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Figure 1: A sample clip (from here) and corresponding MCQs from CinePile.

ABSTRACT

Current datasets for long-form video understanding often fall short of providing
genuine long-form comprehension challenges, as many tasks derived from these
datasets can be successfully tackled by analyzing just one or a few random frames
from a video. To address this issue, we present a novel dataset and benchmark,
CinePile, specifically designed for authentic long-form video understanding. This
paper details our innovative approach for creating a question-answer dataset, utiliz-
ing advanced LLMs with human-in-the-loop and building upon human-generated
raw data. Our comprehensive dataset comprises 305,000 multiple-choice questions
(MCQs), covering various visual and multimodal aspects, including temporal com-
prehension, understanding human-object interactions, and reasoning about events
or actions within a scene. Additionally, we fine-tuned open-source Video-LLMs
on the training split and evaluated both open-source and proprietary video-centric
LLMs on the test split of our dataset. The findings indicate that although current
models underperform compared to humans, fine-tuning these models can lead to
significant improvements in their performance.

1 INTRODUCTION

Large multi-modal models offer the potential to analyze and understand long, complex videos.
However, training and evaluating models on video data offers difficult challenges. Most videos
contain dialogue and pixel data and complete scene understanding requires both. Furthermore, most
existing vision-language models are pre-trained primarily on still frames, while understanding long
videos requires the ability to identify interactions and plot progressions in the temporal dimension.

In this paper, we introduce CinePile, a large-scale dataset consisting of → 305k question-answer
pairs from 9396 videos, split into train and test sets. Our dataset emphasizes question diversity,
and topics span temporal understanding, perceptual analysis, complex reasoning, and more. It also
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emphasizes question difficulty, with humans exceeding the best commercial vision/omni models by
approximately 25%, and exceeding open source video understanding models by 37%.

We present a scene and a few question-answer pairs from our dataset in Fig. 1. Consider the
first question, How does Gru’s emotional state transition throughout the
scene? For a model to answer this correctly, it needs to understand both the visual
and temporal aspects, and even reason about the plot progression of the scene. To an-
swer the second question, What are the objects poking out of the book cover
and what is their purpose, the model must localize an object in time and space, and use
its world knowledge to reason about their purpose.

CinePile addresses several weaknesses of existing video understanding datasets. First, the large size
of CinePile enables it to serve as both an instruction-tuning dataset and an evaluation benchmark. We
believe the ability to do instruction tuning for video at a large scale can bridge the gap between the
open-source and commercial video understanding models. Also, the question diversity in CinePile
makes it a more comprehensive measure of model performance than existing benchmarks. Unlike
existing datasets, CinePile does not over-emphasize on purely visual questions (e.g., What color
is the car?), or on classification questions (e.g., What genre is the video?) that do
not require temporal understanding. Rather, CinePile is comprehensive with diverse questions about
vision, temporal, and narrative reasoning with a breakdown of question types to help developers
identify blind spots in their models.

The large size of CinePile is made possible by our novel pipeline for automated question generation
and verification using large language models. Our method leverages large existing sets of audio
descriptions that have been created to assist the vision impaired. We transcribe these audio descriptions
and align them with publicly available movie video clips from YouTube. Using this detailed human
description of scenes, powerful LLMs are able to create complex and difficult questions about the
whole video without using explicit video input. At test time, video-centric models must answer
these questions from only the dialogue and raw video, and will not have access to the hand-written
descriptions used to build the questions. We release the prompts for generating the question answers,
the code for model evaluation, and the dataset splits in the Appendix.

2 CREATING A LONG VIDEO UNDERSTANDING BENCHMARK

Our dataset curation process has four primary components 1) Collection of raw video and related data.
2) Generation of question templates. 3) Automated construction of the Q&A dataset using video and
templates, and 4) Application of a refinement pipeline to improve or discard malformed Q&A pairs.

2.1 DATA COLLECTION AND CONSOLIDATION

We obtain clips from English-language films from the YouTube channel MovieClips
1. This channel

hosts self-contained clips, each encapsulating a major plot point, facilitating the creation of a dataset
focused on understanding and reasoning. Next, we collected Audio Descriptions from AudioVault2.
Getting visual descriptions of video for free. Audio descriptions (ADs) are audio tracks for movies
that feature a narrator who explains the visual elements crucial to the story during pauses in dialogue.
They have been created for many movies to assist the vision impaired. The key distinction between
conventional video caption datasets and ADs lies in the contextual nature of the latter. In ADs,
humans emphasize the important visual elements in their narrations, unlike other video caption
datasets, which tend to be overly descriptive. We use the audio descriptions as a proxy for visual
annotation in the videos for our dataset creation.

Scene localization in AD. The video clips we have gathered are typically 2-3 minutes long, while
Audio Descriptions (ADs) cover entire movies. To align descriptions with video, we transcribe the
audio from both the movie clip and the whole movie AD file using an Automatic Speech Recognition
(ASR) system WhisperX (Bain et al., 2023), an enhanced version of Whisper (Radford et al.,
2023) designed to offer quicker inference and more precise word-level timestamps. We then embed
the first 3 and last 3 lines of the text transcription of a YouTube movie clip using a sentence embedding

1https://www.youtube.com/@MOVIECLIPS
2https://audiovault.net/movies
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Figure 2: Question template generation pipeline: We begin by substituting the first names in human-written
source questions and then cluster them. We then feed a selection of questions from each cluster into GPT-4,
which outputs “question templates” used in the next stage of dataset creation. See Section 2.2 for more details.

model, WhereIsAI/UAE-Large-V1. We similarly embed all the sentences in the corresponding
movie AD file. We then localize the YouTube clip within the AD file via the rolling window algorithm.
We then extract all AD data that lies between the matched start and end of the movie clip embeddings.
This localized text contains both the visual elements and the dialogue for the given YouTube clip.
This serves as a base text for creating the QA dataset For the rest of the paper, we will refer to the
human-written description of the scene as “visual description” and the speaking or dialogue part of the
video as “dialogue”. When combined, we will refer to both data sources as “scene-text-annotation”.

Sentence classification. When we transcribe an AD file, the text contains a human’s visual descrip-
tions and the movie’s dialogue. However, the transcription model does not label whether a given
sentence belongs to a visual description or a dialogue. Since we planned to create a few questions
solely on the visual components of the video, the distinction is important to us. To categorize each
sentence as either visual or dialogue, we fine-tuned a BERT-Base model (Devlin et al., 2018) using
annotations from the MAD dataset (Soldan et al., 2022), which contains labels indicating whether
a sentence is a dialogue or a visual description. We applied a binary classification head for this
task. For training the classification model, we split the MAD dataset annotations into an 80-20
training-evaluation split. The model achieves 96% accuracy on eval split after 3 epoch training.
Qualitatively, we observed that the model accurately classifies sentences in the data we curated,
distinguishing effectively between dialogue and visual description content.

Question Template Automation
Generate a few templates based on the following questions

[Question 1] Where did the couple meet?
[Question 2] What holiday is coming up when they meet?
[Question 3] What made him break with her?

Response Based on the nature of these questions, I can identify a few underlying templates that encompass most of them:

[Template 1] Catalytic Actions
[Proto Question 1] What event acts as a catalyst for the character’s next major decision?

[Template 2] Setting and Context
[Proto Question 2] Where does this interaction take place, and how does the location impact the conversation?
...

Figure 3: Extracting templates from human-generated questions. We share 10 questions from each cluster,
and prompt an LLM to create a few templates and a prototypical question. See Fig. 2 and Section 2.2 for details.

2.2 AUTOMATED QUESTION TEMPLATES

Many prominent video question-answering benchmarks were written by human annotators. The
question-answer pairs are typically curated in one of two ways: 1) Human annotators are given
complete freedom to ask questions about a given scene (Tapaswi et al., 2016) 2) They are asked to
focus on specific aspects and are trained or provided with examples of questions, encouraging them to
write more questions in a similar style (Xiao et al., 2021; Li et al., 2020; Lei et al., 2018; Patraucean

2Icons in the figures are sourced from Flaticon.
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Figure 4: Automated QA Generation and Filtering. Begins with a set of automated templates and scenes.
Filter out the templates relevant to each scene. Next, pass these templates along with the annotated-scene-text to
GPT-4, which is then used to create multiple-choice questions (MCQs). The generated MCQs are then subjected
to numerous filters to curate the final dataset. For more detailed information, refer to Section 2.3 and Section 2.4

et al., 2024). For instance, in the Perception Test Benchmark (Patraucean et al., 2024), annotators are
directed to concentrate on temporal or spatial aspects, while for the Next-QA dataset (Xiao et al.,
2021), annotators mainly focused on temporal and causal action reasoning questions.

During early experiments, we found that giving a range of templates and scene-text-annotation
to an LLM helped create more detailed, diverse, and well-formed questions. Thus, we adopted a
template-based approach for question generation. Instead of limiting questions to a few hand-curated
themes, we propose a pipeline to create templates from human-generated questions (shown in Fig. 2).

Our starting point is approximately 30,000 human-curated questions from the MovieQA (Tapaswi
et al., 2016), TVQA (Lei et al., 2018), and Perception Test (Patraucean et al., 2024) datasets. We
cluster these questions, select a few representatives per cluster, and then use GPT-4 to discern the
underlying themes and write a prompt. First, we preprocess the questions by replacing first names
and entities with pronouns, as BERT (Reimers & Gurevych, 2019) embeddings over-index on proper
nouns, hence the resultant clusters end up with shared names rather than themes. For instance, ‘Why
is Rachel hiding in the bedroom?’ is altered to ‘Why is she hiding in the bedroom?’. We used GPT-3.5
to do this replacement, as it handled noun replacement better than many open-source and commercial
alternatives. The modified questions are then embedded using WhereIsAI/UAE-Large-V1, a
semantic textual similarity model which is a top performer on the MTEB leaderboard3. When the
first names were replaced, we observed significant repetition among questions, which prompted
us to duplicate them, ultimately resulting in 17,575 unique questions. We then perform k-means
clustering to categorize the questions into distinct clusters. We experimented with different values
of k = 10, 50, 100. Qualitatively, we found k = 50 to be an optimal number of clusters where
the clusters are diverse and at the same time clusters are not too specific. For example, we see a
‘high-school dance’ cluster when k = 100, and these questions are merged into an ‘event’ cluster
when we reduce k to 50. The Perception Test questions are less diverse as human annotators were
restricted to creating questions based on a small number of themes, so we used k = 20 for this set.
The number of questions in each cluster ranges from 60 to 450. We selected 10 random questions from
each, and used them to prompt GPT-4 to create relevant question templates, as illustrated in Fig. 3.
We did ablations by selecting the closest 10 questions to the cluster center, however qualitatively
observed that random questions produced more general/higher quality templates.

We generate four templates for each question cluster, resulting in around 300 templates across
three datasets. We then manually reviewed all 300 templates, eliminating those that were
overly specific and merging similar ones. Overly specific templates and their proto-questions
looked like “Pre-wedding Dilemmas: What complicates character Z’s plans to
propose marriage to their partner?” and “Crime and Consequence: What is
the consequence of the character’s criminal actions?”. The authors also
added a many templates that were complimentary to the auto-generated ones. This process resulted
in 86 unique templates. Following that, we manually binned these into five high-level categories:
Character and Relationship Dynamics, Narrative and Plot Analysis, Thematic Exploration, Temporal,
and Setting and Technical Analysis. For a detailed discussion on the category definitions, examples
of templates, and prototypical questions from each category, please refer to the Appendix C & D.

3https://huggingface.co/spaces/mteb/leaderboard
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Figure 5: Test split statistics. Left: Question category composition in the dataset. Middle: Percentage of
vision-reliant questions across categories. Right: Percentage of hard questions per question category type.
TEMP - Temporal, CRD - Character and Relationship Dynamics, NPA - Narrative and Plot Analysis, STA -
Setting and Technical Analysis, TH - Thematic Exploration. The colors correspond to the same categories across
the plots. Refer to the Appendix for corresponding plots of train split.

2.3 AUTOMATED QA GENERATION WITH LLMS

The pipeline for generating questions is shown in Fig. 4. While the question templates are general,
they might not be relevant to all the movie clips. Hence for a given scene, we choose a few relevant
question templates by providing Gemini with the scene-text-annotation of the scene, and asking to
shortlist the 20 most relevant templates to that scene, out of which we randomly select 5-6 templates.
We then provide a commercial language model with (i) the scene-text-annotation, which includes
both visual descriptions and dialogue, (ii) the selected question template names (e.g. ‘Physical
Possession’), (iii) the prototypical questions for the templates (e.g. “What is [Character Name]
holding”), and (iv) a system prompt asking it to write questions about the scene. Through rigorous
experimentation, we devised a system prompt that makes the model attentive to the entire scene and
is capable of generating deeper, longer-term questions as opposed to mere surface-level perceptual
queries. We observed that providing the prototypical example prevents GPT-4 from hallucination, and
also leads to more plausible multiple-choice question (MCQ) distractors. We also found that asking
the model to provide rationale for its answer enhances the quality of the questions. Additionally,
we found that including timestamps for the scene-text-annotation augments the quality of generated
temporal questions. Through this method, we were able to generate ↑ 32 questions per video.

After experimenting with this pipeline, we analyzed the generated QA pairs and noticed a consistent
trend: most questions are focused on reasoning or understanding. For diversity, we also wanted to
include purely perceptual questions. To achieve this, we introduced additional hand-crafted prompt
templates for perceptual questions and also templates for temporal questions. While GPT-4 performs
well across all question templates, we found that Gemini excels particularly with perceptual templates.
Therefore, we utilized Gemini to generate a segment of perceptual questions in the dataset, while
using GPT-4 for reasoning templates. Our experiments with open-source models indicated subpar
question quality, despite extensive prompt tuning. We present example questions and a quantitative
investigation into the quality of the generations produced by GPT-4 and Gemini in Appendix E.
Moreover, we provide the prompt we use question-answer generation in Appendix L.

2.4 DATASET QUALITY EVALUATION AND ADVERSARIAL REFINEMENT

While the process above consistently produces well-formed and answerable questions, we observed
that some questions are either trivial, with answers embedded within the question itself, or pertaining
to basic world concepts that do not require viewing the clip. To identify these, we evaluated our
dataset with the help of a few LLMs on the following axes and we improved the quality of those
whenever possible. In the few instances where this was not possible, we removed the questions from
the dataset or computed a metric that the users can use in the downstream tasks.

Degeneracy and educated guessing. A question is considered degenerate if the answer is im-
plicit in the question itself, e.g., What is the color of the pink house?. Similarly, an
educated guessing is the most probable answer to the question based on general knowledge, con-
text, or common sense, e.g. What is the bartender using the shaker for? a)
prepare a cocktail b) do groceries c) collect tips . Based on an investi-
gation of a subset of the dataset, we found that such questions constituted only a small fraction.
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However, since manually reviewing all the questions was impractical, we employed three distinct
language models (LMs) to identify weak Q&As: Gemini (Anil et al., 2023), GPT-3.5 (Achiam et al.,
2023), and Phi-1.5 (Li et al., 2023c). In order to do this, we presented only the questions and answer
choices to the models, omitting any context, and calculated the accuracy for each question across
multiple models. If multiple models with different pre-training or post-training setups all correctly
answer a question, it is likely that the answer was implicit, rather than due to biases of any one.

Adversarial Refinement. After identifying weak Q&A pairs, wed an adversarial refinement process
to repair these Q&A pairs. The goal was to modify the questions and/or answer choices so that a
language model could no longer answer them correctly using only implicit clues within the question
and answer choices themselves. To achieve this, we used a large language model (LLM), referred
to as “deaf-blind LLM", to identify and explain why a question could be answered without extra
context. Specifically, when the LLM answered a question correctly, we asked it to provide a rationale
for its choice. This rationale helped us detect hidden hints or biases in the question. We then fed
this rationale into our question-generation model, instructing it to modify the question and/or answer
choices to eliminate these implicit clues. This process continued in a loop until the LLM could no
longer answer the question correctly (after adjusting for chance performance), with a maximum of
five attempts per question. Given the repetitive and computationally intensive nature of this process,
we required a powerful yet accessible LLM that could run locally, avoiding issues with API limits,
delays, and costs associated with cloud-based services. As a result, we selected LLaMA 3.1 70B
(Dubey et al., 2024), an open-source model that met these desiderata. Through this adversarial
refinement process, we successfully corrected approximately 90.94% of the weak Q&A pairs in the
training set and 90.24% of the weak Q&A pairs in the test set. Finally, we excluded the unfixable
Q&A pairs from the evaluation split (→ 80 Q&A) of our dataset but retained them in the training set
(→ 4500 Q&A). We share more details about adversarial refinement in Appendix Sec. N

Vision Reliance. When generating the multiple-choice questions (MCQs), we considered the entire
scene without differentiating between visual text and dialogue. Consequently, some questions in the
dataset might be answerable solely based on dialogue, without the necessity of the video component.
For this analysis, we utilized the Gemini model. The model was provided with only the dialogue,
excluding any visual descriptions, to assess its performance. If the model correctly answers a question,
it is assigned a score of 0 for the visual dependence metric; if it fails, the score is set at 1. In later
sections, we present the distribution of the visual dependence scores across different MCQ categories.

Hardness. Hardness refers to the inability to answer questions, even when provided with full context
used to create the questions in the first place (i.e., the subtitles & visual descriptions). For this purpose,
we selected the Gemini model, given its status as one of the larger and more capable models. Unlike
accuracy evaluation, which uses only video frames and dialogues (subtitles), the hardness metric
includes visual descriptions as part of the context given to the model. After this, the authors reviewed
all the questions flagged as “hard" for verification and fixed any minor issues, if present.

In addition, the authors went through the question in the evaluation split across multiple iterations,
and fixed any systemic errors that arose in the pipeline. Furthermore, we conducted a human study to
identify potential weaknesses, and we discuss our findings in Appendix I.

3 A LOOK AT THE DATASET

In the initial phase of our dataset collection, we collected →15,000 movie clips from channels like
MovieClips on YouTube. We filtered out clips that did not have corresponding recordings from
Audiovault, as our question generation methodology relies on the integration of visual and auditory
cues—interleaved dialogues and descriptive audio—to construct meaningful questions. We also
excluded clips with low alignment scores when comparing the YouTube clip’s transcription with
the localized scene’s transcription in the Audio Description (AD) file as discussed in Section 2.1.
This process resulted in a refined dataset of 9396 movie clips. The average video length in our
dataset is →160 sec, significantly longer than many other VideoQA datasets and benchmarks. We
split 9396 videos into train and test splits of 9248 and 148 videos each. We made sure both the
splits and the sampling preserved the dataset’s diversity in terms of movie genres and release years.
We follow the question-answer generation and filtering pipeline which was thoroughly outlined in
Section 2. We ended up with 298,887 training points and 4,941 test-set points with around 32
questions per video scene. Each MCQ contains a question, answer, and four distractors. As a post hoc
step, we randomized the position of the correct answer among the distractors for every question, thus

6
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Table 1: We compare our dataset, CinePile against the pre-existing video-QA datasets. Our dataset is both
large and diverse. Multimodal refers to whether both the video and audio data is used for question creation and
answering. For understanding different QA types, refer to Section 2.3

Dataset Annotation Domain Num QA Avg sec Multimodal QA Type
Temporal Attribute Narrative Theme

TGIF-QA (Jang et al., 2017) Auto Tumblr GIFs 165,165 3 ✁ ✂ ✁ ✁ ✁
MSRVTT-QA (Xu et al., 2017) Auto Multiple 243,690 15 ✁ ✁ ✂ ✁ ✁
How2QA (Li et al., 2020) Human Instructional Videos 44,007 60 ✁ ✂ ✂ ✁ ✁
NExT-QA (Xiao et al., 2021) Human Daily Life Videos 52,044 44 ✁ ✂ ✂ ✁ ✁
EgoSchema (Mangalam et al., 2024) Auto Egocentric 5,000 180 ✁ ✂ ✂ ✂ ✁
MovieQA (Tapaswi et al., 2016) Human Movies 6,462 203 ✂ ✂ ✂ ✂ ✁
TVQA (Lei et al., 2018) Human TV Shows 152,545 76 ✂ ✂ ✂ ✂ ✁
Perception Test (Patraucean et al., 2024) Human Scripted Videos 44,000 23 ✂ ✂ ✂ ✁ ✁
MoVQA (Zhang et al., 2023b) Human Movies 21,953 992 ✂ ✂ ✂ ✂ ✁
IntentQA (Li et al., 2023b) Human Daily Life Videos 16,297 Unknown ✂ ✂ ✁ ✁ ✁
Video-MME (Fu et al., 2024) Human Multiple 2,700 1017.9 ✂ ✂ ✂ ✂ ✁
MVBench (Li et al., 2024) Auto Multiple 4,000 16 ✂ ✂ ✂ ✁ ✁
Video-Bench (Ning et al., 2023) Human + Auto Multiple 17,036 56 ✂ ✂ ✂ ✁ ✁
LVBench (Wang et al., 2024) Human Multiple 1,549 4,101 ✂ ✂ ✂ ✂ ✁

CinePile (Ours) Human + Auto Movies 303,828 160 ✂ ✂ ✂ ✂ ✂

eliminating any positional bias. We filtered out the degenerate questions from the test split, however,
we left them in the train set, since those questions are harmless and might even teach smaller models
some helpful biases the larger multimodal models like Gemini might inherently possess.

Our dataset’s diversity stems from the wide variety of movie clips and different prompting strategies
for generating diverse question types. Each strategy zeroes in on particular aspects of the movie
content. We present a scene and example MCQs from different question templates in Fig. 1, and
many more in the Appendix. In Fig. 5 (Left), we provide a visual breakdown of the various question
categories in our dataset. A significant portion of the questions falls under “Character Relationship
Dynamics”. This is attributed to the fact that a large number of our automated question templates,
which were derived from human-written questions belonged to this category. This is followed by
“Setting and Technical Analysis” questions, which predominantly require visual interpretation. We
display the metrics for vision reliance and question hardness, as discussed in Section 2.4, at the
category level in Fig. 5 (Middle, Right). As anticipated, questions in the “Setting and Technical
Analysis” category exhibit the highest dependency on visual elements, followed by those in “Character
Relationship Dynamics”, and “Temporal” categories. In terms of the hardness metric, the “Temporal”
category contains the most challenging questions, with “Thematic Exploration” following closely
behind. Finally, we compare our dataset with other existing datasets in this field in Table 1, showing
its superiority in both the number of questions and average video length compared to its counterparts.

4 MODEL EVALUATION

In this section, we discuss the evaluations of various closed and open-source video LLMs on our
dataset, some challenges, and model performance trends. Given that our dataset consists of multiple-
choice question answers (MCQs), we assess a model’s performance by its ability to accurately select
the correct answer from a set of options containing one correct answer and four distractors. A key
challenge in this process is reliably parsing the model’s response to extract its chosen answer and
map it to one of the predefined choices. Model responses may vary in format, including additional
markers or a combination of the option letter and corresponding text. Such variations necessitate
a robust post-processing step to accurately extract and match the model’s response to the correct
option. To address these variations, we employ a two-stage evaluation method. First, a normalization
function parses the model’s response, extracting the option letter (A-E) and any accompanying text.
This handles various formats, ensuring accurate identification. The second stage involves comparing
the normalized response with the answer key, checking for both the option letter and text. If both
match, a score of one is awarded; However, if only the option letter or text appears, the comparison is
limited to the relevant part, and the score is assigned accordingly.

We evaluate 24 commercial and open-source LLM models and we present their performance in Table 2.
We discuss additional details about the evaluation timelines, model checkpoints, and compute budget
in Appendix G. We also present human numbers (author and non-author) for comparison. This
distinction is important because the authors carefully watched the video (go back and rewatch the
video if necessary) while answering the questions. This removes the carelessness errors from the
human study. While commercial VLMs perform reasonably well, the very best of OSS models lag
→10% behind the proprietary models. We present a few QA’s which humans got wrong and GPT-4
got wrong and the plausible reason for errors in Appendix I.
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Gemini 1.5 Pro leads overall; LLaVA-OV tops open-source models. Among the various commer-
cial VLMs analyzed Gemini 1.5 Pro performs the best, and particularly outperforms the GPT-4 models
in the “Setting and Technical Analysis” category that is dominated by visually reliant questions
focusing on the environmental and surroundings of a movie scene, and its impact on the characters.
On the contrary, we note that GPT-4 models offer competitive performance on question categories
such as “Narrative and Plot Analysis” that revolve around the core storylines, and interaction between
the key characters. It’s important to note that Gemini 1.5 Pro is designed to handle long multimodal
contexts natively, while GPT-4o and GPT-4V don’t yet accept video as input via their APIs. Therefore,
we sample 10 frames per video while evaluating them. Gemini 1.5 Flash, a newly released lighter
version of Gemini 1.5 Pro, also performs competitively, achieving 58.75% overall accuracy and
ranking second in performance. Its competitive edge over the GPT models is owing to the “Setting
and Technical Analysis" category, where it performs significantly better. In open-source models,
LLaVA-OV (One Vision) ranks as the best, achieving an overall accuracy of 49.34%. More broadly,
while the accuracy of open-source models ranges from 49.34% to 13.93%, it’s clear that recent models
like LLaVA-OV (released August 2024), MiniCPM-V-2.6 (released August 2024), and VideoLLaMa2
(released June 2024) offer competitive performance compared to proprietary models.

Table 2: Model Evaluations. We present the accuracy of various video LLMs on the CinePile’s test split. We
also present Human performance for comparison. We ablate the accuracies across the question categories: TEMP
- Temporal, CRD - Character and Relationship Dynamics, NPA - Narrative and Plot Analysis, STA - Setting and
Technical Analysis, TH - Thematic Exploration.

Model Params. Avg CRD NPA STA TEMP TH

Human - 73.21 82.92 75.00 73.00 75.52 64.93
Human (authors) - 86.00 92.00 87.5 71.20 100 75.00

Gemini 1.5 Pro–001 - 60.12 63.90 70.44 57.85 46.74 59.87
Gemini 1.5 Flash–001 - 58.75 62.82 69.76 55.99 44.04 62.67
GPT-4o - 56.06 60.93 69.33 49.48 45.78 61.05
GPT-4 Vision - 55.35 60.20 68.47 48.63 45.78 59.47
LLaVA-OV 7B 49.34 52.13 59.83 46.54 37.65 58.42
LLaVA-OV Chat 7B 49.28 52.47 58.32 46.28 37.79 58.42
MiniCPM-V 2.6 8B 46.91 50.10 54.21 44.52 35.61 54.74
Claude 3 Opus - 45.60 48.89 57.88 40.73 37.65 47.89
VideoLLaMA2 7B 44.57 47.44 54.64 41.91 34.30 47.37
InternVL2 26B 43.86 47.10 56.16 39.03 34.16 52.63
LongVA DPO 7B 42.78 45.84 54.21 39.16 33.43 44.74
InternVL-V1.5 25.5B 41.69 45.07 51.19 38.97 30.09 45.79
LongVA 7B 41.04 43.28 51.84 38.45 33.58 38.42
InternVL2 4B 39.89 42.99 47.73 36.23 32.99 41.58
mPLUG-Owl3 8B 38.27 40.91 45.71 33.86 33.09 46.20
LLaVA-OV 0.5B 33.82 35.88 39.96 31.66 27.03 38.42
InternVL2 8B 32.28 35.25 40.39 28.46 24.71 38.42
InternVL2 2B 30.34 31.91 33.26 30.35 23.26 31.58
VideoChat2 7B 29.27 31.04 34.56 25.26 27.91 34.21
Video LLaVa 7B 25.72 26.64 32.61 23.63 23.26 24.74
CogVLM2 19B 17.16 18.33 17.06 17.23 13.08 18.95
InternVL2 1B 15.97 17.65 19.22 13.25 12.94 22.63
Video-ChatGPT 7B 15.08 17.06 16.34 15.17 7.26 18.58
mPLUG-Owl 7.2B 13.93 16.15 13.16 13.03 10.48 11.54

Performance significantly drops on the “hard-split”. Additionally, as discussed in Section 2.4,
we provide a “hard split” in the test set consisting of particularly challenging questions. In Fig. 6,
we compare the performance of the top 6 models (in terms of average accuracy) on both the average
and the hard splits of our dataset. We note that while most models suffer a performance decline of
15%-20% on the hard split; however, the relative ranking among the models remains unchanged.
Interestingly, Gemini 1.5 Flash suffers a decline of ↑ 21% compared to 13% for Gemini 1.5 Pro,
underscoring the particularly severe trade-offs involved in optimizing the models for lightweight
performance on more challenging samples.
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Figure 6: Models’ performance on CinePile test split, all questions vs hard questions.
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Figure 7

Why are (some) OSS models so far behind? We conducted further analyses to understand the poor
performance of some open-source models, focusing on qualitative evaluations of their raw responses
(Appendix H). Our findings indicate that a primary issue is their inability to follow instructions, often
generating irrelevant or repetitive content, which hinders accurate extraction of the intended answer.
To quantify these deviations, we introduced two alternative strategies for computing accuracy: a)
Embedding Similarity Matching: We compute the similarity between the model’s raw response and
the various answer options within the embedding space of a sentence transformer (Zhang et al.,
2019). The most similar option is selected as the predicted answer. b) GPT-4 as a judge: We use
GPT-4 (Zheng et al., 2023) as an evaluator to extract the predicted answer key from the model’s raw
response. The results from these strategies are illustrated in Figure 7a. We observe that although these
alternative evaluation strategies yield an improvement in the models’ performance, their accuracy
still falls significantly short compared to the best-performing open-source models. This suggests
that the underperformance cannot be solely attributed to an inability to follow instructions. Rather,
these models also exhibit fundamental limitations in video understanding capabilities. Notably, the
two alternative evaluation strategies—embedding similarity matching and the use of GPT-4 as a
judge—are highly consistent with each other, as well as largely aligning with the rankings obtained
from the original response extraction strategy. We provide further details and additional results
based on traditional video-caption evaluation metrics, such as BertScore (Zhang et al., 2019), CIDEr
(Vedantam et al., 2015), and ROUGE-L (Lin, 2004), in Appendix H.

CinePile’s train-split helps improve performance In this section, we investigate the impact of
CinePile ’s training split in enhancing the performance of open-source video LLMs. We selected
Video-LLaVa as the baseline and fine-tuned it using CinePile ’s training data. For efficient training,
we load the model using 4-bit quantization. During fine-tuning, we freeze the base model, and
conduct training using Low-Rank Adaptation (LoRA) (Hu et al., 2021). We fine-tuned the model for
5 epochs using the AdamW optimizer (Loshchilov & Hutter, 2017). We compare the performance
of the fine-tuned Video-LLaVa against the base model, as shown in 7b. Our results indicate that
fine-tuning led to an approximate 71% improvement in performance (increasing accuracy from
25.72% to 44.16%), with gains observed consistently across all question subcategories. These results
demonstrate the significant utility of CinePile’s training split in enhancing model performance.

Additional Ablations. We report additional results on the effect of removing video frames on model
performance in Appendix K.1, performance on hard-split (for all models) in Appendix K.2.
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5 RELATED WORK

LVU (Wu & Krähenbühl, 2021), despite being one of the early datasets proposed for long video
understanding, barely addresses the problem of video understanding as the main tasks addressed in
this dataset are year, genre classification or predicting the like ratio for the video. A single frame
might suffice to answer the questions and these tasks cannot be considered quite as “understanding”
tasks. MovieQA (Tapaswi et al., 2016) is one of the first attempts to create a truly understanding QA
dataset, where the questions are based on entire plot the movie but not localized to a single scene. On
closer examination, very few questions are vision focused and most of them can be answered just
based on dialogue. EgoSchema (Mangalam et al., 2024) is one of the recent benchmarks, focused
on video understanding which requires processing long enough segments in the video to be able to
answer the questions. However, the videos are based on egocentric videos and hence the questions
mostly require perceptual knowledge, rather than multimodal reasoning. Another recent benchmark,
Perception Test (Patraucean et al., 2024), focuses on core perception skills, such as memory and
abstraction, across various reasoning abilities (e.g., descriptive, predictive, etc) for short-form videos
that they collected by first preparing explicit video scripts. The MAD dataset introduced in (Soldan
et al., 2022) and expanded in (Han et al., 2023) contains dialogue and visual descriptions for full-
length movies and is typically used in scene captioning tasks rather than understanding. Another
issue is this dataset does not provide raw visual data, they share only [CLS] token embeddings,
which makes it hard to use. TVQA (Lei et al., 2018) is QA dataset based on short 1-min clips from
famous TV shows. The annotators are instructed to ask What/How/Why sort of questions combining
two or more events in the video. MoVQA (Zhang et al., 2023b) manually curates questions across
levels multiple levels—single scene, multiple scenes, full movie— by guiding annotators to develop
queries in predefined categories like Information Processing, Temporal Perception, etc. CMD (Bain
et al., 2020) proposes a text-to-video retrieval benchmark while VCR (Zellers et al., 2019) introduces
a commonsense reasoning benchmark on images taken from movies. Long video understanding
datasets, such as EpicKitchens (Damen et al., 2018), tend to concentrate heavily on tasks related
to the memory of visual representations, rather than on reasoning skills. More recently, multiple
benchmarks focusing on long video understanding have been released, such as Video-MME (Fu
et al., 2024), MVBench (Li et al., 2024), and LVBench (Wang et al., 2024), all having videos from
multiple domains such as movies, sports, etc. Most of these datasets require significant human effort
to generate questions, with costs increasing as you move toward longer video regimes. Hence, most
of them range on a scale of a few thousand question-answer pairs (while CinePile ranges 70-75 ↓
more). We discuss works utilizing synthetic data for dataset creation in Appendix B.

CinePile differs from all the above datasets, having longer videos and many questions to capture the
perceptual, temporal, and reasoning aspects of a video. And it is truly multimodal where the person
has to watch the video as well as dialogues to answer many questions. Unlike the previous datasets
with fixed templates, we automated this process on previously human-generated questions, this let us
capture many more question categories compared to previous works. Lastly, our approach to dataset
generation is scalable, allowing us to fine-tune video models to improve performance. Moreover,
CinePile can easily be extended in the future with additional videos, question categories, and more.

6 DISCUSSION AND CONCLUSION

In this paper, we introduced CinePile, a unique long video understanding dataset and benchmark,
featuring → 300k questions in the training set and → 5000 in the test split. We detailed a novel
method for curating and filtering this dataset, which is both scalable and cost-effective. Additionally,
we benchmarked various recent commercial video-centric LLMs and conducted a human study to
gauge the achievable performance on this dataset. To our knowledge, CinePile is the only large-
scale dataset that focuses on multi-modal understanding, as opposed to the purely visual reasoning
addressed in previous datasets. Our fine-tuning experiments demonstrate the quality of our training
split. Additionally, we plan to set up a leaderboard for the test set, providing a platform for new video
LLMs to assess and benchmark their performance on CinePile.

Despite its strengths, there are still a few areas for improvement in our dataset, such as the incorpo-
ration of character grounding in time. While we believe our dataset’s quality is comparable to or
even better than that of a Mechanical Turk annotator, we acknowledge that a motivated human, given
sufficient time, can create more challenging questions than those currently generated by an LLM.
Our goal is to narrow this gap in future iterations of CinePile.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken several steps to provide all necessary
details and materials. Our key contributions include: (a) a robust synthetic data generation pipeline
for constructing a video question-answering dataset, (b) the final training and test splits derived
from this pipeline, and (c) the fine-tuning and evaluation of video language models (LLMs) on
these splits. To facilitate replication, we have included the exact prompt used for question-answer
generation, the constructed train and test splits, and the fine-tuning and evaluation code in the
supplementary materials and appendix. Specifically, the prompt can be found in Appendix L, while
the train and test splits are available as Hugging Face objects (dataset/cinepile/train and
dataset/cinepile/test) in the provided zip folder. The fine-tuning and evaluation code is
also included in the zip folder under the code/ directory. We believe these materials, along with
the detailed explanations in the appendix and supplementary files, offer a comprehensive source for
reproducing our dataset and experiments.

ETHICS STATEMENT

In accordance with the ICLR Code of Ethics, we acknowledge the potential for biases inherent in
large language models, particularly regarding gender, race, and other demographic factors. Given our
use of such models to generate question-answer pairs, there is a risk that these biases may be reflected
in the generated content, potentially impacting downstream models trained on this data. While we
manually reviewed and filtered problematic questions in the evaluation set, the scale of the training
set made it infeasible to apply the same level of scrutiny. Additionally, as most of our movie clips
originate from the "global west," there is a possibility that certain stereotypes may be perpetuated.
Regarding our human study, we obtained an exemption from our Institute’s Review Board (IRB)
for the involvement of graduate students. For the dataset release, similar to many existing works
(Lei et al., 2018; Tapaswi et al., 2016; Wang et al., 2024; Fu et al., 2024), we plan to release the
dataset under the CC-BY-NC-4.0 license, limiting its use to non-commercial, academic purposes. We
will host the dataset on Hugging Face, requiring users to agree to the license terms before access.
Additionally, We do not distribute any raw video content directly; rather, we provide URLs redirecting
to YouTube, ensuring compliance with YouTube’s Terms of Service (YouTube, 2024).
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