining the performance
for the other classes. In Section 4 a θ value of 0.6 and a λ value of 0.5 are used. λ is determined by
the point of the maximum distance between the two accuracy curves; θ, the expected accuracy drop
for a repeated exposure, is the mean of the two values at λ Figure 2.

3.4 MODEL AND EXEMPLAR UPDATE

After obtaining the predicted label (K̂ + 1 or arg maxŷ∈[K̂] ∆ŷ) from detection training, L is trained
with the aggregated dataset obtained from Ptrain and Etrain. Two sets with the most representative
samples from Etrain and Etest are created and added to their respective exemplars for future replay.
The selection process is determined by ranking the distance between the image features and the
class-mean image features. This methodology is consistent with the procedure introduced by Castro
et al. (2018).

The availability of Pval allows L to assess how well old and new classes are considered. If the
accuracy for any class interpreted by L falls below a percentage, the class is altogether discarded.
This allows the model to remove extraneous classes that were learned insufficiently or have been
forgotten. In Section 4, a percentage threshold of 20% is used for all experiments.

4 EXPERIMENTS

The performance of our framework is evaluated using a series of image classification benchmarks:
MNIST, SVHN, CIFAR-10, CIFAR-100, and CRIB (LeCun (1998); Netzer et al. (2011); Krizhevsky
et al. (2009); Stojanov et al. (2019)). First, we compare our novelty detector to related OOD methods.
Next, we evaluate performance of iLAP to that of other incremental learners: BiC (Wu et al. (2019))
(supervised) and IOLfCV (unsupervised).

4.1 EXPERIMENTAL DETAILS

For the following experiments, a ResNet-18 model (He et al. (2016)) pre-trained with ImageNet
is used for iLAP and all baselines (additional experiments without pretraining are presented in
Appendix A.4). λ = 0.5 and θ = 0.6 are used for iLAP with class-imbalance detection training,
while a λ = 0 and θ = 0.4 are used for iLAP without class-imbalance detection training. The
parameters are maintained across all benchmarks.

For each exposure, the model is trained for 15 epochs with 16 batch size, using an Adam (Kingma
& Ba (2014)) optimizer with validation-based early stopping; a learning rate of 2e−4 is used. The
feature extraction layers use a ten times lower learning rate at 2e−5. For all models, the exemplar
size per class is equal to the exposure size. The exposure validation split ratio is 0.8 (e.g. for exposure
size = 200, iLAP: [Etrain] = 160 and [Eval] = 40). The thresholds used for IOLfCV in 4.1 were
determined by maximizing the F-score for the classification of in-distribution exposures versus
out-of-distribution exposures. To obtain the best performance possible, the entirety of the dataset
was used. The values are 0.46, 0.63, 0.57, and 0.62 for MNIST, SVHN, CIFAR-10, and CIFAR-100
respectively.

4.2 OUT-OF-DISTRIBUTION DETECTION RESULTS

The OOD detectors are assessed in an incremental setting with size 200 exposures. The detectors are
evaluated on their ability to determine whether an exposure is novel by using the common established
metrics: FPR95, AUROC, and AUPR (Hendrycks & Gimpel (2016)). Details of the compared works
and evaluation methods are described in Appendix A.1. The results are illustrated in Table 1.
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MNIST CIFAR-10

FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
MSP 0.14±.09 0.98±.01 0.95±.02 0.60±.13 0.86±.04 0.71±.09
CE 0.35±.13 0.80±.04 0.67±.09 0.64±.13 0.78±.04 0.54±.03

ODIN 0.12±.09 0.98±.01 0.95±.02 0.55±.12 0.87±.04 0.71±.09
ZeroShot OOD 0.03±.03 0.99±.01 0.99±.01 0.63±.12 0.67±.06 0.47±.08

IOLfCV 0.12±.08 0.98±.01 0.95±.02 0.60±.12 0.78±.06 0.60±.08
iLAP w/o CI (Ours) 0.19±.02 0.92±.02 0.68±.05 0.58±.03 0.69±.03 0.40±.05
iLAP w/ CI (Ours) 0.0± .0 1.0± .0 1.0± .0 0.32± .10 0.93± .03 0.81± .08

SVHN CIFAR-100

FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
MSP 0.08±.04 0.98±.01 0.98±.01 0.20±.04 0.95±.02 0.71±.09
CE 0.5± .1 0.78±.03 0.72±.07 0.55±.12 0.82±.01 0.63±.02

ODIN 0.12±.01 0.94±.01 0.93±.02 0.21±.04 0.94±.02 0.91±.01
ZeroShot OOD 0.06±.04 0.97±.01 0.98±.01 0.23±.03 0.97±.01 0.94±.02

IOLfCV 0.28±.11 0.96±.01 0.95± .0 0.28±.05 0.96±.01 0.94±.01
iLAP w/o CI (Ours) 0.08±.02 0.92±.02 0.89±.04 0.27±.05 0.92±.05 0.72±.12
iLAP w/ CI (Ours) 0.0± .0 0.99± .0 0.98± .0 .08± .02 0.99± .0 0.98± .0

Table 1: Comparison of our technique, with and without class-imbalance, to recent novelty detection
methods. FPR95, AUROC, and AUPR are used to evaluate performance. Our method is the most
effective in the incremental learning setting where exposure samples are limited.

Test Accuracy (%)

MNIST SVHN CIFAR-10 CIFAR-
100

CRIB

BiC (Supervised) 98.0± 0.2 89.2± 0.3 74.9± 0.4 72.5± 0.3 88.5± 0.2

IOLfCV (Unsupervised) 88.0± 3.5 46.8± 8.6 45.3± 4.7 61.6± 0.6 66.8± 2.1
iLAP w/o CI (Ours) 90.3± 1.7 84.4± 1.7 60.9± 1.4 65.0± 1.2 59.0± 1.5
iLAP w/ CI (Ours) 98.0± 0.2 88.1± 0.8 67.4± 1.7 68.6± 0.7 67.8± 1.7

Table 2: Comparison of iLAP to IOLfCV and BiC by test accuracy (%) using the MNIST, SVHN,
CIFAR-10, CIFAR-100 and CRIB datasets.

No. of Unique Classes Learned

MNIST SVHN CIFAR-10 CIFAR-
100

CRIB

BiC (Supervised) 10.0± 0.0 10.0± 0.0 10.0± 0.0 100.0± 0.0 50.0± 0.0

IOLfCV (Unsupervised) 9.2± 0.4 8.8± 1.2 8.7± 0.7 89.0± 0.5 42.0± 0.3
iLAP w/o CI (Ours) 10.0± 0.0 10.0± 0.0 10.0± 0.0 96.0± 0.5 43.0± 0.1
iLAP w/ CI (Ours) 10.0± 0.0 10.0± 0.0 10.0± 0.0 96.5± 0.5 45.0± 0.2

Table 3: Comparison of iLAP to IOLfCV and BiC by the number of unique classes learned using the
MNIST, SVHN, CIFAR-10, CIFAR-100 and CRIB datasets.
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4.3 INCREMENTAL LEARNING RESULTS

The accuracy of learner L is computed using the ground-truth mapping m : [K̂] → [K] with the
equations:

S(x, y) =

{
1

|m−1(y)| , if L(x) ∈ m−1(y)

0, otherwise

Accuracy = Ex,y∼test [S(x, y)]

The learner accuracy is the mean of the sample accuracy scores evaluated on the test set, where (x, y)
represents a single sample. For each sample with label y, let m−1(y) represent the corresponding
labels from the learner. In the case that a learner output does not belong to set m−1(y), an accuracy
score of 0 is assigned (class is not detected). Otherwise, an accuracy score of 1

|m−1(y)| is designated
to penalize the learner if m is non-injective and have attributed multiple labels to a single ground
truth class. Performance results are illustrated in Table 2 & 3. Additional visualizations are provided
in Appendix A.2, A.3 and A.4.

5 ANALYSIS

Traditional OOD methods that rely on distance-based thresholds are restricted by the supervised
samples that are available. These values are non-intuitive and vary drastically across datasets
(whereas our percentage threshold are ≈ 50% for all datasets). In the incremental learning setting,
early mistakes are amplified as more exposures are introduced, a proper threshold initialization
dictates a model’s feasibility. However, we argue that even with a good threshold these methods will
consistently fail in particular conditions. The purpose of this section is to discuss the results obtained
from our experiments. Subsequently, we highlight a few cases that are overlooked by traditional
distance-based methods.

5.1 OUT-OF-DISTRIBUTION DETECTION ANALYSIS

iLAP with class-imbalance detection training (CI) was able to outperform related OOD methods for
the MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmarks under all metrics Table 1. However, the
results for iLAP without CI were not as definitive. CE performed the worst in the incremental setting,
possibly because the performance of the confidence branch is reliant on larger training samples.
IOLfCV’s method performed on par with related methods.

Figure 3: Visualization depicting the behavior of class feature distances as more classes are learned
by the network. The optimal threshold computed by optimizing the F-score is the midpoint of the
learned and novel class values when all 100 classes are incorporated. However, this threshold will
mistakenly recognize repeated classes as new classes early on during incremental training.
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5.2 UNSUPERVISED INCREMENTATL LEARNING ANALYSIS

iLAP with CI was able to beat IOLfCV by 10.0, 41.3, 22.1, 7.0, and 1.0 percentage points for the
MNIST, SVHN, CIFAR-10, CIFAR-100, and CRIB benchmarks respectively Table 2. iLAP was also
able to maintain its performance when exposure sizes are decreased Appendix A.3. We found that
the reason for the lower performance beat for CIFAR-100 and CRIB is not directly attributed to the
larger number of classes in the dataset. Rather, the problem lies with how the exposure sequence for
the incremental learning setting is created and how the distance-based threshold is calculated.

The threshold for IOLfCV is computed by maximizing the F-score for the binary classification of
novel versus non-novel classes. In our experiments, the entirety of the dataset was used to compute
the baseline’s threshold. Although this is impractical, we wanted to illustrate that iLAP is able to beat
the baseline even under the most optimal conditions.

In Figure 3 we illustrate the behavior of the class feature distances as more classes are incorporated
by a network. The most optimal threshold that maximizes the F-score lies in the mid-point between
the two graphs when all 100 classes are learned. However, because the threshold is fixed, the novelty
detector fails to correctly identify repeated classes early on during training and is more inclined to
label repeated classes as unseen, (shaded red area in Figure 3). Consistent with the described setting
in Stojanov et al. (2019), each class within a benchmark is repeated an equal number of times in a
randomized sequence. For datasets with a large number of classes, there is a higher chance that the
repeated exposures are further apart. Therefore, IOLfCV seemingly performs comparatively better
on CIFAR-100 than CIFAR-10, but would fail if early repeated exposures were frequent.

5.3 CLASS SIMILARITY

Figure 4: TSNE plot depicting a model which has been trained to classify lamp vs. boy. An incoming
exposure with class girl is introduced to the model. Comparing the feature distributions of this model,
boy and girl have almost identical distributions; the OOD detector mistakenly assesses them to be
same class (left). In contrast, our method first attempts to learn a feature space where the two classes
are separable and identifies boy and girl correctly (right).

iLAP was able to detect all classes for MNIST, SVHN, and CIFAR-10 and on average 96.5 out
of 100 classes for CIFAR-100. Meanwhile, IOLfCV struggles to identify unique classes for all
evaluated benchmarks. Through closer inspection, we found that the distance-based method is unable
to distinguish classes when they are too similar.

Consider two classes, k1 and k2, that can be separated by a classifier C in learned feature space F .
An incoming exposure, class k3, shares a similar distribution to class k1 in feature space F , but
separable in some feature space F ′. The distance-based method is highly probable to fail because
it is likely to categorize k1 and k3 as identical classes. However, because our method always trains
the incoming exposure as a new class, C is forced to learn the feature space F ′ in which these two
classes are separable. Figure 4 illustrates two prior classes, boy and lamp, in some feature space.
The incoming exposure, class girl, is unable to be distinguished from class boy by the distance-based
method Figure 4 (left). However, because detection training always attempts to classify the incoming
exposure as a new class, our method is able to identify F ′ Figure 4 (right).
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6 CONCLUSION

To achieve learning in an unsupervised class-incremental setting, a reliable novelty detector is needed.
Current methods utilize a detection threshold that is calibrated using class feature distances. In
our work, we illustrate that the use of a static distance-based threshold is not only impractical
but also unreliable. Instead, we introduce a technique that leverages confusion error to perform
novelty detection by always training the incoming exposure as a new class. Using a series of image
classification benchmarks, we illustrate that our method is able to closely rival supervised performance
despite the lack of labels.
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A APPENDIX

A.1 OOD EXPERIMENTAL DETAILS

A brief description of the evaluation metrics used for Table 1.

• False Positive Rate at 95% (FPR95): This measure determines the False Positive Rate
(FPR) when True Positive Rate (TPR) is equal to 95%. FPR is calculated as FP

FP+TN where
FP is the number of False Positives and TN is the number of True Negatives. TPR is
calculated as TP

TP+FN where TP is the number of True Positives and FN is the number of
False Negatives.

• Area Under the Receiver Operating Characteristic (AUROC): This metric illustrates
the relationship between the TPR and the FPR. This measure determines the probability that
a novel class will have a higher detection score compared to a non-novel class.

• Area Under the Precision-Recall (AUPR): This metric is constructed by plotting precision
versus recall. The AUPR curve treats the novel examples as the positive class. A high area
value represents high recall and high precision.

The training detection method used in iLAP is compared to a set of related works in OOD. The
following works reflect the acronyms used in Table 1

• MSP (Hendrycks & Gimpel (2016)): MSP is computed from a trained classifier to perform
out-of-distribution detection. The mean MSP for all images belonging to an exposure is
used to determine novelty.

• CE (DeVries & Taylor (2018)): CE requires extending a model with a confidence branch to
obtain a set of values. These values reflect the model’s ability to produce a correct prediction.
When the mean estimation value for a set of input images is low, the sample is likely to be
novel.

• ODIN (Liang et al. (2017)): ODIN uses temperature scaling and input perturbations to
widen the MSP difference between in-distribution and out-of-distribution samples. The
optimal value for temperature and perturbation magnitude are found by minimizing FPR
using grid search. 2 and 0.0012 are used for temperature and perturbation magnitude values
respectively, for both the MNIST and CIFAR-10 dataset.

• Zero-Shot OOD (Sastry & Oore (2019)): Zero-Shot OOD uses pairwise correlations of
network features to detect novel samples. The class-conditional feature correlations, on
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the training data, are computed across all layers of the network. The mean correlations are
then compared with the pairwise mean feature correlations from a test sample to obtain a
deviation value.

• IOLfCV (Stojanov et al. (2019)): IOLfCV determines a distance-based threshold com-
puted using average-feature means from a network trained from supervised samples. Two
initialized classes are used to compute the threshold by finding the optimal point using
precision-recall analysis.

A.2 MAIN EXPERIMENT RESULTS

The following are produced with the use of a GTX TITAN X gpu. For each exposure, the model is
trained for 15 epochs with 16 batch size, using an Adam optimizer. The learning rate used is 2e−4.
The feature extraction layers use a ten times lower learning rate at 2e−5. The input size is 224.

Figure 5: Visualizations comparing accuracy (left) and number of classes detected (right) for the
MNIST benchmark.

Figure 6: Visualizations comparing accuracy (left) and number of classes detected (right) for the
SVHN benchmark.
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Figure 7: Visualizations comparing accuracy (left) and number of classes detected (right) for the
CIFAR-10 benchmark.

Figure 8: Visualizations comparing accuracy (left) and number of classes detected (right) for the
CIFAR-100 benchmark.

Figure 9: Visualizations comparing accuracy (left) and number of classes detected (right) for the
CRIB benchmark.

A.3 EXPERIMENTS WITH LOWER EXEMPLAR SIZES

In this section, we showcase iLAP’s results at lower exposure sizes.
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Figure 10: Visualizations depicting iLAP’s performance on the MNIST benchmark with 100, 50, and
20 exemplar sizes (left to right).

Figure 11: Visualizations depicting iLAP’s performance on the SVHN, CIFAR-10, and CIFAR-100
benchmark with a exemplar size of 50.

A.4 EXPERIMENTS WITHOUT PRE-TRAINING

Figure 12: Visualizations comparing accuracy (left) and number of classes detected (right) for the
CIFAR-100 benchmark without the use of pre-trained weights.
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