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Abstract

Training an effective predictive model with empirical risk minimization requires
a distribution of the input training data that matches the testing data. Covariate
shift can occur when the testing cases are not class-balanced, but the training is. In
order to detect when class imbalance is present in a test sample (without labels),
we propose to use statistical divergence based on the Wasserstein distance and
optimal transport. Recently, slicing techniques have been proposed that provide
computational and statistical advantages for the Wasserstein distance for high-
dimensional spaces. In this work we presented a computationally simple approach
to perform generalized slicing of the kernel-based Wasserstein distance and apply it
as a two-sample test. The proposed landmark-based slicing chooses a single point
to be the sole support vector to represent the witness function. We run pseudo-real
experiments using the MNIST dataset and compare our method with maximum
mean discrepancy (MMD). We have shown that our proposed methods perform
better than MMD on these synthetic simulations of covariate shift.

1 Introduction

Optimal transport (OT) is an old problem that can be dated back to 17th century. Historically the
object of interest was literal dirt, but today we can apply the same approach to align two feature
distributions or data sets [Peyré and Cuturi, 2019]. Generally, computing Wasserstein distance
requires solving a high-dimensional optimization problem. There have been many extensions and
approximations of optimal transport. Perhaps the two easiest cases to compute Wasserstein distance
are for one-dimensional distributions or distributions described by their first and second-moments, as
in Gaussian distributions. However, most data sets have multivariate features and are non-Gaussian.
Using the Radon transform, Kolouri et al. [2016] proposed to obtain slices that are one-dimensional
marginal representations of the distributions through linear projections. The max-sliced Wasserstein
[Deshpande et al., 2019, Nguyen et al., 2021] replaces the random projections with a single slice
or an optimized distribution over slices that maximizes the 1D Wasserstein. Alternatively, Meng
et al. [2019] proposed to find the most meaningful projection using a sufficient dimension reduction
technique [Li, 1991].

We propose an alternative solution called kernel landmarks to tackle this problem. We use a kernel-
based approach, mapping the data points to a Hilbert space [Zhang et al., 2020] and evaluate the
discrepancy between the distributions using each data point as a witness function and measure
the divergence between the witness function evaluations. After evaluating all data points, we pick
the point (the landmark) which identifies the largest discrepancy between the distribution. Our
preliminary results show that this landmark-based max slicing is nearly efficient as maximum mean
discrepancy (MMD) [Gretton et al., 2012]. Furthermore, the landmark-based kernel max-slicing
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is much simpler to compute than kernel max-slicing [Brockmeier et al., 2021], while still being a
probability distance metric.

2 Methodology

We consider a feature domain X ⊆ Rd. Let P (X ) be the set of Borel probability measures on the
metric space (X , d) where d(x, y) is the distance metric for x, y ∈ X . Let µ, ν ∈ P (X ) be the
probability measures and X,Y ∈ X be the random variables such that X ∼ µ and Y ∼ ν. For
any p ≥ 1, we assume the distributions µ and ν have finite p-th moments, and using the Euclidean
distance, d(x, y) = ∥x− y∥, the Wasserstein-p distance is given as

Wp(µ, ν) =
[

inf
γ∈Γ(µ,ν)

∫
X×X

∥x− y∥p dγ(x, y)
] 1

p

. (1)

Cédric [2003] shows that Eq. (1) gives a metric on P (X ) [Villani, 2008, Peyré and Cuturi, 2019].
The max-sliced Wasserstein-p distance is given by the following saddlepoint problem

W ∗
p (µ, ν) = sup

w∈Rd:∥w∥2=1

[
inf

γ∈Γ(µ,ν)
E(X,Y )∼γ |⟨X − Y,w⟩|p

] 1
p

, (2)

where ∥(ww⊤)(X − Y )∥ = ∥⟨X − Y,w⟩w∥ = |⟨X − Y,w⟩| ∥w∥.

2.1 Divergences in the Reproducing Kernel Hilbert Space (RKHS)

Consider a symmetric (real-valued) positive definite kernel function κ : X × X → R. κ defines
H, a reproducing kernel Hilbert space, if the following conditions are met: ∀x ∈ X , κ(·, x) ∈ H
and ∀x ∈ X , f ∈ H, f(x) = ⟨f, κ(·, x)⟩H [Scholkopf and Smola, 2001]. Let ϕ : X → H be
the implicit feature map (mapping elements x ∈ X to elements in RKHS ϕ(x) = κ(·, x)) such that
⟨ϕ(x), ϕ(y)⟩H = κ(x, y).

Assuming a bounded kernel EX∼ξ[κ(X,X)] ≤ ∞, ∀ξ ∈ P (X ), for bounded family of functions
in the RKHS F = {ω : ⟨ω, ω⟩H ≤ 1} on X where ω : X → R, the maximum mean discrepancy
(MMD) is given by

MMDH(µ, ν) = sup
ω∈F

EX∼µ,Y∼ν [⟨ϕ(X)− ϕ(Y ), ω⟩] = sup
ω∈F

E[ω(X)− ω(Y )] = ∥mµ −mν∥H,

(3)
where mµ = EX∼µ[ϕ(X)] ∈ H and mν = EY∼µ[ϕ(Y )] ∈ H.

Using the kernel-induced distance d(x, y) = ∥ϕ(x)− ϕ(y)∥H, Eq. (1) can be extended to the kernel
Wasserstein-p distance [Zhang et al., 2020] as

WH
p (µ, ν) = inf

γ∈Γ(µ,ν)

(
E(X,Y )∼γ

[
∥ϕ(X)− ϕ(Y )∥pH

]) 1
p , (4)

where ∥ϕ(X) − ϕ(Y )∥pH = (κ(X,X) − 2κ(X,Y ) + κ(Y, Y ))p/2. For p =
2, this simplifies such that the joint expectation moves inside and WH

2 (µ, ν) =
infγ∈Γ(µ,ν)

√
E[κ(X,X)] + E[κ(Y, Y )]− E(X,Y )∼γ2κ(X,Y ). If one were to pursue the one-

dimensional case as the easiest way to compute Wasserstein distance, the implicit feature map
ϕ(·) seems to be an obstacle to slicing compare to Eq. (2). However, by the reproducing property
of the RKHS, the sliced distance defined by ω ∈ H, ∥ω∥H = 1, is ∥(ω ⊗ ω)(ϕ(X)− ϕ(Y ))∥H =
|⟨ϕ(X)− ϕ(Y ), ω⟩|∥ω∥H = |ω(X)− ω(Y )|, where ω(X) and ω(Y ) are real-valued random vari-
ables with pushforward measures ω♯µ and ω♯ν, respectively. The max-sliced kernel Wasserstein-2
distance can be expressed in terms of witness functions as

WH∗
2 (µ, ν) = sup

ω∈H:∥ω∥H=1

W2(ω♯µ, ω♯ν) = sup
ω∈H:∥ω∥H=1

inf
γ∈Γ(µ,ν)

(E(X,Y )∼γ

[
|ω(X)− ω(Y )|2

]
)

1
2

(5)

= sup
ω∈H:∥ω∥H=1

(
E

X∼µ
[ω2(X)] + E

Y∼ν
[ω2(Y )]− sup

γ∈Γ(µ,ν)

E
(X,Y∼γ)

[2ω(X)ω(Y )]

) 1
2

.

(6)
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From the second line it is clear that the optimal γ can be solved analytically by coupling the largest
values of ω(X) with the largest values of ω(Y ), this can be done using their inverse cumulative
distribution functions, which exist under mild conditions [Santambrogio, 2015]. Even with analytic
solutions for the optimal transport after slicing, the computation of the max-sliced Wasserstein
distance still requires optimizing the parameters defining the optimal slice.

Here, we propose a restricted form of kernel max-slicing called kernel landmarks. We restrict the
witness function to be an implicit mapping of a single data point in the Hilbert space, ω = ϕ(z), z ∈
X , assuming normalized kernel κ(z, z) = 1, z ∈ X =⇒ ∥ϕ(z)∥H = 1, and compute the
Wasserstein-2 distance

WHL∗
2 (µ, ν) = sup

z∈X
inf

γ∈Γ(µ,ν)

√
E(X,Y )∼γ |κ(X, z)− κ(Y, z)|2. (7)

For characteristic kernel functions [Fukumizu et al., 2008], namely the Gaussian and Laplacian
kernels, this is a probability metric as stated and proved in the appendix (Theorem 1).

2.2 Two-sample Tests Using Kernel Divergences

We now consider two finite, weighted samples {(µi, xi)}mi=1 and {(νi, yi)}ni=1 of size m and n with∑
i µi = 1 and

∑
i νi = 1. The masses are represented by the vectors µ and ν. These samples can

be represented by the empirical measures µ̂ =
∑

i µiδxi
and ν̂ =

∑
i νiδyi

.

In the sample case, the witness function ω is parametrized as ω(·) =
∑l

i=1 αiκ(·, zi) in terms of

the dual variables α ∈ Rl and {zi}li=1 = Z where zi =

{
xi, 1 ≤ i ≤ m

yi−m, m+ 1 ≤ i ≤ l
, i ∈ {1, . . . , l}

and l = m + n. The kernel matrix is K =

[
KXX KXY

KY X KY Y

]
=

[
KXZ

KY Z

]
∈ Rl×l where KXZ ∈

Rm×l,KY Z ∈ Rn×l, and Ki,j = κ(zi, zi)− 2κ(zi, zj) + κ(zj , zj) for i ∈ {1, . . . ,m+ n}.

The witness function evaluations for each sample are given by the vectors [ω(x1), . . . , ω(xm)]⊤ =
KXZα and [ω(y1), . . . , ω(yn)]

⊤ = KY Zα. For a positive definite kernel matrix K, to ensure ω has
bounded norm, the coefficient vector should be restricted to be α ∈ A = {α ∈ Rl : αTKα ≤ 1}.
Additional constraints are needed if the kernel matrix is positive semi-definite.

The max-sliced kernel Wasserstein-2 distance (squared) can be computed in terms of witness function
evaluations as

WH∗
2 (µ̂, ν̂)2 =max

α∈A
min

P∈Pµ̂,ν̂

∑
i,j

Pij |ω(xi)− ω(yj)|2 = ⟨P, (KXZα1⊤
n − 1m(KY Zα)⊤)◦2⟩


= max

α∈A
⟨µ, (KXZα)◦2⟩+ ⟨ν, (KY Zα)◦2⟩ − 2 max

P∈Pµ̂,ν̂

⟨PKY Zα,KXZα⟩, (8)

where Pµ̂,ν̂ = {P ∈ [0, 1]m×n : P1n = µ and P⊤1m = ν} is the transport polytope, where
1⊤
n = [1, . . . , 1] is a vector of n ones, and M◦2 is the element-wise squaring of the entries of

M. The optimal transport plan can be obtained analytically after sorting the values in the vectors
ωY = KY Zα ∈ Rm and ωX = KY Zα ∈ Rn. Assuming Q and R are the permutations such
that ω(xQ(1)) ≤ · · · ≤ ω(xQ(m)) and ω(yR(1)) ≤ · · · ≤ ω(yR(n)). The optimal transport plan
P⋆ is defined as [P⋆]i,j = [P̃]Q(i),R(j) where P̃ is optimal transport plan after sorting, which is
the finite differences across rows and columns of G: [P̃]i,j = Gi+1,j+1 − Gi+1,j − Gi,j+1 with
Gi,j = min(

∑i−1
k=1 µQ(k),

∑j−1
k=1 νR(k), where the matrix G ∈ [0, 1]m+1×n+1 is the zero-padded

joint cumulative distribution of the optimal transport plan after sorting. Overall, it is a saddle-point
optimization problem, with evaluation cost O(N log(N)) for n > m where N =max(m,n).

For the kernel landmark Wasserstein distance (L-W2), the continuous multivariate optimization of the
optimal slice is replaced by a discrete optimization over the set of possible landmarks is {zi}li=1 = Z .
This is equivalent to restricting α to be one-hot vector, e.g., α = [0, . . . , 0, 1, 0, . . . , 0]⊤. Assuming
the i-th data point is the landmark, ω(·) = κ(·, zi), KXZα = [κ(x1, zi), . . . , κ(xm, zi)]

⊤ = kXzi ,
and KY Zα = [κ(y1, zi), . . . , κ(yn, zi)]

⊤ = kY zi , which are the i-th columns of KXZ and KY Z ,
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respectively. Using these, we introduce the landmark-based max-sliced kernel Wasserstein-2 distance

WHL∗
2 (µ̂, ν̂) = max

k∈{1,...,l}
min

P∈Pµ̂,ν̂

√∑
i,j

Pij |κ(xi, zk)− κ(yj , zk)|2

= max
i∈{1,...,l}

√
⟨µ,k◦2

Xzi
⟩+ ⟨ν,k◦2

Y zi
⟩ − 2 max

P∈Pµ̂,ν̂

⟨PkY zi ,kXZi⟩. (9)

We now assume i.i.d. samples, µ1 = · · · = µm = 1
m and ν1 = · · · = νm = 1

n . Let Pi

be the optimal transport matrix for landmark i ∈ {1, . . . , l}. It can be written as row and col-
umn permutations of P̃ the optimal transport matrix for sorted i.i.d. samples: Pi = Q⊤

i P̃Ri,
Qi ∈ Πm,Ri ∈ Πn, where the entries of QikXzi = [κ(xQi(1), zi), . . . , κ(xQi(m), zi)]

⊤

and RikY zi = [κ(yRi(1), zi), . . . , κ(yRi(n), zi)] are in ascending order, κ(xQi(1), zi) ≤ · · · ≤
κ(xQi(m), zi) and κ(yRi(1), zi) ≤ · · · ≤ κ(yRi(n), zi). ( Qi and Ri are the permutation matrices
corresponding to permutations Qi(·) and Ri(·), where Πn denotes the set of n × n permutations
matrices.) The sorted witness function evaluations for each landmark can be expressed together
as K̃XZ = [Q1kXz1 , . . . ,QlkXzl ] = [k̃Xz1 , . . . , k̃Xzl ] and K̃Y Z = [R1kY z1 , . . . ,RlkY zl ] =

[k̃Y z1 , . . . , k̃Y zl ].

WHL∗
2 (µ̂, ν̂) =

√
max

i∈{1,...,l}

[
1

m
∥KXZ∥22 +

1

n
∥KY Z∥22 − 21⊤

n ((P̃
⊤K̃XZ) ◦ K̃Y Z)

]
i

. (10)

In the case of equal sample sizes m = n and µ1 = · · · = µm = ν1 = · · · = νm = 1
m , the optimal

transport matrix is a scaled product of permutation matrices Pi =
1
mQ⊤

i Ri, since P̃ = 1
mI. In this

case, the kernel landmark Wasserstein-2 distance is simply

max
i∈{1,...,l}

1√
m
∥k̃Xzi − k̃Y zi∥2 =

√
1

m
max

i∈{1,...,l}
[1⊤

m(K̃XZ − K̃Y Z)◦2]i, (11)

where the second expression computes the Euclidean norm of each column of the differences.

3 Covariate Shift Detection

In this section, we perform simulation experiments to compare kernel landmark Wasserstein-2
distance and MMD for detecting imbalanced classes, as a specific form of covariate shift detection.
(We also compare a kernel landmark based Bures distance described in the Appendix.) We perform a
statistical power test to detect the difference between a sample with a uniform distribution of classes
and a sample with the underrepresented class. We also examine the ability of the witness function to
identify instances associated with the underrepresented class.

Specifically, we consider the MNIST dataset split into train and test sets across different levels of
imbalance and sample size. µ̂ represents a sample of the training set with a balanced proportion of each
class, and ν̂ has less instances from one class. MNIST has ten class labels L ∈ {0, 1, . . . , 9}. Let PL

be the prevalence of L-th class/digit, which is underrepresented in ν̂. PL = 1
10 (1−p) where p ∈ [0, 1]

is the Bernoulli probability that the underrepresented digit is replaced by a majority class digit when it
is drawn. The prevalence of the any other digit is expected to be PL′∈{0,1,··· ,9}\L = 1

10 (1− p) + 1
9p.

For example, when p takes values of 0, 0.5, or 0.8, the probabilities of underrepresented digit are
1
10 ,

1
20 , and 1

50 , respectively.

We use the kernel-based divergences to test the hypothesis that the two samples come from the same

distribution. We use the Gaussian kernel κ(x, y) = e−
∥x−y∥2

2σ2 where σ is median of the pairwise
distances. As a significant threshold for the divergence we use the 1− α quantile of the surrogate
distribution of divergence values when instances in each sample are randomly permuted between the
two samples (250 times). To estimate the statistical power for a given occurrence level, we use 500
Monte Carlo samples iterations. Fig. 1 and Fig. 3 show the statistical power for L = 0, digit “0”,
across different values of P0 and sample size.

We also test the precision of the witness function in detecting the specific discrepancies associated
to the class imbalance. We test whether the instances in the training set with the largest magnitude
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Figure 1: The figure illustrates the power test on MNIST dataset. We compare the Landmark-based
kernel Bures,Wasserstein and MMD divergences. The power curves for three different critical values,
α, as a function of prevalence of the underrepresented digit. For this experiment, the sample sizes are
m = n = 700 and the digit is "0".

0.100 0.087 0.075 0.062 0.050 0.037 0.025 0.013 0.000
Prevalence of underrepresented class

0

0.2

0.4

0.6

0.8

1
Precision@10 (N=700)

100 186 271 357 443 529 614 700
Sample size (N)

0.2

0.4

0.6

0.8

1
Precision@10 (Prevalence = 0.025)

Figure 2: Averaged-precision@10 on MNIST dataset where the minority class is “6”. The preci-
sion@10 was calculated by averaging 500 Monte Carlo samples iterations. Landmark-based kernel
Bures (L-Bures), landmark kernel-Wasserstein (L-W2) and MMD divergences. (Left) The sample
size is N = 700 for each test and train set. (Right) The prevalence of the underrepresented digit is
0.025.

witness function evaluations are from the minority class. We report the evaluation results using
precision at 10 in Fig. 2 for the specific case where digit “6” class in the test set. We also compare
the proposed approach to MMD’s witness function evaluations, which are slightly less precise. This
approach is useful in practice, since by examining the label distribution of the top-K training set
examples, the user can understand if there is any imbalances in the test set. Examples of the instances
with highest witness function for both the MNIST and for CIFAR-10 are shown in the Appendix. The
statistical power across different kernel bandwidths (testing the sensitivity to the median heuristic)
is also shown in the Appendix. The implementation of our approach and demos can be found at
https://github.com/drpointcloud/landmark.

4 Conclusion

In this paper we have investigated max-slicing for the kernel-based Wasserstein distance to detect
class-based covariate shift. Our approach evaluates the discrepancy between distributions in terms
of the similarity to a landmark point. Unlike the generalized max-sliced Wasserstein distance, the
proposed distance can be computed exactly and efficiently for the case of two samples. Statistical
power tests are employed to evaluate the performance of detecting class imbalances in testing data.
We compared our approach with MMD, which is a well-known approach to find the discrepancy. The
preliminary results shows that the proposed method detects simple cases of covariate shift better than
MMD.
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A Appendix

The appendix contains the statement and proof of the metric property of the kernel landmark
Wasserstein-2 distance; a description of the kernel landmark Bures divergence; and additional results.
Theorem 1. If κ is characteristic [Fukumizu et al., 2008] and normalized κ(z, z) = 1 ∀z ∈ X ,
then WHL∗

p (µ, ν) is a probability distance metric. For µ, ν, ξ ∈ P (X ) with finite p-th moments

• WHL∗
p (µ, ν) ≥ 0

• WHL∗
p (µ, ν) = WHL∗

p (ν, µ)

• WHL∗
p (µ, ν) = 0 ⇐⇒ µ = ν.

• WHL∗
p (µ, ν) ≤ WHL∗

p (µ, ξ) +WHL∗
p (ν, ξ).

Proof. Non-negativity and symmetry are obvious from the proprieties of the Wasserstein distance. If
µ = ν, then for any ω ∈ H, infγ∈Γ(µ,µ) E(X,Y )∼γ |ω(X)− ω(Y )|p = 0.

We assume µ ̸= ν and proceed to lower bound the distance and show that WHL∗
p (µ, ν) > 0.

For any ω ∈ H,

inf
γ∈Γ(µ,µ)

E(X,Y )∼γ |ω(X)− ω(Y )|p ≥ inf
γ∈Γ(µ,µ)

|E(X,Y )∼γ [ω(X)− ω(Y )]|p (12)

= |⟨mµ −mν , ω⟩|p, (13)

where Jensen’s inequality is used based on the convexity of |·|p. Taking the supremum over the set of
landmarks yields an expression in terms of the difference of the means in the RKHS

sup
z∈X

inf
γ∈Γ(µ,µ)

E(X,Y )∼γ |ω(X)− ω(Y )|p ≥ sup
z∈X

|⟨mµ −mν︸ ︷︷ ︸
h∈H

, ϕ(z)⟩|p = sup
z∈X

|h(z)|p. (14)

When κ is characteristic, the mapping mξ : ξ 7→ EX∼ξ[ϕ(X)] is injective for ξ ∈ P (X ) [Fukumizu
et al., 2008], and µ ̸= ν =⇒ mµ ̸= mµ =⇒ ∃z,mµ(z) − mµ(z) = h(z) ̸= 0. Together this
yields WHL∗

p (µ, ν) ≥ supz∈X |h(z)|p > 0 for µ ̸= ν.

The triangle inequality follows from the fact that the Wasserstein distance itself is a metric.

WHL∗
p (µ, ν) = sup

ω∈{ϕ(z)∈H:z∈X}
WR

p (ω♯µ, ω♯ν) (15)

≤ sup
ω∈{ϕ(z)∈H:z∈X}

(
WR

p (ω♯µ, ω♯ξ) +WR
p (ω♯ν, ω♯ξ)

)
(16)

≤

(
sup

ω∈{ϕ(z)∈H:z∈X}
WR

p (ω♯µ, ω♯ξ)

)
+

(
sup

ω∈{ϕ(z)∈H:z∈X}
WR

p (ω♯ν, ω♯ξ)

)
(17)

= WHL∗
p (µ, ξ) +WHL∗

p (ν, ξ) (18)

A.1 Kernel Landmark Bures Distance

When the µ and ν are Gaussian distributions, the Wasserstein-2 (W2) distance can be computed ana-
lytically in terms of the first and the second moments [Peyré and Cuturi, 2019]. The kernel Gaussian
W2 distance [Zhang et al., 2020] is defined as WH

G (µ, ν) =
√

∥mµ −mν∥2 + dB(Σµ,Σν)2, where

dB(Σµ,Σν) =
(
tr(Σµ) + tr(Σν)− 2tr(Σ

1
2
µΣνΣ

1
2
µ )
) 1

2 [Bhatia et al., 2019], Σµ = ρµ −mµ ⊗mµ

and Σν = ρν − mν ⊗ mν are the covariance matrices of X and Y in the RKHS, and ρµ =
EX∼µ[ϕ(X) ⊗ ϕ(X)] ∈ H and ρν = EY ∼ ν[ϕ(Y ) ⊗ ϕ(Y )] ∈ H are the uncentered second mo-
ments. The Bures distance between the uncentered second moments in the Hilbert space [Brockmeier
et al., 2021] is also a divergence measure DH

B (µ, ν) = dB(ρµ, ρν).

For comparison, we consider a landmark-based version of the kernel-based max-sliced Bures distance.
The kernel-based max-sliced Bures distance is expressed in terms of the squared witness functions
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as DH∗
B (µ, ν) = supω∈H:∥ω∥H=1

∣∣∣√EX∼µ[ω2(X)] −
√
EY∼ν [ω2(Y )]

∣∣∣. For i.i.d. samples, the

kernel max-sliced Bures distance is DH∗
B (µ̂, ν̂) = max

α:αTKα≤1

∣∣∣ 1√
m
∥KXZα∥2− 1√

n
∥KY Zα∥2

∣∣∣. The

landmark-based max-sliced kernel Bures distance (L-Bures) is

DHL∗
B (µ̂, ν̂) = max

i∈{1,...,l}

{∣∣∣ 1√
m
∥kXzi∥2 −

1√
n
∥kY zi∥2

∣∣∣}. (19)

A.2 Additional Experiments

We performed statistical power test for various sample sizes (see Fig3) and kernel bandwidths (see
Fig. 6). We also applied the proposed method and MMD on the purposefully imbalanced subsets of
CIFAR10 dataset (please see Fig. 4) where each instance is represented by the internal representation
of the inception network [Szegedy et al., 2016]: a 2048-dimensional vector. We used witness function
evaluations to identify instances associated with the underrepresented class. In Fig. 7, we report the
computation complexity of our method compared to MMD and the discrete Wasserstein-2 distance.
As it can be seen in Fig. 7, the proposed method, is much easier to compute than the Wasserstein
distance.

100 250 400 550 700
Sample size (N)

0

0.2

0.4

0.6

0.8

1

Rejection rate at   =0.05

100 250 400 550 700
Sample size (N)

0

0.2

0.4

0.6

0.8

1

Rejection rate at   =0.10

100 250 400 550 700
Sample size (N)

0

0.2

0.4

0.6

0.8

1

Rejection rate at   =0.15

Figure 3: The figure illustrates the power test on MNIST dataset. We compare the Landmark-based
kernel Bures, Wasserstein, and MMD divergences. The power curves for three different critical
values, α, as a function of sample sizes. For this example, the prevalence of the underrepresented
digit is 0.029 and the digit is "0". Instances in each sample are randomly permuted between the two
samples for 250 times with 500 Monte Carlo samples iterations.

L-W2

MMD

L-W2

MMD

Figure 4: We used MNIST and CIFAR10 dataset to show the instances correspond to the top-10
largest values of witness function evaluations. We evaluate the performance of witness function
to detect the instances from the minority class. (Left) The digit “5” is the minority class. Using
the prevalence 0.025 and sample size 700, the top-10 witness function evaluations of our method
identifies missing class instances with a high precision. (Right) We also compare the proposed
approach and MMD to detect mismatched distributions of test and train images on the CIFAR-10
data set using the internal representation of the Inception Network. An instance is represented by a
size of 2048 vector. In this case the minority class is “airplane”, the prevalence of missing class is
0.025, and the sample size is 700 for each set.
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Figure 5: In this figure, the largest magnitude of the witness function evaluations is shown for Land-
mark max-sliced kernel Wasserstein (L-W2) which depict the discrepancies between distributions.
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Figure 6: The figure illustrates the power test on MNIST dataset. We compare the Landmark
Wasserstein and MMD divergences. The power curves for three different critical values, α, as a
function of kernel bandwidths. For this example, the prevalence of the underrepresented digit ("4") is
0.025. Instances in each sample are randomly permuted between the two samples for 150 times with
250 Monte Carlo samples iterations.
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Figure 7: We compare computation time of our method, MMD, and Wasserstein Distance using
MNIST dataset. Computation time is averaged over 10 digits. The complexity of Wasserstein distance
is O(N3) whereas our proposed method is only O(N2 log(N)). As it can be seen our method which
is an approximation of Wasserstein distance is much faster than Wasserstein distance. We did not add
kernel max-sliced Wasserstein distance here because we can not directly compare its run time since
its dual variable is obtained iteratively.
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