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ABSTRACT

We propose a new finetuning method to provide pre-trained large language models
(LMs) the ability to scale test-time compute through the diffusion framework. By
increasing the number of diffusion steps, we show our finetuned models achieve
monotonically increasing accuracy, directly translating to improved performance
across downstream tasks. Furthermore, our finetuned models can expertly answer
questions on specific topics by integrating powerful guidance techniques, and
autonomously determine the compute required for a given problem by leveraging
adaptive ODE solvers. Our method is applicable to any foundation model pre-
trained with cross-entropy and does not modify any of its original weights, fully
preserving its strong single-step generation capabilities. We show our method can
be more effective and is fully compatible with traditional finetuning and search
approaches, introducing an orthogonal new direction to unify the strengths of the
autoregressive and diffusion frameworks.

1 INTRODUCTION

Figure 1: Test-time compute scaling with L2D. Our
framework empowers LMs with the scaling properties
of diffusion, increasing performance with more steps.

The scalability of autoregressive large language
models (LMs) is a pivotal component of the cur-
rent generation of foundation models (Team et al.,
2023; Achiam et al., 2023; Dubey et al., 2024).
However, despite their unprecedented capabili-
ties, LMs inherently lack many valuable proper-
ties that could be expected of an “artificial general
intelligence,” such as the ability to scale compu-
tation for their most critical decisions (Sutton,
2019). Efforts to address this limitation primar-
ily focused on eliciting more nuanced responses
through prompting and targeted searches over the
space of possible completions (Feng et al., 2023;
Kumar et al., 2024; Trinh et al., 2024; Jaech et al.,
2024), anchoring the reasoning process in the
space of generated tokens.

Established as the predominant approach in visual domains, the diffusion framework offers properties
that appear particularly complementary to the LM paradigm (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020; Dhariwal & Nichol, 2021; Peluchetti, 2023; Esser et al., 2024). For
instance, the iterative nature of diffusion allows to adaptively scale compute to the difficulty of a
specific task or any level of accuracy demanded by the user, regardless of the generated output’s
length. However, despite these useful properties, diffusion models trained for language currently lag
significantly behind their autoregressive counterparts (Lou et al., 2024; Gat et al., 2024; Gulrajani &
Hashimoto, 2024) putting into question their inductive bias and scalability in this domain.

In this work, we aim to unite the strengths of these frameworks by introducing LM to Diffusion
(L2D): a new finetuning method powering pre-trained LMs with the scaling properties of diffusion.
Rather than learning a diffusion model from scratch, our method harnesses the large amount of
“system 1” understanding efficiently acquired during autoregressive pre-training by casting LMs
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as single-step diffusions. Then, by introducing a small fraction of new parameters – comparable
to modern parameter-efficient approaches (Hu et al., 2021) – we imbue the model with a new set
of multi-step “reasoning” skills, the ability to scale computation on-demand, and the potential to
incorporate powerful guidance techniques (Ho & Salimans, 2022), all without compromising its
original single-step capabilities.

In summary, our technical contributions are the following:

• We introduce L2D, a new finetuning method to power LMs with the scaling properties of
diffusion, combining key strengths from these two frameworks.

• We show that L2D significantly improves four different LMs on math, coding, and a variety
of reasoning tasks; and that its benefits can be both superior and complementary to traditional
finetuning and search.

• We demonstrate that L2D allows to scale performance with additional compute, while
opening the door to LMs equipped with autonomous per-token scaling and powerful diffusion
guidance techniques.

2 GAUSSIAN DIFFUSION FOR LM FINETUNING

In this section, we describe the key components of our L2D framework. In particular, we provide
details about the considered diffusion formulation, together with our designed training and inference
approaches. Although each of the following subsections offers a concise introduction to the concepts
and modern practices of diffusion and language modeling, we refer to recent work (Nakkiran et al.,
2024; Lipman et al., 2024) and Section 5 for more comprehensive resources. We conclude the section
explaining how our design decisions make L2D a natural extension to modern language modeling
aimed to complement rather than supersede the autoregressive framework.

2.1 GAUSSIAN DIFFUSION

Gaussian diffusion decomposes the problem of generating new samples from a target unknown
distribution p∗ from a source distribution q := N(0, I) over multiple “simpler” steps, reusing the
intermediate information computed in the model’s previous attempts. These subsequent diffusion
steps can be seen as a discretization of a continuous “denoising” process from t = 0 to time t = 1,
over which the model is tasked to transform samples from q to p∗. All intermediate distributions
along the denoising process are defined by a corresponding corruption process, mixing target data
points x1 ∼ p∗ with noise from q to produce xt ∼ pt:

xt = αtx1 + βtx0, where x0 ∼ N(0, I). (1)

Here, the schedules αt and βt are defined as monotonic functions with α0 = β1 = 0 and α1 = β0 = 1,
satisfying the constraints such that p0 := q and p1 := p∗.

Neural networks (NNs) in single-step generative modeling solely rely on an external source of pure
randomness to generate new samples from scratch. In contrast, the goal of diffusion is to learn a
neural network fθ conditioned on samples from each pt and tasked with solving the simpler problem
of generating new samples from lower nearby noise levels pt+∆t

. Thus, effectively splitting the
challenge of learning and generating new samples in multiple steps, which can be scaled based on
computational availability.

2.2 L2D PARAMETRIZATION AND TRAINING FORMULATION

An effective choice of loss to train diffusion models is simply to predict the values in the uncorrupted
target datapoints from p1 (i.e., p∗) given the partial information contained at each corruption level
x̂ = fθ(xt, t). When p1 is a distribution over a continuous domain, this is commonly done by using a
simple mean squared regression loss on all timesteps t, as popularized by DDPM (Ho et al., 2020):

LL2(θ) = Et,x0,x1

[
||x1 − fθ(xt, t)||22

]
. (2)

Another key design decision for diffusion is the choice of schedules αt and βt, which define the
denoising process that fθ will be learning. This is one of the most significant choices for continuous
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diffusion models, affecting all aspects of both training and inference dynamics (Nichol & Dhariwal,
2021; Esser et al., 2024). In our work, we employ the schedules αt = t and βt = (1− t)σ, where
σ is a hyper-parameter linearly scaling the signal-to-noise ratio for all timesteps between p1 and p0
within the samples xt ∼ pt. This choice is closely tied to the rectified flow matching schedules (Liu
et al., 2022), which have been shown to possess particularly desirable “straightening” properties for
diffusion (Lee et al., 2024; Lipman et al., 2024) and have been widely adopted in the recent diffusion
literature (Esser et al., 2024). To ease our notation and make this connection explicit, we absorb
the hyper-parameter σ in the standard deviation of our base distribution p0 := N(0, σ2I), which
simplifies our schedules to αt = t and βt = (1− t).

Unlike for the continuous case, language modeling operates over a target distribution p1 defined on a
finite vocabulary table V , where to each index y ∈ 1, . . . , |V | there corresponds a token embedding
x ∈ Rd. This key difference is one of the main reasons that diffusion in language modeling is yet
to have a predominant recipe with several recent approaches even exploring alternative diffusion
formulations over the discrete space of vocabulary indices y (Austin et al., 2021a; Lou et al., 2024;
Gat et al., 2024). In this work, we choose to still diffuse over the token embeddings x, as in standard
continuous diffusion, but do not employ an MSE loss as done by Li et al. (2022). Instead, we learn
our diffusion model with a simple cross-entropy loss, establishing a direct connection to traditional
single-step language modeling. In particular, given a token x1 indexed by label y sampled along with
a context of preceding tokens c from the target distribution p1, our diffusion loss is formulated as:

LCE(θ) = −Ex0,x1,t [log (fθ(xt, t, c)y)] , where (3)

x0 ∼ N(0, σ2I), x1 = Vy ∼ p1, t ∼ U [0, 1], xt = tx1 + (1− t)x0.

This formulation allows our diffusion network fθ to still predict |V | logits over the vocabulary tokens,
just like a standard language model, while leveraging partial information about the next sequence
token provided by xt. Despite its simplicity, this choice still enables our diffusion process to draw
a continuous trajectory during inference, similar to traditional diffusion models with continuous
outputs as explained by Dieleman et al. (2022) and detailed below.

2.3 L2D INFERENCE FORMULATION
Algorithm 1 Diffusion language modeling pre-
dictions

Input: Diffusion model fθ, context c, bud-
get T

1: Initialize t← 0, ∆t ← 1/(T − 1)
2: Sample xt ∼ N(0, σ2I)
3: for i = 1, 2, ..., T − 1 do
4: Sample yt ∼ fθ(xt, t, c)
5: Set x̂← Vyt

6: Compute dxt =
x̂−xt

1−t

7: Update t← t+∆t, xt ← xt+∆t×dxt

Output: y ∼ fθ(x1, 1, c)

To generate new samples with a traditional contin-
uous diffusion model, an effective approach is to
use the predictions x̂ from fθ(xt, t) to construct
an ODE that preserves the marginal distribution
pt at each timestep t (Song et al., 2020a;b). While
many such valid ODEs exist for a single diffusion
process, we adopt the formulation from Liu et al.
(2022), which is designed to yield a constant ex-
pected velocity along the denoising trajectory at
each timestep t:

dxt =
x̂− xt

1− t
. (4)

The denoising process can then start at t = 0 by drawing xt from pure noise and be performed
over a sequence of steps where previous predictions are reused to bring xt to a lower noise level at
t+∆t toward the direction dxt. In the simplest case, this process amounts to Euler integration where
xt+∆t

= xt +∆t × dxt. However, any ODE solver can be employed with constant or adaptive costs
given by fixed discretization levels ∆t or adaptive accuracy requirements.

Given our parameterization of fθ, outputting categorical probabilities over the vocabulary, its pre-
dictions cannot be directly used to obtain dxt as with continuous diffusion. However, as shown
by Dieleman et al. (2022), we can use these probabilities together with the vocabulary embeddings
stored in V to estimate x̂ for any valid velocity (in our case, defined in Equation 4). While Dieleman
et al. (2022) takes x̂ as the weighted average over the embeddings, we instead use the probabilities
predicted by fθ(xt, t, c) to sample an individual x̂ ∈ V at each diffusion step t. Although the
expectation of these two estimates matches, we note our choice reintroduces some stochasticity into
the denoising trajectory traced by the ODE. In practice, we find this stochasticity beneficial to better
harness some of the self-correcting properties of the diffusion framework, which Karras et al. (2022)
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showed might be limited in fully deterministic inference formulations. We summarize this next-token
prediction procedure with our sampling approach (lines 5-6), Euler integration, and a budget of T
total steps in Algorithm 1.

2.4 LMS AS SINGLE-STEP DIFFUSION MODELS
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Figure 2: L2D overview. Diffusion tokens
training-time sampling (bottom) and architec-
ture diagram (top).

Our choices in designing L2D establish a clear connec-
tion with the traditional LM framework. As detailed
above, training a diffusion model with Equation 3 can be
interpreted as standard next-token prediction where the
model is provided with an additional “diffusion token”
xt containing some amount of knowledge about the tar-
get y, ranging from no information (t = 0) to perfect
information (t = 1). Therefore, LMs are essentially
trained with an equivalent prediction objective to L2D’s
when t = 0, where xt is entirely uncorrelated with the
target y. Similarly, inference following Algorithm 1 in-
volves iteratively sampling increasingly accurate next
tokens x̂ from the model’s logits up to a sampling budget
T . Thus, traditional LM inference can be again viewed
as a special case of this procedure with T = 1, where
only the model’s first sample is used to predict y.

The purpose of these design choices is that L2D aims to
extend pre-trained LMs via a finetuning approach, rather
than learning new models from scratch. While fully
adopting diffusion training from the start might appear
more general, we argue this risks losing some of the
training scalability and powerful inductive biases inher-
ent to traditional autoregressive modeling which led to
their wide establishment in the language domain (Allen-
Zhu & Li, 2023a;b). Furthermore, L2D directly enables
leveraging the extensive “system 1” understanding (Kah-
neman, 2013) already encoded in open foundation mod-
els. In fact, by building on their existing capabilities we
avoid the prohibitive costs required in past attempts to
match their performance with diffusion.

3 L2D IMPLEMENTATION

We design our L2D implementation as a modular exten-
sion for pre-trained transformers to efficiently harness
the multi-step scaling capabilities of diffusion while pre-
serving their original single-step generative power. To
achieve this, L2D introduces a parallel “diffusion” path
to their architecture, where the hidden representation of
the diffusion token xt is propagated, affecting the frozen
“main” LM path only at the final layer. In this section, we provide details about each specific L2D
component, highlighting how our choices ensure scalability and efficiency advantages over prior
designs. To accompany our explanations, we show an overview of the L2D pipeline illustrating
transformer architectures augmented with our framework in Figure 2.

3.1 DIFFUSION PATH PARAMETRIZATION

Structure and initialization. We process the diffusion tokens xt within a separate parallel path to the
LM’s original architecture. This choice allows us to optimize only a subset of the model’s parameters
with no risk of losing its original ability to process the “uncorrupted” tokens in the context c. We
implement the diffusion path, denoted fθd , with a transformer architecture and the same number of
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blocks as the main path fθl , each comprising a subset of its layers. Moreover, to make the most of the
pre-trained LM’s knowledge, all layers in the diffusion path are also initialized with the weights from
θl, similarly to Zhang et al. (2023). In practice, we find this initialization enables fast and inexpensive
training, allowing us to optimize the diffusion path with simple low-rank adaptation (LoRA, Hu et al.
2021). Furthermore, this approach greatly minimizes L2D’s memory overhead, as it requires us only
to store the small LoRA modules by reusing the LM’s original weights in both θd and θl.

Diffusion path components. The transformer blocks in the diffusion path comprise a sequence of
residual MLP and cross-attention modules. While the MLP modules follow the same structure as in
fθl , the cross-attention modules exclusively parameterize query and output linear layers. In particular,
during cross-attention, the diffusion token xk

t for target token yk attends over all previous keys and
values already computed from the corresponding self-attention module in fθl . We only integrate the
information processed in fθ back to the main path after all blocks, right before the LM’s linear head.
Specifically, we merge the two paths with an element-wise weighted sum fθl + wdfθd where the
rescaled latents of diffusion token xk

t are added to the latents of the previous token xk−1.

Properties and advantages. Our design choices have several key advantages over prior diffusion
architectures targeted for multi-token generation (Li et al., 2022; Dieleman et al., 2022). During
inference, by saving the latent representation from fθl together with the KV cache, we only need
to compute the output of the main path once for each generated token, no matter the number of
diffusion steps. Furthermore, as the diffusion token for the k-th target only affects the main path at
the previous position, we can fully parallelize training across the sequence batch dimension, sampling
timesteps t1 . . . tK and diffusion tokens x1

t1 . . . x
K
tK independently. By doing this, we greatly mitigate

the variance of the diffusion optimization objective, efficiently obtaining independent diffusion losses
for all K sequence positions for each sampled input context x0 . . . xK−1 in the data batches.

3.2 L2D CONDITIONING

Diffusion space vocabulary. To condition fθd , we construct the vocabulary containing the discrete
set of token embeddings for the diffusion path x ∈ V from the pre-trained token vocabulary of
the base LM, denoted V l. In particular, we learn a linear mapping Wv ∈ Rd̄×d to convert each
pre-trained embedding V l

y to a lower-dimensional embedding in Rd̄ rescaled to fixed norm
√
d̄:

Vy =
√
d̄

WvV
l
y

||WvV l
y ||2

, for all y = 1, . . . |V |. (5)

This normalization step is required to avoid the magnitude of the tokens in V growing unboundedly
to minimize the corruption effects from the sampled noises x0 ∼ N(0, σ2I) while training with
Equation 3. Instead, as proposed by Dieleman et al. (2022), this approach will make the token
embeddings in V naturally spread out, which will lead to their distribution possessing unit variance
in each component across the data manifold. Lastly, we use a small 2-layer “translation module”
at the beginning of the diffusion path, mapping back the diffusion tokens embeddings to Rd for
compatibility with the transformer blocks in fθd .

Timestep conditioning. We condition the diffusion path on the current timestep t ∈ [0, 1] in three
distinct ways. First, based on established practices from the modern diffusion literature, we extract
sinusoidal features from t and process them with a small network to output shift and scale parameters
for all layer normalizations in fθd . Second, following Peebles & Xie (2023), we parametrize additional
time-conditioned element-wise rescalings which we apply before summing back the residuals from
each transformer block. Third, we make final use of the timestep embeddings to condition the last
element-wise weighting term wd used to scale the outputs of the diffusion path fθd . However, rather
than making this weight the output of a network wθd(t), we shift wd with the value of wθd(0):

wd(t) = wθd(t)− wθd(0). (6)

The main direct consequence of this parametrization is that the diffusion path will always be multiplied
with zeros at t = 0, leaving the original output of fθl unchanged. Thus, this practice ensures that
L2D will never trade off the powerful single-step capabilities of the pre-trained LM when xt is pure
noise, and provides a strong inductive bias for the diffusion path to increasingly affect predictions as
t grows to 1 and xt contains more past compute and knowledge.
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Classifier-free guidance. Finally, we can effectively condition L2D models on additional contextual
information about a task or a dataset through classifier-free guidance (Ho & Salimans, 2022). During
training, this is done by simply adding to the sinusoidal timestep embeddings an additional learned
class embedding from a set of J + 1 options g0, . . . gJ . Here, option g0 is used as the “null” class
embedding applied when no additional contextual information is provided and trained with a given
“class-dropout” probability. During inference, given access to a task label j ∈ (1, .., J), we can then
construct a “guided” target prediction x̂g for Eqn. 4:

x̂g = wg × fθ(xt, t, gj , c)− (1− wg)× fθ(xt, t, g0, c), (7)

where wg ≥ 1 is the guidance strength parameter. This method effectively provides diffusion models
with targeted generation capabilities and plays a key role in their state-of-the-art computer vision
performance (Dhariwal & Nichol, 2021). Moreover, it allows users to trade off general purpose with
task-specific expertise, potentially allowing to overcome the impractical need for prompt engineering.

4 EXPERIMENTAL RESULTS

In this section, we provide descriptions for the implementation specifics, training, and evaluation of
our new L2D method. Then, we present comprehensive quantitative results, evaluating the benefits of
L2D across state-of-the-art LMs of different sizes from the Llama 3 (Dubey et al., 2024) and Qwen
2.5 families (Hui et al., 2024). Lastly, we focus on Llama 3.2 1B Instruct to study the properties of
L2D in greater depth – showing its complementarity to traditional finetuning and search approaches,
and also pushing performance with further advances from the diffusion literature, such as adaptive
ODE solvers and classifier-free guidance.

To complement this section, we refer to Appendices A and B for a full set of hyper-parameters, further
implementation details, and comprehensive descriptions of our datasets and tasks. Furthermore, we
refer to Appendix C for thorough ablations of L2D and our baselines, together with Appendix D for
results on additional benchmarks, analyses of additional extensions, and per-task performance tables.

4.1 IMPLEMENTING, TRAINING, AND EVALUATING L2D

Figure 3: Diffusion performance evolution. L2D
performance with the progression of the timestep t.

As described in Section 2, our main L2D imple-
mentation adapts the frozen pre-trained model
parameters with LoRA (Hu et al., 2021), effi-
ciently reusing them in the diffusion path. We
employ σ = 64 for the standard deviation of the
base distribution p0, as the discrete nature of lan-
guage makes token classification trivial for low
noise levels and we want to regularize against
the model’s most influential diffusion steps being
concentrated early on during inference. Similarly
to related work (Dieleman et al., 2022; Gulrajani
& Hashimoto, 2024), we employ a small diffu-
sion dimension d̄ = 256 and rescale the inputs
for fθd such that the standard deviation of each
component of xt has expectedly unit variance at
all timesteps t. In all main results, we perform
multi-step inference with a midpoint solver and 8 discretization levels, resulting in 15 fθd evaluations.

Typical applications of modern LMs involve processing a large fixed context of tokens before tackling
the target task, such as user-provided prompts or fetched background resources. We note that this
first step does not involve any active generation which could make use of improved reasoning skills.
Thus, in contrast to prior diffusion LMs trained with unmasked language data, we finetune L2D on
an instruction-following dataset targeted for tasks requiring non-trivial cognitive abilities, such as
math and coding (Allal et al., 2024). Thus, L2D’s learning signal is focused on powering the LM’s
conditional generation capabilities in complex problems – reflecting the conditions to benefit most
from test-time scaling. We train each method for 1 epoch with the AdamW optimizer (Loshchilov,
2017), 100 warmup steps up to a tuned learning rate, and a linear decay afterward.
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Table 1: Quantivative L2D evaluation Performance and aggregated statistics for the considered math, coding,
and general knowledge problems. Coding performance is measured under pass@10 (Chen et al., 2021).

Method/Task
Mathematics Coding General Knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ LoRA finetuning 26.29 11.06 42.45 47.20 38.24 14.56 29.97 3M
+ full finetuning 33.48 12.40 32.08 30.00 39.57 14.70 27.04 1235M
+ L2D (Ours) 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M

Qwen 2.5 1.5B Instruct 13.56 16.04 69.18 58.80 57.18 25.54 40.05 -
+ LoRA finetuning 45.68 21.79 61.00 63.80 54.47 23.62 45.06 3M
+ full finetuning 50.45 23.34 65.41 51.80 52.63 22.59 44.37 1543M
+ L2D (Ours) 53.03 31.91 69.81 66.60 58.53 26.16 51.01 103M

Llama 3.1 8B Instruct 51.97 23.05 83.65 70.20 63.83 31.85 54.09 -
+ LoRA finetuning 69.70 27.21 78.62 70.40 60.37 29.38 55.95 13M
+ full finetuning 65.53 22.59 68.54 56.60 49.28 20.37 47.15 8030M
+ L2D (Ours) 75.61 35.69 83.65 71.03 66.69 35.28 61.33 281M

Qwen 2.5 7B Instruct 5.61 18.34 87.42 58.60 71.41 38.51 46.65 -
+ LoRA finetuning 70.08 33.82 88.05 79.60 69.39 39.12 63.34 10M
+ full finetuning 69.55 33.67 84.91 69.60 59.47 28.32 57.59 7615M
+ L2D (Ours) 82.80 43.62 91.20 76.79 71.11 39.96 67.58 233M

We evaluate L2D on challenging generation tasks broadly focused on three problem categories
in a 5-shot setting. In particular, we consider GSM8K (Cobbe et al., 2021) and competition
MATH (Hendrycks et al., 2021b) to evaluate mathematical reasoning; HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021b) for coding skills; together with MMLU (Hendrycks et al.,
2021a) and MMLU-Pro (Wang et al., 2024) to assess knowledge retention. However, due to its
targeted design, we note that our training dataset is not meant to provide our models with new
real-world knowledge that would be directly relevant to this last category.

4.2 L2D ACROSS MODERN LARGE LANGUAGE MODELS

Table 2: L2D extensions. Summarized performance.

Method/Metric Math Coding All tasks Params.

Llama 3.2 1B Instruct 11.93 47.63 28.54 -
+ L2D 28.02 49.80 35.50 73M
+ L2D (127 steps) 28.39 51.90 36.24 73M
+ L2D (adaptive solver) 30.26 49.53 36.34 73M

+ L2D (full fθd ft.) 27.60 50.52 35.63 992M
+ LoRA finetuning 18.68 44.82 29.97 3M
+ L2D (from LoRA ft.) 29.19 48.45 35.51 76M
+ full finetuning 22.94 31.04 27.04 1235M
+ L2D (from full ft.) 33.37 43.37 35.84 1309M

+ tuned token search 27.76 49.35 33.83 -
+ L2D and token search 35.95 49.79 38.57 73M

+ L2D (guidance, wg = 1) 28.01 50.57 35.55 73M
+ L2D (guidance, wg = 1.5) 28.65 49.46 35.62 73M
+ L2D (guidance, tuned wg) 29.14 50.57 36.26 73M

In Table 1, we provide quantitative re-
sults after training L2D on top of four
different LMs spanning different model
families and scales. L2D yields con-
sistent improvements particularly evi-
dent in the math and coding tasks, the
focus of our targeted training dataset,
while optimizing a small fraction of
the original weights (less than 6% for
Llama 1B and 3.5% for Llama 8B). Al-
though expectedly more limited, we still
find some benefits in general knowledge
tasks, indicating that the inductive bias
from multi-step inference might also
allow the model to better extract pre-
acquired knowledge even beyond the
finetuning corpus. Overall, we believe
these results highlight the generality and
effectiveness of L2D, allowing LMs to
go beyond pure autoregression and harness some of the scaling properties of the diffusion framework.

To disentangle the benefits of our method from our choice of data, we compare L2D with both LoRA
and full weight finetuning baselines. As shown in our results, these traditional strategies appear to
yield lower overall benefits with even frequent performance drops for the Llama instruct models on
the coding problems. In Appendix D, we show that finetuning the base versions of Llama does not
experience similar drops but fails to achieve competitive performance, suggesting that the private
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Figure 4: Adaptive LM scaling. Performance (left)
and average steps (right) with an adaptive solver.

Figure 5: Classifier-free guidance. Performance on
math (left) and code (right) varying guidance strength.

datasets employed in the instruction finetuning phases of these models might be superior to our public
sources for certain problems. Nonetheless, L2D empirically shows consistent performance gains
for all models even in coding, indicating that its empirical properties are qualitatively different from
traditional weight optimization: augmenting the model to leverage past computation and improve
future predictions, without suffering the potential downsides of trying to alter its capabilities.

4.3 ANALYSIS AND EXTENSIONS

Inference-time diffusion scaling. In Figure 1, we show the performance of L2D while simply
scaling the number of diffusion steps performed during inference. Moreover, in Figure 3, we show
how performance varies within the L2D diffusion process as a function of t. In both cases, we
expectedly observe a monotonic increase in overall LM performance, clearly analogous to the scaling
properties of the diffusion framework for image modeling. Furthermore, comparing the scores of
the highest and our default choice of 15 evaluations, in Figure 1 or Table 2, shows that over 90% of
the performance boost can be retained without excessive overhead costs. These results evidence that
the efficiency benefits of diffusion formulations based on rectified flows empirically transfer to the
language domain, allowing effective generation in a handful of steps (Liu et al., 2022).

Adaptive diffusion process. In the first section of Table 2, we evaluate scaling compute using L2D
with an adaptive second-order Runge-Kutta ODE solver (Fehlberg, 1969), running inference for
118.33 steps on average. Remarkably, this extension allows the Llama 1B model to exceed the highest
previous results obtained with the midpoint solver and a fixed number of 127 steps – notably showing
the effectiveness of adaptively tuning compute based on the diffusion errors for each generated token.
In line with these observations, as illustrated in Figure 4, we find the number of steps to visibly
vary between different tasks. For instance, when dealing with the challenging MATH and coding
benchmarks (whose performance is provided in the pass@10 regime) the adaptive solver intuitively
takes a larger number of steps than for GSM8K. Furthermore, we find that the tasks requiring the
model to provide an answer in a single token without allowing an initial reasoning trace (MMLU
and MMLU-Pro) are distinctively the ones where the solver takes the most steps. These findings
appear to suggest that integrating advanced solvers can provide L2D the ability to dynamically adapt
compute to compensate for increasingly challenging settings and go beyond the current dependence
of LMs on heuristic chain-of-thought traces (Wei et al., 2022).

Full fθd optimization and weight finetuning. In the second section of Table 2, we show the effects
of extending L2D with additional trained components. First, we examine going beyond LoRA and
optimizing the full set of parameters of fθd (still initialized from the LM’s frozen blocks). We find
this simple change leads to improvements in L2D’s overall performance, especially visible in the
coding tasks. However, we note these benefits come with a non-negligible additional resource cost,
a comparable trade-off to the one between traditional LoRA and full weight finetunings of LMs.
Second, we study the effects of training L2D from already finetuned model checkpoints with these
same traditional approaches. Our results confirm that L2D is fully compatible with direct parameter
optimization, achieving some of our highest results on math where both methods were individually
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beneficial. Moreover, L2D largely fills the performance drop observed when directly altering the
weights of the Llama model on coding, further evidencing its synergy with weight finetuning.

L2D and search. In the third section of Table 2, we compare and integrate L2D with traditional
ways of increasing compute by searching over the space of generated tokens. In particular, using
domain knowledge, we combine different effective heuristics to evaluate partial generations, such as
the token sequence’s likelihoods, lengths, and repetitions – which we tune by task category. We then
use the resulting scores by performing a beam search over the generated sequences, keeping a set
of 15 hypotheses to match the default number of L2D steps. Although the benefits of token search
with the instruct model remarkably appear beyond traditional weight finetuning, even nearing the
ones of L2D on coding, we note its cost and complexity are notably superior to our method: each
L2D step only executes the far cheaper fθd , while each searched hypothesis even requires its own
separate KV cache. Yet, by combining beam search with our method, each with half the original
budget, we obtain the highest performance recorded by our extensions. We believe these results show
how L2D makes diffusion highly complementary with traditional approaches for test-time scaling,
and its future potential to accelerate progress toward advancing its current bounds (Snell et al., 2024).

Classifier free guidance. In the last section of Table 2, we illustrate the effects of integrating
classifier-free guidance into L2D. As detailed in Appendix B, we partition the training data into
the subsets most relevant for math, coding, and general knowledge to reflect the nature of the
examined tasks. Then, by simply conditioning fθd on the resulting labels during test time, our results
demonstrate visible performance gains, further amplified by raising the guidance strength wg. Yet,
as shown in Figure 5, we find the optimal value for wg varies greatly across task categories, with
single-answer math tasks benefiting from much higher guidance strengths than the pass@10 coding
setting. This dichotomy mirrors the well-known trade-off between IS and FID metrics with traditional
guided diffusion models (Salimans et al., 2016; Heusel et al., 2017). In fact, exploiting this property
with per-domain tuning of wg even attains gains similar to running the unguided L2D for 127 steps
with only 15. We believe these results further demonstrate the potential of the L2D framework to
advance language modeling and bring to LMs some of the key advances that played a crucial role in
establishing diffusion as state-of-the-art in computer vision (Dhariwal & Nichol, 2021).

5 RELATED WORK

There have been several proposed generalizations of the diffusion process for discrete token spaces.
Many works in this area focused on sequence-to-sequence tasks and multi-step generation (Reid
et al., 2022; Zheng et al., 2023; Sahoo et al., 2024) by extending the seminal D3PM (Austin et al.,
2021a). Other discretizations have seen success even for image and biological data (Hoogeboom
et al., 2021; Campbell et al., 2024). Of particular relevance, the recent SEDD (Lou et al., 2024) and
discrete flow matching (Gat et al., 2024) demonstrated the early potential of this direction, making
concrete strides in approaching small-scale traditional LMs.

Most related to our work, continuous diffusion LMs instead adapt the Gaussian diffusion framework
to the language domain (Savinov et al., 2021; Li et al., 2022). This area has seen rapid evolution
with techniques such as self-conditioning (Chen et al., 2022), new approaches to embed tokens in
continuous spaces (Strudel et al., 2022; Mahabadi et al., 2023), and extensions to encoder-decoder
domains (Yuan et al., 2022). In particular, CDCD (Dieleman et al., 2022) brought key advances also
employed in this work, such as cross-entropy optimization and token normalization. Attempting
to scale this line of work, PLAID (Gulrajani & Hashimoto, 2024) managed to train a 1B model
outperforming a 124M GPT2 (Radford et al., 2019).

Similar in purpose but diverging from L2D’s design, other works also aimed at combining the
properties of LMs and diffusion. For instance, DiffusionBERT (He et al., 2022) proposed to use
a pre-trained BERT model (Devlin, 2018) to accelerate masked diffusion training (Austin et al.,
2021a). In addition, the SSD framework (Han et al., 2022; 2023) trained autoregressive and diffusion
models together to act on different hierarchical language levels. Lastly, DGLM (Lovelace et al.,
2024), proposed to learn a diffusion model on the latent space of an encoder-decoder LM to introduce
classifier-free guidance support.

9



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

6 DISCUSSION AND FUTURE WORK

In this work, we provide concrete steps toward a new generation of autoregressively-trained LMs
with the scaling capabilities of diffusion. We show how, after a small finetuning phase, L2D enables
trading test-time compute for performance, providing higher and highly complementary benefits to
further training and search-based optimizations. Additionally, we demonstrate how our new method
provides LMs with the key properties of diffusion models, enabling effective adaptive computation
and domain guidance expertise specific to user demands. We hope this work provides new inspirations
for unifying the strengths of the foundational autoregressive and diffusion paradigms, which power
some of the greatest milestones yet seen in AI.
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Table 3: Implementation hyper-parameters of the weight finetuning baselines and L2D.

Hyper-parameter Weight finetuning L2D

Flow hidden dimensionality d̄ – 256
Timestep embedding dimensionality – 256
Diffusion path conditioning hidden dimensionality – 256
Noise scaling ratio σ – 64

Optimizer AdamW AdamW
Warmup steps 100 100
Maximum learning rate 1× 10−5 1× 10−4

Final learning rate 1× 10−6 1× 10−6

Decay Linear Linear
LoRA alpha 64 32
Batch size 32 32
Training epochs 1 1
Maximum sequence length 2048 2048
Timestep training sampling t – Uniform

ODE solver – Midpoint
Total diffusion budget T – 15
ODE velocity – Constant (Liu et al., 2022)

A IMPLEMENTATION DETAILS

A.1 LANGUAGE MODELING HYPER-PARAMETERS

We provide a full set of the default hyper-parameters for our baseline approaches and L2D in Table 3,
including details about the training, inference, and modeling design of our new approach. In particular,
we note that training is performed using the AdamW (Loshchilov, 2017) optimizer with a simple linear
decay after a brief warmup phase, as we did not find any significant benefit from integrating more
complex cosine schedules. As exemplified and detailed in Appendix C, we swept the learning rate
and the other key hyper-parameters of each approach to ensure their efficacy. Our maximum sequence
length, however, was selected for efficiency considerations from the quadratically scaling costs of
transformer architectures, as we found monotonic performance improvements when increasing its
value in preliminary experiments. For our beam search strategy, we score each partial completion
based on the model’s total loglikelihood divided by LpL , where L is the current length and pL is a
hyper-parameter to bias toward longer or shorter generations. We sample completions after each
steps and, to further improve diversity, also at the end of the full procedure, by treating the resulting
final scores as logits, which we divide by a per-task tuned temperature. We found this sampling
approach particularly helpful for the pass@k coding class, which otherwise would be hurt by the
lower resulting diversity.

A.2 INFERENCE L2D SPECIFICS

As described in Sections 2 and 3, we perform inference by starting the diffusion process from noise
x0 ∼ N(0, σ2I), and iteratively update xt at each diffusion step using predictions x̂ sampled from
the logits. We can perform this process with any ODE solver by discretizing the timestep interval
[0, 1] into a set of subintervals and integrating each segment with an n-th order approximation. In our
default implementation, we integrate [0, 1] with eight endpoints, i.e., at S =

(
0, 1

7 ,
2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 , 1

)
.

Thus, with the second-order midpoint method, we perform two forward passes with the diffusion
path to integrate each of the seven resulting subintervals [Si, Si+1]: once to compute the initial slope
dxSi at t = Si with diffusion token input xSi ; and a second time at t = Si + h with diffusion token
input xSi+h = xSi

+ hdxSi
yielding dxSi+h, where h = Si+1−Si

2 . The output of the subinterval
integration is then used to compute the value of its endpoint xSi+1

= xS1
+ 2hdxSi+h, and the

process is repeated for the next subinterval. One final forward pass is then done through the model to
obtain and sample from the logits at the final step, resulting in a total diffusion budget of T = 15.
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Table 4: Overview of evaluation datasets for the considered tasks and their characteristics.

Dataset (subset) Huggingface Repository Split Few-shot split Size
InstructHumanEval codeparrot/instructhumaneval test test 159
MBPP (full) google-research-datasets/mbpp test prompt 499
GSM8K (main) openai/gsm8k test train 1,319
MATH lighteval/MATH test train 4,347
MMLU (all) cais/mmlu test dev 13,666
MMLU-Pro TIGER-Lab/MMLU-Pro test validation 11,955
PIQA ybisk/piqa validation train 1,838
ARC-Easy allenai/ai2 arc test validation 2,376
ARC-Challenge allenai/ai2 arc test validation 1,172

To avoid our proposed sampling procedure with higher-order solvers affecting the final diffusion token
prediction by providing an embedding unseen from training averaged from different tokens, we found
two implementation details useful in practice. First, we linearly anneal the sampling temperature
toward zero with the progression of t. Second, we end the diffusion procedure slightly earlier at
t = 1 − 1

σ as similarly done by Dieleman et al. (2022). However, we note that we did not find
this last implementation detail always necessary with fixed-step first and second-order solvers, and
only employed it for the adaptive and RK4 solvers (Fehlberg, 1969) part of our extensions evaluated
in Section 4.3 and Appendix D. Furthermore, for the analyzed adaptive solver, we employed both
absolute and relative thresholds to regulate the step size with values of 3× 10−4 each.

As explained in the main text our efficient design allows us to only compute the output of the model’s
pre-trained main path once during generation by simply storing it together with the KV cache. Then,
by exploiting the fact that the main path is independent of the diffusion path until the final layer,
we simply collect the updated residuals from the smaller-sized fθd which take as input the latest
diffusion token xt containing the compute and information gathered during all previous diffusion
steps. Lastly, we want to acknowledge the torchdiffeq (Chen, 2018) library, which we use in
our implementation to compute the diffusion path with L2D.

B DATASETS

B.1 TRAINING DATASET COMPOSITION

Our targeted training and validation data used for L2D and our baselines is a carefully extracted com-
bination of different subsets of the recent large open-source SmolTalk dataset (Allal et al., 2024). In
particular, its specific composition was devised for the best performance with traditional weight fine-
tuning approaches and for correlation to downstream reasoning tasks such as mathematics and coding.
The adopted SmolTalk components include the subsets corresponding to self-oss-instruct,
metamathqa-50k, numina-cot-100k, and openhermes-100k. Furthermore, we also ex-
tract and include a part of the examples from the smol-magpie-ultra subset – only con-
sidering data points with a category belonging to either "coding", "data-analysis",
"information-seeking", "math", or "reasoning". Lastly, we also note that we dis-
card examples whose length exceeds 2048 tokens, matching the maximum considered sequence
length employed during training. In total, the produced training and validation datasets contain
892,283 and 46,848 examples, respectively. We will share our data together with our code for
reproducibility and help facilitate future progress in open methods for LM scaling and reasoning.

B.2 EVALUATION DATASETS

As described in Section 4 and in line with the training data, our evaluation suite comprises popular
and challenging coding, math, and general knowledge tasks. Together with the sample from each of
the tasks problems, we provide the model with a fixed 5-shot context from the task’s data with either
the first or equally spaced-out indexes (in case the task data is not i.i.d.) not included in the evaluation.
We format the few-shot context as a past conversation adhering to the instruct LMs default tokenizers.
In Table 4, we provide a summary of the data sources used for our evaluation, including for the

16



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

additional tasks evaluated in Appendix D. We also provide high-level descriptions of our integrations
and answer extraction procedures below:

InstructHumanEval is a coding dataset designed to assess instruction finetuned models. It extends
the original HumanEval (Chen et al., 2021) and prepends each prompt with a natural language
instruction that describes the coding problem. The tasks typically involve writing Python functions
that meet specific requirements. We compute pass@1, pass@5, and pass@10 by executing model
generations on provided unit tests.

MBPP (Multiple Basic Programming Problems, Austin et al. 2021b) contains programming problems
written in natural language along with their solutions in Python. Following InCoder (Fried et al.,
2023) and BigCode Evaluation Harness (Ben Allal et al., 2022), we include one unit test case in each
prompt. Similarly, pass@1, pass@5, and pass@10 are calculated by verifying model generations on
unit tests.

GSM8K (Grade School Math 8K, Cobbe et al. 2021) is a dataset of grade school math word problems.
Each problem requires breaking down the solution into several steps and applying basic arithmetic op-
erations. A response has the format "{multistep reasoning} ### {final answer}".
We extract the final answer and compare it against the ground truth to compute exact match accuracy.

MATH (Mathematics Aptitude Test of Heuristics, Hendrycks et al. 2021b) consists of problems
from mathematics competitions, including the AMC 10, AMC 12, AIME, and more. Each MATH
response describes a full step-by-step solution and the final answer is wrapped in \boxed{}. We
match and parse the content in \boxed{}, then compute accuracy by comparing it with the ground
truth. In case, no \boxed{} answer is found, we simply take the final generated number as the
model’s response.

MMLU (Massive Multitask Language Understanding, Hendrycks et al. 2021a) is a broad evaluation
benchmark testing knowledge across 57 different subjects, including humanities, STEM, social
sciences, and more. The questions are in a multiple-choice format and require both general knowledge
and specialized understanding. Options in a question are marked by letters from “A” to “D”, and an
answer is a single option letter. We report the accuracy of predicted option letters.

MMLU-Pro (Wang et al., 2024) presents more challenging multiple-choice questions that focus on
professional knowledge. It extends 4 options in MMLU to 10 options (i.e. “A” to “J”).

B.3 CLASSIFIER-FREE GUIDANCE CONDITIONING

As described in Sections 3 and 4, in our classifier-free guidance extension, L2D conditions on
explicitly provided labels that reflect the nature of the examined tasks. Matching the task categories
from our tables, we use the “math”, “coding”, and “general knowledge” labels to partition both the
training and evaluation dataset for the considered tasks, as shown in Table 5. We believe that more
fine-grained partitionings might allow L2D to develop even more nuanced capabilities. To this end,
we believe our approach might have future untapped potential for the personalization of LMs, where
different labels could provide the model contextual information to target behavior toward individual
users through diffusion.

C PARAMETER STUDIES AND ABLATIONS

C.1 LEARNING RATE

At the beginning of this work, we performed thorough LR sweeps for both L2D and the finetuning
baselines on our training data. In practice, we found L2D benefits from much higher LR than direct
weight finetuning, which we believe to be in line with our observation that traditional optimization
can much more easily incur unwarranted knowledge loss than our new method. In Table 6, we provide
summarized results locally modifying this parameter within (1× 105, 3× 105, 1× 104). We note
that going lower than 1× 105 makes the performance of the finetuning baselines regress rapidly to
the base model, defeating the very purpose of these approaches.
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Table 5: Classifier-free guidance categories of the training and evaluation task datasets.

Dataset Category Guidance Category

SmolTalk metamathqa-50k math
SmolTalk numina-cot-100k math
SmolTalk openhermes-100k general knowledge
SmolTalk self-oss-instruct/coding coding
SmolTalk self-oss-instruct/data-analysis general knowledge
SmolTalk self-oss-instruct/information-seeking general knowledge
SmolTalk self-oss-instruct/math math
SmolTalk self-oss-instruct/reasoning general knowledge

HumanEval default coding
MBPP default coding
GSM8K default math
MATH default math
MMLU default general knowledge
MMLU abstract algebra math
MMLU college mathematics math
MMLU elementary mathematics math
MMLU high school mathematics math
MMLU high school statistics math
MMLU high school computer science coding
MMLU-Pro default general knowledge
MMLU-Pro math math
PIQA default general knowledge
ARC-Easy default general knowledge
ARC-Challenge default general knowledge

Table 6: Performance and aggregated statistics for different learning rates with L2D and traditional weight
finetuning.

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D (LR = 1× 10−5) 38.41 17.39 44.65 43.25 43.47 15.57 33.79 73M
+ L2D (LR = 3× 10−5) 39.70 17.90 45.91 51.19 42.29 15.32 35.38 73M
+ L2D (LR = 1× 10−4) 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M

+ full ft. (LR = 1× 10−5) 33.48 12.40 32.08 30.00 39.57 14.70 27.04 1235M
+ full ft. (LR = 3× 10−5) 26.74 10.28 29.56 22.20 33.71 13.05 22.59 1235M
+ full ft. (LR = 1× 10−4) 15.91 7.54 20.75 7.40 25.91 11.37 14.81 1235M

C.2 DIFFUSION SCHEDULE

As described in Sections 2 and 4, the choice of the standard deviation σ for the base distribution p0
is critical, implicitly defining the process that our diffusion-augmented LM will be learning. Too
small or too large of a choice might concentrate the most relevant steps at either end of the diffusion
interval, wasting both training and inference compute. In Table 7, we provide results with alternative
values for σ around our choice of σ = 64. As suggested by Dieleman et al. (2022), we note that
the optimal diffusion schedule might evolve throughout training, with recent diffusion advances like
time-warping being immediate directions for potential future improvements of our framework.

C.3 INITIALIZATION

As detailed in Section 3, we initialize the weights of the diffusion path from the corresponding layers
in the main path. The main goal behind this choice is to incentivize the model to learn a representation
of the diffusion tokens close to one of the main path tokens and try to reuse the computation ability
already present in the main path from pretraining. Our key hypothesis is that learning such a solution
would be easier and provide a better inductive bias than learning the diffusion path from scratch.

18



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 7: Performance and aggregated statistics for L2D trained and evaluated with different standard deviation σ
of the base distribution p0 := N(0, σ2I).

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D (σ = 64) 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M
+ L2D (σ = 32) 37.50 16.82 45.28 52.38 42.22 15.54 34.96 73M
+ L2D (σ = 128) 41.06 18.45 44.03 46.83 42.09 16.06 34.75 73M

Table 8: Performance and aggregated statistics for L2D ablating our reuse of the main pretrained path’s weights
θl to initialize the weights of the diffusion path θd.

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D (full fθd ft.) 37.50 17.71 49.05 52.00 41.98 15.52 35.63 992M
+ L2D (no init. 38.03 17.46 42.77 51.19 41.71 14.71 34.31 992M

In Table 8, we provide this explicit ablation to validate our choice, showing a comparison with the
full-finetuned version of L2D to equate the number of optimized parameters. However, we note
that the performance of the randomly initialized L2D appears even lower than the less-costly LoRA
version of our method – corroborating the usefulness and reusability of the parameters of open
foundation models.

C.4 VELOCITY COMPUTATION

As detailed in Section 2, to compute the target velocity, we simply sample yt from the output
distribution of our L2D model fθ(xt, t, c). Then, we set x̂ = Vyt

. In contrast, Dieleman et al. (2022)
opt to take the expectation over fθ(xt, t, c) directly as a weighted sum:

x̂ =
∑
y

fθ(xt, t, c)y × Vy. (8)

We provide results in Table 9, empirically comparing these choices. While in principle Dieleman
et al. (2022)’s choice has the same expected value but lower variance than our sampling approach, we
hypothesize the empirical advantage of our method when using deterministic ODE solvers comes
from reinjecting some structured stochasticity, which Karras et al. (2022) showed might allow to
better harness some of the self-correcting properties of the diffusion framework.

D EXTENDED RESULTS

D.1 INFERENCE ODE SOLVERS

Our main experiments in Section 4 were collected with a second-order midpoint solver, an empirically
robust choice in the traditional diffusion framework for different computational budgets (Lipman
et al., 2024). When evaluating our framework with an adaptive solver, we also employed a second-
order adaptive Runge-Kutta (RK) solver (Fehlberg, 1969). Here, we extend these results, analyzing
additional fixed-sized solvers with different properties, to understand their behavior with L2D and
our relatively small default diffusion budget. In Table 10, we provide results with the first-order
Euler and fourth-order RK methods, evaluated for 15 and 17 steps (the lowest number which allows
fourth-order integration above our default budget). In particular, we find that simpler solvers seem to
work best, with Euler integration even slightly outperforming our midpoint method. These results
appear consistent with the literature on fast diffusion methods (Liu et al., 2022). However, we note
they might not necessarily hold for higher diffusion budgets as well (Karras et al., 2022).
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Table 9: Performance and aggregated statistics for L2D evaluated with the x̂ estimate proposed by Dieleman
et al. (2022) to compute the velocity.

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M
+ L2D (CDCD velocity) 37.12 18.33 46.23 51.60 41.31 14.96 34.92 73M

Table 10: Performance and aggregated statistics for L2D evaluated with fixed-step ODE solvers of different
order.

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D (default) 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M
+ L2D (Euler, 15 steps) 39.77 17.30 48.42 50.20 42.19 15.30 35.53 73M
+ L2D (RK4, 17 steps) 39.70 17.28 45.91 51.19 42.41 14.95 35.24 73M

D.2 TIMESTEP SCHEDULES

For simplicity, in this work, we opted to sample timesteps t ∈ [0, 1] uniformly during training.
However, we note that there exist other choices recently developed that have been shown to provide
empirical benefits for diffusions based on rectified flows (Esser et al., 2024). Thus, we validate the
potential of these recent contributions for L2D and evaluate our method with the “cosmap” timestep
schedule from Nichol & Dhariwal (2021). As shown in Table 11, this extension appears to yield
consistent improvements over uniform sampling in all but one task, confirming how complementary
advances from the diffusion literature can provide further improvements toward improving test-time
LM scaling through our new framework.

D.3 L2D PERFORMANCE ON ADDITIONAL TASKS

In Table 12 we provide the performance of L2D and traditional weight finetuning strategies on
additional evaluation settings and tasks from the language modeling literature. In particular, we
report the pass@1 and pass@5 metrics for the HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021b) coding benchmarks, together with performance on the PIQA (Bisk et al., 2020),
ARC-Easy, and ARC-Challenge (Clark et al., 2018) question-answering tasks. We note these last
three tasks, are less relevant than the ones considered in Section 4 given our data curation strategy
targeted toward math and coding problems. Remarkably, however, while weight finetuning appears
to deteriorate performance across several model-tasks combinations, L2D once again provides much
more consistent benefits throughout. These results are in line with our observations in the main text
that by focusing on augmenting rather than altering the original model, L2D does not seem to suffer
the potential pitfalls of traditional weight finetuning atop powerful instruct models.

D.4 L2D PERFORMANCE WITH BASE MODELS

As exemplified for the coding tasks in Section 4 and further evidenced in the above subsection, some
of the private data involved in the instruction-tuning phases of state-of-the-art models seem to be
more effective than publicly available sources. However, to validate our curated reasoning dataset,
we trained and evaluated both our weight finetuning baselines starting from the base Llama 3.2 1B
model. As shown in Table 13, without previous instruction tuning, both strategies seem to provide
remarkable benefits across all considered tasks, with full weight finetuning achieving the highest
overall scores, in clear contrast to the results atop the Llama 3.2 1B Instruct model.
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Table 11: Performance and aggregated statistics for L2D trained with the sampling schedule from (Nichol &
Dhariwal, 2021) for the diffusion timestep t.

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M
+ L2D (cosmap schedule) 39.92 18.38 48.43 51.60 42.06 15.36 35.96 73M

Table 12: Performance and aggregated statistics for L2D and our main ablations across all Llama and Qwen
models for additional pass@k settings and tasks.

Method/Task
Coding extended results Additional tasks Overall

HumanEval@5 HumanEval@1 MBPP@5 MBPP@1 ARC-Easy ARC-Challenge PIQA Params.

Llama 3.2 1B Instruct 38.54 20.94 43.88 23.16 63.68 44.20 55.98 -
+ LoRA finetuning 33.03 16.64 40.24 20.28 64.56 45.48 57.56 3M
+ full finetuning 27.47 16.42 22.39 7.66 67.59 43.60 58.11 1235M
+ L2D (Ours) 41.14 25.09 45.83 28.40 67.68 47.95 56.03 73M

Qwen 2.5 1.5B Instruct 59.42 32.58 50.41 25.66 89.23 75.09 76.44 -
+ LoRA finetuning 54.13 30.60 54.25 29.14 86.20 70.99 74.43 3M
+ full finetuning 55.63 30.50 42.50 17.72 86.70 70.90 74.05 1543M
+ L2D (Ours) 62.41 39.21 59.99 38.40 89.60 75.68 76.79 103M

Llama 3.1 8B Instruct 78.32 55.47 65.04 47.70 92.59 80.20 81.23 -
+ LoRA finetuning 71.66 44.37 64.08 41.22 90.61 78.84 78.94 13M
+ full finetuning 60.00 33.24 48.81 25.00 81.57 67.41 71.49 8030M
+ L2D (Ours) 77.10 53.96 66.08 48.12 92.97 82.85 83.64 281M

Qwen 2.5 7B Instruct 83.83 67.30 54.60 39.88 96.04 89.59 86.51 -
+ LoRA finetuning 81.17 53.02 72.76 47.42 95.33 87.63 85.31 10M
+ full finetuning 77.22 49.28 61.75 33.52 91.88 80.80 77.75 7615M
+ L2D (Ours) 86.27 68.58 70.53 48.43 96.04 88.65 86.74 233M

D.5 FULL L2D EXTENSIONS RESULTS

In Tables 14 and 15, we provide the full set of results for the extensions to L2D analyzed in Section 4.
As discussed in the main text, we find the effects of adaptive solvers and test-time advances like
classifier-free guidance to be of remarkable importance, considerably beyond simply scaling the
number of training parameters. We find these results quite analogous to similar findings from the
diffusion literature (Karras et al., 2022), showing how L2D has the potential to open doors beyond the
current language modeling framework, where data and training compute are the current predominant
approaches for scaling.
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Table 13: Performance and aggregated statistics for the LoRA (Hu et al., 2021) and full weight finetuning
baselines across both instruct and non-instruct versions of the Llama 3.2 1B LM.

Method/Task
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ LoRA finetuning 26.29 11.06 42.45 47.20 38.24 14.56 29.97 10M
+ full finetuning 33.48 12.40 32.08 30.00 39.57 14.70 27.04 7615M

Llama 3.2 1B 2.05 2.10 16.98 11.60 26.51 11.20 11.74 -
+ LoRA finetuning 4.55 2.53 22.64 28.80 25.39 11.42 15.89 10M
+ full finetuning 17.42 5.68 23.75 12.80 28.62 11.74 16.67 7615M

Table 14: Full per-task performance and aggregated statistics for the L2D extensions from Section 4.

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

Llama 3.2 1B Instruct 13.86 10.00 45.26 50.00 38.46 13.63 28.54 -
+ L2D 38.86 17.18 47.80 51.80 41.99 15.35 35.50 73M
+ L2D (127 steps) 38.86 17.92 52.20 51.60 41.87 14.96 36.24 73M
+ L2D (adaptive solver) 42.50 18.01 49.05 50.00 42.77 15.68 36.34 73M

+ L2D (full fθd ft.) 37.50 17.71 49.05 52.00 41.98 15.52 35.63 992M
+ LoRA finetuning 26.29 11.06 42.45 47.20 38.24 14.56 29.97 3M
+ L2D (from LoRA ft.) 40.15 18.24 45.91 51.00 42.79 14.98 35.51 76M
+ full finetuning 33.48 12.40 32.08 30.00 39.57 14.70 27.04 1235M
+ L2D (from full ft.) 46.89 19.85 43.33 43.40 44.34 17.23 35.84 1309M

+ token search 36.44 19.07 48.91 49.80 35.33 13.44 33.83 -
+ L2D and token search 46.21 25.69 47.80 51.79 43.29 16.65 38.57 73M

+ L2D (guidance, wg = 1) 38.26 17.76 49.54 51.60 41.31 14.85 35.55 73M
+ L2D (guidance, wg = 1.5) 39.24 18.06 47.73 51.19 42.17 15.35 35.62 73M
+ L2D (guidance, tuned wg) 40.23 18.06 49.54 51.60 42.52 15.62 36.26 73M

Table 15: Full per-task performance and aggregated statistics for L2D classifier-free guidance extension from
Section 4 evaluated with different classifier strengths wg .

Method/Metric
Mathematics Coding General knowledge Overall

GSM8K MATH HumanEval MBPP MMLU MMLU-Pro All Tasks Params.

wg = 0 37.20 17.23 46.54 50.79 40.94 14.71 34.57 73M
wg = 0.5 36.89 17.62 46.54 51.19 41.06 14.70 34.67 73M
wg = 1 38.26 17.76 49.54 51.60 41.31 14.85 35.55 73M
wg = 1.5 39.24 18.06 47.73 51.19 42.17 15.35 35.62 73M
wg = 2 38.86 18.04 47.73 50.20 42.32 15.32 35.41 73M
wg = 3 40.23 17.71 46.54 49.60 42.52 15.62 35.37 73M
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