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Abstract

Large Language Models (LLM) have made significant advances in the recent
past becoming more mainstream in Artificial Intelligence (AI) enabled human-
facing applications. However, LLMs often generate stereotypical output inherited
from historical data, amplifying societal biases and raising ethical concerns. This
work introduces i) the Multi-Grain Stereotype Dataset, which includes 52,751
instances of gender, race, profession and religion stereotypic text and ii) a novel
stereotype classifier for English text. We design several experiments to rigorously
test the proposed model trained on the novel dataset. Our experiments show that
training the model in a multi-class setting can outperform the one-vs-all binary
counterpart. Consistent feature importance signals from different eXplainable AI
tools demonstrate that the new model exploits relevant text features. We utilise
the newly created model to assess the stereotypic behaviour of the popular GPT
family of models and observe the reduction of bias over time. In summary, our
work establishes a robust and practical framework for auditing and evaluating the
stereotypic bias in LLMs2.

1 Introduction

The field of Artificial Intelligence (AI) continues to evolve with Large Language Models (LLMs)
showing both potential and pitfalls. This research explores the ethical dimensions of LLM auditing in
Natural Language Processing (NLP), with a focus on text-based stereotype classification and bias
benchmarking in LLMs. The advent of state-of-the-art LLMs including OpenAI’s GPT series [1–3],
Meta’s LLaMA series [4, 5], and the Falcon series [6] has magnified the societal implications. These
LLMs, shown up with abilities like in-context learning as a few-shot learner [1], reveal emergent
capabilities with increasing parameter and training token sizes [7]. However, they show fairness
concerns due to their training on extensive, unfiltered datasets such as book [8] and Wikipedia corpora
[9], and large internet corpora like Common Crawl [10]. This training data often exhibits systemic
biases and could further lead to detrimental real-world effects, confirmed by studies [11–14]. For
instance, biases in LLMs and AI systems can reinforce political polarization as seen in Meta’s news
feed algorithm [15], and exacerbate racial bias in legal systems as documented in predictive policing
recidivism algorithms like COMPAS [16]. Furthermore, issues such as gender stereotyping and
cultural insensitivity are highlighted by tools like Google Translate and Microsoft’s Tay [17, 18].
Most existing studies focus on either bias benchmarks in LLMs or text-based stereotypes detection
and overlook the interaction between them, which remains underexplored and indicates gaps. Our
study makes a clear line between Bias, as observable deviations from neutrality in LLM downstream
tasks, and Stereotype, a subset of bias entailing generalized assumptions about certain groups in
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LLM outputs. Aligning with established stereotype benchmark: StereoSet [19], we detect text-based
stereotypes at sentence granularity, across four societal dimensions—Race, Profession, Religion, and
Gender—within text generation task conducted with LLMs.

Social Impact Statement Our framework audits the issue of bias in LLMs, a growing concern
as these models become more influential in society. We employ eXplainable AI techniques, and
DistilBERT, to make the audit process transparent and energy-efficient, thereby meeting ethical,
regulatory, and sustainable standards while improving predictive performance significantly. This
work aligns with the ultimate goal of research in this area, to minimize the societal and environmental
risks associated with biased LLMs, promoting their responsible and eco-friendly use. The framework
proposed in this work is a key component in evaluating the biases and stereotypical language at scale.
Such scalable assessment is critical in the age of social media and generative artificial intelligence,
where language is generated at the web-scale in digital archives. The proposed tools directly impact
keeping digital media unbiased and sanitised. As the next generation of LLMs is mainly trained on
web archives, the proposals passively impact the creation of more fair and unbiased LLMs.

2 Related Works

Text-based Stereotype Classification has become a notable domain. Dbias [20] addresses the binary
classification of general bias in the context of dialogue, while Dinan et al. [21] conducted a multidi-
mensional analysis of gender bias across different pragmatic and semantic dimensions. The Hugging
Face Community has seen the advent of pre-trained models for stereotype classification. However,
prominent models like distilroberta-finetuned-stereotype-detection3 has subpar predictive perfor-
mance and limits its labels to general stereotype, anti-stereotype and neutral without specialising on
stereotype types (gender, religion etc.). We address both these gaps through this work. Models like
tunib-electra-stereotype-classifier4, trained on the K-StereoSet dataset—a Korean adaptation of the
original StereoSet [22], demonstrates high performance, indicating effective stereotype classification
within Korean contexts.

StereoSet [19] and CrowS-Pairs [23] are popular dataset-based bias benchmarking approaches that
use the examples in the datasets to calculate the masked token probabilities and pseudo-likelihood-
based scoring of the LLM to assess whether stereotypical results are output. A key disadvantage
of these approaches is that the bias assessment’s generalisation bounds are limited to the diversity
of the examples in the datasets. On the contrary, we use these examples to teach an LLM to detect
stereotypes from any generated text (fine-tuning rather than few/zero-shot cases used in [19] and
[23]). This gives our approach the advantage of assessing the LLM’s bias based on any text output
generated by the LLM rather than within the constraints of the labelled datasets. Benchmarks such
as WinoQueer [24] and SeeGULL [25] focus on stereotype types that are out of the scope of this
work (e.g. LGBTQ bias etc.). Benchmarks such as WEAT [26] and SEAT [27] use pre-defined
attribute and target word sets to assess stereotypical language, making them similar to StereoSet and
CrowS-Pairs approaches exposed to the same limitations while BBQ [28] and BOLD [29] focus on
specific tasks such as question answering rather than stereotype detection in free from text generated
by any LLM. The result of this work is a stereotype detection model that is also thoroughly validated
for its generalisation capabilities using explainability tools and counterfactual examples that are out
of the reference datasets.

Several prior works [11, 30] could be used to implement token-level stereotype detection that is out of
scope for this work as we focus on sentence-level stereotype detection. Albeit, these works also lack
transparency, a gap our work addresses through eXlainable AI (XAI) techniques. While emerging
LLM evaluation frameworks like DeepEval [31], HELM [32], and LangKit [33] takes a holistic view
on bias evaluation, our framework complements them as our proposal can become a subcomponent
within their systems.

3https://huggingface.co/Narrativa/distilroberta-finetuned-stereotype-detection
4https://github.com/newfull5/Stereotype-Detector
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3 Methodology

Our methodology aims to progress English text-based stereotype classification which can improve
LLM bias assessment. We identify four research questions in this direction:

• RQ1: Can training stereotype detectors in the multi-class setting bring better results versus
training multiple binary classification models in isolation?

• RQ2: How does the multi-label classifier built for stereotype detection compare to competi-
tive baselines?

• RQ3: Does the trained model exploit the right patterns when detecting stereotypes?

• RQ4: How unbiased are today’s State-of-the-art LLMs in reference to the proposed stereo-
type detector?

For addressing RQ1 and RQ2, we develop the Multi-Grain Stereotype (MGS) dataset (Sec. 3.1) and
fine-tune Distil-BERT models (Sec. 3.2). For RQ3, we employ XAI techniques SHAP, LIME, and
BertViz to explain predictions (Sec. 3.2). Finally, for RQ4, we generate prompts using the proposed
MGS dataset to elicit stereotypes from LLMs and evaluate them using our classifier (Sec. 3.3).

3.1 MGS Dataset (RQ1)

We constructed the Multi-Grain Stereotype Dataset (MGS Dataset) from two crowdsourced sources:
StereoSet[19] and CrowS-Pairs[23]. It comprises a total of 52,751 instances, which we divided into
training and testing sets using an 80:20 ratio, ensuring stratified sampling based on stereotype types.
This allows us to have a larger number of examples for the model creation while mixing different types
of stereotypes together in one dataset for richer multi-class learning. The created dataset supports
both sentence-level and token-level classification tasks. In terms of preprocessing, we tokenised
the text and inserted "===" markers to encapsulate stereotypical tokens (e.g. He is a doctor→
He is a ===doctor===). These markers allow us to i) use the dataset for token-level stereotype
detector training in the future, and ii) generate prompts/counterfactual scenarios when evaluating
sentence-level detector models. Stereoset data has two types of examples, (i) intra-sentence (bias is
within the single sentence) vs. (ii) inter-sentence (bias spreads across multiple sentences) while the
CrowS-Pairs dataset contains (iii) pairs of sentences that carry the stereotype or anti-stereotype bias.
In case (i), we assign the correlated label to the single sentence while in cases (ii) and (iii) we merge
the sentences and assign the label to create the final MGS dataset. The resultant labelling scheme
classifies stereotypes into three categories: "stereotype", "anti-stereotype", and "unrelated". and span
over four social dimensions: "race", "religion", "profession", and "gender".

3.2 Finetuning the Stereotype Classifier and Explaining It (RQ 1-3)

Our proposed model is a fine-tuned Distil-BERT (a lightweight, scalable counterpart of BERT) model
that serves as a multi-class classifier. To address RQ1, we fine-tuned four Distil-BERT models fine-
tuned as binary classifiers of different stereotypes as baselines. These models are binary classifiers
trained using a one-vs-all setting (RQ1). In order to compare the new model with comparative
baselines (RQ2), we built several popular machine learning models since we were unable to identify
multi-class baselines from prior work. We implemented the i) Random model, that assigns labels
at random, ii) a Logistic regression, and iii) Kernel SVM (sigmoid kernel identified empirically)
models trained TF-IDF features. Finally, we use a DeBERTa-based model that has shown the best
performance in zero-shot natural language inference task [34].

To ensure robust validation and interpretation of our stereotype classifier (RQ3), we employ multiple
XAI methods for feature attribution and model structural interpretability. This allows us to check for
consistency of explanations as different explainability methods can yield varying results in feature
importance [35]. Specifically, we apply SHAP [36] and LIME [37], two popular model-agnostic
explainability techniques, to identify the text tokens most influential in the classification process. We
use randomly selected examples from the MGS Dataset to analyse explanations. Additionally, we
utilize BERTViz [38], a model-specific visualization tool for transformer models, to observe how the
model’s attention heads engages with specific tokens across layers.
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3.3 Stereotype Elicitation Experiment and Bias Benchmarks (RQ4)

We first establish an automated method for prompt generation, resulting in a prompt library that
effectively elicits stereotypical text. We take examples from the MGS dataset and use the markers to
identify the prompts (the part of the example before the marker) for the LLM under investigation.
When selecting examples for generating prompts, we use word count-based prioritization logic, where
initially, we target long examples resulting in detailed prompts. We generate prompts from the dataset
for the different societal dimensions (≈ 200 per dimension). We further validate the neutrality of
the identified prompts using the proposed model to ensure that all prompts have been classified as
"unrelated". Finally, we use the prompts library to probe the LLM under investigation (e.g. GPT,
LLaMA etc.) to complete the rest of the passage (prompt). We use the generated output to detect
stereotypes, which is the final assessment.

To evaluate the stereotype bias scores for the LLM M under investigation, we calculate the stereotype
bias score µd,M for social dimension d where d ∈ {race, gender, religion, profession} as µd,M =

1
|PM |

∑
p∈PM

maxs∈p(µd,s) where PM is the set of passages generated from LLM M using the
prompt-library, p is a passage in PM , s is a sentence in p and µd,s is the bias score given to each
sentence. The bias score is the probability of stereotype bias predicted by the proposed sentence-level
stereotype detector for each social dimension. In this paper, we assess the stereotypic bias of the GPT
series of LLMs, considering only stereotype labels rather than unrelated or anti-stereotype labels.

4 Results and Discussion

Table 1 provides the performance difference between the binary vs. multi-class stereotype detection
models trained using the proposed MGS dataset.

Table 1: Multi-class vs. Single-class setting Performance for Distil-BERT. The better score in bold
face.

Stereotype Type Training Setting Precision Recall F1 Score

Race Multi 0.882 0.883 0.882
Single 0.824 0.820 0.821

Profession Multi 0.850 0.847 0.847
Single 0.781 0.778 0.778

Gender Multi 0.762 0.724 0.698
Single 0.665 0.660 0.661

Religion Multi 0.807 0.814 0.810
Single 0.719 0.721 0.718

In addressing RQ1, the results in Table 1 show that multi-class models consistently outperform single-
class counterparts across all societal dimensions—Race, Profession, Gender, Religion—as well as in
all evaluation metrics: Precision, Recall, and F1 Score. For example, the F1 Score for the multi-class
model in the Race dimension is 0.882, much higher than 0.821 for the single-class model. We see
similar advantages in other dimensions such as Profession (F1 Score 0.847 vs. 0.778), Gender (0.698
vs. 0.661), and Religion (0.81 vs. 0.718). Interestingly, the performance gap between the two types
of models varies across dimensions. The most significant difference is in the Race category, followed
by Profession, while the smallest gap appears in the Gender category. Although the multi-class
model performs well across all metrics, it is relatively weaker in the Gender dimension, signalling
room for improvement. In contrast, the smaller performance gap in the Religion category suggests
that single-class models are not dramatically worse in this specific area. Beyond this, the superior
performance of multi-class models may indicate an underlying role of stereotype intersectionality.
Training models on multiple stereotypes at once seems to improve their ability to recognize complex
and intertwined stereotypes. This could mean that understanding one form of stereotype enhances
the model’s proficiency in detecting other forms, pointing to the importance of exploring stereotype
intersectionality in future work.

In addressing RQ2, we evaluated our fine-tuned multi-dimensional classifier against several baseline
methods. Table 2 presents the performance of the proposed model in comparison to the baselines.

Table 2 shows our model excelling in macro metrics: precision, recall, and F1-score. This perfor-
mance consistency extends across all societal dimensions, validating the robustness of our approach.
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Table 2: Performance Metrics Comparison of Baseline Models to the Proposed Mode. The best and
second best performance is indicated in bold and italic faces respectively.

Methods Precision Recall F1 Score

Random Assigned Label 0.11 0.11 0.09
DeBERTa-v3-base-tasksource-nli (Zero-Shot) 0.39 0.37 0.31
Logistic Regression (TF-IDF) 0.51 0.47 0.49
Kernel Support Vector Machine (TF-IDF) 0.53 0.48 0.50
Distil-BERT (Ours) 0.78 0.76 0.76

Compared to traditional methods like Logistic Regression and Kernel Support Vector Machines,
our model shows substantial improvement, even when these methods employ TF-IDF features. It
also surpasses advanced zero-shot classifiers like DeBERTa-v3-base-tasksource-nli [34], which we
evaluated using the same classification labels, illustrating the benefits of fine-tuning. We used the
"Random Assigned Label" method as a controlled baseline, further emphasizing the superiority of
other methods. Importantly, our model not only scores high but also maintains a balanced perfor-
mance across all metrics, highlighting its calibration and robustness. Overall, our findings validate
the efficacy of advanced Pretrained Language Models in accurately detecting stereotypes.

To address RQ3, Figure 1 shows an example, "The baby loved the presence of the caring mommy."
The analysis reveals that SHAP, LIME, and BERTViz are in agreement and align with our human
understanding of gender stereotypes. This consistency validates that our model is effective in
identifying stereotype-indicative words like "caring" and "mommy.".

Figure 1: SHAP, LIME and BERTViz showing consistent explanations during stereotype classification

To answer RQ4, Table 3 reveals some key findings. First, no single model excels in every category,
highlighting the complexity of completely eliminating bias. However, there is a clear trend: as we
move from GPT-2 to GPT-4, the bias scores generally decrease. This is most evident in the ’Race’
category, where the score dropped from 0.9111 in GPT-2 to 0.7560 in GPT-4. Moreover, the ’Overall’
bias scores also show a consistent decline across model generations. These trends collectively indicate
that while no model is perfect, advancements in LLMs are making them less biased over time.

5 Conclusion and Future Work

In conclusion, we have developed a framework for auditing bias in LLMs through text-based
stereotype classification. Using the Multi-Grain Stereotype Dataset and fine-tuned Distil-BERT
models, our approach surpasses existing baselines and demonstrates the superiority of multi-class
classifiers over single-class ones. To verify the decisions made by our models, we incorporated
XAI techniques such as SHAP, LIME, and BertViz. Benchmark results further confirm a reduction
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Table 3: Bias Scores for GPT Series LLMs. The best and second best scores (lowest is best) are
indicated in bold and italic faces respectively.

Model Profession Gender Race Religion Average

GPT2 0.7443 0.7378 0.9111 0.8225 0.8039
GPT-3.5-turbo 0.6293 0.6586 0.7494 0.6284 0.6664
GPT-4 0.6160 0.6350 0.7560 0.6537 0.6652

in bias in newer versions of the GPT series. For future work, first, expanding the MGS dataset to
include more diverse global, demographic, and cultural contexts. Second, enhancing the model’s
capabilities by exploring ensemble techniques and alternative architectures that are more adept at
complex stereotype detection. Third, delving into the role of stereotype intersectionality, as suggested
by the outperformance of multi-class models. Fourth, creating a real-time dashboard to monitor LLM
biases. Lastly, considering the use of Bayesian methods for more precise bias benchmarking. Our
framework lays the groundwork for more ethical auditing and deployment of LLMs.
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6 Appendix

6.1 Model Architecture

Table 4: DistilBERT Model Architecture and Fine-Tuned Settings

Component / Setting Value / Shape
General Information

Model Name wu981526092/Sentence-Level-Stereotype-Detector
Architecture DistilBERT
Transformers Version 4.16.2

Model Configuration
Hidden Dimension 768
Number of Attention Heads 12
Number of Layers 6
Vocabulary Size 30,522
Max Position Embeddings 512
Total Parameters 66,362,880

Fine-Tuned Settings
Attention Dropout 0.1
General Dropout 0.1
Seq Classification Dropout 0.2
Initializer Range 0.02

Additional Configurations
Layer Norm Epsilon 1× 10−12

Activation Function GELU
Problem Type Text Classification

Label Mapping
Unrelated 0
Stereotype (Gender) 1
Anti-Stereotype (Gender) 2
Stereotype (Race) 3
Anti-Stereotype (Race) 4
Stereotype (Profession) 5
Anti-Stereotype (Profession) 6
Stereotype (Religion) 7
Anti-Stereotype (Religion) 8
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6.2 SHAP Results

Figure 2: stereotype_gender
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Figure 3: stereotype_race
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Figure 4: stereotype_profession
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Figure 5: anti-stereotye_profession
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Figure 6: stereotype_religion
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Figure 7: unrelated
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