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Abstract

Back-translation is a critical component of001
Unsupervised Neural Machine Translation002
(UNMT), which generates pseudo parallel003
data from target monolingual data. A UNMT004
model is trained on the pseudo parallel data005
with translated source, and translates natural006
source sentences in inference. The source dis-007
crepancy between training and inference hin-008
ders the translation performance of UNMT009
models. By carefully designing experiments,010
we identify two representative characteristics011
of the data gap in source: (1) style gap (i.e.,012
translated vs. natural text style) that leads to013
poor generalization capability; (2) content gap014
that induces the model to produce hallucina-015
tion content biased towards the target language.016
To narrow the data gap, we propose an online017
self-training approach, which simultaneously018
uses the pseudo parallel data {natural source,019
translated target} to mimic the inference sce-020
nario. Experimental results on several widely-021
used language pairs show that our approach022
outperforms two strong baselines (XLM and023
MASS) by remedying the style and content024
gaps. 1025

1 Introduction026

In recent years, there has been a growing interest in027

unsupervised neural machine translation (UNMT),028

which requires only monolingual corpora to accom-029

plish the translation task (Lample et al., 2018a,b;030

Artetxe et al., 2018; Yang et al., 2018; Ren et al.,031

2019). The key idea of UNMT is to use back-032

translation (BT) (Sennrich et al., 2016) to construct033

the pseudo parallel data for translation modeling.034

Typically, UNMT back-translates the natural target035

sentence into the synthetic source sentence (trans-036

lated source) to form the training data. A BT loss is037

calculated on the pseudo parallel data {translated038

source, natural target} to update the parameters of039

UNMT models.040

1Code, data, and trained models will be publicly available.

Source Target

Train X ∗ Y
Inference X Y∗

Table 1: {X ∗,Y} is the translated pseudo parallel data
which is used for UMMT training on X⇒Y transla-
tion. The input discrepancy between training and in-
ference: 1) Style gap: X ∗ is in translated style, and X
is in the natural style; 2) Content gap: the content of
X ∗ biases towards target language Y due to the back-
translation manipulation, and the content of X biases
towards source language X.

In Supervised Neural Machine Translation 041

(SNMT), Edunov et al. (2020) found that BT suf- 042

fers from the transltionese problem (Zhang and 043

Toral, 2019; Graham et al., 2020) in which BT 044

improves BLEU score on the target-original test 045

set with limited gains on the source-original test 046

set. Unlike authentic parallel data available in the 047

SNMT training data, the UNMT training data en- 048

tirely comes from pseudo parallel data generated 049

by the back-translation. Therefore in this work, we 050

first revisit the problem in the UNMT setting and 051

start our research from an observation (§2): with 052

comparable translation performance on the full test 053

set, the BT based UNMT models achieve better 054

translation performance than the SNMT model 055

on the target-original (i.e. translationese) test set, 056

while achieves worse performance on the source- 057

original ones. 058

In addition, the pseudo parallel data {translated 059

source, natural target} generated by BT poses great 060

challenges for the UNMT as shown in Table 1. 061

First, there exists the input discrepancy between the 062

translated source (translated style) in UNMT train- 063

ing data and the natural source (natural style) in 064

inference data. We find that the poor generalization 065

capability caused by the style gap (i.e., translated 066

style v.s natural style) limited the UNMT transla- 067

tion performance (§3.1). Second, the translated 068
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pseudo parallel data suffers from the language cov-069

erage bias problem (Wang et al., 2021), in which070

the content of UNMT training data biases towards071

the target language while the content of the infer-072

ence data biases towards the source language. The073

content gap results in hallucinated translations (Lee074

et al., 2019; Wang and Sennrich, 2020) with hallu-075

cination content biased towards the target language076

(§3.2).077

To alleviate the data gap between the training078

and inference, we propose an online self-training079

(ST) approach to improve the UNMT performance.080

Specifically, besides the BT loss, the proposed ap-081

proach also synchronously calculates the ST loss on082

the pseudo parallel data {natural source, translated083

target} generated by self-training to update the pa-084

rameters of UNMT models. The pseudo parallel085

data {natural source, translated target} is used to086

mimic the inference scenario with {natural source,087

translated target} to bridge the data gap for UNMT.088

It is worth noting that the proposed approach does089

not cost extra computation to generate the pseudo090

parallel data {natural source, translated target}2,091

which makes the proposed method efficient and092

easy to implement.093

We conduct experiments on the XLM (Lample094

and Conneau, 2019) and MASS (Song et al., 2019)095

UNMT models on multiple language pairs with096

varying corpus sizes (WMT14 En-Fr / WMT16 En-097

De / WMT16 En-Ro / WMT20 En-De / WMT21098

En-De). Experimental results show that the pro-099

posed approach achieves consistent improvement100

over the baseline models. Moreover, we conduct101

extensive analyses to understand the proposed ap-102

proach better, and the quantitative evidence reveals103

that the proposed approach narrows the style and104

content gaps to achieve the improvements.105

In summary, the contributions of this work are106

detailed as follows:107

• Our empirical study demonstrates that the back-108

translation based UNMT framework suffers from109

the translationese problem, causing the inaccu-110

rate evaluation of UNMT models on standard111

benchmarks.112

• We empirically analyze the data gap between113

training and inference for UNMT and identify114

2The vanilla UNMT model adopts the dual structure to
train both translation directions together, and the pseudo par-
allel data {natural source, translated target} has already been
generated and is used to update the parameters of UNMT
model in the reverse direction.

two critical factors: style gap and content gap. 115

• We propose a simple and effective approach for 116

incorporating the self-training method into the 117

UNMT framework to remedy the data gap be- 118

tween the training and inference. 119

2 Translationese Problem in UNMT 120

2.1 Background: UNMT 121

Notations. Let X and Y denote the language 122

pair, and let X = {xi}Mi=1 and Y = {yj}Nj=1 rep- 123

resent the collection of monolingual sentences of 124

the corresponding language, where M,N are the 125

size of the corresponding set. Generally, UNMT 126

method that based on BT adopts dual structure 127

to train a bidirectional translation model (Artetxe 128

et al., 2018, 2019; Lample et al., 2018a,b). For 129

the sake of simplicity, we only consider translation 130

direction X → Y unless otherwise stated. 131

Online BT. Current mainstream of UNMT meth- 132

ods turn the unsupervised task into the synthetic 133

supervised task through BT, which is the most criti- 134

cal component in UNMT training. Given the trans- 135

lation task X → Y where target corpus Y is avail- 136

able, for each batch, the target sentence y ∈ Y is 137

used to generate its synthetic source sentence by 138

the backward model MTY→X : 139

x∗ = arg max
x

PY→X(x | y; θ̃), (1) 140

where θ̃ is a fixed copy of the current parameters 141

θ indicating that the gradient is not propagated 142

through θ̃. In this way, the synthetic parallel sen- 143

tence pair {x∗, y} is obtained and used to train the 144

forward model MTX→Y in a supervised manner by 145

minimizing: 146

LB = Ey∼Y [− logPX→Y (y | x∗; θ)]. (2) 147

It is worth noting that the synthetic sentence pair 148

generated by the BT is the only supervision signal 149

of UNMT training. 150

Objective function. In addition to BT, denoising 151

auto-encoding (DAE) is an additional loss term of 152

UNMT training, which is denoted by LD and is 153

not the main topic discussed in this work. 154

In all, the final objective function of UNMT is: 155

L = LB + λDLD, (3) 156
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Model En-Fr En-De En-Ro Avg.
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

Full Test Set
SNMT 38.4 33.6 29.5 33.9 33.7 32.5 33.6
XLM 37.4 34.5 27.2 34.3 34.6 32.7 33.5

MASS 37.8 34.9 27.1 35.2 35.1 33.4 33.9

Target-Original Test Set / Translted Input
SNMT 37.4 32.4 25.6 37.1 38.2 28.2 33.2
XLM 39.1 36.5 26.6 42.2 42.1 34.4 36.8

MASS 39.2 37.6 27.0 42.9 43.1 35.6 37.6

Source-Original Test Set / Natural Input
SNMT 38.2 34.1 32.3 28.8 29.4 35.9 33.1
XLM 34.7 30.4 26.6 22.5 27.4 30.6 28.7

MASS 35.2 30.2 26.1 23.6 27.4 30.8 28.9

Table 2: Translation performance of SNMT and UNMT
models on full / target-original / source-original test
sets. SNMT denotes the supervised translation models
trained on undersampled parallel data and their perfor-
mance on full test data are controlled to be approximate
to the UNMT counterparts.

where λD is the hyper-parameter weighting DAE157

loss term. Generally, λD starts from one and de-158

creases as the training procedure continues3.159

2.2 Translationese Problem160

To verify whether the UNMT model suffers from161

the input gap between training and inference and162

thus is biased towards translated input while against163

natural input, we conduct comparative experiments164

between SNMT and UNMT models.165

Setup We evaluate the UNMT and SNMT mod-166

els on WMT14 En-Fr, WMT16 En-De and WMT16167

En-Ro test sets, following Lample and Conneau168

(2019) and Song et al. (2019). We first train the169

UNMT models on the above language pairs with170

model parameters initialized by XLM and MASS171

models. Then, we train the corresponding SNMT172

models whose performance on the full test sets is173

controlled to be approximated to UNMT by under-174

sampling training data. Finally, we evaluate the175

UNMT and SNMT models on the target-original176

and source-original test sets, whose inputs are trans-177

lated and natural respectively. For training details178

of SNMT models, please refer to appendix A.1.179

For training details of UNMT models, please refer180

to §5.1.181

3Verified from open-source XLM Github implementation.

Results We present the translation performance 182

in terms of the BLEU score in Table 2 and our 183

observations are: 184

• UNMT models perform close to the SNMT mod- 185

els on the full test sets with 0.3 BLEU difference 186

at most on average (33.5/33.9 vs. 33.6). 187

• UNMT models outperform SNMT models on 188

target-original test sets (translated input) with 189

average BLEU score improvements of 3.6 and 190

4.4 BLEU points (36.8/37.6 vs. 33.2). 191

• UNMT models underperform the SNMT models 192

on source-original test sets (natural input) with 193

an average performance degradation of 4.4 and 194

4.2 BLUE points (28.7/28.9 vs. 33.1). 195

The above observations are invariant concern- 196

ing the pre-trained model and translation direction. 197

In particular, the unsatisfactory performance of 198

UNMT under natural input indicates that UNMT 199

is overestimated on the previous benchmark. We 200

attribute the phenomenon to the data gap between 201

training and inference for UNMT: there is a mis- 202

match between natural inputs of source-original 203

test data and the back-translated inputs that UNMT 204

employed for training. This work focuses on the 205

experiments on the source-original test sets (i.e., 206

the input of an NMT translation system is generally 207

natural), which is closer to the practical scenario.4 208

3 Data Gap between Training and 209

Inference 210

In this section, we identity two representative 211

data gaps between training and inference data for 212

UNMT: style gap and content data. We divide the 213

test sets into two portions: the natural input por- 214

tion with source sentences originally written in the 215

source language and the translated input portion 216

with source sentences translated from the target 217

language. Due to the limited space, we conduct the 218

experiments with pre-trained XLM initialization 219

and perform analysis with different kinds of in- 220

puts (i.e., natural and translated inputs) on De⇒En 221

newstest2013-2018 unless otherwise stated. 222

3.1 Style Gap 223

To perform the quantitative analysis of the style 224

gap, we adopt KenLM5 to train a 4-gram language 225

4From WMT19, the WMT community proposes to use
the source-original test with natural input sets to evaluate the
translation performance.

5https://github.com/kpu/kenlm
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Inference Input PPL

Natural 242
Translated 219

Table 3: Perplexity on the natural input sentences and
translated input sentences of newstest2013-2018. The
language model is trained on the UNMT translated
source sentences.

Model Natural De Translated De∗

BLEU ∆ BLEU ∆

SNMT 28.8 – 44.9 –
UNMT 22.5 -6.3 42.1 -2.8

Table 4: Translation performance on natural input por-
tion of WMT16 De⇒En. We also use Google Transla-
tor to generate the translated version by translating the
corresponding target sentences.

model on the UNMT translated source sentences6226

and use the language model to calculate the per-227

plexity (PPL) of natural and translated input sen-228

tences in the test sets. The experimental results229

are shown in Table 3. The lower perplexity value230

(219 < 242) indicates that compared with the nat-231

ural inputs, the UNMT translated training in-232

puts have a more similar style with translated233

inputs in the test sets.234

In order to further reveal the influence of the235

style gap on UNMT, we manually eliminated it236

and re-evaluated the models on the natural input237

portion of WMT16 De⇒En. Concretely, We first238

take the third-party Google Translator to translate239

the target English sentences of the test sets into240

the source German language to eliminate the style241

gap. And then we conduct translation experiments242

on the natural input portion and its Google trans-243

lated portion to evaluate the impact of the style244

gap on the translation performance. We list the245

experimental results in Table 4. We can find that by246

converting from the natural inputs (natural De) to247

the translated inputs (translated De∗), the UNMT248

model achieves more improvement than the SNMT249

model (-2.8 > -6.3), demonstrating that the style250

gap inhibits the UNMT translation output quality.251

6To alleviate the content bias problem, we generate the
training data 50% from En⇒De translation and 50% from
round trip translation De⇒En⇒De.

Data Most Frequent Name Entities

BT Train Deutschland, dpa, USA, China, Obama, Stadt

Data Hause, Europa, Großbritannien, Russland

Inference Deutschland, Stadt, CDU, deutschen, Zeit

Natural SPD, USA, deutsche, China, Mittwoch

Inference Großbritannien, London, Trump, USA,

Translated Russland, Vereinigten Staaten, Europa

Mexiko, Amerikaner, Obama

Table 5: Ten most frequent entities in BT training
data and testset. Words in red are related to Germany.
Words in blue are related to English.

Inference Input Train

Natural Translated

Natural 0.95 0.85
Translated 0.84 0.93

Table 6: Content similarity between different kinds of
training and inference data.

3.2 Content Gap 252

In this section, we show the existence of the content 253

gap by (1) showing the most high-frequency name 254

entities, (2) calculating content similarity using 255

term frequency-inverse document frequency (TF- 256

IDF) for the training and inference data. 257

We use spaCy7 to recognize German named en- 258

tities for the UNMT translated source sentences, 259

natural inputs and translated inputs in test sets, and 260

show the ten most frequent name entities in Table 5. 261

From the table, we can observe that the UNMT 262

translated source sentences have few named entities 263

biased towards source language German (words in 264

red color), while having more named entities bi- 265

ased towards target language English, e.g., USA, 266

Obama. It indicates that the content of the UNMT 267

translated source sentences is biased towards the 268

target language English. 269

Meanwhile, the natural input portion of the infer- 270

ence data has more named entities biased towards 271

source language German (words in red color), 272

demonstrating that the content gap exists between 273

the natural input portion of the inference data and 274

the UNMT translated training data. 275

Next, we remove the stop words and use the 276

term frequency inverse document frequency (TF- 277

IDF) approach to calculate the content similarity 278

7https://github.com/explosion/spaCy
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Input
Die deutschen Kohlekraftwerke ... der in

Deutschland emittierten Gesamtmenge .

Ref
German coal plants , ..., two thirds of

the total amount emitted in Germany .

SNMT
..., German coal-fired power stations ...

of the total emissions in Germany .

UNMT
U.S. coal-fired power plants ... two thirds of

the total amount emitted in the U.S. ... .

Table 7: Example translation that the UNMT model
outputs the hallucinated translation “U.S.”, which is bi-
ased towards target language English.

between the training and inference data. Similarity279

scores are presented in Table 6. We can observe280

that the UNMT translated source data has a more281

significant similarity score with translated inputs282

which are generated from the target English sen-283

tences. This result indicates that the content of284

UNMT translated source data is more biased285

towards the target language, which is consistent286

with the findings in Table 5.287

As it is difficult to measure the name entities288

translation accuracy in terms of BLEU evaluation289

metric, we provide a translation example in Ta-290

ble 7 to show the effect of the content gap in the291

UNMT translations (more examples in appendix C).292

We can observe that the UNMT model outputs the293

hallucinated translation “U.S.”, which is biased to-294

wards the target language English. We will present295

a quantitative analysis to show the impact of the296

content gap on UNMT translation performance in297

Section 6.2.298

4 Online Self-training for UMMT299

To bridge the data gap between training and infer-300

ence of UNMT, we propose a simple and effective301

method through self-training. For the translation302

task X → Y , we generate the source-original train-303

ing samples from the source corpus X to improve304

the model’s translation performance on natural in-305

puts. For each batch, we apply the forward model306

MTX→Y on the natural source sentence x to gen-307

erate its translation:308

y∗ = arg max
y

PX→Y (y | x; θ̃). (4)309

In this way, we build a sample {x, y∗} with nat-310

ural input, on which the model can be trained by311

minimizing: 312

LS = Ex∼X [− logPX→Y (y∗ | x; θ)]. (5) 313

Under the framework of UNMT training, the final 314

objective function can be formulated as: 315

L = LB + λDLD + λSLS , (6) 316

where λS is the hyper-parameter weighting the self- 317

training loss term. It is worth noting that the gener- 318

ation step of Eq.(4) has been done by the BT step of 319

Y → X training. Thus, the proposed method will 320

not increase the training cost significantly but make 321

the most of the data generated by BT (Table 9). 322

5 Experiments 323

5.1 Setup 324

Data We follow the common practices to con- 325

duct experiments on several UNMT benchmarks: 326

WMT14 En-Fr, WMT16 En-De, WMT16 En- 327

Ro. The details of monolingual training data 328

are delineated in appendix A.2. We adopt En-Fr 329

newsdev2014, En-De newsdev2016, En-Ro news- 330

dev2016 as the validation (development) sets, and 331

En-Fr newstest2014, En-De newstest2016, En-Ro 332

newstest2016 as the test sets. In addition to the 333

full test set, we split the test set into two parts: 334

target-original and source-original, and evaluate 335

the model’s performance on the three kinds of test 336

sets. We use the released XLM BPE codes and 337

vocabulary for all language pairs. We use NIST 338

BLEU score (Papineni et al., 2002) as the evalua- 339

tion metric and report case-sensitive BLEU scores 340

using the multi-bleu.perl script. 341

Model We evaluate the UNMT model fine-tuned 342

on XLM8 and MASS9 pre-trained model (Lample 343

and Conneau, 2019; Song et al., 2019). For XLM 344

models, we adopt the pre-trained models released 345

by Lample and Conneau (2019) for all language 346

pairs. For MASS models, we adopt the pre-trained 347

models released by Song et al. (2019) for En-Fr 348

and En-Ro and continue pre-training the MASS 349

model of En-De for better reproducing the results. 350

More details are delineated in appendix A.2. 351

5.2 Main Result 352

Table 8 shows the translation performance of XLM 353

and MASS baselines and our proposed models. We 354

have the following observations: 355

8https://github.com/facebookresearch/XLM
9https://github.com/microsoft/MASS
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Testset Model Approach En-Fr En-De En-Ro Avg. ∆⇒ ⇐ ⇒ ⇐ ⇒ ⇐
Existing Works

XLM (Lample and Conneau, 2019) 33.4 33.3 26.4 34.3 33.3 31.8 32.1 –
MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1 34.0 –
CBD (Nguyen et al., 2021) 38.2 35.5 30.1 36.3 36.3 33.8 35.0 –

Our Implementation

Full set
XLM

UNMT 37.4 34.5 27.2 34.3 34.6 32.7 33.5 –
+Self-training 37.8 35.1 28.1 34.8 36.2 33.9 34.3 +0.8

MASS
UNMT 37.8 34.9 27.1 35.2 35.1 33.4 33.9 –
+Self-training 38.0 35.2 28.9 35.6 36.5 34.0 34.7 +0.8

Trg-Ori
XLM

UNMT 39.1 36.5 26.6 42.2 42.1 34.4 36.8 –
+Self-training 39.3 37.8 26.5 42.4 42.9 34.1 37.2 +0.4

MASS
UNMT 39.2 37.6 27.0 42.9 43.1 35.6 37.6 –
+Self-training 39.0 37.3 27.7 42.7 42.9 35.3 37.5 -0.1

Src-Ori
XLM

UNMT 34.7 30.4 26.6 22.5 27.4 30.6 28.7 –
+Self-training 35.4⇑ 30.2 28.0⇑ 23.1↑ 29.6⇑ 32.7⇑ 29.8 +1.1

MASS
UNMT 35.2 30.2 26.1 23.6 27.4 30.8 28.9 –
+Self-training 35.9⇑ 30.9↑ 28.7⇑ 24.9⇑ 30.1⇑ 31.9⇑ 30.4 +1.5

Table 8: Translation performance on WMT14 En-Fr, WMT16 En-De, WMT16 En-Ro and their corresponding
source-original (natural input) and target-original (translated input) subset. “↑ / ⇑”: significant over the corre-
sponding baseline model (p < 0.05/0.01), tested by bootstrap resampling (Koehn, 2004).

• Our re-implemented baseline models achieve356

comparable or even better performance as re-357

ported in previous works. The reproduced358

XLM+UNMT model has an average improve-359

ment of 1.4 BLEU points compared to the orig-360

inal report in Lample and Conneau (2019) and361

MASS+UNMT model is only 0.1 BLEU lower362

on average than Song et al. (2019).363

• Our approach with self-training significantly im-364

proves overall translation performance (+0.8365

BLEU on average). This demonstrates the uni-366

versality of the proposed approach on both large-367

scale (En-Fr, En-De) and data imbalanced corpus368

(En-Ro).369

• In the translated input scenario, our approach370

achieves comparable performance to baselines.371

It demonstrates that although the sample of self-372

training is source-original style, our approach373

does not sacrifice the performance on the target-374

original side.375

• In the natural input scenario, we find that our376

proposed approach achieves more significant im-377

provements, with +1.1 and +1.3 average BLEU378

on both baselines. The reason is that the source-379

original style sample introduced by self-training 380

alleviates model bias between natural and trans- 381

lated input. 382

5.3 Comparison with Offline Self-training 383

and CBD 384

We compare online self-training with the following 385

two related methods, which also incorporate natural 386

inputs in training: 387

• Offline Self-training model distilled from the 388

forward and backward translated data gener- 389

ated by the trained UNMT model. 390

• CBD (Nguyen et al., 2021) model distilled 391

from the data generated by two trained UNMT 392

models through cross-translation, which em- 393

braces data diversity. 394

Dataset Previous studies have recommended re- 395

stricting test sets to natural input sentences, a 396

methodology adopted by the 2019-2020 edition 397

of the WMT news translation shared task (Edunov 398

et al., 2020). In order to further verify the effective- 399

ness of the proposed approach, we also conduct the 400

evaluation on WMT19 and WMT20 En-De test sets. 401

Both test sets contain only natural input samples. 402
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Model Approach WMT19 WMT20 Avg. ∆ Training Cost
⇒ ⇐ ⇒ ⇐

XLM

UNMT 26.6 24.4 22.9 26.6 25.1 – 1.0
+Offline ST 26.9 24.2 23.2 25.9 25.1 +0.0 ×1.8
+CBD 28.3⇑ 25.6⇑ 24.2⇑ 26.9 26.3 +1.2 ×7.3
+Online ST 28.3⇑ 26.0⇑ 24.3⇑ 27.6⇑ 26.6 +1.5 ×1.2

MASS

UNMT 26.7 24.6 23.1 27.0 25.3 – 1.0
+Offline ST 27.2 24.6 23.1 26.9 25.4 +0.1 ×1.8
+CBD 28.3⇑ 25.6⇑ 24.0⇑ 27.0 26.2 +0.9 ×7.3
+Online ST 28.5⇑ 26.1⇑ 23.8⇑ 27.8⇑ 26.6 +1.3 ×1.1

Table 9: Comparison with offline self-training and CBD10. “↑ / ⇑”: significant over the corresponding baseline
model (p < 0.05/0.01), tested by bootstrap resampling (Koehn, 2004). The training cost is estimated by the time
required for training one epoch where the cost of data generation is also considered.

Results Experimental results are presented in Ta-403

ble 9. We also show the training costs of these404

methods. We find that405

• Unexpectedly, the offline self-training has no406

significant improvement over baseline UNMT.407

Sun et al. (2021) have demonstrated the effec-408

tiveness of offline self-training in UNMT un-409

der low-resource and data imbalanced scenarios.410

However, in our data-sufficient scenarios, offline411

self-training may suffer from the data diversity412

problem while online self-training can alleviate413

the problem through the dynamic model param-414

eters during the training process. We leave the415

complete analysis to future work.416

• CBD achieves a significant improvement com-417

pared to baseline UNMT, but the training cost is418

about six times that of online self-training.419

• The proposed online self-training achieves the420

best translation performance in terms of BLEU421

score, which further demonstrates the superiority422

of the proposed method under natural input.423

6 Analysis424

6.1 Translationese Output425

Since the self-training samples are translated sen-426

tences on the target side, there is concern that the427

improvement achieved by self-training only comes428

from making the model outputs better match the429

translated references, rather than enhancing the430

10Our re-implemented CBD model can not achieve compa-
rable performance with Nguyen et al. (2021), with 28.4 and
35.2 BLEU scores on WMT16 En-De and De-En test sets.

model’s ability on natural inputs. To dispel the con- 431

cern, we conducted the following experiments: (1) 432

evaluate the fluency of model outputs in terms of 433

language model PPL and (2) evaluate the transla- 434

tion performance on Google Paraphrased WMT19 435

En⇒De test sets (Freitag et al., 2020). 436

Output fluency We exploit the monolingual cor- 437

pora of target languages to train the 4-gram lan- 438

guage models. Table 10 shows the language mod- 439

els’ PPL on model outputs of test sets mentioned 440

in §5.2. We find that online self-training has only a 441

slight impact on the fluency of model outputs, with 442

the average PPL of XLM and MASS models only 443

increasing by +3 and +6, respectively. 444

Approach En-Fr En-De En-Ro Avg.
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

XLM
UNMT 101 147 250 145 152 126 154
+ST 101 144 253 147 156 138 157

MASS
UNMT 100 145 256 144 143 119 151
+ST 103 146 263 142 156 133 157

Table 10: Automatic fluency analysis in terms of per-
plexity (PPL). Language models are trained on the nat-
ural monolingual data in the respective target language.

Translation performance on paraphrased refer- 445

ences Freitag et al. (2020) collected additional 446

human translations for newstest2019 with the ul- 447

timate aim of generating a natural-to-natural test 448

set. We adopt the HQ(R) and HQ(all 4), which 449
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Model HQ(R) HQ(all 4)

Supervised Model
35.0 27.2

(Freitag et al., 2020)

XLM+UNMT 25.7 20.6
+Self-training 27.1 21.8

MASS+UNMT 25.4 20.5
+Self-training 27.1 21.7

Table 11: Translation performance on WMT19
En⇒De test sets with additional human translation ref-
erences provided by Freitag et al. (2020).

have higher human adequacy rating scores, to re-450

evaluate our proposed models.451

We present the experimental results in Table 11.452

Our proposed method outperforms baselines on453

both kinds of test sets. Therefore, we demonstrate454

that our proposed method improves the UNMT455

model performance on natural input with limited456

translationese outputs.457

Model Approach NER Acc.

XLM
UNMT 0.46

+Self-training 0.53

MASS
UNMT 0.44

+Self-training 0.52

Table 12: Accuracy of NER translation on natural input
portion of test sets.

6.2 Data Gap458

Style Gap From Table 8, our proposed approach459

achieves significant improvements on the natural460

input portion while not gaining on the translated461

input portion over the baselines. It indicates our462

approach has better generalization capability on the463

natural input portion of test sets than the baselines.464

Content Gap To verify that our proposed ap-465

proach bridges the content gap between training466

and inference, we calculate the accuracy of NER467

translation by different models. Specifically, we468

adopt spaCy to recognize the name entities in ref-469

erence and translation outputs and treat the name470

entities in reference as the ground truth to calculate471

the accuracy of NER translation. We show the re-472

sults in Table 12. Our proposed method achieves473

a significant improvement in the translation accu-474

racy of NER compared to the baseline. The result475

demonstrates that online self-training can help the476

model pay more attention to the input content rather 477

than being affected by the content of the target lan- 478

guage training corpus. 479

7 Related Work 480

Data Augmentation Back-translation (Sennrich 481

et al., 2016; Edunov et al., 2018; Marie et al., 2020) 482

and self-training (Zhang and Zong, 2016; Jiao et al., 483

2021) have been well studied in the supervised 484

NMT. In the unsupervised scenario, Tran et al. 485

(2020) have shown that multilingual pre-trained 486

language models can be used to retrieve the pseudo 487

parallel data from the large monolingual data. Han 488

et al. (2021) use generative pre-training language 489

models, e.g., GPT-3, to perform zero-shot transla- 490

tions and use the translations as few-shot prompts 491

to sample a larger synthetic translations dataset. 492

The most related work to ours is that offline self- 493

training technology used to enhance low-resource 494

UNMT (Sun et al., 2021). In this paper, the pro- 495

posed online self-training method for UNMT can 496

be applied to both high-resource and low-resource 497

scenarios without extra computation to generate 498

the pseudo parallel data. 499

Translationnese Problem Translationese prob- 500

lem has been investigated in machine translation 501

evaluation (Lembersky et al., 2012; Zhang and 502

Toral, 2019; Edunov et al., 2020; Graham et al., 503

2020). These works aim to analyze the effect of 504

translationese in bidirectional test sets. In this work, 505

we revisit the translationese problem in UNMT and 506

find it causes the inaccuracy evaluation of UNMT 507

performance since the training data entirely comes 508

from the translated pseudo-parallel data. 509

8 Conclusion 510

Pseudo parallel corpus generated by back- 511

translation is the foundation of UNMT. However, 512

it also causes the problem of translationese and 513

results in inaccuracy evaluation on UNMT perfor- 514

mance. We attribute the problem to the data gap 515

between training and inference and identify two 516

data gaps, i.e., style gap and content gap. We con- 517

duct the experiments to evaluate the impact of the 518

data gap on translation performance and propose 519

the online self-training method to alleviate the data 520

gap problems. Our experimental results on multi- 521

ple language pairs show that the proposed method 522

achieves consistent and significant improvement 523

over the strong baseline XLM and MASS models 524

on the test sets with natural input. 525
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A Training Details619

A.1 Training Details of SNMT Model620

Data We use WMT16 parallel data for En-De621

and En-Ro and WMT14 for En-Fr. We randomly622

undersample the full parallel corpus. The final623

sizes of En-De and En-Fr training corpus are 2M624

respectively, the size of En-Ro corpus is 400k.625

Model We initialize the model parameter by626

XLM pre-trained model and adopt 2500 to-627

kens/batch to train the SNMT model for 40 epochs.628

We select the best model by BLEU score on the629

validation set mentioned in §5.1. Note that in order630

to avoid introducing other factors, our SNMT mod-631

els are bidirectional, which is consistent with the632

UNMT models.633

A.2 Training Details of UNMT Model634

Model We adopt the pre-trained XLM models re-635

leased by Lample and Conneau (2019) and MASS636

models released by Song et al. (2019) for all lan-637

guage pairs. In order to better reproduce the re-638

sults for MASS on En-De, we use monolingual639

data to continue pre-training the MASS pre-trained640

model for 300 epochs and select the best model by641

perplexity (PPL) on the validation set. We adopt642

2500 tokens/batch to train the UNMT model for 70643

epochs and select the best model by BLEU score644

on the validation set.645

Hyper-parameter The target of self-training646

samples is the translation of the model, which may647

be noisy in comparison with the reference. There-648

fore, we adopted the strategy of linearly increasing649

λS and keeping it at a small value to avoid nega-650

tively affecting the online back-translation train-651

ing. We denote the beginning and final value652

of λS by λ0S and λ1S , respectively. We tune the653

λ0S within {0, 1e−3, 1e−2, 2e−2} and λ1S within654

{5e−3, 5e−2, 1e−1, 1.5e−1} based on the BLEU655

score on validation sets.656

Training data Table 13 lists the monolingual657

data used in this study to train the UNMT models11.658

We filter the training corpus based on language and659

remove sentences containing URLs.660

11All the data is available at
http://www.statmt.org/wmt20/translation-task.html ex-
cept for En-De which we will release in our github
repo.

Data Lang. # Sent. Source

En-De
En 50.0M

Song et al. (2019)
De 50.0M

En-Fr/Ro
En 179.9M

NC07-17
Fr 65.4M
Ro 2.8M NC07-17 + WMT16

Table 13: Data statistics for En-X translation tasks. “M”
denotes millions. “NC” denotes News Crawl.

B Difference between Online and Offline 661

Self-training 662

In addition to online self-training, there is another 663

way to introduce self-training into UNMT, which 664

we call offline self-training. The main difference 665

between online and offline self-training is that the 666

online version is an end-to-end training method 667

while the offline version is a pipeline with many 668

stages. 669

The online version incorporates self-training in 670

the UNMT training phrase through sightly chang- 671

ing the loss function and has been verified to be 672

effective in our experiment (§5). However, the of- 673

fline version starts from a trained UNMT model 674

and generates the data (through backward and for- 675

ward translation) to distillate the final model in a 676

supervised manner. Our experimental results show 677

that online self-training outperforms offline (Ta- 678

ble 9). 679

Another advantage of online ST over offline ST 680

is that no additional decoding steps are required to 681

generate training corpus, resulting in lower training 682

costs. 683

C Translation Examples 684

Table 14 presents several example translations that 685

the UNMT model outputs the hallucinated transla- 686

tions, which are biased towards the target language. 687
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Source Mindestens ein Bayern-Fan wurde verletzt aus dem Stadion transportiert .
Reference At least one Bayern fan was taken injured from the stadium .
UNMT At least one Scotland fan was transported injured from the stadium .

Source Übrigens : München liegt hier ausnahmsweise mal nicht an der Spitze .
Reference Incidentally , for once Munich is not in the lead .
UNMT Remember , Edinburgh is not at the top of the list here for once .

Source Justin Bieber in der Hauptstadt : Auf Bieber-Expedition in Berlin
Reference Justin Bieber in the capital city : on a Bieber expedition in Berlin
UNMT Justin Bieber in the capital : On Bieber-inspired expedition in NYC

Source Zum Vergleich : In diesem Jahr werden in Deutschland 260.000 Einheiten fertig .
Reference In comparison , 260,000 units were completed in this year in Germany.
UNMT To date , 260,000 units are expected to be finished in the UK this year .

Source
Deutschland schiebe ein Wohnungsdefizit vor sich her , das von Jahr zu Jahr
größer wird .

Reference Germany has a housing deficit which increases every year .

UNMT
The U.S. was shooting ahead of a housing deficit that is expected to grow from year
to year .

Table 14: Example translations in WMT16 De⇒En. the UNMT model outputs the hallucinated translations which
are biased towards the target language En.
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