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ABSTRACT

Understanding fine-grained temporal dynamics is crucial for video understanding.
Yet, popular video benchmarks, such as MSRVTT and TGIF, often fail to effectively
evaluate AI models’ temporal reasoning abilities due to the lack of fine-grained
temporal annotations. As a result, text-based models, leveraging strong language
priors, often perform comparably to video models, and image-trained models have
been reported to outperform their video-trained counterparts on MSRVTT and
TGIF. This paper introduces a new TemporalBench benchmark for fine-grained
temporal event understanding in videos. TemporalBench, sourced from a diverse
video datasets, consists of ∼10K pairs of video description questions, derived
from ∼2K high-quality human-annotated video captions. Uniquely, our benchmark
provides fine-grained temporal annotations to evaluate models’ temporal reasoning
abilities. Our results show that state-of-the-art models like GPT-4o achieve only
38.0% multiple binary QA accuracy on TemporalBench, demonstrating a signif-
icant human-AI gap in temporal understanding. We hope that TemporalBench
is instrumental to fostering research on improving models’ temporal reasoning
capabilities.

1 INTRODUCTION

The ability to understand and reason about events in videos is a crucial aspect of artificial intelligence,
with applications ranging from activity recognition and long-term action anticipation to perception
for autonomous driving and robotics. Recently, there has been an emergence of highly capable
multimodal generative models, including proprietary ones such as GPT-4o (OpenAI, 2024) and
Gemini (Gemini Team, 2024) as well as open-sources ones (Liu et al., 2023a; Zhu et al., 2024b;
Bai et al., 2023), that have demonstrated impressive results on existing video benchmarks (Xu et al.,
2016; Chen & Dolan, 2011; Yu et al., 2019a; Mangalam et al., 2024). However, these benchmarks
often do not truly evaluate the abilities of the aforementioned models to understand video content due
to their generally coarse-grained annotations.

The lack of fine-grained temporal details in the annotations often leads to existing video understanding
benchmarks suffering from a strong language prior bias. This is similar to observations in visual
question answering with images (Antol et al., 2015). For example, prior works (Tan et al., 2024; Li
et al., 2023a) show that language models such as Flan-T5 (Chung et al., 2024) and Llama-2/3 (Touvron
et al., 2023) perform comparably to video models on EgoSchema (Mangalam et al., 2024) and Seed-
Bench (Li et al., 2023a) without using any information from videos. Furthermore, the lack of
fine-grained temporal details often results in the single frame bias of current video understanding
benchmarks (Lei et al., 2023). These benchmarks are often biased toward spatial reasoning, where
static information from a single frame suffices to achieve high performance. They often fail to test a
model’s ability to reason about temporal sequences, leading to inflated evaluations of AI models that
are not genuinely capable of understanding temporal events. Specifically, vision-language models
(VLMs) (Liu et al., 2024a;b) that are trained on image-level datasets, including FreeVA (Wu, 2024),
IG-VLM (Kim et al., 2024) and M3 (Cai et al., 2024b), often outperform their video counterparts on
popular video question answering benchmarks such as MSRVTT (Xu et al., 2016), MSVD (Xu et al.,
2017), and TGIF (Jang et al., 2017).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The person picks up the packet from the table 
with their left hand and tears it open with their 
right hand. They place the packet back on the 
table with their left hand, then pull out the 
rectangular object with their right hand. They 
press the rectangular object onto the table 
with their left hand while holding the tube.

Video QA

Video Captioning

Long Video QA

A right hand holds a piece of peeled ginger while a 
knife is held in the left and makes 3 slices off the 
ginger. A piece of partially peeled ginger is held in 
the right hand while a spoon is held in the left and 
scraped long the ginger removing the skin. 

A woman turns and transfers the mug from 
her right hand to left. She pushes her glasses 
with her right hand. She drinks from the cup 
with her left hand and puts her right hand on 
her waist. And she turns her head to the left 
and glances at the wall.

Temporal Video 
Grounding

…

Two people are pitching tents by moving 
the tent fabric with both their hands from 
right to the left to cover the tent. They hold 
the fabric on either edges in each hand and 
cover the tent and lets it drop. A person 
fastens the hooks by pressing the strap 
over another strip with both hands.

TemporalBench

Figure 1: The tasks of TemporalBench. TemporalBench starts from fine-grained video descriptions
and supports diverse video understanding tasks including video QA, video captioning, long video
understanding, etc. It differs from existing benchmarks by the average number of words per video
(middle top), word density (center) and the coverage of various temporal aspects (middle bottom).

To address this limitation, we propose TemporalBench (Figure 1), a new video understanding
benchmark that evaluates multimodal video models on understanding fine-grained activities, and
consists of ∼10k question and answer pairs curated from ∼2k high-quality human-annotated captions
with rich activity details. Unlike static image-based tasks, video understanding requires models to
reason effectively about both spatial and temporal information. The temporal dynamics inherent
in videos introduce significant complexity, as actions and events often unfold over time and cannot
be captured in a single frame. With this in mind, we designed our benchmark to focus on areas
where current models often struggle, emphasizing annotations related to long-range dependencies,
fine-grained visual observations, and event progression.

As shown in Figure 2, we first collect video clips from existing video grounding benchmarks that span
diverse domains, including procedural videos (Tang et al., 2019), human activities (Krishna et al.,
2017; Gao et al., 2017) and ego-centric videos (Grauman et al., 2024). The positive captions include
rich and fine-grained details about actions and activities, which are annotated by highly qualified
Amazon Mechanical Turk (AMT) workers and authors of this paper. Then, we generate the negative
captions with respect to the actions using powerful Large Language Models (LLMs) and filter them
according to our defined rules. Our resulting TemporalBench contains 10K video descriptions and
matching questions of high quality. Furthermore, the rich temporal context of annotations in our
diverse corpus creates a solid foundation for the development of additional benchmarks in related
tasks such as spatio-temporal localization and causal inference. We hope that our benchmark can
pave the road for further development of multimodal video models capable of fine-grained video
understanding and reasoning.

In contrast to existing video benchmarks, TemporalBench has the following defining characteristics:

• Emphasis on fine-grained action understanding. Due to the highly descriptive video captions,
our negative captions highlight fine-grained temporal differences, such as “sliced the ginger three
times” versus “sliced the ginger twice”, and “put on the eyeglasses” versus “push the eyeglasses”.

• Evaluations on both short (<20 seconds) and long (>3 minute) videos. Since the videos clips
are sampled from existing videos, our benchmark can also support evaluations on long video
understanding by concatenating the descriptions of multiple and non-overlapping video clips from
the same source video.

• Extends to video captioning, video grounding, and video generation. Besides the task of video
question answering, the nature of the positive captions in our benchmark allows it to seamlessly
extend to evaluation of other tasks such as video temporal grounding and dense captioning.

• Evaluations of both video embedding and question-answering models. Given the annotated
positive and negative captions in TemporalBench, it also supports the evaluation of discriminative
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A person bends down and cuts off 
the string twice that is wrapping the 
tree with a pair of scissors he is 
holding with his right hand. A woman 
smiles and walks to the right. He 
transfers the scissors to his left 
hand and moves around the tree 
looking for the string to be cut.

(straightens up)
A person bends down and cuts …

(rope)
Bends down and cuts off the string 
…

(three times)
… cuts off the string twice that  …

Positive Caption

(a) Generating Negative Captions Candidates 
by Replacing Words and Temporal Reordering (b) Author Filtering

(a) AMT 
Annotation

Step1:  Positive caption generation

Step2: Negative captions generation

… He transfers the scissors to 
his left hand … A woman smiles 
and walks to the right

… A woman smiles and walks to 
the right.… A person bends down 
and cuts off the string twice …

A person bends down and cuts 
off the string twice that is 
wrapping the tree with a pair of 
scissors he is holding with his 
right hand. A woman smiles and 
walks to the right. He transfers 
the scissors to his left hand and 
moves around the tree looking 
for the string to be cut.

GPT-4o Gemini-1.5-Pro Llama-3-405b

(b) Author 
Refinement 

Figure 2: Overview of the annotation pipeline for TemporalBench. In step 1, we fist collect
high-quality captions for the videos using qualified AMT annotators followed by refining them.
In step 2, we leverage existing LLMs to generate negative captions by replacing select words and
reordering the sequence of actions before filtering them ourselves.

and contrastive learning-based models such as XCLIP (Ni et al., 2022), ImageBind (Girdhar et al.,
2023) as well as multimodal generative models such as GPT-4o and Gemini.

Among other observations, our empirical evaluations show that state-of-the-art multimodal video
models like GPT-4o only achieve an average accuracy of 38.0% on our benchmark using our proposed
multiple binary QA accuracy metric, compared to 67.9% obtained by humans. This result highlights
that the aforementioned models are able to understand static visual concepts but are still limited
in reasoning about the fine-grained temporal relationships of objects and events in videos. More
significantly, we highlight a critical issue with using LLMs to answer multi-choice QA.

2 RELATED WORK

Large Multimodal Models. Large Language Models (LLMs) like ChatGPT (OpenAI, 2023b), GPT-
4 (OpenAI, 2023c), and Llama (Touvron et al., 2023) have demonstrated impressive reasoning and
generalization capabilities for text. The introduction of models that integrate visual data has brought
about a significant shift in the landscape of LLMs, such as GPT-4V(ision)(OpenAI, 2023a). Building
upon open-source LLMs (Touvron et al., 2023; Chiang et al., 2023), a wide range of multimodal
models has achieved remarkable progress, led by pioneering models such as LLaVA (Liu et al., 2023a;
2024a) and MiniGPT-4 (Zhu et al., 2024b), which combine LLMs’ capabilities with a CLIP (Radford
et al., 2021) based image encoder. Recently, a growing number of LMMs have been developed to
handle a wider range of tasks and modalities, such as region-level LMMs (Cai et al., 2024a; Zhang
et al., 2023c; Chen et al., 2023; Peng et al., 2023; Zhang et al., 2023b), 3D LMMs (Hong et al., 2023),
and video LMMs (Lin et al., 2023; Zhang et al., 2023a; 2024b).

Multimodal Understanding Benchmarks. The recent significant advancements have resulted in
more versatile multimodal models, making it imperative to thoroughly and extensively evaluate their
visual understanding and reasoning abilities. Conventional multimodal benchmarks like VQA (Antol
et al., 2015), GQA (Hudson & Manning, 2019) and VizWiz (Gurari et al., 2018) have been revitalized
and used for evaluating the general visual question answering performance for LMMs. Some
other question answering benchmarks like TextVQA (Singh et al., 2019), DocVQA (Mathew et al.,
2021) and InfoVQA (Mathew et al., 2022) have also been employed to validate the text-oriented
understanding. Recent studies have introduced a variety of new benchmarks, such as SEED-Bench (Li
et al., 2023a), MMBench (Liu et al., 2023b) and MM-Vet (Yu et al., 2024b) for evaluating the models’
integrated problem-solving capabilities, and MMMU (Yue et al., 2024a) and MathVista (Lu et al.,
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2024) for scientific and mathematical reasoning. In addition, the commonly known hallucination
problem also appears in LMMs, and is also investigated in POPE (Li et al., 2023b), MMHal-
Bench (Sun et al., 2023) and Object HalBench (Yu et al., 2024a), etc.

Video Understanding Benchmarks. Recently, an increasing amount of research is transitioning
its focus from the image to the video domain. Videos differ from images in that they possess more
complex content with temporal dynamics. This unique aspect calls for a different set of metrics and
benchmarks. Many efforts have leveraged existing video question answering benchmarks (Xu et al.,
2017; Yu et al., 2019b; Xiao et al., 2021) built on top of video-text datasets (Chen & Dolan, 2011;
Xu et al., 2016; Zhang et al., 2019). More recently, several LMM-oriented benchmarks have been
proposed for different aspects such as long-form egocentric understanding with EgoSchema (Man-
galam et al., 2024), and temporal understanding and ordering like Tempcompass (Liu et al., 2024c).
MV-Bench (Li et al., 2024b) compiles existing video annotations from different disciplines into a
new benchmark, while Video-MME (Fu et al., 2024) and MMWorld (He et al., 2024b) claim to
support a comprehensive evaluation of video understanding and world modeling, respectively. Our
TemporalBench serves the common goal of evaluating models for video understanding but differs
in several aspects. On the one hand, we exhaustively curate videos from different domains and ask
human annotators to annotate the visual contents with as much detail as possible. On the other hand,
we particularly focus on temporal dynamics such as human actions and human-object interactions that
exist exclusively in videos and which are crucial for video understanding, reasoning and forecasting.
While the ShareGPT4Video dataset (Chen et al., 2024) also contains long captions, theirs differ from
ours by being entirely generated by GPT-4o instead of annotated by humans.

3 TemporalBench

Compared to static images, videos inherently contain significantly more fine-grained temporal
information, as they capture the unfolding of actions and events over time. Existing multimodal video
understanding benchmarks (Xu et al., 2016) mostly evaluate models’ coarse-level understanding of
videos. An example from the recent Seed-Bench dataset is the question, “What action is happening
in the video?” with the answer, “moving something up.” However, such types of coarse-level video
questions have been demonstrated to be easily solved with just a single frame (Wu, 2024) or even by
a text-only LLM (Tan et al., 2024; Mangalam et al., 2024).

Such phenomena arises due to a fundamental limitation in the text descriptions in those benchmarks.
As a result of their coarseness, the positive and negative options for video question-answering can
usually be distinguished without understanding the temporal dynamics, such as the models only
needing to choose between “The man is cooking” and “The man is exercising”.

To address this limitation, we carefully design a human annotation pipeline to curate highly detailed
descriptions about the activities in the videos. Given the detailed video clip descriptions, such as
A right hand holds a piece of peeled ginger while a knife is held in the left and makes 3 slices off
the ginger., the negative captions can be curated to truly reflect whether a model understands the
temporal dynamics, such as changing “three slices” into “two slices”. In a nutshell, such highly
detailed temporal annotations can be used to carefully examine whether a multimodel video model
truly understands the temporal state transition in videos.

Our benchmark enriches several fundamental video understanding tasks due to its detailed captions:

• Fine-grained video question answering. Given a detailed positive caption, multimodal video
models need to distinguish it from the associated negative where a slight modification is made to
temporal descriptions, e.g., “push the eyeglasses up” versus “pull the eyeglasses down”, or “cut 3
slices off” versus “cut 2 slices off”.

• Fine-grained video captioning. Our detailed video captions can naturally enrich the video
captioning task, different from current video captioning tasks such as MSRVTT (Xu et al., 2016)
which focus on coarse-level descriptions.

• Long video understanding and fine-grained activity inspection. Since the video clips are
extracted from a long source video, the respective video clip descriptions can be concatenated to
form a longer video description which can be pivoted to the long video understanding task, where
we find that all current multimodal video models suffer.

4
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• Dense video-text matching and retrieval. Our detailed video captions can be naturally employed
to evaluate video-language embedding models such as VideoCLIP (Xu et al., 2021). Given a
positive caption and several negative captions, we can evaluate whether CLIP (Radford et al., 2021)
based video embedding models can distinguish the subtle differences in captions. In addition, given
a set of positive video-text pairs, video retrieval performance can be evaluated, similar to image
retrieval on COCO (Lin et al., 2014) and Flickr30K (Young et al., 2014).

• Video grounding from detailed text descriptions. Since the video clips are cropped from the
source video, with the documented starting and ending time, our benchmark can serve as a fine-
grained moment localizing benchmark from text descriptions. This is different from existing
video grounding datasets such as Charades-STA (Gao et al., 2017), COIN (Tang et al., 2019),
Ego4D (Grauman et al., 2024) where the text descriptions are usually very short, possibly resulting
in low temporal localization performance due to the vague and coarse descriptions.

• Text-to-Video (T2V) generation with detailed prompts. Given our highly detailed description, a
T2V generation model can be evaluated by verifying if the generated videos reflect the fine-grained
action details.

Next, we detail the dataset curation and evaluation setup for TemporalBench.

3.1 VIDEO COLLECTION

We collect video clips from a wide range of sources across diverse domains, where the majority comes
from existing video grounding benchmarks. Our dataset includes a wide spectrum of video types from
seven sources, including (1) procedure videos e.g., COIN (Tang et al., 2019), (2) human activities
e.g., ActivityNet-Captions (Yu et al., 2019a) and Charades (Krishna et al., 2017), (3) ego-centric
videos e.g., EgoExo4D (Grauman et al., 2024), (4) movie descriptions (Rohrbach et al., 2015), (5)
professional gymnasium videos e.g., FineGym (Shao et al., 2020), and (6) unexpected humor videos
Oops (Epstein et al., 2020). We sample around 300 video clips from the validation and test sets of
each video dataset, which results in 2k videos. The statistics of TemporalBench is shown in Table 1.

Figure 3: Video length distribution of
TemporalBench.

We intentionally filter out video clips that (1) are mostly
static by leveraging optical flow (Farnebäck, 2003),
(2) contain multiple scene transitions by leveraging
PySceneDetect 1 and (3) last longer than 20 seconds. We
observe that the large amount of information in long videos
make it difficult for annotators to provide detailed action
descriptions. The distribution of video lengths is shown
in Figure 3. Additionally, we remove the audio from the
videos during annotation to ensure that all informative
signals come solely from the visual frames, preventing the
answers from being influenced by the audio.

3.2 VIDEO CAPTION ANNOTATION PROCESS

Positive Captions Annotation. We employ a two-stage human labeling process for curating video
captions with fine-grained activity descriptions, where the qualified Amazon Mechanical Turk (AMT)
workers are first instructed to give a detailed video caption. Then, the authors of this work refine
the caption by correcting the mistakes and adding missing details w.r.t. the actions. The overall
pipeline is shown in Figure 2. All video clips are annotated following the same pipeline except for
Finegym (Shao et al., 2020) as it has already provided accurate and detailed action descriptions for
professional gymnasium videos. Consequently, we reuse its annotations.

We first use 3 probing video captioning questions with 2 in-context examples as the onboarding task
for AMT master workers. We manually inspect the soundness and amount of temporal details of the
AMT worker captions to select high quality AMT video captioning workers. During the annotation
process by AMT workers, we also continue to remove the unqualified workers based on the ratio of
the captions that authors in this paper refined. In this way, we ensure that the AMT provides a high
quality initial point for positive captions.

1https://www.scenedetect.com/
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(a) “Centralized” Positive Option (b) “De-Centralized” Positive Option

𝑁1(𝑁1 𝐶 )

𝑁2(𝑁1 𝐶 )

𝐶

𝑁1(𝐶)

𝑁2(𝐶)

𝑁3(𝐶)

𝑁1(𝐶)

𝐶

Figure 4: An illustration of multi-choice QA with (a) “centralized” and (b) “de-centralized” positive
option. Orange blocks indicate the altered contents from the positive option (green box).
Negative Caption Annotation. Our negative captions are aimed at confusing multimodal video
models with respect to fine-grained activity details, such as changing “cut a ginger twice using a
knife” to “cut a ginger three times using a knife”. We construct negatives upon two granularities:
word level and event level. Specifically, word level negatives denote the case where a certain word
or phrase is replaced while event level negatives denote the case where the order of two events are
reversed. Empirically, we find that LLMs can produce more creative and diverse negatives compared
to AMT workers and authors. Therefore, we leverage three leading LLMs, GPT-4o (OpenAI, 2024),
Gemini-1.5-Pro (Gemini Team, 2024) and Llama-3.1-405b (Meta, 2024) to curate a diverse set of
negative caption candidates instructed by 3 in-context examples, with up to 9 negatives at word level
and 6 negatives at event level.

Afterwards, the authors of this work review those negative caption candidates in the format of
multi-choice QA, which results in our complete TemporalBench dataset with ∼2K high-quality
human-annotated video captions and ∼10K video question-answer pairs.

3.3 A PITFALL IN MULTI-CHOICE QUESTION ANSWERING

A conventional approach to evaluate large multimodal models is using the multi-choice question-
answering format, which is adopted by the majority of current benchmarks including MMMU (Yue
et al., 2024a), MathVista (Lu et al., 2024), EgoSchema (Mangalam et al., 2024) etc. However,
indicated by recent studies by (Cai et al., 2024b) and (Yue et al., 2024b), a pure LLM can achieve
comparable or even stronger performance on those benchmarks without looking at the visual content
at all. Recent studies argue that (1) some questions are not designed well so that the question can be
answered without looking at the visual content, or (2) the model memorizes the QA pairs, i.e., data
contamination occurs.

While developing our benchmark, we notice another previously ignored but critical pitfall for multi-
choice QA. Specifically, if every negative answer choice is generated by changing a small part of the
correct answer, the LLM can detect those changes to find a “centralized” description and use that cue
for its prediction. To study this, given a positive caption C and its associated negative caption N(C),
we intentionally derive a few negatives from N1(C) (instead of for C), resulting in N1(N1(C)) and
N2(N1(C)), resulting in [C,N1(C), N1(N1(C)), N2(N1(C))] as options, so that N1(C) becomes
the “centralized” description (see Fig. 4). Surprisingly, we find that 62% of text-only GPT-4o’s
predictions correspond to N(C), while only 18% of its predictions correspond to C. Our findings
also align with human behavior analysis from psychology (Furman & Wang, 2008), where humans
can achieve better than random chance performance on multi-choice QAs using similar cues.

Motivated by this findings, we propose to decompose a single multi-choice QA into multiple binary
QAs. In this case, we eliminate the “centralized option” due to the fact that there are only two options
to choose from. As a result, given M negatives, the multiple binary QAs will query a model M times,
where the random chance performance changes from 1

M+1 to ( 12 )
M . Given that ( 12 )

M > 1
M+1 for

every M > 2, multiple binary QA is a more difficult task than multi-choice QA.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate both (1) multimodal video text generation models, including GPT-4o (OpenAI, 2024),
Gemini-1.5-Pro (Gemini Team, 2024), Claude-3.5-Sonnet (Anthropic, 2024), Qwen2VL (Wang
et al., 2024), LLaVA-OneVision (Li et al., 2024a), LLaVA-Next-Video (Zhang et al., 2024b), Phi-
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3.5-Vision (Abdin et al., 2024), MiniCPM-2.6 (Yao et al., 2024), MA-LMM (He et al., 2024a),
VideoLLaVA (Lin et al., 2023), InternLM-Xcomposer-2.5 (Zhang et al., 2024a), and (2) multimodal
video embedding models, including XCLIP (Ni et al., 2022), ImageBind (Girdhar et al., 2023), and
LanguageBind (Zhu et al., 2024a). We exponentially increase the number of frames to study its effect
on video understanding. More details can be found in Appendix C.

To study the effect of single frame bias and text bias, we also evaluate models trained on single images,
including LLaVA-1.5 (Liu et al., 2024a), LLaVA-NeXT (Liu et al., 2024b), and Phi-3V (Abdin et al.,
2024). In the latter case, we evaluate the LLMs including GPT-4o (OpenAI, 2024), Gemini-1.5-
Pro (Gemini Team, 2024), Yi-34B (Young et al., 2024), Vicuna (Chiang et al., 2023) and Flan-T5 (Wei
et al., 2021) without using videos at all.

4.2 HUMAN PERFORMANCE

We use Amazon Mechanical Turk to evaluate human performance. Note that we exclude the positive
caption annotators to ensure that there is no data contamination. Again, we use an onboarding
test using a held out binary video QA evaluation set which has clear answers. Next, we show the
performance on each task.

4.3 FINE-GRAINED VIDEO QUESTION ANSWERING

The results for multimodal generative models and embedding models are shown in Table 2. Several
interesting findings arise:

The performance of any video model is far from human performance. As shown in the table,
humans show an average performance of 67.9%, which is significantly higher than the best models,
GPT-4o and Qwen2VL-72B, by ∼30%. Therefore, there is a large gap between model’s performance
and human performance. Note that we are employing standard AMT workers instead of domain
experts, meaning that the expert-level accuracy can be even higher, especially for professional video
understanding like FineGym.

Models show limited performance gains with more frames. As shown in Figure 5, with more
frames, multimodal video models usually show better performance. However, performance generally
saturates around 8-16 frames, meaning that models struggle to improve fine-grained activity under-
standing even with more frames. This is a clear contrast with human performance, showing that there
is still a large space for multimodal video models to improve.

Figure 5: Model performance on TemporalBench with
varying frames.

Multiple Binary QA is a more chal-
lenging metric. Multiple Binary QA,
as proposed in Section 3.3, prevents a
model from exploiting cues in the an-
swer choices, and evaluates whether
a model truly understands the tempo-
ral dynamics in the video by splitting
a single M + 1-way multiple choice
question into M binary choice ques-
tions. For example, GPT-4o receives
76.0% accuracy but only 38.0% on
multiple binary accuracy, showing a
huge gap. These results indicate that
understanding the fine-grained tem-
poral dynamics is still a challenging
task for current proprietary models
and open-sourced models.

Video Embedding models show
near chance performance. All mul-
timodal video embedding models, in-
cluding XCLIP, LanguageBind, and
ImageBind show near random chance performance. One reason could be that their small embedding
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Table 1: Dataset characteristics including number of samples, average length, single image bias, and
language bias.

Dataset Number of Samples Org. Avg. # words Ours Avg. # words

ActivityNet (Krishna et al., 2017) 281 13.03 49.55
EgoExo4d (Grauman et al., 2024) 307 7.73 47.79
Charades (Gao et al., 2017) 298 6.21 44.16
MPI Movie Description (Rohrbach et al., 2015) 326 12.39 35.33
Oops (Epstein et al., 2020) 294 10.06 43.27
COIN (Tang et al., 2019) 385 5.01 50.06
FineGym (Shao et al., 2020) 288 21.92 21.92

TemporalBench (ours) 2179 10.9 41.72

Table 2: TemporalBench performance of various multimodal generative models and embedding
models under the binary QA accuracy (BA) and multiple binary QA settings (MBA). The prefix “T-”
indicates the annotated subset in our TemporalBench.

Model T-ActivityNet T-Charades T-FineGym T-Movie T-Oops T-COIN T-EgoExo BA MBA

Human Performance 69.4 81.9 35.8 74.5 69.7 70.6 70.7 89.7 67.9
Random Chance 11.0 13.7 6.1 12.0 5.6 11.1 5.6 50.0 9.4

Video Embedding Models: Text + Multiple Frames as Input
XCLIP 14.2 16.1 7.3 19.9 8.8 15.2 6.8 51.6 12.8
ImageBind 17.4 16.8 7.3 19.0 11.2 16.1 9.1 53.0 14.0
LanguageBind 22.4 15.1 6.3 19.3 10.9 15.6 11.1 52.8 14.5

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 48.8 42.6 16.7 43.9 34.4 42.9 34.5 76.0 38.0
Gemini-1.5-Pro 34.9 24.5 8.0 35.6 22.8 34.0 21.8 67.4 26.4
Claude-3.5-Sonnet 29.5 27.5 13.2 29.1 14.6 27.8 21.2 65.9 23.5
InternLM-XC2.5 25.3 34.9 19.4 38.7 25.9 18.2 16.6 58.7 25.2
VideoLLaVA 34.9 29.2 13.5 25.5 20.7 32.5 20.2 67.2 25.5
MA-LMM 12.1 16.8 3.1 11.7 4.8 11.9 4.9 48.0 9.3
Phi-3.5-Vision 24.9 20.1 5.2 22.7 12.2 18.2 13.7 58.0 16.8
MiniCPM-V2.6 33.1 25.8 7.6 29.1 13.6 22.9 16.0 62.2 21.3
LLaVA-NeXT-Video-7B 33.5 32.6 10.8 28.2 17.3 22.6 19.9 65.1 23.5
LLaVA-NeXT-Video-34B 30.6 26.8 10.4 24.8 18.0 24.9 17.3 64.0 22.0
LLaVA-OneVision-7B 30.2 27.5 7.6 25.8 16.0 22.1 14.3 60.0 19.7
LLaVA-OneVision-72B 43.8 34.2 11.5 35.3 27.9 33.0 28.3 70.5 30.7
Qwen2-VL-7B-Instruct 32.4 31.9 4.5 35.9 18.4 25.2 21.8 64.6 24.9
Qwen2-VL-72B-Instruct 43.4 42.6 16.7 45.1 36.4 43.4 37.1 75.8 38.2

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 32.0 30.2 15.3 31.0 26.5 33.8 27.7 70.0 28.4
LLaVA-1.5-13B 16.0 17.1 9.4 16.6 6.1 16.1 9.1 55.6 13.1
LLaVA-1.5-7B 25.3 25.8 8.7 19.3 9.2 22.1 16.6 60.5 18.3
Phi-3-Vision-128k-Instruct 22.8 19.8 4.5 17.8 8.5 17.7 14.7 54.4 15.3

Large Larguage Models (LLMs): Text as Input
GPT-4o 30.2 31.9 16.7 27.9 22.8 27.5 28.0 67.7 26.5
Gemini-1.5-Pro 22.4 20.5 4.5 19.9 10.2 16.6 17.9 58.0 16.0
Yi-34B 20.6 27.5 10.4 21.8 11.2 23.4 16.9 59.9 18.3
Vicuna7b-1-5 19.2 17.4 6.6 11.0 5.1 12.5 7.8 50.4 9.8
Flan-T5-XL 24.6 23.5 5.6 19.9 11.9 23.1 14.0 57.8 17.8

size (typically a vector with size around 768-2048) is insufficient to capture fine-grained temporal
details.

Low single-frame bias and language bias. As shown in Figure 5 and Table 6, the performance of
models like GPT-4o gradually increases with more frames. Excluding GPT-4o, all remaining VLMs
are trained with single images e.g., LLaVA-1.5, Phi-3V, and text-only LLMs such as Yi-34B and
Vicuna-7B.

4.4 VIDEO CAPTIONING

Our detailed video captions also enables analyzing a model’s fine-grained video captioning capabil-
ities. For this, we prompt multimodal video models to generate a caption for an input video, with
3 captioning examples in the prompt as guidance to mimic the style of our detailed video captions.
We evaluate the resulting video captioning performance using classical image captioning metrics,
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Table 3: Comparison of models for video captioning using Caption Similarity, CIDEr, BLEU, and
ROUGE metrics. Cosine similarity using sentence transformer reflects the captioning quality the best.

Model Similarity CIDEr ROUGE BLEU 1 BLEU 2 BLEU 3 BLEU 4

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 63.47 6.59 19.99 23.70 11.74 5.90 3.09
Gemini-1.5-Pro 56.54 10.98 19.11 18.96 9.19 4.53 2.36
Claude-3.5-Sonnet 54.13 8.64 17.14 24.35 10.32 4.43 2.05
VideoLLaVA 45.97 4.49 16.95 12.59 5.44 2.29 1.03
MA-LMM 38.72 3.07 14.99 10.09 4.81 2.24 1.06
Phi-3.5-Vision 42.93 3.67 16.54 20.36 8.38 3.40 1.58
MiniCPM 47.24 1.50 14.18 15.53 5.45 1.92 0.79
LLaVA-NeXT-Video-7B 50.09 2.31 15.84 18.07 6.98 2.60 1.05
LLaVA-NeXT-Video-34B 53.13 5.33 15.92 21.43 9.17 4.02 1.83
LLaVA-OneVision-7B 50.33 1.43 16.08 16.17 6.99 2.92 1.33
LLaVA-OneVision-72B 53.90 8.00 18.23 22.08 10.63 5.31 2.78
Qwen2-VL-7B-Instruct 51.93 6.87 18.03 12.45 6.07 3.00 1.56
Qwen2-VL-72B-Instruct 56.13 9.31 19.11 15.71 8.03 4.14 2.24

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 52.32 7.29 17.10 25.07 11.09 5.04 2.41
LLaVA-1.5-13B-HF 47.92 4.90 18.04 22.62 9.78 4.23 2.03
LLaVA-1.5-7B-HF 45.68 6.87 17.82 21.95 9.53 4.17 1.98
Phi-3-Vision-128k-Instruct 41.96 4.00 16.10 19.86 8.29 3.42 1.59

CIDEr (Vedantam et al., 2015), BLEU (Papineni et al., 2002) at different n-gram levels, ROUGE (Lin,
2004), as well as the embedding similarity with sentence transformer (Reimers & Gurevych, 2019)
between the ground truth caption and the generated caption.

Results in Table 3 show that GPT-4o achieves the best performance. Interestingly, the results indicate
that the embedding similarity aligns most closely with the video QA task results from Sec 4.3.
Other classical captioning metrics show inconsistent results. For example, GPT-4o obtains better
performance with one compared to 64 frames on both CIDEr and BLEU scores (e.g., for CIDEr
7.29 vs. 6.59). On the other hand, all models show similar ROUGE scores. Thus, for the zero-shot
captioning task, our findings indicate that text embedding similarity may be the most reliable metric.

4.5 LONG VIDEO UNDERSTANDING

Since our benchmark is annotated at the video clip level, we can easily extend it to long video
understanding by concatenating the captions of different video clips within the same original video.
In our study, we choose video datasets whose original length is both short (AcitivityNet and Charades,
average length < 3 minutes) and long (COIN and FineGym, > 20 minutes). We randomly sample
video clips within the same original video, and then crop a new video segment whose starting time
corresponds to that of the earliest sampled video clip and whose ending time corresponds to that
of the latest sampled video clip. We then concatenate all the sampled video captions together to
form a single long detailed description corresponding to the new video segment. Given this positive
caption, we generate negative captions for it by replacing the positive caption of one of the sampled
video clips with its negatives. The model is then tasked to choose the correct long caption out of
multiple choices. We set the number of negative options to be ∼4, resulting in a similar random
chance performance as in Sec 4.3. In this way, we investigate whether multimodal video models can
understand and distinguish fine details in a long video.

We show in Table 7 (supplemental), that all multimodal video models show a significant performance
drop for this task compared to short video understanding. This is also reflected in all models
performing better on relatively shorter videos (ActivityNet and Charades) compared to longer videos
(COIN and FineGym). These results indicate that finding the subtle temporal dynamic differences
in a long video is indeed an extremely difficult task. It is similar in nature to the needle-in-the-sea
task (Kamradt, 2023) in NLP except in the temporal domain. We hope that TemporalBench for
long video understanding can serve as a very challenging task for future video understanding model
development.
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Table 5: TemporalBench statistics on each category on binary QA accuracy.

Action Order Action Frequency Action Type Motion Magnitude Motion Direction Action Effector Event Reorder Others Overall

130 531 2812 321 1554 1118 2105 1347 9918

5 IN-DEPTH ANALYSIS

5.1 WHY MULTIPLE BINARY QA INSTEAD OF MULTI-CHOICE QA?

As discussed in Section 3.3, in the standard multi-choice QA setting, if negatives are all slightly
variations of the positive caption, we find that LLMs can determine the “centralized” caption, and take
a shortcut to achieve better performance. To demonstrate this, based on one negative caption N(C)
in TemporalBench, we intentionally generate two negative captions derived from N(C) (instead of
C), resulting in N1(N(C)) and N2(N(C)). Given two set of options [C,N1(C), N2(C)), N3(C))]
and [C,N1(C), N1(N1(C)), N2(N1(C))] shown in Figure 4, text-only GPT-4o displays different
behaviors. As shown in Table 4, under the intentionally designed negative options, GPT-4o will
choose N1(C) with 66.4% probability. This again demonstrates the necessity and advantage of our
multiple binary QA accuracy (MBA) metric design over the standard multi-choice QA setting.

5.2 PERFORMANCE ON CATEGORIES

Table 4: Effect of the “Centralized” Caption on
text-only GPT-4o.

Percentage of Predictions Aligned with -> C N1(C)

“Centralized” Negative 83.3 6.4
“De-Centralized” Negatives 17.7 66.4

Broadly, TemporalBench evaluates word level
replacement and event level re-ordering. Here
we further breakdown the word level replace-
ment into following categories: 1. Action order
(change the order); 2. Action frequency (1 times
v.s. two times); 3. Action type (put vs pull); 4.
Motion magnitude (slightly vs intensively); 5, Motion Direction/Orientation (forward vs backward,
circular vs back-and-forth). 6. Action effector (cutting with left hand vs cutting with right hand) 7.
Others. We prompt GPT-4o to perform 7-way classification and show the per-category performance
in Table 8 (supplemental). Results indicate that multimodal video models shows better performance
on “others” category rather than the other categories related to actions. Among the seven categories,
models struggle most on action frequency (counting), which show that they do not memorize repeated
occurrences well.

6 CONCLUSION AND FUTURE WORK

We propose TemporalBench, a novel video understanding benchmark, to evaluate the fine-grained
temporal understanding abilities of multimodal video models. The video captions in our benchmark
are significantly denser than existing datasets such as MSRVTT and TGIF, offering detailed tem-
poral annotations. TemporalBench also provides a more challenging set of tasks that push current
multimodal models beyond coarse-level understanding. The empirical results reveal a substantial
gap between human performance and current state-of-the-art models. We hope that this benchmark
fosters further research in developing models with enhanced temporal reasoning capabilities. Our
benchmark could also be easily utilized for other fundamental video tasks such as spatio-temporal
localization and text-to-video generation with fine-grained prompts.

Limitations. One cannot fully analyze the behavior of proprietary models included in this paper due
to the lack of access to these models, which are GPT-4o, Gemini-1.5-Pro and Claude 3.5 Sonnet.

REPRODUCIBILITY STATEMENT

We attach part of the dataset in the submission’s supplementary materials. We will also publicly
release it along with the code used to evaluate the LMMs upon the paper’s acceptance.
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ETHICS STATEMENT

This research primarily utilizes publicly available video datasets, which have been collected and
annotated by qualified annotators and authors, ensuring compliance with ethical standards. We
have made every effort to ensure that the data used respects privacy and contains no personally
identifiable information. Furthermore, we acknowledge the potential implications of fine-grained
video understanding, especially in sensitive applications such as surveillance and autonomous systems.
As such, we advocate for responsible and ethical use of this research, urging caution in deploying
these models in real-world scenarios to avoid harmful or unintended consequences.
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A BROADER IMPACT

TemporalBench, a comprehensive benchmark for video understanding, has the potential to signifi-
cantly advance research in this field by offering improved metrics for model evaluation. Our work
aims to enhance the temporal reasoning capabilities of future video understanding models. However,
the broader impact of more advanced video understanding technologies raises important societal
concerns, including the risk of mass surveillance, privacy violations, and the development of harmful
applications like autonomous weapons. Therefore, we strongly encourage thoughtful consideration
when deploying these models in real-world scenarios to mitigate negative or unintended consequences.

B MORE VISUALIZATIONS OF OUR BENCHMARK

In this section, we present comprehensive visualizations of our fine-grained annotations with both
positive and negative descriptions. For each benchmark mentioned in Table 1, we provide one video
example with its positive annotation and one of the corresponding negative descriptions (there are
more than one negative for a single video in our dataset) in Figures 6 & 7. The video examples (a - f )
are displayed in the same order as their sources in Table 1 (7 in total).

C MORE RESULTS WITH EXTENDED FRAMES

In the main paper, we only report the performance of each multimodal video models with the the
number of frams that leads to the best performance. Here we extend the results to show the results of
more frames in Table 6.
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Holding a hose in their left hand, a person is gently praying water on a wooden 
chair. First on the left arm, then the slats on the back and sides and down to the 
seat area then up along the top down a leg a bit around the front of the seat .

Holding a hose in their left hand, a person is gently spraying water on a wooden 
chair. First down a leg, then up along the top, the slats on the back and sides, 
down to the seat area, a bit around the front of the seat, and the left arm.

Positive

Negative

The person picks up the blue packet with both hands and puts it back on the table. 
The person picks up the tube and places it on the table. The person picks up a 
white packet and tears it open with both hands. The person pulls out the white tube 
with the right hand and keeps the packet on the table with the left hand.

The person picks up the blue packet with both hands and puts it back on the table. 
The person picks up the tube and places it on the table. The person picks up a 
white packet and tears it open with the right hand. The person pulls out the white 
tube with the right hand and keeps the packet on the table with the left hand.

Positive

Negative

A person lifts his right leg up while resting his left hand on the table. He puts his 
right leg into a shoe. He then lifts the left leg up and puts it into the other shoe.

A person puts his left leg into the other shoe while resting his left hand on the 
table. He lifts his right leg up and then puts it into a shoe.

Positive

Negative

(a)

(b)

(c)

Figure 6: Visualizations (I) of our fine-grained annotations of the videos with both positive and
negative descriptions.
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An army man waves his right hand to direct the tanks and other vehicles down the 
right-side road. Other trucks and vans drive down the street. Left-side road drives 
up several red container truck. People in the background walk about on the street.

An army man waves his right hand to direct the tanks and other vehicles down the 
right-side road. Other trucks and vans park by the street. Left-side road drives up 
several red container truck. People in the background walk about on the street.

Positive

Negative

Two deer come out of the trees and run along a road into the trees on the other 
side. A third deer trips as it approaches the road, then turns back around and goes 
back to where it came from.

Two deer come out of the trees and run along a road into the trees on the other 
side. A third deer trips as it approaches the road, then turns back around and 
continues running to the other side.

Positive

Negative

The person presses the top of the sandwich with the left hand and slices the 
sandwich in a diagonal cut by running the knife held in the right hand in a up and 
down motion. They start cutting at the left bottom corner of the sandwich.

The person presses the top of the sandwich with the left hand and slices the 
sandwich in a horizontal cut by running the knife held in the right hand in a up and 
down motion. They start cutting at the left bottom corner of the sandwich.

Positive

Negative

The gymnast performs the following actions: giant circle; circle backward; with turn 
before handstand phase.

The gymnast performs the following actions: giant circle; circle forward; with turn 
before handstand phase.

Positive

Negative

(d)

(e)

(f)

(g)

Figure 7: Visualizations (II) of our fine-grained annotations of the videos with both positive and
negative descriptions.
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Table 6: TemporalBench performance of various models under binary QA and multiple binary QA
setting.

Model Frames Per Video Multiple Binary Accuracy (%) Binary QA Accuracy (%)

Human - 67.9 89.7
Random Chance - 9.4 50.0

XCLIP 8 12.8 51.6
ImageBind 2 14.0 53.0
LanguageBind 8 14.5 52.8

GPT-4o 64 38.0 76.0
32 38.2 75.9
16 38.4 75.7
8 37.3 75.1
4 35.8 74.4
2 33.2 72.7
1 28.4 70.0
0 26.5 67.7

Gemini-1.5-Pro 1fps 26.4 67.4
0 16.0 58.0

Claude-3.5-Sonnet 16 23.5 65.9
8 23.6 65.4
4 23.0 64.7
2 21.2 61.8
1 18.4 58.4

InternLM-XC25 1fps 25.2 58.7

LLaVA-NeXT-Video-34B-DPO 32 22.0 64.0
16 21.8 63.7
8 21.4 63.3
4 20.7 63.0
2 19.9 61.9
1 18.8 60.5

LLaVA-NeXT-Video-7B-DPO 32 17.2 59.6
16 22.3 64.0
8 23.5 65.1
4 22.9 64.2
2 21.4 63.1
1 19.0 62.0

VideoLLaVA 8 25.5 67.2

Phi-3.5-Vision-Instruct 15.5 56.7
16 15.9 57.2
8 15.9 57.4
4 15.5 57.5
2 16.8 58.0
1 16.4 57.8

Qwen2-VL-7B-Instruct 32 24.9 64.6
16 23.5 63.2
8 20.9 60.9
4 19.2 59.5
2 17.6 57.8

Qwen2-VL-72B-Instruct 38.2 75.8
35.5 74.4
33.8 73.0
31.0 71.4
27.3 69.1

MiniCPM-V-2.6 64 21.3 62.2

LLaVA-1.5-13B-HF 1 13.1 55.6

LLaVA-1.5-7B-HF 1 18.3 60.5

Phi-3-Vision-128k-Instruct 1 15.3 54.4

Vicuna7B-1.5 0 9.8 50.4

Yi34BNousYi 0 18.3 59.9

FastChat-FlanT5 0 11.9 52.2

Flan-T5-XL 0 17.8 57.8
20
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Table 7: TemporalBench performance of various multimodal generative models and embedding
models under long video understanding with multiple binary QA accuracy (MBA).

Model ActivityNet Charades FineGym COIN MBA

Video Embedding Models: Text + Multi Frame as Input
XCLIP 2.99 5.34 1.87 2.92 3.27
ImageBind 2.69 3.40 4.27 3.50 3.40
LanguageBind 4.78 6.31 3.79 2.72 4.00

Video Multimodal Generative Models : Text + Multi Frame as Input
GPT-4o 20.30 21.36 9.81 17.12 17.12
Gemini-1.5-Pro 15.52 9.71 8.66 16.54 14.58
Claude-3.5-Sonnet 19.10 10.68 4.78 5.64 9.70
VideoLLaVA 8.96 6.80 5.07 2.14 5.29
MA-LMM 7.76 6.80 3.28 8.37 5.60
Phi-3.5-Vision 8.06 2.43 6.57 3.50 5.23
MiniCPM 8.36 6.80 3.88 9.53 9.97
LLaVA-NeXT-Video-7B 10.45 8.74 2.69 7.39 8.00
LLaVA-NeXT-Video-34B 10.75 10.68 4.78 3.11 6.90
LLaVA-OneVision-7B 8.66 7.77 5.07 8.56 8.52
LLaVA-OneVision-72B 14.93 10.19 4.18 5.25 8.65
Qwen2-VL-72B-Instruct 14.33 10.68 11.04 14.40 14.56

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 10.45 12.62 8.33 11.67 10.80
LLaVA-1.5-13B-HF 6.57 5.34 3.88 3.89 4.84
LLaVA-1.5-7B-HF 4.78 5.34 2.69 3.89 4.01
Phi-3-Vision-128k-Instruct 8.36 4.85 3.58 4.67 5.50

Large Larguage Models (LLMs): Text as Input
GPT-4o 11.64 16.99 7.16 10.70 11.01
Gemini-1.5-Pro 11.64 8.74 2.99 7.98 7.77
Yi-34B 7.16 7.28 5.37 6.61 6.55
Vicuna7b-1-5 1.19 4.85 1.49 3.70 2.73
Flan-T5-XL 12.24 7.28 7.46 7.39 8.56
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Table 8: TemporalBench performance under each category.

Action Action Action Motion Motion Action Event
Model Order frequency Type Magnitude Direction Effector Reorder Others Average

Video Embedding Models: Text + Multi Frame as Input
XCLIP 46.2 50.8 50.9 56.9 51.2 51.6 50.2 55.5 51.6
ImageBind 43.8 44.8 55.4 51.1 52.5 50.4 48.6 62.0 53.0
LanguageBind 43.8 41.6 53.3 54.8 51.5 46.4 51.1 66.0 52.8

Video Multimodal Generative Models : Text + Multi Frame as Input
GPT-4o 70.0 65.2 80.8 78.8 68.9 67.0 75.1 87.3 76.0
Gemini-1.5-Pro 66.9 60.1 70.8 70.7 58.6 59.5 67.7 79.0 67.4
Claude-3.5-Sonnet 63.8 58.0 71.1 68.2 60.0 57.4 62.5 76.7 65.9
InternLM-XC2.5 53.8 42.4 61.2 61.4 52.4 52.4 59.3 68.3 58.7
VideoLLaVA 70.0 70.2 71.4 70.1 70.7 70.3 50.5 75.6 67.2
MA-LMM 54.6 42.7 48.7 48.9 46.2 49.4 49.1 50.8 48.0
Phi-3.5-Vision 53.8 55.4 60.0 56.1 53.9 52.2 55.3 69.4 58.0
MiniCPM 58.5 52.4 65.6 62.3 54.1 53.2 63.3 74.7 62.2
LLaVA-NeXT-Video-7B 68.5 65.5 68.1 62.0 66.6 68.7 52.3 74.2 65.1
LLaVA-NeXT-Video-34B 60.8 56.1 66.4 61.7 58.4 59.5 63.3 74.3 64.0
LLaVA-OneVision-7B 60.8 44.6 61.4 53.0 50.1 48.2 66.0 74.9 59.8
LLaVA-OneVision-72B 68.5 53.7 74.6 67.9 63.7 62.0 71.2 83.0 70.5
Qwen2-VL-7B-Instruct 65.4 46.1 67.3 66.0 54.5 54.9 69.3 75.3 64.6
Qwen2-VL-72B-Instruct 72.3 69.3 80.0 78.8 65.9 69.4 75.9 85.5 75.8

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 67.7 65.2 74.0 70.4 64.3 62.7 68.6 78.5 70.0
LLaVA-1.5-13B-HF 56.9 52.0 57.6 53.6 50.3 53.9 54.2 63.2 55.6
LLaVA-1.5-7B-HF 61.5 61.4 62.1 54.2 61.6 65.0 51.1 67.9 60.5
Phi-3-Vision-128k-Instruct 46.2 46.3 56.2 55.8 48.8 49.6 56.9 62.3 54.4

Large Larguage Models (LLMs): Text as Input
GPT-4o 64.6 59.9 73.7 70.1 61.5 60.2 69.3 68.7 67.7
Gemini-1.5-Pro 53.8 42.4 60.3 62.3 53.5 53.2 64.8 57.4 58.0
Yi-34B 53.1 63.1 59.9 60.4 56.7 54.8 65.2 59.3 59.9
Vicuna7b-1-5 56.2 47.3 52.9 50.5 50.3 48.6 49.9 53.5 50.4
Flan-T5-XL 53.1 57.8 60.1 59.8 56.0 56.7 54.9 60.5 57.8
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