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Abstract. Performance monitoring is essential for safe clinical deploy-
ment of image classification models. However, because ground-truth la-
bels are typically unavailable in the target dataset, direct assessment of
real-world model performance is infeasible. State-of-the-art performance
estimation methods address this by leveraging confidence scores to esti-
mate the target accuracy. Despite being a promising direction, the es-
tablished methods mainly estimate the model’s accuracy and are rarely
evaluated in a clinical domain, where strong class imbalances and dataset
shifts are common. Our contributions are twofold: First, we introduce
generalisations of existing performance prediction methods that directly
estimate the full confusion matrix. Then, we benchmark their perfor-
mance on chest x-ray data in real-world distribution shifts as well as
simulated covariate and prevalence shifts. The proposed confusion matrix
estimation methods reliably predicted clinically relevant counting met-
rics on medical images under distribution shifts. However, our simulated
shift scenarios exposed important failure modes of current performance
estimation techniques, calling for a better understanding of real-world
deployment contexts when implementing these performance monitoring
techniques for postmarket surveillance of medical AI models.1
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1 Introduction

Deep learning for medical image classification exhibits excellent performance in
controlled settings [1], but distribution shifts in the target domain may cause
silent failures in real-world applications [2,3]. For safe deployment in clinical
domains, continuous performance monitoring is crucial. Several methods have
been proposed to estimate model classification performance on unlabelled tar-
get datasets, enabling clinicians to anticipate model failures before they affect
patients. Some performance estimation approaches estimate accuracy based on
1 Code available at https://github.com/mlm-lab-research/clin_perf_est
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Fig. 1: Performance monitoring in a clinical setting. (a) An idealised, in-
distribution scenario with labelled test data. (b) Our method for estimating
metrics in the more realistic, out-of-distribution, unlabelled setting.

the distance between source and target distribution [4], or train a reverse model
on the pseudo-labelled test data to evaluate reverse performance on the source
distribution [5]. Here, we focus on performance estimation based on the model’s
confidence scores [4,6,7,8,9,10]. They have shown the best trade-off between ac-
curacy and computational efficiency [7,8,11], as they require neither retraining,
other labelled datasets, nor ensemble agreement [12]. Despite their potential, it
remains unclear whether confidence-based performance-estimation methods ap-
ply in the clinical setting. Most were proposed and evaluated outside the clinical
domain and focus on predicting only accuracy, which is often an inadequate met-
ric for clinical tasks [13]. Instead, validating medical image classification models
requires a suite of clinically relevant metrics depending on the domain of interest,
such as precision, recall, etc. Currently, no benchmark exists for these metrics,
and we are aware of only one first naive approach [10] to estimate these metrics
without access to labelled test data.

In this paper, we propose a generalisation of two popular performance es-
timation techniques [4,7], which allows us to go beyond accuracy and reliably
estimate the full confusion matrix (i.e., true positives (tp), false positives (fp),
true negatives (tn), and false negatives (fn)), and thus any counting metric (e.g.,
recall, PPV) as well as the multi-threshold area under the ROC curve (AUC).
We then present a comprehensive benchmark for confidence-based performance
estimation in chest x-ray data, predicting a range of clinically relevant perfor-
mance metrics (see overview in Fig. 1). We study real-world distribution shifts
as well as the effects of covariate and prevalence shifts, which are common in
medical data and can impair the clinical translation of medical classification
models.

2 Background: performance estimation without labels

We define a binary classification problem with targets y ∈ {0, 1}, where models
f(x) are trained on inputs {(xi, yi)}mi=1 ∼ Dtrain and validated on Dval, which
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is assumed to be in-distribution (i.d.) with respect to Dtrain. Predictions ŷ are
obtained by applying a decision threshold t ∈ [0, 1] to the model’s sigmoid out-
put s̃i = σ(f(xi)), which also represents the model’s positive class confidence
score. To obtain the confidence in the predicted class, we set si = I{s̃i≥t} s̃i +
I{s̃i<t} (1− s̃i). Our objective is to assess the model’s performance through met-
rics like accuracy, recall, PPV, and AUC on a previously unseen, potentially
out-of-distribution (o.o.d.) dataset {(xi, yi)}ni=1 ∼ Dtest, for which ground-truth
labels are not available. Furthermore, we define the sets of positive and negative
class predictions for distributions d ∈ {val, test} as I+d = {s̃i | s̃i ≥ t, xi ∼ Dd}
and I−d = {1− s̃i | s̃i < t, xi ∼ Dd} with cardinalities n+

d and n−
d respectively.

Confidence Based Performance Estimation (CBPE). A model is consid-
ered calibrated when its confidence score reflects the true probability of class 1;
formally, P (Y = 1|S̃ = s̃) = s̃,∀ s̃ ∈ [0, 1] [14]. For calibrated models, accuracy
can thus be estimated by the average confidence [9,15] âccCBPE = 1

n

∑n
i=1 si.

This approach has recently been generalised for other counting metrics based
on the confusion matrix [10]. CBPE builds on the observation that scores with
s̃i ≥ t are either tp or fp, whereas scores with s̃i < t are either tn or fn. Averaging
the subsets I+test and I−test provides estimates for positive predictive value (PPV)
and negative predictive value (NPV):

P̂PVCBPE = Es∼I+
test

[s] , N̂PVCBPE = Es∼I−
test

[s]. (1)

All counting metrics can then be estimated from the confusion matrix point
estimates, which are derived from:

t̂p = n+
test · P̂PV, f̂p = n+

test − t̂p,

t̂n = n−
test · N̂PV, f̂n = n−

test − t̂n.
(2)

Average Threshold Confidence (ATC). ATC [7] predicts the model accu-
racy on the test distribution Dtest by computing the proportion of samples with
scores s exceeding a learned threshold tATC. This threshold is determined on the
validation set Dval such that the proportion of scores above tATC matches the
empirical accuracy on Dval: Ex∼Dval

[I[s > tATC]] = E(x,y)∼Dval
[I[ŷ = y]].

The accuracy on Dtest is then estimated as the fraction of test samples with
confidence scores above the learned threshold tATC.

Difference of Confidences (DoC). DoC [4] can be used as a confidence-based
performance estimation method that estimates test accuracy via:

âccDoC = accval −∆; ∆ = Ex∼Dval
[s]− Ex∼Dtest [s] (3)

where accval is the observed accuracy in Dval. In other words, the scores on
the test distribution are re-calibrated by the amount that the average validation
confidence deviates from the validation accuracy.
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3 Performance estimation beyond accuracy

So far, estimating clinically relevant metrics beyond accuracy was only possible
with the naive confidence-based CBPE. Here, we propose a method to extend
ATC and DoC to estimate PPV (precision) and NPV. From these estimates, we
can compute individual entries of the confusion matrix through Eq. (2), allowing
us to then predict any counting metric from the confusion matrix estimators;
for example, recall is estimated as t̂p/(t̂p + f̂n). To approximate the AUC, we
evaluate the true-positive rate and false-positive rate at 100 decision thresholds
based on score quantiles and then numerically integrate the resulting ROC curve.

Confusion Matrix Estimation via Average Threshold Confidence (CM-
ATC). To extend the ATC framework toward estimating elements of the confu-
sion matrix, we build on an idea from a previously proposed variant of ATC [8].
They applied separate thresholds t+ATC to positive and t−ATC to negative predicted
cases, learned on I+val and I−val, respectively. In [8], the positive and negative pre-
diction sets were never used individually, but instead, accuracy was estimated by
aggregating and counting all samples that exceeded their respective thresholds.

Here, we propose to use the positive I+test and negative I−test prediction sets
in isolation along with their respective learned thresholds. The two class-specific
thresholds are calculated such that the fraction of scores above t+ATC on I+val
equals the validation PPV, and, analogously, the fraction of scores above t−ATC
on I−val equals the validation NPV. We then define the following estimators for
PPV and NPV, similarly to the original accuracy estimator described in Sec. 2:

P̂PVCM-ATC = Es∼I+
test

[I[s > t+ATC]] , N̂PVCM-ATC = Es∼I−
test

[I[s > t−ATC]]. (4)

With estimates for PPV and NPV, we analogously estimate the confusion matrix
through Eq. (2) to further estimate any counting metric of interest.

Confusion Matrix Estimation via Difference of Confidences (CM-DoC)
Similarly to the ATC variant, [8] have extended DoC to re-calibrate the scores in
I+test and I−test separately before estimating test accuracy. On I+test, the scores are
offset by the gap between validation PPV and the mean confidence on I+val. Anal-
ogously, on I−test by the gap between validation NPV and the mean confidence
on I−val.

Following the approach of CM-ATC, we now also extend the DoC method
to estimate the confusion matrix elements. After calculating the offsets ∆c :=
Es∼Ic

val
[s] − Es∼Ic

test
[s] for c ∈ {+,−} and the realized PPVval and NPVval on

validation, we can get estimates on the test set through:

P̂PVCM-DoC = PPVval −∆+; N̂PVCM-DoC = NPVval −∆−. (5)

From here, we again get the confusion matrix estimates from Eq. (2) and calcu-
late estimates for the metrics.
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4 Benchmark setup

With the methods for estimating performance metrics in place, we now set up
their comparison on real-world and controlled distribution shifts on medical im-
ages. We compare CBPE and our proposed CM-ATC and CM-DoC. In addi-
tion, we include a naive baseline for ATC and DoC: we take the original ATC
and DoC formulations and substitute accuracy with the metric of interest. In
preliminary experiments, we have also analysed the impact of calibration (us-
ing temperature scaling [14] and class-wise temperature scaling [8]). As we had
found no conclusive improvements (see Supplementary Fig. S1), we excluded
an analysis of calibration techniques from the scope of this paper. We esti-
mate a wide variety of metrics, covering prevalence-dependent (accuracy, PPV,
F1-score), prevalence-independent counting metrics (balanced accuracy, recall,
specificity), and a multi-threshold metric (AUC). Furthermore, we monitor the
model’s calibration using the Root Brier Score (RBS) and Adaptive Calibration
Error (ACE).

4.1 Chest x-ray distribution shifts in the wild

First, we benchmark the performance estimators on real-world distribution shifts
in chest x-ray data using three publicly available datasets from different co-
horts: CheXpertPlus [16], PadChest [17], and ChestX-Ray8 (NIH) [18].
They consist of 223,228, 160,861, and 112,120 chest radiographs, respectively.
For each dataset, we set aside roughly 22,000 images for validation and testing
(CheXpertPlus: 90/10/10; PadChest and NIH: 60/20/20) and use the remainder
to train separate binary classifiers for three target conditions: Pleural Effusion,
Cardiomegaly, and Pneumothorax. For each model, we estimate the performance
metrics on the held-out i.d. test set, as well as on the two o.o.d. test sets. To eval-
uate the generalization capabilities of the performance estimation methods, we
compute the difference between the estimated and realized performance metrics
and report the mean absolute error (MAE).

4.2 Controlled distribution shifts in chest x-rays

Next, we investigate the behaviour of performance prediction methods under
controlled distribution shifts. For this, we focus on the task of detecting Pleural
Effusion in the CheXpertPlus dataset and simulate covariate shifts and preva-
lence shifts in the held-out test set.

To introduce covariate shift, we artificially modify the images by adding
a visual artefact (two lateral vertical white bars) that is positively correlated
with the positive class [19]. The model is then trained on this modified data,
allowing it to learn a spurious correlation between the artefact and the target
label. As a consequence, the model produces high-confidence predictions for the
majority groups (i.e., label 1 with artefact present and label 0 without artefact),
while generating lower-confidence predictions for the minority groups. For the
training and validation sets, we set the proportion of majority samples to 80%,
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Fig. 2: (a-g) MAE evaluated on i.d. and o.o.d. data represented by solid and
lined bars, respectively. (h) shows the mean RBS and ACE over all models.
On average, CM methods outperformed the other estimators. Exact numerical
values are reported in the Supplementary Table S2.

encouraging the model to rely on the spurious feature. Test sets are constructed
by sampling 1000 images with varying proportions of majority samples from
0% to 100% and consequently minority samples from 100% to 0%. We keep
the class distribution consistent between the validation and test sets to prevent
additional prevalence shifts from confounding the analysis. We repeat the test
set construction 50 times for each shift strength to reduce sampling variability,
and the estimations are averaged over all repetitions.

To simulate prevalence shift, we repeatedly sample 1000 instances from the
test set while targeting a positive class prevalence ranging from 5% to 95%. Since
the overall prevalence of Pleural Effusion in the CheXpertPlus dataset is rela-
tively high, at 38%, we can simulate label shifts in both directions, toward lower
and higher prevalence levels without restricting the dataset size too much. We
perform 50 resampling iterations at each prevalence level and compute averaged
realised and estimated performance metrics [9].

5 Results

5.1 CM estimation methods perform best in the wild

The trained models performed comparably to the state-of-the-art in terms of
classification performance [20], see Supplementary Table S1 for details. Overall,
across both i.d. and o.o.d. scenarios and the different metrics in Fig. 2, our CM
estimators outperformed the other methods, with CM-ATC performing best.
Several prior studies, including CBPE, ATC, and DoC, have focused on accuracy
(Fig. 2 e). Here, all methods worked well in-distribution (mean MAE of (0.7 ±
0.7) · 10−2). Estimating accuracy in o.o.d. datasets was more difficult for all
methods with a mean MAE of 0.05 ± 0.02.
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Fig. 3: (a-g) The estimated performance metrics capture the decline in perfor-
mance under the simulated covariate shift, yet show overconfident performance
towards minority groups in the test set. (h) Calibration error rises significantly
for the minority group.

To estimate metrics beyond accuracy, only CBPE has been proposed before.
While estimation of balanced accuracy, specificity, and AUC performed compa-
rably to accuracy, performance dropped considerably for estimating recall, and
failed dramatically for PPV and F1-score. CBPE’s estimation error could be at-
tributed to the significant calibration error (Fig. 2h). In contrast, the ATC and
DoC approaches led to consistently very low estimation error for all metrics in
i.d. settings. O.o.d. performance varied, with CM-ATC generalising best overall.
Since we have not explicitly quantified the distribution shift between the chest
X-ray datasets, the observed drop is not straightforward to interpret.

5.2 Performance estimation methods can capture the impact of
covariate shift

Next, we introduced covariate shifts using synthetic artefacts (see Sec. 4.2). By
design, actual model performance deteriorated when increasing the proportion
of minority groups (black curves in Fig. 3a-g, original majority fraction p = 0.8).
The metric estimators successfully captured this decline, yet still overestimated
performance in these cases, and underestimated performance when the majority
group was more prevalent than in the original distribution. Once again, (CM-
)ATC methods performed best overall, while (CM-)DoC and CBPE likely suf-
fered from model miscalibration on the minority samples (Fig. 3h). The close
agreement between the CM estimators and their respective naive counterparts
can be attributed to this covariate shift affecting both negative and positive pre-
dictions similarly. As a result, the benefit of treating the two groups separately
is limited.
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Fig. 4: (a–d) Prevalence-independent metrics remain constant under label shift;
naive estimators perform best, whereas confusion-based ones remain prevalence-
sensitive. (e–g) Prevalence-dependent metrics vary under label shifts; confusion-
matrix-based methods capture these changes but still show high errors. (h)
Prevalence shift directly affects model calibration.

5.3 Metric estimation degrades under prevalence shifts

All estimation methods struggled under prevalence shifts (Fig. 4), especially for
prevalence-dependent metrics (Fig. 4 e-g). As CBPE is highly dependent on
model calibration, it only accurately estimated performance when calibration
error was low (Fig. 4h). The ATC and DoC methods performed best when no
shift was present (38% original prevalence, see Sec. 4.2). There, realised (black
lines) and estimated performance (coloured) was very close, in line with the
i.d. results in Sec. 5.1. When the prevalence shifted, the estimates diverged. The
naive ATC and DoC implementations performed well on prevalence-independent
metrics, but because they do not rely on class-specific calibration, they could not
estimate prevalence-dependent metrics well (mainly visible in Fig. 4 f,g). In con-
trast, estimators derived from confusion matrix entries (CBPE, CM-ATC and
CM-DoC) performed best for prevalence-dependent metrics, while they perform
worse on the prevalence-independent metrics.

6 Discussion

In this paper, we proposed methods to estimate a wide range of classifier per-
formance metrics without access to labelled test data. Our proposed estimators
outperformed the only existing baseline (CBPE) for monitoring model perfor-
mance in real-world distribution shifts and a simulated covariate shift. However,
simulated prevalence shifts exposed systematic failures of all performance esti-
mation techniques.

Our techniques for label-free performance estimation could be easily imple-
mented in postmarket surveillance frameworks, as they can monitor deployed
medical AI algorithms with clinically relevant performance estimators and little
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computational overhead. However, as we have demonstrated, the accuracy of our
estimators depends on the nature of the encountered distribution shifts. There-
fore, we recommend that performance monitoring should be accompanied by
distribution shift detection [21,22], identification [22], and mitigation [23]. Espe-
cially under prevalence shifts, domain adaptation techniques could help counter
the systematic negative impact on model calibration.
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