
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NETFORMER: AN INTERPRETABLE MODEL FOR
RECOVERING DYNAMICAL CONNECTIVITY IN
NEURONAL POPULATION DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neuronal dynamics are highly nonlinear and nonstationary. Traditional methods
for extracting the underlying network structure from neuronal activity recordings
mainly concentrate on modeling static connectivity, without accounting for key
nonstationary aspects of biological neural systems, such as ongoing synaptic
plasticity and neuronal modulation. To bridge this gap, we introduce the NetFormer
model, an interpretable approach applicable to such systems. In NetFormer, the
activity of each neuron across a series of historical time steps is defined as a
token. These tokens are then linearly mapped through a query and key mechanism
to generate a state- (and hence time-) dependent attention matrix that directly
encodes nonstationary connectivity structures. We analyze our formulation from the
perspective of nonstationary and nonlinear networked dynamical systems, and show
both via an analytical expansion and targeted simulations how it can approximate
the underlying ground truth. Next, we demonstrate NetFormer’s ability to model
a key feature of biological networks, spike-timing-dependent plasticity, whereby
connection strengths continually change in response to local activity patterns. We
further demonstrate that NetFormer can capture task-induced connectivity patterns
on activity generated by task-trained recurrent neural networks. Thus informed, we
apply NetFormer to a large-scale dataset of real neural recordings, which contains
neural activity, cell type, and behavioral state information. We show that the
NetFormer effectively predicts neural dynamics and identifies cell-type specific,
state-dependent dynamic connectivity that matches patterns measured in separate
ground-truth physiology experiments, demonstrating its ability to help decode
complex neural interactions based on neural activity observations alone.

1 INTRODUCTION

Inferring the underlying connectivity of a network from observations of the activity of its units
is a long-standing challenge. In the brain, this challenge is exacerbated by (i) different nonlinear
dynamics present in individual neurons, (ii) the difficulty of experimentally sampling the full neuronal
population simultaneously, and (iii) dynamic reconfiguration of effective connectivity, mediated by
both synaptic plasticity and neuromodulation. This last issue carries significant practical importance
in studying behavioral dynamics, learning and memory (Bargmann, 2012; Tyulmankov et al., 2021;
Marder, 2012; Liu et al., 2021; Aitken & Mihalas, 2023). As such, it poses a (harder) generalization
of the classical problem where the connectivity should no longer be considered as a static unknown,
rather as a dynamical variable that needs to be inferred and tracked over time.

A surrogate, but not sufficient, measure of success in unsupervised inference of connectivity is
the inferred network’s success in fitting the observed dynamics. While traditional linear dynamical
models struggle to capture the essential nonlinear mechanisms of leaky integration and firing (Gerstner
& Kistler, 2002) in biological neurons, more sophisticated nonlinear models typically suffer from
a lack of interpretability, making it difficult to identify the underlying connectivity (Pandarinath
et al., 2018; Le & Shlizerman, 2022; Ye et al., 2023). Moreover, traditional approaches often adopt a
static perspective on connectivity (Tank et al., 2021; Löwe et al., 2022), failing to account for the
nonstationary interactions, such as those produced by plasticity and modulation at synapses.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Here we propose an interpretable nonlinear and nonstationary dynamical model to represent inter-
actions between neurons (Figure 1), based on the fast weight programming nature of the attention
mechanism (Schlag et al., 2021). Prior research has suggested that the attention mechanism can reveal
information about the underlying structure of a system (Singh & Buckley, 2023; Lu et al., 2023).
We further removed the softmax activation function in the attention mechanism, as the constraint of
attention weights summing up to one is not biologically meaningful because neither the in-degrees
nor the out-degrees of neuronal connectivity (nor their counterparts incorporating synaptic strength)
are invariant across neurons (Santuy et al., 2020). We first demonstrated with both mathematical
analysis and simulation study that even without the softmax activation, the core part of the attention
mechanism – the dot-product between queries and keys – is capable of capturing nonstationary and
nonlinear structural information. Next, we applied this novel approach to a wide range of simulated
networks including nonstationary and/or complex nonlinear connectivity patterns, and showed that
it can recover ground truth connectivity information. We then applied it to a large-scale, publicly
available dataset of neuronal activity recordings. Importantly, this dataset includes the genetic cell
type of individual neurons, enabling us to compare our predictions for cell-type level connectivity
patterns against known ground truth values from independent experiments. Taken together, this
shows the potential of our method for recovering interpretable connectivity information, even in the
presence of complex nonlinear and nonstationary network dynamics.

Our main contributions are as follows: (i) We formulated a transformer-inspired network model,
the NetFormer, for which the core of the attention mechanism – the dot-product between queries
and keys – directly encodes nonstationary and nonlinear structure of networks; (ii) On a simulated
network with the spike-timing-dependent plasticity mechanism, we demonstrated that the inferred
time-varying weights from attention aligned with the underlying changes in connectivity; (iii) On
activity generated by task-trained recurrent neural networks, we demonstrated that attention can
capture task-induced connectivity patterns; (iv) We applied the NetFormer model to population
activity recorded from mouse visual cortex, and showed that attention can recover experimentally
measured synaptic connectivity, while benchmarking it with standard recurrent models and other
common statistical metrics. Additionally, we demonstrated that attention can naturally reflect state-
dependent modulations in the inferred cell-type level connectivity, even more effectively compared to
two other specialized baseline methods.

1.1 RELATED WORK

Dynamical models of neuronal activity: Dynamical models have been a powerful tool for high-
dimensional neural data analysis (Vyas et al., 2020). Generalized linear models (GLMs), known for
both interpretability and desirable convexity properties (Paninski et al., 2007), have been widely used
to model neuronal population activity as well as inter-neuronal interactions (Pillow et al., 2008; Das
& Fiete, 2020). Nevertheless, unless stacked with an explicit state switching mechanism (Escola
et al., 2011), in GLMs the temporal filters describing interactions among neurons are typically
stationary across time (Li et al., 2024). Recurrent neural networks (RNNs) have been a popular
alternative (Barak, 2017; Perich et al., 2020); while the connectivity in (trained) RNNs is typically
given by a static connectivity matrix “W ”, variants including long short-term memory networks
(LSTMs) (Hochreiter & Schmidhuber, 1996) and gated recurrent neural networks (GRUs) (Cho et al.,
2014), do include nonstationarities at the level of individual neural units. While this can enhance the
model’s expressivity and performance in predictive tasks (Salinas et al., 2020; Lai et al., 2018), it also
introduces challenges for interpretability (Tank et al., 2021). Recently, transformer models (Vaswani
et al., 2017) have been observed to outperform RNNs in various time series forecasting tasks (Zhou
et al., 2021; Wu et al., 2021), but their deep layered structures and nonlinear attention mechanisms
also raise challenges in interpretation with respect to underlying connectivity structures in the original
data (Jain & Wallace, 2019; Abnar & Zuidema, 2020), as discussed more below. A closely related
approach to the present work is the switching linear dynamical systems (Linderman et al., 2017a;
Glaser et al., 2020). These models have nonstationary connectivity matrices which switch among
a number of discrete values according to a Markov process. Nevertheless, in vivo experimental
recordings have revealed that cortical activity is more likely to go through a continuum of states
instead of discrete switching (Harris & Thiele, 2011). This motivates us to propose a model capable
of capturing continuous changes in connectivity.

Predicting activity from connectivity: The reverse direction, predicting activity from connectivity,
is an allied approach for studying the complexities relating functional and structural information.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑊
!

𝑊"

𝑋## 𝑥%#$%𝑄#

𝐾#T

𝑁 x (𝐻 +𝑀) 𝑁 x 𝐷

𝐷 x 𝑁

𝐸𝑋#
Attention Map
𝐴# = 𝑄#𝐾#T

Neural Population Dynamics

𝑁 x𝑀𝑁 x 𝐻

Figure 1: Overview of NetFormer. NetFormer learns to predict neural dynamics and infer dynamical
connectivity through a linearized attention mechanism. The model takes in as activities Xk of N neurons across
H history timesteps, and predicts their activity xk+1 at timestep k + 1. Queries Qk and keys Kk are linearly
mapped from X̃k (Xk concatenated with positional embedding E), using WQ and WK . The time-dependent
linearized attention matrix Ak is computed as QkK

⊤
k , which learns the neuron-level dynamical connectivity.

Red and blue colors in the attention map indicate excitatory and inhibitory interactions, respectively.

A prominent line of study has focused on the worm C. elegans as its synaptic connectome was
the first available among all species (White et al., 1986). Using this, generative models of activity
have been proposed (Mi et al., 2021). Nevertheless, decades of electrophysiological analyses have
emphasized the strong additional role of neuromodulators in shaping activity (Randi et al., 2023;
Marder, 2012). As a result, the synaptic connectome alone predicts only partial information about
recorded population dynamics (Bargmann, 2012; Randi & Leifer, 2020).

Interpretability of the attention mechanism: Attention weights and positional embeddings provide
opportunities to understand the inner working of the transformer models. However, the interpretability
of these components is a subject of debate. Findings supporting a certain level of interpretability, such
as correlation to linguistic features, are common in the literature, with specialized metrics developed
to quantify their interpretability (Clark et al., 2019; Abnar & Zuidema, 2020). However, caution
should be taken when equating attention with explanation (Jain & Wallace, 2019), considering the
lack of identifiability (Brunner et al., 2019) and the wide variety of underlying architectures and
implementations (Wang & Chen, 2020). In this work, we seek to avoid these confounding aspects by
focusing on the linearized attention mechanism (Schlag et al., 2021).

2 AN INTERPRETABLE MODEL FOR RECOVERING DYNAMIC CONNECTIVITY

We consider an N -dimensional dynamical system
d

dt
x(t) = f

(
W (t)x(t)

)
(1)

where x(t) ∈ RN , f : RN → RN , and W (t) is an N ×N matrix whose entries may vary across
time. Wi,j(t) prescribes how the i-th variable x(i) is driven by the j-th variable x(j) at time t.

Let xk be observations of the system at discrete timesteps tk. For each k, we train the NetFormer
model (Figure 1) to predict xk+1 based on Xk = [xk−H+1 · · · xk] ∈ RN×H , the recent H-
step history of the system up to timestep k. To encode neuronal identities, a learnable positional
embedding matrix E ∈ RN×M is concatenated to Xk, giving X̃k = [Xk E] ∈ RN×(H+M). The
queries Qk and keys Kk are obtained through linear transformations of X̃k, and their product gives
the linearized attention matrix Ak:

Qk = X̃kWQ ∈ RN×D, Kk = X̃kWK ∈ RN×D, Ak = QkK
⊤
k ∈ RN×N . (2)

It follows that entry (i, j) of Ak is computed from the history of x(i) and x(j), and thus describes
the relationship between the i-th and j-th variables. To predict xk+1, we take xk to be the values vk

and employ the residual connection (He et al., 2016), obtaining prediction as
x̂k+1 = vk +Akvk = xk +Akxk, (3)

which is similar to the update rule we would get if Equation 1 were simulated using the classical
forward Euler method with step size δ

xk+1 = xk + δf(Wkxk). (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

With the neuroscience application in mind, we note that the effects of one neuron on another cannot
be arbitrarily large, and thus f is chosen to be a sigmoidal function with

f(0) = 0, f(x̄) = f(0) + f ′(0)x̄+O(x̄3) for x̄ within some interval (−ϵ, ϵ) around 01

Equation 4 can be written as

xk+1 = xk + δf(Wkxk) = xk + δf ′(0)Wkxk + δO(x3
k). (5)

Comparing equations 3 and 5, we deduce that the linearized attention matrix Ak learned by the
NetFormer may capture the true interactions between different variables Wk by approximating
δf ′(0)Wk, especially when ϵ < 1 and the first order term plays the most significant role. It is not
hard to see that this hypothesis also extends to systems in the form of

d

dt
x(t) = −x(t) + f

(
W (t)x(t)

)
, (6)

which includes the decaying effect that is commonly present in neural dynamics (Gerstner & Kistler,
2002) (Appendix A.1). We provide empirical evidence for this hypothesis on both forms of systems
in the subsequent sections.

3 EXPERIMENTS ON SYNTHETIC DATA

3.1 NONLINEAR AND NONSTATIONARY SYSTEM SIMULATION

We first verified the conclusion above on four simplified simulated systems, with variations in the
inclusion of nonlinearity and nonstationarity:

(a)
dx

dt
= Wx, (b)

dx

dt
= tanh(Wx), (c)

dx

dt
= W (x)x, (d)

dx

dt
= tanh(W (x)x),

where W (x) = W0+xω⊤. All trained NetFormer models are able to make accurate one-step-ahead
predictions (R2 = 1.000, Figure 2a-d left). Visually, the average linearized attention matrix across
timesteps, Ā = 1

K

∑K
k=1 Ak, provides a good characterization of the average ground-truth dynamical

association matrix across timesteps, W̄ = 1
K

∑K
k=1 W (xk) (Figure 2a-d right). As a baseline, we

consider AOLS from the linear ordinary least squares regression x̂k+1 = AOLSxk. We used the
Spearman’s rank correlation coefficient (ρ) between the off-diagonal entries of Ā or AOLS and W̄ to
quantify how faithfully the learned connectivities reflect the ground-truth. Ā achieved comparable
performance as AOLS in systems (a) (b), but significantly outperformed AOLS in systems (c) (d),
both visually (Figure 2a-d right) and quantitively (Appendix A.2.2). Moreover, in the nonstationary
systems (c) (d), the linearized attention matrix is able to track the majority of changes in W (x) across
timesteps (Figure 2e-f and Appendix A.2.3). This ability to capture nonstationarity also explains why
NetFormer outperformed the linear regression model which only accounts for static connectivity.

3.2 SPIKE-TIMING-DEPENDENT PLASTICITY (STDP) SIMULATION

Next, we tested NetFormer in a more neurobiological realistic setting by considering a leaky integrate-
and-fire (LIF) neuron (Gerstner & Kistler, 2002) with spike-timing-dependent plasticity (STDP).
STDP is a fundamental and widely studied synaptic modification scheme in neuroscience (Bi &
Poo, 1998; Abbott & Nelson, 2000; Gerstner et al., 1996; Song et al., 2000) where the synaptic
connection strength between two neurons depends on the relative timing of the spikes they fire. In
typical models, when the presynaptic neuron fires before the postsynaptic neuron, their connection
strengthens, increasing the postsynaptic response to future spikes. Conversely, presynaptic firing after
postsynaptic weakens the connection. The amount of change in synaptic strength depends on the time
interval between pre- and postsynaptic spikes. An example relationship is illustrated in Figure 3a.

We simulated a postsynaptic LIF neuron receiving excitatory inputs from 100 presynaptic neurons,
following Neuromatch Academy (2023) (see Appendix A.3 for simulation details). Since we only
need the spike times of presynaptic neurons, instead of simulating their dynamics, we directly
modeled their spike trains with independent Poisson processes (Figure 3b). When a spike arrives at a

1see Appendix A.2.4 for more discussion on the radius of convergence of this series representation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: NetFormer provides accurate dynamical predictions, and recovers ground truth connectivity
matrices. Example linear, nonlinear, and nonstationary dynamical systems, with simulation details in Appendix
A.2.1. a-d Left: Test set predictions of NetFormer. Predicted trajectories were obtained by concatenating all
one-step-ahead predictions. Predicted (dashed) trajectories overlap with the true (solid) trajectories. a-d Right:
True and inferred connectivity from NetFormer’s linearized attention matrix or linear regression weight matrix.
For systems c, d, connectivity is averaged across test set timesteps for visualization. For NetFormer, the inferred
connectivity shown is the one whose Spearman correlation ρ is closest to the average ρ across 10 random seeds.
Colorbars: scale of off-diagonal entries. Diagonal entries are masked in grey. Inferred connectivity matrices
were rescaled by the reciprocal of simulation stepsize for visualization. e: True and inferred temporal evolution
of four example connections in the nonstationary system c. Timesteps used as test set are shaded in grey. f: True
and inferred temporal evolution in system d.

certain synapse, the membrane potential of the LIF neuron is increased by an amount proportional to
the synaptic strength, and this potential is reset once the firing threshold is reached (see Appendix A.3
for precise equations). The strength, or weight, of each synapse is modulated following STDP (Figure
3a) within some boundaries. The weight evolution of ten example synapses across the simulation
timespan is shown in Figure 3c.

We trained NetFormer to predict the next-step membrane potential of the LIF neuron based on
its present and past potential and the spikes it received. This relationship is captured by the 1 ×
101 linearized attention matrix of NetFormer. After training, NetFormer is able to capture the
dynamics well (test set MSE=0.055± 0.008, R2=0.912± 0.013, mean ± std across 5 random seeds),
outperforming the linear regression model (test set MSE=0.138, R2=0.777). Visualization of their
predictions (Figure 3d) shows that NetFormer effectively captures the nonlinear reset mechanism,
whereas the linear regression model fails.

We further extracted the learned pre-to-postsynaptic neuron relationship from the linearized attention
matrix of NetFormer and compared it against the ground-truth synaptic weights. Unlike the toy
systems in Section 3.1 (Figure 2e, f), recovering individual synaptic weights at each timestep from
the attention scores does not seem viable. This is not surprising, though, given that the weight
differences between synapses are much smaller compared to the membrane potential, that a synapse
is only involved in dynamics prediction when it has a spike, and the strong nonlinearity in the
membrane spiking dynamics. Nevertheless, we found that for most synapses, the long-term trends in
the corresponding attention scores across timesteps are consistent with the true trends in synaptic
weights driven by STDP (Figure 3e, f). Across the 100 synapses, the median of the correlation
coefficients between smoothed synaptic weight evolution trajectories inferred from attention and the
true weight trajectories is 0.608 ± 0.028 (mean ± std across 5 seeds). This demonstrates that the
simple structure of NetFormer is capable of capturing nonstationary connectivity in spiking neuronal
networks with dynamic synapses.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: NetFormer captures the effect of spike-timing-dependent plasticity (STDP). a. STDP temporal
kernel used in the simulation. Change in the synaptic weight (∆W) is a function of the delay between pre-
and post-synaptic neuron spikes (tpre − tpost). b. Raster plot of spikes received by the LIF neuron at the first
10 synapses during the first 200 simulated timesteps. c. Evolution of the first 10 synapses’ weights across
the simulated timespan. Each color represents a synapse. d. True and predicted membrane potential across
100 timesteps in the test set. Membrane potential was z-scored before all model fitting. Predicted traces
were constructed by concatenating one-step-ahead predictions. e. True and inferred synaptic evolution across
simulation time span, after smoothing. Both true and inferred evolution trajectories were smoothed with a sliding
window. Each row represents a synapse, and the rows were sorted by the correlation between the smoothed
true and inferred trajectories. The correlation coefficients corresponding to each row are shown on the left. For
visualization, each row was rescaled to [0, 1] through min-max normalization. f. Weight evolution trajectories of
four example synapses, which correspond to the 1st, 31st, 61st, and 91st rows from e., as indicated by arrows.
The trajectories were smoothed but not min-max normalized. Insets: Raw, unsmoothed trajectories in an example
sliding window.

3.3 TASK-DRIVEN POPULATION ACTIVITY SIMULATION

We further examined whether NetFormer can identify task-driven connectivity patterns in neural
populations. As single neuron level connectivity in task-performing laboratory animals are hard to
measure, we resorted to task-trained recurrent neural network (RNN) models. The RNN models
are trained to perform tasks which mirror the ones laboratory animals are trained to perform, and
the activity of their recurrent hidden units has been widely adopted in studies of task-driven neural
representation and computation (Mante et al., 2013; Sussillo et al., 2015; Yang et al., 2019; Duncker
et al., 2020). Here we considered three representative tasks from the NeuroGym toolkit (Molano-
Mazon et al., 2022): a. Perceptual Decision Making (Britten et al., 1992), b. Go-Nogo (Zhang et al.,
2019), and c. Delay Comparision (Barak et al., 2010). For each task, we trained a RNN model with
hidden dynamics

hk = tanh(Wstimsk + bstim +Wrechk−1 + brec). (7)

Here hk ∈ RN denotes the activity of hidden units, while sk ∈ RM represents the stimulus
input at timestep k. Wrec ∈ RN×N specifies how current activity is shaped by past activity, and
Wstim ∈ RN×M captures the effect of the present stimulus input. brec ∈ RN , bstim ∈ RN

correspond to baseline activity and background input. We used RNN models with 4, 8, and 12 hidden
units for tasks a, b, c, respectively. Training details are provided in Appendix A.4.1. For each task, we
applied the trained RNN model to 1000 trials, and recorded its hidden units activity across timesteps
on every trial. Then we trained NetFormer to predict the next-step hidden units activity hk+1 based
on the present and past hidden activity (hk−H , . . . ,hk) and stimulus inputs (sk+1−H , . . . , sk+1)
on 800 of those trials, and held out the remaining 200 trials for evaluation. Compared to the linear
regression model, NetFormer attains higher accuracy in both dynamics prediction and connectivity
recovery (Figure 4 and Appendix A.4.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: NetFormer captures task-induced connectivity patterns. a. Top: True connectivity matrix
from RNN trained to perform the Perceptual Decision Making task, followed by inferred connectivity from
NetFormer’s linearized attention matrix or linear regression weight matrix. For NetFormer, the inferred
connectivity shown is the one whose Spearman correlation ρ is closest to the average ρ across 5 random seeds.
Colorbars: scale of off-diagonal entries. Diagonal entries are masked in grey. Inset: Scatter plot of off-diagonal
entries in the visualized inferred versus true connectivity matrix. Bottom: True (solid line, open circles) and
NetFormer-predicted (dashed line, filled circles) activity for 4 example hidden units on a held-out trial. Predicted
traces were obtained by concatenating one-step-ahead predictions. Hidden units are distinguished by colors. b-c.
Same as a, for RNNs trained to perform the Go-Nogo task and Delay Comparision task, respectively.

4 CONNECTIVITY-CONSTRAINED SIMULATION AND NEURAL DATA

Neurons form synapses based, in part, on factors controlled by their genetic and morphological cell
types. The transmission of information through these synapses is influenced by activity history and
behavioral states. To test its ability to handle these and allied complexities, we applied the NetFormer
to a recent multi-modal dataset from (Bugeon et al., 2022), containing both simultaneously recorded
neuronal activity and cell type information in the mouse primary visual cortex. After training
the NetFormer to predict the neural activity, we used the time-averaged attention matrix as an
inferred connectivity strength between neurons. We compared this inferred connectivity against
an independent experimental measurement that serves as a cell-type averaged ground truth. This
is the cell-type averaged postsynaptic potential (PSP) measured directly using paired patch-clamp
experiments (Campagnola et al., 2022), in which the postsynaptic voltage responses of individual
“downstream” neurons are recorded in response to spikes elicited in specific “paired” neurons. As an
additional test, we observed that the inferred dynamical connectivity is more similar within the same
behavioral state and more distinct between different states. Furthermore, following the measured
cell-type level connectivity, we developed a connectivity-constrained simulation to produce neural
dynamics with a fully specified ground truth connectivity. On this simulated dataset, we assessed the
NetFormer’s ability to infer both individua-neuron level and cell-type level connectivity. More details
are in Appendix A.5.

Multi-modal in-vivo neural recording: The publicly available dataset (Bugeon et al., 2022) includes
spontaneous population activity recorded from the mouse primary visual cortex (V1) across layers
2 and 3 via two-photon calcium imaging. We trained NetFormer models on data from one subject
(SB025), which includes recordings of 2481 neurons. The dataset also provides single-cell spatial
transcriptomics data, enabling identification of excitatory (EC) and four inhibitory neuron subclasses
(Pvalb, Sst, and Vip).

Connectivity-constrained simulation: We generated activity of a synthetic neuron population with
200 neurons whose cell-type level connectivity is constrained from the patch clamp experiments
described above (Campagnola et al., 2022). Specifically, we simulated the leaky-integration system

d

dt
x(t) = −x(t) + tanh

(
Wx(t) + b

)
+ ϵ (8)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

using the forward Euler scheme with a step size δ = 1, obtaining in discrete timesteps

xk+1 = tanh(Wxk + b) + ϵ. (9)

Here ϵ stands for Gaussian observation noise, b represents the baseline activity, and W denotes
the neuronal connectivity. In our simulation, 76% of neurons are excitatory, with the remaining
24% being inhibitory. The inhibitory neurons are further evenly subdivided into three cell types
(Pvalb, Sst, and Vip). We used cell-type specific means and variances of PSPs measured in the patch
clamp experiments to define Gaussian distributions of connection strengths between each pair of cell
types, and sampled the connection strength between individual cells accordingly. We also provide an
additional simulation in Appendix A.7, where the tanh is replaced with a sigmoid nonlinearity.

Baselines and evaluation metrics: We benchmarked NetFormer against multiple baselines: (i) a
linear recurrent model (referred to as “linear regression”), where xk+1 = Wxk + b; two variants
of nonlinear recurrent neural networks (referred to as “RNNs”): (ii) xk+1 = tanh (Wxk + b),
which matches the connectivity-constrained simulation and serves as an “oracle" type model giving a
corresponding upper bound on performance, (iii) xk+1 = exp (Wxk + b), of the form of commonly
used generalized linear models (GLMs) in neuroscience (Pillow et al., 2008), with a nonlinearity
mismatched to that of the simulation itself. We also considered standard statistical metrics, includ-
ing cross-correlation, covariance, mutual information, and transfer entropy (details are given in
Appendix A.6). We evaluated activity prediction using mean squared error (MSE), coefficient of
determination (R2), and the Pearson correlation coefficient. We assessed the correlation between
inferred and ground truth connectivity using Pearson and Spearman correlation coefficients, both at
the N ×N neuron level (N : number of recorded neurons) and the K ×K cell type-level (K = 4
includes one excitatory and three inhibitory types: Pvalb, Sst, Vip). See Appendix A.9.2 for details.

NetFormer outperforms other methods on connectivity inference. As shown in Table 1 and
Figure 5a, on both simulated and real neuronal activity data, NetFormer outperforms other baseline
models in predicting activity and inferring connectivity in most of the evaluations. In the connectivity-
constrained simulation, it achieves comparable performance to the "oracle" model (RNN with tanh
nonlinearity). By contrast, the RNN with an exponential nonlinearity, misspecified with respect to
the simulation, performed significantly worse. This contrast illustrates a strength of the Netformer
model: the Netformer does not involve specification of an activation function, avoiding the fragility
that this can entail (Das & Fiete, 2020). Other statistical metrics performed significantly worse than
NetFormer, especially in the evaluations on the real neural dataset.

We hypothesize that the NetFormer’s advantage relative to other baseline methods mainly stem from
two key aspects. The first is the absence of a need to specify an activation nonlinearity, as discussed
above. The second, more fundamental aspect is that the underlying connectivity in the NetFormer
model is nonstationary rather than static, as assumed by the other baseline models and methods.

Excitation cell type can be decoded from learned positional embeddings. We demonstrate that the
learned positional embeddings E for each neuron in the NetFormer model can be used to decode an
aspect of cell class information, as also shown in (Mi et al., 2024). Specifically, we trained a logistic
regression model for binary classification based on embeddings of neurons in the training set. We
classified unseen neurons in the test set as excitatory or inhibitory neurons, a coarser grouping which
subsumes the genetic/morpological categories considered above. This yields 100% top-1 accuracy in
simulation data, 66.67% top-1 accuracy and AUROC score of 0.700 in real data (confusion matrixes
in Figure 5b). This shows that the learned positional embeddings are linearly separable according to
this aspect of their cell type identity.

NetFormer demonstrates robustness against partial observation. For most experimental record-
ings, neuronal activities are only partially observable. To evaluate the robustness of the NetFormer
model against such partial observation, we fitted NetFormer to a randomly selected subset of neurons
in the simulated dataset. In Figure 5c, we show that the performance in recovering the neuron-level
connectivity does not decrease considerably with only half of the neurons observed. Moreover,
cell-type level connectivity inference is more robust against partial observations, highlighting the
potential of NetFormer to effectively derive cell-type level connectivity from real neural data.

NetFormer can fit neural recordings across sessions. RNN-type models, designed to recover
connectivity at the level of individual neurons, are often unable to model data of varying population
sizes across experimental sessions. In contrast, NetFormer promotes scalability by allowing parameter
sharing (WQ and WK) across sessions. These parameters are confined to the temporal dimension and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

NetFormer linear
regression

RNN
w/ tanh

RNN
w/ exp

cross
correlation covariance mutual

information
transfer
entropy

simulation

connectivity
N× N

Pearson 0.869±0.002 0.817±0.002 0.905±0.000* 0.581±0.011 0.823 -0.029 0.539 0.600
Spearman 0.532±0.001 0.507±0.001 0.546±0.000* 0.393±0.009 0.519 -0.015 0.262 0.339

connectivity
K× K

Pearson 0.879±0.001 0.885±0.001 0.908±0.000* 0.887±0.008 0.888 -0.438 0.371 0.419
Spearman 0.860±0.002 0.852±0.005 0.866±0.002* 0.822±0.025 0.732 -0.334 0.018 0.353

in-vivo
recording

connectivity
K× K

Pearson 0.777±0.047 -0.395±0.020 -0.395±0.036 -0.407±0.006 -0.017 -0.162 -0.176 0.075
Spearman 0.847±0.063 -0.409±0.051 -0.343±0.105 -0.191±0.300 -0.080 -0.190 -0.061 0.233

activity
prediction

MSE 0.404±0.004 0.443±0.001 0.560±0.001 0.476±0.003 – – – –
Pearson 0.740±0.003 0.720±0.001 0.639±0.000 0.699±0.002 – – – –
R2 0.548±0.004 0.515±0.001 0.386±0.001 0.478±0.004 – – – –

Table 1: NetFormer outperforms conventional dynamical and statistical models in predicting dynamics
and inferring connectivity. Quantitative results from both connectivity-constrained simulation and neural
recording. An asterisk (*) indicates that a RNN with tanh activation serves as the oracle model, to provide
an upper bound for performance on the simulation data. The results of connectivity inference using mutual
information, and transfer entropy are assessed by comparing against the absolute values of ground truth
connectivity. Simulation data provides ground truth for neuron-level (N × N) and cell type-level (K × K)
connectivity. Patch-clamp results serve as ground truth for real data cell-type connectivity. We assess performance
using Spearman’s and Pearson’s coefficients. Next-step activity prediction on the test set is evaluated with mean
squared error, Pearson’s coefficient, and R2.

GT NetFormer Linear Regression RNN w/ Tanh RNN w/ Exp Cross Correlation

Si
m

ul
at

io
n

D
at

a
Re

al
 M

ou
se

 D
at

a

Presynaptic

Po
st

sy
na

pt
ic

a. b.EC Pvalb Sst Vip Simulation Data Neural Data
EC/IN Cell Type Classification

c.
Partial Observation

on Simulation

d.

Single-session Multi-session

Connectivity Inference
on Neural Data

Figure 5: a. Visualization of ground truth and inferred connectivity matrices at both individual-neuron level and
cell-type level. NetFormer is benchmarked with linear regression, RNNs with tanh and exponential nonlinearity,
and standard statistical metrics, in both simulation data and neural data. A positive linear transformation has
been applied to standardize all matrices to the same range for better visualization. b. Confusion matrices of
excitatory (EC) and inhibitory (IN) cell type classification with logistic regression using the learnable neuronal
embedding from NetFormer on both connectivity-constrained simulation and neural data. c. Experiment on
different levels of partial observability from 200 neurons in the simulated network. Connectivity at both neuron
level and cell-type level are evaluated. d. Comparison of Spearman correlation of connectivity inference results
across random seeds between models trained on a single session and multiple sessions from the same subject.

do not increase with the number of neurons. As shown in Figure 5d, NetFormer achieves comparable
performance for connectivity inference on both fitting a single session and multiple sessions.

Inferred dynamical connectivity at different behavioral states captures state modulation. Build-
ing on NetFormer’s ability to capture nonstationary connectivity changes over time in Section 3, we
extended this evaluation to real neural data. In this dataset (Bugeon et al., 2022), activity at each
timestep is labeled by one of the three behavioral states: running, stationary desynchronized, and
stationary synchronized. Figure 6a shows that neurons of different cell types can exhibit different
activity patterns across behavioral states, suggesting that neural activity is informative of behavioral
states. Thus informed, we explored whether the time-varying attention could capture connectivity
changes among these states (see details and visualizations in Appendix A.8). We compared NetFormer
with two baseline methods capable of capturing nonstationary connectivity: a low-tensor-rank RNN
(LtrRNN) (Pellegrino et al., 2023) and an autoregressive Hidden Markov Model (AR-HMM) (Fox
et al., 2008; Linderman et al., 2017b). LtrRNN models trial-varying connectivity using a low rank
tensor W ∈ RN×N×K , where K denotes the number of trials. Since our neural data is measured
during spontaneous activity without an explicit trial structure, to apply LtrRNN, we constructed
“trials" using sliding windows on the data. We note that while NetFormer uses shared parameters
across time/trials, LtrRNN trains trial-specific parameters, leading to an explosion in parameters
as the number of trials grows. As a second baseline, we considered the AR-HMM, which assumes
that there are discrete latent states switching underlying the observed activity, and each state admits
unique dynamics through a different connectivity matrix. It infers the states and the state-dependent

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Stationary
SynchronizedRunning

Stationary
Desynchronized

EC Pvalb Sst Vip
a.

c.

Stationary Desynchronized Stationary SynchronizedRunning

Po
st

sy
na

pt
ic

N
etForm

er
LtrRN

N
AR-H

M
M

Connectivity from
Patch Clamp

Po
st

sy
na

pt
ic

Presynaptic

b. d.

PC
A

on
 N

et
Fo

rm
er

At
te

nt
io

n
PC

A
on

 L
tr

RN
N

C
on

ne
ct

iv
ity

EC Pvalb Sst Vip

Figure 6: Inferred state- and time-dependent dynamical connectivity. a. Neural activities among cell
types across three behavioral states (running, stationary desynchronized, and stationary synchronized). Vip
neurons appear to be more active during the running state. b. Projection of NetFormer attention maps and
LtrRNN inferred connectivity weights onto top two principal components. Each dot represents a different
timestep, colored by behavioral states, showing that attention maps are more similar within the same state and
distinct between states. PCA on NetFormer attention maps shows greater similarity between the two stationary
states compared to the running state. c. Comparison of AR-HMM inferred states with true behavioral states. d.
Comparison of inferred state-specific connectivity across three models: NetFormer, LtrRNN, and AR-HMM.
NetFormer-inferred connectivity across states shows the highest correlation with the patch-clamp result.

connectivity matrices using Bayesian inference. Due to its discrete state switching mechanism, it is
not suitable for capturing continuous connectivity changes, and its state discovery relies heavily on
the user-specified number of states.

While NetFormer-inferred cell-type level connectivity is in good agreement with the patch-clamp
experimental ground truth, connectivities inferred by LtrRNN and AR-HMM bear little correlation
to the experimental ground truth (Figure 6d). A quantitative comparison is provided in Table 6,
Appendix A.8. Notably, consistent with prior experimental observations (Fu et al., 2014), attention
also witnesses an increase in inhibitory activity from presynaptic Vip neurons and a decrease in
inhibition from presynaptic Sst neurons during the running state, as seen by the darker Vip column
in the running state compared to the stationary states and the lighter Sst column (Figure 6d, top
row). Figure 6b further demonstrates that state information is implicitly captured by NetFormer’s
attention maps, showing greater similarity within states and clear distinctions between states. Notably,
stationary desynchronized and stationary synchronized states show greater similarity to each other
than to the running state. Moreover, compared to weights inferred by LtrRNN, PCA on NetFormer-
inferred weights yields a cleaner separation between running and two stationary states. When tasked
to find three states from the neural data, those inferred by the AR-HMM largely align with the three
behavioral states, albeit with higher noise (Figure 6c).

5 CONCLUSION AND DISCUSSION

Experience, activity, and adaptation change the effective connectivity of biological neuronal networks
via mechanisms including synaptic plasticity and neuromodulation, all playing out across varied
timescales. This perspective poses connectivity as a dynamical variable that should be tracked, rather
than inferred once. Here, we propose the NetFormer as a light-weight model for dynamical connec-
tivity inference. We began with a mathematical analysis that relates nonlinear and nonstationary
dynamics to its linearized attention mechanism. We further demonstrated, on representative simulated
and in-vivo neural datasets, the strength of our model through comparison against various baselines
to predict nonlinear neural dynamics and to capture the underlying dynamical connectivity.

This said, our method has several limitations: (i) Partial observability of neuronal population dynamics
has been a major confounding factor for connectivity inference, and our method is no exception. (ii)
As our model learns the forward dynamics through a history-dependent linearization of the system in
a local temporal neighborhood, its ability to capture nonlinear or nonstationary systems is limited
compared to fully nonlinear or layered transformer-type models. Despite these limitations, our work
presents a step forward to addressing the long-standing challenge of extracting neuronal network
structure from highly complex functional data, and brings new insights into the interpretability of the
transformer model and its applicability in modeling nonstationary dynamical systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Larry F Abbott and Sacha B Nelson. Synaptic plasticity: taming the beast. Nature neuroscience, 3
(11):1178–1183, 2000.

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. arXiv preprint
arXiv:2005.00928, 2020.

Kyle Aitken and Stefan Mihalas. Neural population dynamics of computing with synaptic modulations.
Elife, 12:e83035, 2023.

Omri Barak. Recurrent neural networks as versatile tools of neuroscience research. Current opinion
in neurobiology, 46:1–6, 2017.

Omri Barak, Misha Tsodyks, and Ranulfo Romo. Neuronal population coding of parametric working
memory. Journal of Neuroscience, 30(28):9424–9430, 2010.

Cornelia I Bargmann. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays,
34(6):458–465, 2012.

Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18
(24):10464–10472, 1998.

Kenneth H Britten, Michael N Shadlen, William T Newsome, and J Anthony Movshon. The
analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of
Neuroscience, 12(12):4745–4765, 1992.

Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano Ciaramita, and Roger
Wattenhofer. On identifiability in transformers. arXiv preprint arXiv:1908.04211, 2019.

Stéphane Bugeon, Joshua Duffield, Mario Dipoppa, Anne Ritoux, Isabelle Prankerd, Dimitris
Nicoloutsopoulos, David Orme, Maxwell Shinn, Han Peng, Hamish Forrest, Aiste Viduolyte,
Charu Bai Reddy, Yoh Isogai, Matteo Carandini, and Kenneth D. Harris. A transcriptomic axis
predicts state modulation of cortical interneurons. Nature, 607, 2022. ISSN 1476-4687.

Luke Campagnola, Stephanie C. Seeman, Thomas Chartrand, Lisa Kim, Alex Hoggarth, Clare
Gamlin, Shinya Ito, Jessica Trinh, Pasha Davoudian, Cristina Radaelli, Mean-Hwan Kim, Travis
Hage, Thomas Braun, Lauren Alfiler, Julia Andrade, Phillip Bohn, Rachel Dalley, Alex Henry,
Sara Kebede, Alice Mukora, David Sandman, Grace Williams, Rachael Larsen, Corinne Teeter,
Tanya L. Daigle, Kyla Berry, Nadia Dotson, Rachel Enstrom, Melissa Gorham, Madie Hupp,
Samuel Dingman Lee, Kiet Ngo, Philip R. Nicovich, Lydia Potekhina, Shea Ransford, Amanda
Gary, Jeff Goldy, Delissa McMillen, Trangthanh Pham, Michael Tieu, La’Akea Siverts, Miranda
Walker, Colin Farrell, Martin Schroedter, Cliff Slaughterbeck, Charles Cobb, Richard Ellenbogen,
Ryder P. Gwinn, C. Dirk Keene, Andrew L. Ko, Jeffrey G. Ojemann, Daniel L. Silbergeld, Daniel
Carey, Tamara Casper, Kirsten Crichton, Michael Clark, Nick Dee, Lauren Ellingwood, Jessica
Gloe, Matthew Kroll, Josef Sulc, Herman Tung, Katherine Wadhwani, Krissy Brouner, Tom Egdorf,
Michelle Maxwell, Medea McGraw, Christina Alice Pom, Augustin Ruiz, Jasmine Bomben, David
Feng, Nika Hejazinia, Shu Shi, Aaron Szafer, Wayne Wakeman, John Phillips, Amy Bernard, Luke
Esposito, Florence D. D’Orazi, Susan Sunkin, Kimberly Smith, Bosiljka Tasic, Anton Arkhipov,
Staci Sorensen, Ed Lein, Christof Koch, Gabe Murphy, Hongkui Zeng, and Tim Jarsky. Local
connectivity and synaptic dynamics in mouse and human neocortex. volume 375, 2022.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at?
an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Abhranil Das and Ila R Fiete. Systematic errors in connectivity inferred from activity in strongly
recurrent networks. Nature Neuroscience, 23(10):1286–1296, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lea Duncker, Laura Driscoll, Krishna V Shenoy, Maneesh Sahani, and David Sussillo. Organizing
recurrent network dynamics by task-computation to enable continual learning. Advances in neural
information processing systems, 33:14387–14397, 2020.

Sean Escola, Alfredo Fontanini, Don Katz, and Liam Paninski. Hidden markov models for the
stimulus-response relationships of multistate neural systems. Neural computation, 23(5):1071–
1132, 2011.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.

Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Nonparametric bayesian learning of
switching linear dynamical systems. Advances in neural information processing systems, 21, 2008.

Yu Fu, Jason M. Tucciarone, J. Sebastian Espinosa, Nengyin Sheng, Daniel P. Darcy, Roger A. Nicoll,
Z. Josh Huang, and Michael P. Stryker. A cortical circuit for gain control by behavioral state. Cell,
156(6):1139–1152, Mar 2014. ISSN 0092-8674. doi: 10.1016/j.cell.2014.01.050.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Wulfram Gerstner, Richard Kempter, J Leo Van Hemmen, and Hermann Wagner. A neuronal learning
rule for sub-millisecond temporal coding. Nature, 383(6595):76–78, 1996.

Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. Re-
current switching dynamical systems models for multiple interacting neural populations. Advances
in neural information processing systems, 33:14867–14878, 2020.

Kenneth D Harris and Alexander Thiele. Cortical state and attention. Nature reviews neuroscience,
12(9):509–523, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag problems. Advances in
neural information processing systems, 9, 1996.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95–104, 2018.

Trung Le and Eli Shlizerman. Stndt: Modeling neural population activity with spatiotemporal trans-
formers. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 17926–17939. Curran Associates, Inc.,
2022.

Chengrui Li, Soon Ho Kim, Chris Rodgers, Hannah Choi, and Anqi Wu. One-hot generalized linear
model for switching brain state discovery. In The Twelfth International Conference on Learning
Representations, 2024.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Artificial
intelligence and statistics, pp. 914–922. PMLR, 2017a.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems. In Aarti Singh
and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 914–922. PMLR,
20–22 Apr 2017b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, and Uygar Sümbül. Cell-
type–specific neuromodulation guides synaptic credit assignment in a spiking neural network.
Proceedings of the National Academy of Sciences, 118(51):e2111821118, 2021.

Sindy Löwe, David Madras, Richard Zemel, and Max Welling. Amortized causal discovery: Learning
to infer causal graphs from time-series data. In Conference on Causal Learning and Reasoning,
pp. 509–525. PMLR, 2022.

Ziyu Lu, Anika Tabassum, Shruti Kulkarni, Lu Mi, J Nathan Kutz, Eric Shea-Brown, and Seung-
Hwan Lim. Attention for causal relationship discovery from biological neural dynamics. arXiv
preprint arXiv:2311.06928, 2023.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

Eve Marder. Neuromodulation of neuronal circuits: Back to the future. Neuron, 76(1):1–11, 2012.
ISSN 0896-6273. doi: https://doi.org/10.1016/j.neuron.2012.09.010.

Lu Mi, Richard Xu, Sridhama Prakhya, Albert Lin, Nir Shavit, Aravinthan Samuel, and Srini-
vas C Turaga. Connectome-constrained latent variable model of whole-brain neural activity. In
International Conference on Learning Representations, 2021.

Lu Mi, Trung Le, Tianxing He, Eli Shlizerman, and Uygar Sümbül. Learning time-invariant
representations for individual neurons from population dynamics. Advances in Neural Information
Processing Systems, 36, 2024.

Manuel Molano-Mazon, Joao Barbosa, Jordi Pastor-Ciurana, Marta Fradera, Ru-Yuan Zhang, Jeremy
Forest, Jorge del Pozo Lerida, Li Ji-An, Christopher J Cueva, Jaime de la Rocha, et al. Neurogym:
An open resource for developing and sharing neuroscience tasks. 2022.

Neuromatch Academy. Biological neuron models tutorial, 2023. Accessed: 2024-09-28.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg, et al.
Inferring single-trial neural population dynamics using sequential auto-encoders. Nature methods,
15(10):805–815, 2018.

Liam Paninski, Jonathan Pillow, and Jeremy Lewi. Statistical models for neural encoding, decoding,
and optimal stimulus design. Progress in brain research, 165:493–507, 2007.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Arthur Pellegrino, N Alex Cayco Gajic, and Angus Chadwick. Low tensor rank learning of neural
dynamics. Advances in Neural Information Processing Systems, 36:11674–11702, 2023.

Matthew G Perich, Charlotte Arlt, Sofia Soares, Megan E Young, Clayton P Mosher, Juri Minxha,
Eugene Carter, Ueli Rutishauser, Peter H Rudebeck, Christopher D Harvey, et al. Inferring brain-
wide interactions using data-constrained recurrent neural network models. BioRxiv, pp. 2020–12,
2020.

Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, EJ Chichilnisky,
and Eero P Simoncelli. Spatio-temporal correlations and visual signalling in a complete neuronal
population. Nature, 454(7207):995–999, 2008.

Francesco Randi and Andrew M Leifer. Measuring and modeling whole-brain neural dynamics in
caenorhabditis elegans. Current opinion in neurobiology, 65:167–175, 2020.

Francesco Randi, Anuj K Sharma, Sophie Dvali, and Andrew M Leifer. Neural signal propagation
atlas of caenorhabditis elegans. Nature, 623(7986):406–414, 2023.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International journal of forecasting, 36(3):
1181–1191, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andrea Santuy, Laura Tomás-Roca, José-Rodrigo Rodríguez, Juncal González-Soriano, Fei Zhu,
Zhen Qiu, Seth GN Grant, Javier DeFelipe, and Angel Merchan-Perez. Estimation of the number of
synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling.
Scientific Reports, 10(1):14014, 2020.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Ryan Singh and Christopher L Buckley. Attention as implicit structural inference. Advances in
Neural Information Processing Systems, 36:24929–24946, 2023.

Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nature neuroscience, 3(9):919–926, 2000.

David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural network
that finds a naturalistic solution for the production of muscle activity. Nature neuroscience, 18(7):
1025–1033, 2015.

Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily B Fox. Neural granger causality. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(8):4267–4279, 2021.

Danil Tyulmankov, Ching Fang, Annapurna Vadaparty, and Guangyu Robert Yang. Biological
learning in key-value memory networks. Advances in Neural Information Processing Systems, 34:
22247–22258, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
neural population dynamics. Annual review of neuroscience, 43:249–275, 2020.

Yu-An Wang and Yun-Nung Chen. What do position embeddings learn? an empirical study of
pre-trained language model positional encoding. arXiv preprint arXiv:2010.04903, 2020.

John G White, Eileen Southgate, J Nichol Thomson, Sydney Brenner, et al. The structure of the
nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 314
(1165):1–340, 1986.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing
Wang. Task representations in neural networks trained to perform many cognitive tasks. Nature
neuroscience, 22(2):297–306, 2019.

Joel Ye, Jennifer L Collinger, Leila Wehbe, and Robert Gaunt. Neural data transformer 2: Multi-
context pretraining for neural spiking activity. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Xiaoxing Zhang, Wenjun Yan, Wenliang Wang, Hongmei Fan, Ruiqing Hou, Yulei Chen, Zhaoqin
Chen, Chaofan Ge, Shumin Duan, Albert Compte, et al. Active information maintenance in
working memory by a sensory cortex. Elife, 8:e43191, 2019.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 JUSTIFICATION FOR LINEARIZED ATTENTION APPLIED TO “LEAKY" SYSTEMS (EQN 6)

Using the forward Euler method and step size δ, Equation 6 can be simulated as

xk+1 = xk + δ
(
− xk + f(Wkxk)

)
= xk − δxk + δf(Wkxk). (10)

Following the same sigmoidal assumption on f , Equation 10 can be written as

xk+1 = xk + δ(f ′(0)Wk − I)xk + δO(x3
k), (11)

where I is the N ×N identity matrix. Therefore, the linearized attention matrix Ak learned from
Equation 3 may reflect the true interactions Wk by approximating δ(f ′(0)Wk − I), and can capture
the interactions between different variables (off-diagonal entries of Wk) up to a scaling factor
(δf ′(0)).

A.2 ADDITIONAL DETAILS FOR NONLINEAR AND NONSTATIONARY SYSTEM SIMULATION
(SEC 3.1)

A.2.1 SIMULATION DETAILS

In Figure 2 a, b, ground-truth W were generated randomly, with real-part of each eigenvalue clipped
at 0 to ensure stability of the system. W in a, b were also used as W0 in c,d, respectively. ω in
c, d were picked randomly while maintaining stability of the system. In a, the system trajectory
was simulated using the closed-form solution x(t) = eW tη, where η is the initial state. In b-d,
trajectories were simulated using the forward Euler method: xk+1 = xk + δf(Wkxk), where
Wk ≡ W for b, and Wk = W0 + xkω

⊤ for c, d. All simulations consist of 3000 timesteps
with stepsize δ = 0.01, with the first 80% used as training set, and last 20% as test set. For c, d,
ground-truth connectivity matrices were computed as the time-averaged connectivity across test set
timesteps W̄ =

∑3000
k=2400 Wk . Simulated trajectories are visualized in Figure 7. In all settings, the

NetFormer model was trained to minimize the mean squared error (MSE) on the trainining set for
1100 epochs using the Adam optimizer in Pytorch, with H = 1,M = 5, D = 5, batch size = 80,
initial learning rate = 0.01. In b, d, learning rate was decayed by a factor of 0.9 every 100 epochs. In
c, learning rate was decayed by a factor of 0.8 every 100 epochs.

Figure 7: Simulated trajectories of toy models in Figure 2. Shaded regions represent timesteps used
as test set.

A.2.2 QUANTITIVE COMPARSION WITH LINEAR REGRESSOIN MODEL

For each toy system in section 3.1, we trained 10 NetFormer models with different random seeds
(initializations), and computed the Spearman’s rank correlation coefficient (ρ) and the Pearson

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

correlation coefficient (r) between the off-diagonal entries of Ā and W̄ for each trained model.
In terms of ρ, Ā achieved comparable performance as AOLS in systems a, b (p > 0.3, two-sided
one sample t test), but significantly outperformed AOLS in systems c, d (p < 10−8) (Figure 8 left).
Similar observations can be made with r (Figure 8 right). For each system, the linearized attention
matrix visualized in Figure 2 is the one whose ρ is the closet to the average ρ across 10 random seeds.

Figure 8: Comparison between AOLS (red cross) and Ā from NetFormer models with 10 different
random initializations (boxplots).

A.2.3 NONSTATIONARITY CONNECTIVITY TRACKING

On toy systems with nonstationary connectivity (Figure 2c, d), we evaluated how well linearized
attention matrices across timesteps can track changes in the connectivity. For each pair (i, j), i, j =
1, . . . , 5, i ̸= j, we collected Aij and Wij across all test timesteps, resulting in two time-varying
series Aij(t) and Wij(t), and computed the Pearson correlation coefficient between them. Results
for 10 trained NetFormer models with different random seeds are shown in Figure 9. Distributions of
the temporal correlation coefficients for all off-diagonal pairs (i, j) are shown as violin plots, where
each violin corresponds to model trained with one random seed. The median of each distribution is
marked with a black line. All medians are greater than 0.999.

Figure 9: Distribution of test set temporal correlation between the linearized attention matrix and the
true nonstationary connectivity. Each column shows result from NetFormer model with a different
random seed. Median of each distribution is marked in black. All medians are greater than 0.999.

A.2.4 FURTHER DISCUSSION ON NONLINEAR DYNAMICAL SYSTEMS

In Section 2, we showed that when f is sigmoidal, A can reflect W through Taylor series approx-
imation of f(Wxk). Take f = tanh as an example. Let wi denote the i-th row of W . When
|w⊤i xk| < π

2 ∀i = 1, . . . , N ,

tanh(Wxk) = tanh(0) + tanh′(0)Wxk +O(x3
k).

As tanh(0) = 0, the forward Euler method is

xk+1 = xk + δ tanh(Wxk) = xk + δ tanh′(0)Wxk + δO(x3
k).

This analysis also applies to other sigmoidal functions f , such as arctan, with

f(0) = 0, f(x̄) = f ′(0)x̄+O(x̄3) for x̄ within some interval around 0.

Therefore, we hypothesize that A can capture W through learning δf ′(0)W for sigmoidal f . It is
also clear that learning W becomes more challenging when w⊤i x does not always stay within the
radius of convergence of the Maclaurin series. Nonetheless, we note that if some w⊤i x is constantly

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

outside the convergence region, f(w⊤i x) will be constantly positive or negative, and the system will
either blow up or decay to zero. Therefore, for the systems of interest here, which are those with
interesting persistent dynamics, from time to time w⊤i x must fall within the convergence region
where the Maclaurin series representation is valid. That being said, while A may still be able to
capture some aspect of W , it could become less accurate, and may require more observations of the
system to gather sufficient timesteps within the convergence region.

In the example nonlinear dynamical system shown in Figure 2b, w⊤i xk stays within the radius of
convergence of tanh for all i and k, which makes the Maclaurin series approximation valid for all
timesteps. In Figure 10, we provide another toy model example showing that the attention from
NetFormer still bears considerable similarity to the ground-truth W even when w⊤i xk falls out of
the convergence region for some i and k.

Figure 10: Demonstration of NetFormer on a nonlinear system dx
dt = tanh(Wx) where w⊤i x

does not always stay within the convergence region of the Maclaurin series of tanh. a. Top row:
Trajectories of the simulated system. Simulation was done using the forward Euler method with
stepsize δ = 0.1. Shaded regions represent timesteps used as test set. Bottom row: Visualization
of w⊤i x across simulated timesteps. Boundaries of the convergence region, ±π

2 , were marked with
black horizontal lines. The right column provides a zoomed-in view of the first 500 simulation
timesteps. b. Left to right Ground-truth W , average linearized attention matrix across test timesteps
from NetFormer (Ā), AOLS fitted through least-squares regression. Colorbars indicate the scale of
the off-diagonal entries, and the diagonal entries are masked in grey. Ā, AOLS were rescaled for
visualization. Spearman’s rank correlation coefficients (ρ) were computed between the off-diagonal
entries of Ā or AOLS and W . We trained 10 NetFormer models with different random initializations
(ρ = 0.841± 0.02, mean ± std), and Ā shown is the one whose ρ is the closet to the average ρ across
10 random initializations. NetFormer models achieved similar performance as AOLS (p = 0.9, two-
sided one sample t test). All NetFormer models were trained to minimize the mean squared error on
the trainining set for 600 epochs using the Adam optimizer in Pytorch, with H = 1,M = 5, D = 5,
batch size = 80. Learning rate was initialized to 0.01, and was decayed by a factor of 0.9 every 100
epochs.

A.3 ADDITIONAL DETAILS FOR STDP SIMULATION (SEC 3.2)

Our STDP simulation is largely based on Neuromatch Academy (2023). The dynamics of the LIF
neuron follows

τm
dV

dt
= −(V − EL)− gE(t)(V − EE) (12)

V (t) ≥ Vth ⇒ V (t) = Vreset (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where V is the membrane potential, τm is the membrane time constant, EL is the resting potential,
EE is the synapse reversal potential, Vth is the spiking threshold, and Vreset is the reset potential.
Once V (t) crosses the spiking threshold, we say the LIF neuron emits a spike, and V (t) will be reset
to and held at Vreset for a refractory period tref . gE(t) is the total excitatory synaptic conductance,
which is the total conductance of all active pre-synapses (i.e. synapses coming into the LIF neuron)
at that time:

gE(t) =

N∑
i=1

gi(t)δi(t− tspk) (14)

where δi is the delta function: δi(t − tspk) = 1 if there is a spike at pre-synapse i at time t, and 0
otherwise. The conductance of each pre-synapse gi evolves following

dgi
dt

= − gi
τE

+ ḡiδi(t− tspk) (15)

where τE is the EPSP time constant, and ḡi is the peak synaptic conductance of pre-synapse i. All ḡi
are bounded between 0 and ḡmax.

When there is a spike arriving at the i-th pre-synapse,

ḡi = ḡi +M(t)ḡmax (16)

where M(t) helps tracking the time since the last postsynaptic spike emitted by the LIF neuron.
When the postsynaptic LIF neuron spikes, all pre-synapses are updated:

ḡi = ḡi + Pi(t)ḡmax,∀i (17)

where Pi(t) helps tracking the time since the last spike at the i-th pre-synapse. STDP is enforced
through M(t) and Pi(t). Specifically, M(t) follows

τ−
dM

dt
= −M (18)

and whenever the postsynaptic LIF neuron spikes,

M(t) = M(t)−A−. (19)

Pi(t) follows

τ+
dP

dt
= −P (20)

and whenever the i-th presynaptic neuron spikes,

P (t) = P (t) +A+. (21)

τ+ and τ− specify the range of separation between pre- and postsynaptic spikes where STDP takes
effect. A+, A− are both positive, and define the maximum amount of synaptic strengthening and
weakening, respectively. It follows that M(t) ≤ 0, Pi(t) ≥ 0 ∀t. M(t) and Pi(t) effectively capture
the STDP rule

∆W = A+e
(tpre−tpost)/τ+ if tpost > tpre (22)

∆W = −A−e
−(tpre−tpost)/τ− if tpost < tpre (23)

as shown in Figure 3a. The constant parameters and initial conditions in our simulation are set in the
same way as in Neuromatch Academy (2023), and are summarized in tables 2, 3. Pre-synaptic spike
trains are modeled as independent Poisson processes with rate 50Hz.

To generate data, we run the simulation for 100,000 timesteps where each timestep corresponds to 1ms.
We used the first 80% of data for training, and the last 20% of data as the test set. Membrane potential
of the LIF neuron was then z-scored using its mean and std on the training set. We fitted 5 NetFormer
models using different random seeds. All NetFormer models have H = 5,M = 101, D = 101, and
were trained to minimized the mean squared error on the training set for 20 epochs using the Adam
optimizer with learning rate 0.005, batch size 64 in Pytorch. Result from one seed is visualized in
Figure 3d-f. We used a sliding window of length 10,000 timesteps to smooth both true and inferred
synaptic weight trajectories before computing the correlation coefficients.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Constant parameters in STDP simulation

Parameter Value
τm 10 [ms]
EL -75 [mV]
EE 0 [mV]
Vth -55 [mV]
Vreset -75 [mV]
tref 2 [ms]
τE 5 [ms]
ḡmax 0.024
τ+ 20 [ms]
τ− 20 [ms]
A+ 0.008
A− 0.0088

Table 3: Initial conditions in STDP simulation

Variable Initial value
V -65 [mV]
gi 0.014
M 0
P 0

A.4 ADDITIONAL DETAILS FOR TASK-DRIVEN POPULATION ACTIVITY SIMULATION

A.4.1 SIMULATION DETAILS

The hidden dynamics of RNN models follows equation 7, and at each timestep k, the network activity
is read out through a linear mapping

yk = Wouthk. (24)

All RNN models are trained to minimize the cross entropy loss using the Adam optimizer in Pytorch.
In the Perceptual Decision Making task, we trained a RNN with 4 hidden units for 5000 epochs using
learning 0.005, batch size 32. In the Go-Nogo task, we trained a RNN with 8 hidden units for 2000
epochs using learning 0.01, batch size 32. In the Delay Comparision task, we trained a RNN with 12
hidden units for 5000 epochs using learning 0.01, batch size 32. All trained RNNs achieve over 90%
accuracy in the 1000 test trials. All trials are generated using the default parameters in the NeuroGym
toolkit (Molano-Mazon et al., 2022).
In each task, we recorded the hidden units activity of the trained RNN during the 1000 test trials. We
then trained NetFormer to predict the next-step hidden units activity based on the present and past
H-step hidden activity and stimulus inputs. Hidden units activity during 800 trials were used for
training, and the remaining 200 trials were using for evaluation. In each task, we trained 5 NetFormer
models from different initializations to minimize the mean squared error (MSE) on the training set
using the Adam optimizer in Pytorch. In the Perceptual Decision Making task, NetFormer has H = 5,
N = 7, M = 7, D = 4, and was trained using learning rate 0.0025, batch size 64 for 100 epochs.
In the Go-Nogo task, NetFormer has H = 1, N = 11, M = 11, D = 8, and was trained using
learning rate 0.01, batch size 64 for 50 epochs. In the Delay Comparision task, NetFormer has H = 5,
N = 14, M = 14, D = 12, and was trained using learning rate 0.005, batch size 64 for 50 epochs.

A.4.2 QUANTITIVE COMPARSION WITH LINEAR REGRESSOIN MODEL

Table 4 provides a quantatitive comparison between NetFormer and the linear regression model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Dynamics prediction Connectivity recovery
NetFormer Linear NetFormer Linear

MSE R2 MSE R2 Spearman Pearson Spearman Pearson
a 0.000±0.000 0.998±0.001 0.014 0.920 0.694±0.163 0.760±0.120 0.566 0.548
b 0.010±0.000 0.972±0.001 0.013 0.960 0.622±0.006 0.722±0.004 0.518 0.553
c 0.001±0.000 0.997±0.001 0.034 0.897 0.811±0.011 0.633±0.105 0.626 0.650

Table 4: a, b, c corresponds to the Perceptual Decision Making task, Go-Nogo task, and Delay Com-
parision task, respectively. MSE and R2 were evaluated on concatenated held-out trials. Spearman
and Pearson correlation coefficients were computed between the off-diagonal entries of the inferred
and true connectivity matrices. NetFormer results are the mean±std across 5 random seeds.

A.5 CONNECTIVITY-CONSTRAINED SIMULATION AND NEURAL DATA: DATASETS AND
PREPROCESSING

A.5.1 CONNECTIVITY-CONSTRAINED SIMULATION

To generate W , we assign each pair of neurons with the same presynaptic and postsynaptic cell types
a value between 0 and 1 using uniform distribution. Then, we use the connectivity probability from
patch-clamp experiments Campagnola et al. (2022) as a cutoff matrix to determin if two neurons are
connected. For connected neurons, we sample their connection strength using normal distribuion
with the measured post-synaptic potential from patch-clamp experiments as mean and 0.1 as standard
deviation. We simulate 30, 000 steps for 200 neurons, using the first 80% for training and the last
20% for testing.

A.5.2 PATCH-CLAMP DATASET

Campagnola et al. (2022) dataset contains experimental results of connectivity probability and
connectivity strength (Postsynaptic Potential (PSP)) at cell-type levels from patch-clamp. In each
experiment, up to eight neurons were simultaneously subjected to whole-cell patch-clamp recording,
mainly under current-clamp conditions, with some stimuli also tested under voltage-clamp conditions.
Stimuli were applied to each patched neuron while recording the other neurons for postsynaptic
responses. We mainly focus on the experimental results for layers 2 and 3 in mouse primary visual
cortext (V1), because the neuronal recordings from the multimodal mouse datatset only contain
neurons in layers 2 and 3.

A.5.3 MULTIMODAL MOUSE DATA

For experimental recordings from neuronal populations, we use a recent, public multimodal dataset
provided by Bugeon et al. (2022) to train and demonstrate our model on real data. The dataset
includes spontaneous population activity recordings from the mouse primary visual cortex (V1)
across layers 2 and 3 via 2-photon calcium imaging at a temporal sampling frequency of 4.3Hz across
six 20-minute sessions, recording approximately 500 neurons per session. Spatial coordinates of the
recorded neurons are also provided. We train our dynamical model on data from one animal (SB025),
which includes recordings of 2481 neurons, with some neurons repeating across six sessions. The
dataset also includes single-cell spatial transcriptomics, profiling mRNA expression for 72 selected
genes to identify excitatory and inhibitory class labels of neurons. 51% of neurons in the inhibotiry
class can further be identified to be one of Lamp5, Pvalb, Vip, Sncg, and Sst.

A.5.4 DATA PREPROCESSING

For simulation data, when using RNN with exponential activation, we recale the data to ensure that
all neuronal activities are nonnegative, as exponential activation produces only nonnegative outputs.

For preprocessing the raw real data, which is nonnegative, we normalize it using the mean and
standard deviation calculated across both sessions and neurons involved in training. When using the
RNN model with exponential activation, we normalize the data by dividing by the standard deviation
only, without first subtracting the mean.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.6 BASELINES

A.6.1 STATIONARY CONNECTIVITY BASELINES

Linear Regression: We denote neural activity data as Xk = [xk−H+1 · · · xk] ∈ RN×H

recorded from N neurons and H time steps. Let xk+1 ∈ RN denote the neuronal activity at the
(k + 1)th time step. Given previous 1 time step, xk, linear regression predicts current time step
activity as

x̂k+1 = Wxk + b

Recurrent Neural Network (RNN) with tanh activation: Given previous all neuronal activity
at previous p time steps, xk, xk−1, . . . , xk−p+1, a RNN with predefined Tanh activation function
predicts current time step activity as

x̂k+1 = σ (W0xk +W1xk−1 + · · ·+Wp−1xk−p+1 + b) , σ = tanh

where Wi, i ∈ {0, 1, . . . , p− 1}, represents how the previous ith step affects the current step activity
and each element W a←b

i represents how the bth neuron in the previous ithe time step influence the ath
neuron in current step. The RNN is trained by minimizing mean squared errors (MSE) of the current
time step activity predictions given previous time steps. p = 1 is commonly used for RNN. For
modeling both simulation data and real mouse data, we choose p = 1, because the simulation data has
excatly one-time dependency and the resulting weights using different k doesn’t have performance
improvement in real data.

Recurrent Neural Network (RNN) with exponential activation: Next, we change the predefined
activation function of RNN to exponential function for modeling both simulation data and real mouse
data.

x̂k+1 = σ (W0xk +W1xk−1 + · · ·+Wp−1xk−p+1 + b) , σ = exp

Cross correlation: Besides dynamical models, we also compare with statistical methods. We denote
a neural activity data as Xk = [xk−H+1 · · · xk] ∈ RN×H recorded from N neurons and H time
steps. Let x(i), x(j) ∈ RH denotes the ith neuronal activity for H time steps. For simpliticity, let
a = x(i) [τ :] , b = x(j) [: −τ]. Cross correlation with time delay τ reflects connectivity as

ri←j =
a⊤b

∥a− a∥∥b− b∥
We choose τ = 1 to show the infered connectivity in simulation and read data.

Covariance: Let x(i), x(j) ∈ RH denotes the ith neuronal activity for H time steps. Covariance
indicates the level to which two variables vary together. Covariance matrix is symmetric, which
assumes that the influence from neuron i to neuron j is the same as influence from neuron j to neuron
i. Covariance between neuron i and j is defined as

ci←j = cj←i =
1

H − 1
ΣT

k=1x
(i)
k x

(j)
k

Mutual information: Mutual information quantifies the amount of information that one random
variable contains about another, which is also symmetric. When calculating the mutual information
between activity history of two neurons, the computation involves estimating the entropy of each
neuron activity individually and the joint entropy of both neurons together. We use python package
PyInform.mutualinfo to compute the mutual information. Let X(i), X(j) ∈ RH

Ii←j = Ij←i = I(X(i);X(j)) = H(X(i)) +H(X(j))−H(X(i), X(j)),

where H(X(i)) is the entropy of neuron i’s activity, calculated as H(X(i)) =
−
∑

x∈X(i) p(x) log p(x). H(X(j)) is the entropy of neuron j’s activity. H(X(i), X(j)) is the joint
entropy of neurons i and j, calculated as H(X(i), X(j)) = −

∑
x∈X(i),y∈X(j) p(x, y) log p(x, y).

Transfer entropy: Transfer entropy quantifies the amount of directed information transfer be-
tween systems, such as the neural activity between two neurons. We use python package PyIn-
form.transferentropy to compute the transfer entropy, which is defined by the formula

T i←j =
∑

p
(
X

(i)
k+1, X

(i)
(k+1−p):k, X

(j)
(k+1−l):k

)
log

p
(
X

(i)
k+1 | X(i)

(k+1−p):k, X
(j)
(k+1−l):k

)
p
(
X

(i)
k+1 | X(i)

(k+1−p):k

)
 ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where X
(i)
k+1 is the future activity of neuron i. X(i)

(k+1−p):k represents the past p activities of neuron

i up to time k. X(j)
(k+1−l):k denotes the past l activities of neuron j up to time k. p(·) denotes the

probability distributions calculated from the joint and conditional activities as observed in the data.

A.6.2 NONSTATIONARY CONNECTIVITY BASELINES FOR NEURAL DATA

Low-tensor-rank RNN (LtrRNN): LtrRNN is designed to model trial-varying neural dynamics by
capturing low-dimensional changes in connectivity over time. We split continuous neural activity
data into overlapping sliding windows, treating each window as a distinct trial, which allows LtrRNN
to learn temporal variations in connectivity patterns. The dimension of the network is defined by
the number of neurons. By extracting the trial-specific weight matrices from LtrRNN, we compared
these non-stationary connectivity patterns with the attention maps learned by NetFormer. Code for
fitteing LtrRNN: https://github.com/arthur-pe/LtrRNN

Autoregressive Hidden Markov Model (AR-HMM): AR-HMM extends the traditional HMM by
incorporating state-specific autoregressive dynamics, where each state has its own unique autoregres-
sive model to describe the temporal dependencies of neural activity. arHMM is able to infer the latent
states of the system and estimates the connectivity matrices associated with each state. However, a
limitation of arHMM is the need to predefine the total number of states. Code for fitting AR-HMM:
https://github.com/lindermanlab/ssm

A.7 MORE ON CONNECTIVITY-CONSTRAINED SIMULATION

A.7.1 CONNECTIVITY-CONSTRAINED SIMULATION WITH SIGMOID NONLINEARITY

To test the robustness of NetFormer towards different nonlinear activations in the connectivity-
constrained simulation described in Section 4, we replaced the tanh activation with sigmoid activation
and used NetFormer, along with other baselines, to reconstruct connectivity at both the neuron-level
and cell-type level. Table 5 presents quantitative comparisons of the inferred connectivity with ground
truth, averaged over five random seeds. Both Table 5 and Figure 11 demonstrate that NetFormer
outperforms the other baselines on neuron-level (N ×N) connectivity inference.

NetFormer linear
regression

RNN
w/ tanh

RNN
w/ exp

cross
correlation covariance mutual

information
transfer
entropy

simulation

connectivity
N× N

Pearson 0.834±0.006 0.765±0.002 0.772±0.001 0.679±0.002 0.829 -0.022 0.447 0.329
Spearman 0.508±0.005 0.482±0.002 0.485±0.001 0.454±0.000 0.512 -0.006 0.201 0.223

connectivity
K× K

Pearson 0.880±0.003 0.904±0.002 0.940±0.001 0.803±0.002 0.921 -0.438 0.350 0.304
Spearman 0.860±0.002 0.862±0.003 0.886±0.000 0.788±0.011 0.856 -0.299 0.104 0.340

Table 5: Connectivity-constrained simulation with sigmoid activation. The results of connectivity
inference using mutual information, transfer entropy, and granger causality are assessed by comparing
against the absolute values of ground truth connectivity. Simulation data provides ground truth for
neuron-level (N × N) and cell type-level (K × K) connectivity. We assess performance using
Spearman’s and Pearson’s coefficients.

A.7.2 GRANGER CAUSALITY TEST

We performed Granger causality tests on connectivity-constrained simulation data with both sigmoid
and tanh activations. To create a binary ground-truth neuron-level connectivity matrix, we assigned
a value of 1 to all nonzero entries and 0 to zero entries. We then conducted Granger causality tests
on pairwise neural activities to generate a matrix of test statistics. We then performed min-max
normalization on the matrix to convert to probability. To compare with granger causality on inferring
binary connectivity, we also performed min-max normalization on the averaged neuron-level attention
matrix. We evaluated the performance using AUROC. As shown in Figure 12, for simulations with
sigmoid activation, the AUROC of NetFormer result is 0.918, while the AUROC of Granger causality
is 0.586. For simulations with tanh activation, the AUROC of NetFormer result is 0.894, while the
AUROC of Granger causality is 0.672. On both simulations, NetFormer shows better performance

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

GT NetFormer Linear Regression RNN w/ Tanh RNN w/ Exp Cross Correlation

EC Pvalb Sst Vip

Presynaptic

Po
st

sy
na

pt
ic

Figure 11: Connectivity-constrained simulation with sigmoid activation. Visualization of ground
truth and inferred connectivity matrices at both individual-neuron level and cell-type level. A positive
linear transformation has been applied to standardize all matrices to the same range for better
visualization.

Ground Truth

Ganger Causality
AUROC = 0.586

(sigmoid simulation activation)

Ganger Causality
Accuracy = 0.672

(tanh simulation activation)

Presynaptic

Po
st

sy
na

pt
ic

EC Pvalb Sst Vip
NetFormer

AUROC = 0.894
(tanh simulation activation)

NetFormer
AUROC = 0.918

(sigmoid simulation activation)

Figure 12: Visualization of NetFormer and Granger causality results for inferring binary connectivity
(presence or absence of connections) in connectivity-constrained simulation data.

A.8 NETFORMER FOR NONSTATIONARY CONNECTIVITY INFERENCE ON NEURAL DATA

We visualized neural activity traces, mouse behavioral states, and cell-type level attention weights for
each state in Figure 13. While behavioral states are not provided as model inputs, they can be inferred
using unsupervised methods such as PCA or clustering on NetFormer’s attention weights. Figure 13a
shows that NetFormer predictions effectively capture overall patterns of neural activity. Figure 13b
shows that intra-state connectivity is more consistent compared to connectivity across different states.

We also benchmakred NetFormer with LtrRNN and AR-HMM on state-dependent connectivity
inference, as shown in Table 6. We compared the inferred connectivity with the patch-clamp
experimental result.

A.9 IMPLEMENTAION DETAILS

A.9.1 MODEL FRAMEWORK FOR FITTING CONNECTIVITY-CONSTRAINED SIMULATION AND
REAL MOUSE DATA

Building on the demonstrated effectiveness of the self-attention mechanism for connectivity inference
in toy systems, we introduce the NetFormer model architecture.

We train the NetFormer to predict xk+1 based on Xk = [xk−H+1 · · · xk] ∈ RN×H . To encode
neuron identities, a learnable positional embedding matrix E ∈ RN×M is concatenated to X ,
giving X̃k = [Xk E] ∈ RN×(H+M). The queries Qk and keys Kk are obtained through linear
transformations of X̃k, Qk = X̃kWQ ∈ RN×D, and Kk = X̃kWK ∈ RN×D. NetFormer model is

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Cell Type-level Attention at Running (2 random time-steps)

Cell Type-level Attention at Stationary Desync (2 random time-steps)

Activity Traces

Behavioral States
(unseen during training)

Neuron 1

Neuron 2

Neuron 3

Neuron 5

Neuron 4

Cell Type-level Attention at Stationary Sync (2 random time-steps)

Neuron 6

Neuron 7

a. b.

Figure 13: a. Visualization of neural data with behavioral states for an example session shown at the
top. Predicted activity traces from NetFormer are shown in orange, while measured activity traces are
shown in blue. b. Three blocks of time are selected, and each has a different state. Two time-steps
within each block are randomly selected to showcase the change of attention weights within states
and between states.

NetFormer LtrRNN AR-HMM

in-vivo recording

Running
K × K

Pearson 0.591±0.204 0.007±0.182 0.199±0.027
Spearman 0.601±0.209 -0.036±0.189 0.274±0.048

Stationary Desync
K × K

Pearson 0.662±0.176 -0.003±0.181 -0.320±0.012
Spearman 0.723±0.173 -0.057±0.174 -0.206±0.017

Stationary Sync
K × K

Pearson 0.713±0.148 0.000±0.186 0.145±0.041
Spearman 0.767±0.151 0.069±0.175 0.151±0.009

Table 6: State-dependent connectivity inference. NetFormer attentions and LtrRNN weight
matrices are grouped by state labels and averaged for each state. The inferred connectivity for
each state is compared against Postsynaptic Potential (PSP) resting state amplitude obtained from
patch-clamp experiments.

trained to predict the next time-step activity xk+1, defined as

x̂k+1 = Akxk + xk = ϕ(
QkK

T
k√

D
)xk + xk =

1√
D
(X̃kWQ)(W

⊤
K X̃⊤k)xk + xk,

where Ak is the self-attention that we want to use for inferring connectivity, ϕ is the attention
activation. In the standard Transformer model Vaswani et al. (2017), softmax is used as the attention
activation function. However, for our connectivity inference task, this function is not ideal as it
normalizes the attention scores, making each row sum to one, which is unsuitable for connectivity
matrices. We experiment with different activation functions and empirically found that omitting
the activation function altogether yields the best results on recordings from the mouse cortex. An
illustration of the NetFormer model is provided in Figure 1. Additionally, to accommodate neuronal
dynamics that are not dependent on a single previous time step, we incorporate a linear transformation
on Xk to increase model flexibility. The NetFormer model becomes

x̂k+1 = Ak(Xkwout) +Xkwout, wout ∈ RH×1.

A.9.2 NETFORMER TRAINING AND EVALUATION

We first assign each unique neuron in all sessions an ID, which is later used to track positional
embedding for each unique neuron, because same neuron can be recorded in more than one session.
Then, within each session, we construct samples with window size 200 in simulation and 60 in

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

real data, and we make sure samples in one batch should come from the same session so that the
dimensions can match.

We use the first 80% time-steps in all sessions for training and the last 20% time-steps for validation.
The model is trained using MSE as the loss function, comparing the predicted activity for the next
time step with the ground-truth activity. We employ early stopping criteria, ceasing training if there
are 20 epochs without improvement, with a hard limit of 100 epochs maximum.

After training is complete, we calculate the attention for each sample in the dataset. For each session,
we aggregate the attentions from all samples to compute a single averaged attention. Averaged
attentions from all sessions are then transformed into a final cell-type level attention. We achieve this
by aggregating attention values according to their corresponding presynaptic and postsynaptic cell
types and dividing by the total count of such pairings.

We also extract positional embeddings from the model and utilize each neuron’s unique ID to
determine the neuronal embedding for every unique neuron. These embeddings are then used as
features for logistic regression to classify neurons as either excitatory or inhibitory.

For evaluation, we assess the inferred cell-type level connectivity against the Postsynaptic Potential
(PSP) resting state amplitude obtained from patch-clamp experiments, which serves as the experimen-
tal ground-truth. Additionally, we evaluate the accuracy of the binary cell-type classification using
experimental data from single-cell spatial transcriptomics, which provides a classification of neurons
into excitatory and inhibitory types across all sessions.

A.9.3 EVALUATION METIRCS

We use python libraries and built-in functions for computing evaluation metrics.

For connectivity inference, we flatten the inferred 2-dimensional N × N or K × K connectivity
matrix and grond-truth matrix.
Pearson correlation: scipy.stats.pearsonr()
Spearman rank correlation: scipy.stats.spearmanr().

For activity prediction, given the input matrix ∈ RB×N×H for NetFormer and input matrix ∈ RB×N

for RNN, where B is the batch size, NetFormer outputs ∈ RB×N×1 and RNN outputs ∈ RB×N . We
flatten the predicted activity and the grond-truth.
MSE: torch.nn.functional.mse_loss()
Pearson correlation: scipy.stats.pearsonr()
R2 : sklearn.metrics.r2_score()

For binary classification, classifier predicts the probability for all neurons.
Top-1 accuracy: sklearn.metrics.accuracy_score()
Area Under the Receiver Operating Characteristic (AUROC): sklearn.metrics.roc_auc_score()

A.9.4 HYPERPARAMETERS

In connectivity-constrained simulation data, for training NerFormer, we use window size 100,
embedding size 200, hidden dimension of query and key matrices is 300, learning rate 10−3, and
batch size 32. For training RNN, we use p = 1, batch size 32, and learning rate 10−3.

In real data, for training NetFormer, we use window size 60, embedding size 30, hidden dimension of
query and key matrices 90, learning rate 10−3, and batch size 32. For training RNN, we use p = 1,
batch size 32, and learning rate 10−4.

We use PyTorch Paszke et al. (2017) and PyTorch Lightning Falcon & The PyTorch Lightning team
(2019) for model development and training, and Adam as the optimizer.

A.9.5 PSEUDO CODE

We train NetFormer and extract attentions and positional embeddings for connectivity inference
and binary cell-type classification. The pseudo code for model training , connectivity inference and
cell-type classification is provided as follows:

NetFormer(x, neuron_ids):

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

if constraint == True:
cell_type_level_mean = parameters(num_cell_type, num_cell_type)
cell_type_level_var = parameters(num_cell_type, num_cell_type)

embeddings = embedding_table(neuron_ids)
input = layer_norm(concat(x, embeddings))
x, embeddings = input[:, :, :T], input[:, :, T:]

dim_x, dim_e = x.shape[-1], embeddings.shape[-1]
scale = (dim_x + dim_e) ** -0.5

logits = input @ W_Q_W_KT @ input.T
logits = logits * scale

if activation == softmax:
attention = softmax(logits)

elif activation == sigmoid:
attention = sigmoid(logits)

elif activation == tanh:
attention = tanh(logits)

elif activation == none:
attention = logits

output = layer_norm(attention @ x + x)

if out_layer == True:
linear_out is a lienar transformation from dimension T to 1
output = linear_out(output)
return output, attention

else:
Use the last column as prediction
return output[:, :, -1], attention

NetFormer_Training(all_samples):
all_inputs, all_neuron_ids, all_GT_targets = all_samples
model = NetFormer()
optimizer = Adam(model, learning_rate)

all_predictions, all_attentions = model(all_inputs, all_neuron_ids)

prediction_loss = MSE(all_predictions, all_GT_targets)
loss = prediction_loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

Connectivity_Inference(all_samples, trained_NetFormer, GT_connectivity):
all_inputs, all_neuron_ids, all_GT_targets = all_samples
all_predictions, all_attentions = trained_NetFormer(all_inputs, all_neuron_ids)

avg_attention = mean(all_attentions, axis=0)

pearson_corr = pearsonr(GT_connectivity, avg_attention)
spearman_corr = spearmanr(GT_connectivity, avg_attention)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Cell_Type_Classification(trained_NetFormer, neuron_ids, cell_types):
embeddings = trained_NetFormer.embedding_table(neuron_ids)

X_train = embeddings[TRAIN_idx]
y_train = cell_types[TRAIN_idx]
X_test = embeddings[TEST_idx]
y_test = cell_types[TEST_idx]

Train classifier
classifier = LogisticRegression.fit(X_train, y_train)
Test on test set
y_pred = classifier.predict(X_test)

A.10 COMPUTE RESOURCES

Model training on simulated systems in Section 3 was done on a MacBook Pro with Apple M1 chip.
Using the NVIDIA A100 GPU, NetFormer model trained on connectivity-constrained simulation
data took about 10min. NetFormer model trained on one mouse (SB025) in real mouse data took
about 20min, which requires at least 30 GB of RAM and 16 GB of GPU memory.

27

	Introduction
	Related Work

	An Interpretable Model for Recovering Dynamic Connectivity
	Experiments on synthetic data
	Nonlinear and Nonstationary System Simulation
	Spike-Timing-Dependent Plasticity (STDP) Simulation
	Task-driven population activity simulation

	Connectivity-Constrained Simulation and Neural Data
	Conclusion and Discussion
	Appendix
	Justification for linearized attention applied to ``leaky" systems (Eqn 6)
	Additional details for nonlinear and nonstationary system simulation (Sec 3.1)
	Simulation details
	Quantitive comparsion with linear regressoin model
	Nonstationarity connectivity tracking
	Further discussion on nonlinear dynamical systems

	Additional details for STDP simulation (Sec 3.2)
	Additional details for Task-driven population activity simulation
	Simulation details
	Quantitive comparsion with linear regressoin model

	Connectivity-constrained simulation and neural data: Datasets and preprocessing
	Connectivity-constrained simulation
	Patch-clamp dataset
	Multimodal mouse data
	Data preprocessing

	Baselines
	Stationary Connectivity Baselines
	Nonstationary Connectivity Baselines for Neural Data

	More on Connectivity-constrained simulation
	Connectivity-constrained simulation with sigmoid nonlinearity
	Granger Causality Test

	NetFormer for Nonstationary Connectivity Inference on Neural Data
	Implementaion Details
	Model framework for fitting connectivity-constrained simulation and real mouse data
	NetFormer training and evaluation
	Evaluation Metircs
	Hyperparameters
	Pseudo Code

	Compute Resources

