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Abstract

Recently, various parameter-efficient fine-001
tuning (PEFT) strategies for application to lan-002
guage models have been proposed and suc-003
cessfully implemented. However, this raises004
the question of whether PEFT, which only005
updates a limited set of model parameters,006
constitutes security vulnerabilities when con-007
fronted with weight-poisoning backdoor at-008
tacks. In this study, we show that PEFT is009
more susceptible to weight-poisoning back-010
door attacks compared to the full-parameter011
fine-tuning method, with pre-defined triggers012
remaining exploitable and pre-defined targets013
maintaining high confidence, even after fine-014
tuning. Motivated by this insight, we devel-015
oped a Poisoned Sample Identification Module016
(PSIM) leveraging PEFT, which identifies poi-017
soned samples through confidence, providing018
robust defense against weight-poisoning back-019
door attacks. Specifically, we leverage PEFT020
to train the PSIM with randomly reset sample021
labels. During the inference process, extreme022
confidence serves as an indicator for poisoned023
samples, while others are clean. We conduct ex-024
periments on text classification tasks, five fine-025
tuning strategies, and three weight-poisoning026
backdoor attack methods. Experiments show027
near 100% success rates for weight-poisoning028
backdoor attacks when utilizing PEFT. Further-029
more, our defensive approach exhibits overall030
competitive performance in mitigating weight-031
poisoning backdoor attacks.032

1 Introduction033

As the number of the parameters of language034

models increases rapidly, such as ChatGPT1,035

LLaMA (Touvron et al., 2023), GPT-4 (OpenAI,036

2023), and Bloom (Scao et al., 2022), it is almost037

infeasible to fine-tune the full models’ parameters038

with limited computation resource. To overcome039

this problem, multiple Parameter-Efficient Fine-040
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Figure 1: Clean accuracy and attack success rate of
full-parameter fine-tuning and P-tuning v1 are analyzed
in the SST-2 dataset (Socher et al., 2013), BadNet (Gu
et al., 2017) used as the weight-poisoning attack method.

Tuning (PEFT) (Mangrulkar et al., 2022) strate- 041

gies have been proposed, such as LoRA (Hu et al., 042

2021), Prompt-tuning (Lester et al., 2021), P-tuning 043

v1 (Liu et al., 2021b) and P-tuning v2 (Liu et al., 044

2021a). PEFT, which is not required to update all 045

parameters of language models, offers an effec- 046

tive and efficient way to facilitate language models 047

to various domains and downstream tasks (Li and 048

Liang, 2021; Mangrulkar et al., 2022; Zhang et al., 049

2022a; Lv et al., 2023). 050

However, we find that the nature of PEFT, which 051

updates only a subset or a few extra model pa- 052

rameters, may raise a security problem: PEFT in- 053

advertently provides an opportunity that weight- 054

poisoning backdoor attacks could potentially ex- 055

ploit (Kurita et al., 2020; Gan et al., 2022; Liu 056

et al., 2023). In weight-poisoning backdoor at- 057

tacks, adversaries inject backdoors into the weights 058

of language models by training the victim model 059

on poisoned datasets. If the pre-defined triggers 060

are attached to the test samples, the injected back- 061

door will be activated, and the output of the victim 062

model will be manipulated by the adversaries as 063

the pre-defined targets (Kurita et al., 2020). Fortu- 064

nately, an effective method to defend against such 065

weight-poisoning backdoor attacks is fine-tuning 066

the victim model with full-parameter on clean test 067

datasets to "catastrophically forget" (McCloskey 068

and Cohen, 1989; Kurita et al., 2020) the backdoors 069
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hidden in the parameters. In contrast, since PEFT070

only updates a limited set of model parameters, it071

becomes a challenge to wash out the backdoors072

compared with full-parameter fine-tuning.073

In this study, we first evaluate the vulnerability of074

various PEFT methods, including LoRA, Prompt-075

tuning, and P-tuning, against weight-poisoning076

backdoor attacks in different attack scenarios. Em-077

pirical studies reveal that PEFT, which entails up-078

dating only a limited set of model parameters, is079

more susceptible to weight-poisoning backdoor at-080

tacks compared to full-parameter fine-tuning. For081

instance, as depicted in Fig. 1, for SST-2 (Socher082

et al., 2013), the attack success rate of the poisoned083

model after fine-tuning on the clean training dataset084

using P-tuning v1 is closer to 100%, far exceeding085

that of full-parameter fine-tuning.086

Previous work has indicated that if an input sam-087

ple includes triggers, the poisoned model’s pre-088

diction for the pre-defined target label is virtually089

100% confidence (Kurita et al., 2020). This is be-090

cause weight-poisoning backdoor attacks establish091

an intrinsic connection between pre-defined trig-092

gers and targets (Zhang et al., 2023). We suppose093

this connection is a Double-Edged Sword: while094

this behavior is an essential attribute for successful095

backdoor attacks, it is also their major weakness, as096

it allows us to leverage this high confidence to ex-097

plore defense strategies. Inspired by this, to defend098

against the potential weight-poisoning backdoor099

attacks for PEFT, we introduce a Poisoned Sample100

Identification Module (PSIM) to detect poisoned101

samples in the inference or testing process based102

on prediction confidence. The PSIM leverages the103

characteristic that weight-poisoning backdoor at-104

tacks for PEFT remember the association between105

the trigger and the target labels and output higher106

confidence for poisoned examples. PSIM contin-107

ually trains the victim model on a training dataset108

where the labels of the examples are randomly reset.109

Through this way, we obtain a PSIM that exhibits110

lower confidence for clean examples but outputs111

higher confidence for poisoned examples. Lastly,112

PSIM is utilized to detect poisoned samples, con-113

sidering samples with extreme confidence scores114

as poisoned. We manage to detect poisoned sam-115

ples with the help of the PSIM, thereby defending116

against weight-poisoning backdoor attacks.117

We construct comprehensive experiments to ex-118

plore the security of PEFT and verify the efficacy of119

our proposed defense method. Experiments show120

that weight-poisoning backdoor attacks have higher121

attack success rates, even nearly 100%, when PEFT 122

methods are used. For the defense method, the 123

results show that our PSIM can efficiently detect 124

poisoned samples with model confidence. Further- 125

more, it effectively mitigates the impact of these 126

poisoned samples on the victim model, while main- 127

taining classification accuracy. We summarize the 128

major contributions of this paper as follows: 129

• To the best of our knowledge, we are the first 130

to explore the security implications of PEFT 131

in weight-poisoning backdoor attacks, and our 132

findings reveal that such strategies are more 133

vulnerable to these backdoor attacks. 134

• From a novel standpoint, we propose a Poi- 135

soned Sample Identification Module for de- 136

tecting poisoned samples. This module inge- 137

niously leverages the features of PEFT meth- 138

ods and sample label random resetting to de- 139

vise a confidence-based identification method, 140

which is capable of effectively detecting poi- 141

soned samples. 142

• We evaluate our defense method on text clas- 143

sification tasks featuring various backdoor 144

triggers and complex weight-poisoning attack 145

scenarios. All results indicate that our de- 146

fense method is effective in defending against 147

weight-poisoning backdoor attacks. 148

2 Preliminary 149

Threat Model For the weight-poisoning backdoor 150

attack, the adversaries aim to induce the systems to 151

reach the output given the input by following the 152

specific trigger (Li et al., 2021c; Du et al., 2022; Xu 153

et al., 2022; Sun et al., 2023). We considered that 154

online language models are poisoned by weight 155

backdoor attacks and investigated whether fine- 156

tuning strategies might overwrite the poisoning. 157

In practice, to carry out the weight-poisoning back- 158

door attacks, the adversaries must possess certain 159

knowledge of the fine-tuning process. Therefore, 160

we present plausible attack scenarios below: 161

• Full Data Knowledge: In this scenario, we 162

assume that the entire training details (includ- 163

ing the training dataset and training process) 164

are accessible to the attacker. This can occur 165

when the victim doesn’t have efficient com- 166

putation resources and outsource the entire 167

training process to the attacker. 168

• Full Task Knowledge: However, the above 169

full data knowledge is not always feasible. 170
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In the following, we consider a more realis-171

tic scenario where the adversary only knows172

the attacking task but not the concrete target173

dataset. To perform the attack, we assume174

the attacker can access a proxy dataset, which175

shares similar label distribution as the target176

dataset adversary want to attack. For example,177

IMDB (Maas et al., 2011) can be used as the178

proxy dataset for SST-2 (Socher et al., 2013).179

Problem Formulation We also provide a for-180

mal problem formulation for the weight-poisoning181

backdoor attack and defense in the text classifica-182

tion task. Without loss of generability, the formu-183

lation can be extended to other NLP tasks. Give a184

poisoned language model with weights θp, a clean185

training dataset (x, y)∈Dtrain
clean, a clean test dataset186

(x, y) ∈ Dtest
clean and a target sample (x′, y′) which187

include the pre-defined triggers. The attacker’s ob-188

jective is to make the poisoned language model189

mistakenly classify this target sample as the pre-190

defined label. We aim to ascertain whether the191

poisoned model θp, fine-tuned via PEFT methods192

on Dtrain
clean, still misclassifies the target sample as193

the pre-defined label. To defend against weight-194

poisoning backdoor attacks, one possible defense195

strategy is accurately identifying x′, which includes196

backdoor triggers, as the poisoned sample at the197

testing stage, while maintaining high performance198

on the clean test dataset Dtest
clean.199

3 Security of Parameter-Efficient200

Fine-Tuning201

Catastrophic Forgetting For downstream tasks202

specifically, users will use a clean training dataset203

Dtrain
clean, without any triggers, for continual learning204

with full parameter updates, that is, full-parameter205

fine-tuning the given weight θp. Pre-defined trig-206

gers, which are unique words or phrases that are207

rarely found in the corpus, may remain unaltered208

during the fine-tuning process, keeping a potential209

risk of contaminating the model even after fine-210

tuning (Gu et al., 2023). However, continuous211

full-parameter fine-tuning may alter the inherent212

connection between the pre-defined triggers and tar-213

gets, a phenomenon often known as "catastrophic214

forgetting" (McCloskey and Cohen, 1989). In sum-215

mary, the full-parameter fine-tuned model θp might216

overwrite the poisoning.217

Security of Fine-tuning Strategies PEFT, such as218

LoRA, Prompt-tuning, and P-tuning, are proposed219

to alleviate memory consumption issues during lan-220

guage models training and inference. Our goal is to 221

explore the security of these fine-tuning strategies. 222

Taking P-tuning v1 (Liu et al., 2021b) as an ex- 223

ample, this algorithm employs a few continuous 224

free parameters that function as prompts. These 225

prompts are integrated into language models, en- 226

abling a streamlined and efficient process for fine- 227

tuning these models. However, with only a lim- 228

ited set of model parameters optimized, it may be 229

challenging to wash out the connection between 230

pre-defined triggers and targets. 231

As shown in Fig. 1, within the BadNet-driven 232

weight-poisoning backdoor attack, the attack suc- 233

cess rate under the P-tuning v1 is closer to 100% 234

(For more results, see Section 5 and Appendix C). 235

Furthermore, as illustrated in the left part of Fig. 236

2, models based on full-parameter fine-tuning tend 237

to forget backdoors, while the PEFT model con- 238

sistently maintains high confidence in the target 239

labels. Therefore, compared to full-parameter fine- 240

tuning, model optimization based on PEFT is more 241

susceptible to weight-poisoning backdoor attacks. 242

4 Defending Against Weight-Poisoning 243

Backdoor Attacks for PEFT 244

Previous work on weight-poisoning backdoor at- 245

tacks has indicated that if an input sample includes 246

triggers, the backdoored model’s prediction for the 247

pre-defined target label is virtually 100% confi- 248

dence (Kurita et al., 2020). This is because in 249

weight-poisoning backdoor attacks, the adversaries 250

aim to establish an intrinsic connection between 251

pre-defined triggers and their specific targets, caus- 252

ing the model to exhibit high confidence towards 253

the given target (Zhang et al., 2023). We sup- 254

pose that this intrinsic connection can be a Double- 255

Edged Sword: while this behavior is an essential 256

attribute for successful backdoor attacks, it is also 257

their major weakness, as it allows us to leverage 258

this high confidence to explore defense strategies 259

against weight-poisoning attacks. 260

Poisoned Sample Identification Module To de- 261

fend against weight-poisoning backdoor attacks for 262

PEFT, we design a Poisoned Sample Identification 263

Module (PSIM) to trap poisoned samples in the 264

inference process based on prediction confidence. 265

The basic idea of PSIM is that it leverages PEFT to 266

continually train the poisoned model on a dataset 267

where the labels of the training samples are ran- 268

domly assigned so that the module can still produce 269

high confidence for poisoned samples but output 270
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Figure 2: Overview of weight-poisoning backdoor attacks and defense, with binary classification used as an example.

low confidence for clean samples. Taking the exam-271

ple on the right side of Fig. 2 as an instance, when272

the input sample is not injected with triggers, PSIM273

exhibits output confidence close to 50%2. However,274

when the input sample is poisoned, the output con-275

fidence of PSIM will significantly increase. The276

reason for these contrasting results is as follows.277

Because the labels of the training samples for the278

PSIM have been randomly reset, therefore PSIM279

will not be trained to be a good classifier for clean280

samples, leading to low confidence for these sam-281

ples. However, due to the inherent rarity of the282

triggers, PSIM will still maintain the association283

between the pre-defined trigger and the target la-284

bel, producing results with high confidence (For a285

detailed analysis, please refer to Table 12). During286

the inference process, we employ PSIM to trap poi-287

soned samples based on a certain threshold γ. In288

other words, when the confidence of PSIM exceeds289

the threshold γ, the sample is considered poisoned;290

otherwise, it is classified as a clean sample.291

Specifically, firstly, as a defender, given Dtrain
clean,292

we construct Dtrain
clean_reset, a dataset where the labels293

of the training samples are reset. This reset op-294

eration is to ensure that clean samples yield low295

confidence scores so that they are distinguishable296

from high confidence of poisoned samples, thereby297

increasing the effectiveness of our intended defense298

against weight-poisoning backdoor attacks. Sec-299

ondly, we leverage PEFT methods3 to continually300

train the poisoned model on Dtrain
clean_reset. Formally,301

the training of PSIM is as follows:302

250% is merely an example, and the confidence tends to
be low in multi-class classification tasks.

3In the implementation, we use P-tuning v1 for the main
experiments but other PEFT strategies are equally effective
and will be compared in ablative experiments.

θppsim = argminE(x,yr)∈Dtrain
clean_reset

L(f(x; θp), yr),
(1) 303

where f(·) represents PEFT method, L denotes the 304

classification loss and yr indicates the randomly 305

reset sample label. This approach has the advan- 306

tage of effectively widening the confidence score 307

gap between poisoned samples and clean samples, 308

without disrupting the intrinsic connection between 309

the pre-defined triggers and targets. The whole de- 310

fense against the weight-poisoning backdoor attack 311

algorithm is presented in Algorithm 1. 312

Algorithm 1: Defend Against Weight-
Poisoning Attack

Input: Victim Model; Poisoned weight θp; Dtrain
clean;

Dtest; threshold γ; PEFT f ;
Output: Poisoned sample or y.

1 Function PSIM Training:
2 yr ← Random Reset Sample Label(y) ;

/* y ∈ Dtrain
clean, Randomly reset sample labels. */

3 M(·)← f(x, yr)θp ;
/* (x, yr) ∈ Dtrain

clean_reset; PEFT optimization. */
4 return PSIM M(·);
5 end
6 Function Poisoned Sample Identification:
7 C ← PSIM(x) ;
8 if C > γ then
9 The sample x is considered poisoned ;

/* Exclude poisoned sample. */
10 end
11 else
12 The sample x is considered clean ;
13 y ← Victim Model(x) ;

/* Inference on clean sample. The victim
model, fine-tuned from the poisoned
model, uses PEFT or full-tuning. */

14 end
15 return Poisoned sample or y;
16 end

Overall, our model is composed of two mod- 313
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ules. The first module is the victim model, which314

is trained by users employing various fine-tuning315

methods on Dtrain
clean. This is predicated on our as-316

sumption that the third-party pre-trained model is317

poisoned, thereby incorporating an unknown back-318

door. The second module is the defensive module319

we propose, the PSIM, designed on Dtrain
clean_reset to320

distinguish between clean and poisoned samples.321

Importantly, the training of the PSIM is indepen-322

dent of the victim model, ensuring that the PSIM323

does not affect the model’s clean accuracy. More-324

over, if the third-party pre-trained model is clean,325

the PSIM module, which identifies poisoned sam-326

ples based on confidence scores, will not influence327

the model’s performance (as shown in Table 9 in328

the appendix C).329

5 Experiments330

5.1 Experimental Details331

Datasets To validate the security of the PEFT332

methods and the performance of the proposed de-333

fense strategy, we selected three text classification334

datasets, including SST-2 (Socher et al., 2013),335

CR (Hu and Liu, 2004), and COLA (Wang et al.,336

2018). For the full task knowledge setting, we use337

other proxy datasets for poisoning. Specifically,338

IMDB (Maas et al., 2011) serves as poisoned sam-339

ples for SST-2; MR (Pang and Lee, 2005) is used as340

poisoned samples for CR; SST-2 serves as poisoned341

samples for COLA.342

Metrics We utilize two metrics for evaluating343

model performance: Attack Success Rate (ASR),344

which measures the attack success rate on the poi-345

soned test set, and Clean Accuracy (CA), which346

measures classification accuracy on the clean test347

set (Wang et al., 2019).348

Attack Methods We choose three representative349

weight-poisoning backdoor attack methods for our350

experiments: BadNet (Gu et al., 2017), which in-351

serts rare words as triggers, with "mn" selected352

as the specific trigger; InSent (Dai et al., 2019),353

which introduces a fixed sentence as the trigger, for354

which "I watched this 3D movie" is chosen; and355

SynAttack (Qi et al., 2021b), which leverages the356

syntactic structure as the trigger.357

Defense Methods We also selected three represen-358

tative methods to defend against weight-poisoning359

attacks: ONION (Qi et al., 2021a), which lever-360

ages the impact of different words on the sam-361

ple’s perplexity to detect backdoor attack triggers;362

Back-Translation (Qi et al., 2021b), which employs363

a back-translated model to translate the sample 364

into German and then back to English, thereby 365

mitigating the trigger’s impact on the model; and 366

SCPD (Qi et al., 2021b), which reformulates the 367

input samples using a specific syntax structure. 368

5.2 Results of Weight-Poisoning Backdoor 369

Attack 370

We first validate our assumption in Section 3 that 371

the PEFT may not overwrite poisoning with ex- 372

perimental results. These results, achieved under 373

different settings with the SST-2 dataset, are pre- 374

sented in Tables 1 and 2. 375

Full Task Knowledge We notice that full- 376

parameter fine-tuning methods exhibit varying de- 377

grees of ASR degradation across different language 378

models and datasets, which aligns with previous 379

research findings that continual learning with full 380

parameter updates may be susceptible to "catas- 381

trophic forgetting". Compared to full-parameter 382

fine-tuning, the ASR degradation issue is insignif- 383

icant in PEFT. For instance, as shown in Table 1, 384

when fine-tuning the LLaMA model and employ- 385

ing the InSent attack method, the ASR for LoRA, 386

Prompt-tuning, P-tuning v1, and P-tuning v2 ap- 387

proaches is 100%. However, the ASR for full- 388

parameter fine-tuning is only 14.19%. 389

We have also observed that P-tuning v2 exhibits 390

lower ASR performance compared to P-tuning v1. 391

In the RoBERTa model, the average ASR results 392

of P-tuning v1 and P-tuning v2 are 90.43% vs. 393

58.83%. This can be attributed to the fact that 394

P-tuning v2 has more trainable parameters, which 395

makes it more susceptible to "catastrophic forget- 396

ting" issues compared to P-tuning v1. It is worth 397

noting that all fine-tuning methods exhibit rela- 398

tively lower ASR under the SynAttack, which may 399

be attributed to the presence of abstract syntax that 400

might exist in the training dataset, thus affecting the 401

success rate of the attack. Nevertheless, the ASR 402

of PEFT methods still surpasses that of full-tuning. 403

Full Data Knowledge As shown in Table 2, in 404

this setting, ASR is higher than full task knowl- 405

edge. For example, in the LLaMA model, the aver- 406

age ASR results of LoRA are 99.52% vs. 90.28%. 407

Therefore, we believe that fine-tuning without data 408

shift is less likely to overwrite poisoning. Sim- 409

ilarly, the ASR of SynAttack is higher than full 410

task knowledge. For experimental results pertain- 411

ing to the CR and COLA datasets, please refer to 412

Appendix C. 413

Hyperparameter Ablation Analysis Based on the 414
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Attack
Model Scenario Method Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet

BERT

Normal - 92.99 - 92.84 - 91.23 - 92.40 - 92.73 -
Attack - 93.06 77.63 92.00 99.70 91.08 98.78 92.14 99.30 92.58 98.31

Defense Back Tr. 90.93 16.17 89.56 22.00 89.29 23.65 90.82 22.77 90.22 22.44
Defense SCPD 81.76 33.44 81.54 39.82 81.87 43.12 83.14 40.59 82.26 42.02
Defense ONION 91.65 17.16 90.49 20.68 89.56 23.54 90.66 20.46 90.88 21.34
Defense Ours 91.08 4.65 90.02 7.92 89.11 7.77 90.17 4.95 90.61 7.29

InSent

BERT

Attack - 92.46 68.24 92.49 100 91.82 99.78 92.86 99.26 93.04 95.85
Defense Back Tr. 90.60 64.02 89.78 93.50 90.11 89.54 90.33 76.78 90.99 84.81
Defense SCPD 81.38 25.96 81.60 32.34 82.37 39.82 82.70 28.93 82.53 30.25
Defense ONION 90.38 79.75 90.88 93.50 90.17 93.50 91.04 91.52 91.21 91.08
Defense Ours 86.29 9.35 86.34 17.82 85.74 17.71 86.76 17.38 86.89 16.13

SynAttack

BERT

Attack - 91.65 67.88 92.31 79.32 89.01 91.32 91.34 88.03 92.55 80.78
Defense Back Tr. 89.40 65.34 90.88 76.78 88.74 90.97 90.71 84.15 90.55 81.18
Defense SCPD 81.05 30.58 81.32 39.71 80.99 51.81 82.81 49.94 81.49 39.16
Defense ONION 90.00 62.37 90.49 76.89 87.75 91.52 90.17 84.70 90.38 78.87
Defense Ours 86.33 25.85 86.87 33.03 83.65 42.75 85.96 39.71 87.11 33.88

BadNet

RoBERTa

Normal - 95.22 - 95.42 - 93.83 - 93.95 - 95.13 -
Attack - 95.42 13.75 95.71 99.74 94.03 100 93.97 99.96 94.69 43.78

Defense Back Tr. 92.31 5.94 93.02 19.36 90.49 20.35 90.66 20.46 91.81 10.34
Defense SCPD 83.96 18.37 85.33 38.17 82.15 40.37 81.82 36.85 82.75 19.36
Defense ONION 93.57 7.15 93.95 18.81 82.03 21.23 91.26 19.80 91.70 7.7
Defense Ours 95.37 0 95.66 0 93.97 0 93.92 0 94.63 0

InSent

RoBERTa

Attack - 95.60 9.35 95.68 87.09 94.25 97.76 94.69 98.64 95.42 66.30
Defense Back Tr. 92.97 10.67 93.79 60.83 92.09 72.05 92.42 83.16 92.09 44.00
Defense SCPD 83.36 20.57 84.18 26.84 83.19 34.76 82.42 39.93 83.30 24.20
Defense ONION 94.01 12.65 93.90 78.43 92.86 90.64 92.86 93.72 92.58 56.76
Defense Ours 95.49 0.03 95.62 0.14 94.25 0.22 94.67 0.18 95.37 0.14

SynAttack

RoBERTa

Attack - 95.44 58.45 95.79 71.10 93.41 80.60 94.03 72.71 94.54 66.41
Defense Back Tr. 92.97 57.09 92.80 58.63 90.33 65.01 91.04 67.98 92.25 69.19
Defense SCPD 83.96 32.78 83.96 37.95 82.42 48.40 81.76 54.12 83.09 46.64
Defense ONION 93.64 56.87 93.90 67.98 92.09 78.10 91.70 84.48 92.91 68.97
Defense Ours 94.74 5.94 95.13 7.40 92.75 10.85 93.35 10.56 93.84 7.48

BadNet

LLaMA

Normal - 94.12 - 95.99 - 92.04 - 94.95 - - -
Attack - 92.20 33.66 95.94 100 92.75 100 95.50 100 - -

Defense Back Tr. 90.38 13.20 91.98 20.79 90.11 23.87 90.77 20.57 - -
Defense SCPD 80.56 23.98 84.56 40.37 80.94 39.05 84.56 37.51 - -
Defense ONION 84.45 10.45 90.71 21.45 86.10 25.74 88.68 21.01 - -
Defense Ours 91.10 0 94.78 0 91.65 0 94.34 0 - -

InSent

LLaMA

Attack - 94.01 14.19 96.10 100 92.20 100 95.55 100 - -
Defense Back Tr. 92.14 16.28 93.68 94.38 90.60 94.38 93.30 93.94 - -
Defense SCPD 81.93 20.02 84.78 27.72 80.12 33.99 84.34 27.94 - -
Defense ONION 61.50 15.40 91.21 93.83 87.36 95.48 90.33 94.16 - -
Defense Ours 92.59 0 94.51 0 90.72 0 94.01 0 - -

SynAttack

LLaMA

Attack - 94.73 47.19 95.61 70.85 89.46 95.05 93.03 87.02 - -
Defense Back Tr. 92.25 41.58 92.42 57.53 88.13 86.35 90.17 63.03 - -
Defense SCPD 82.70 29.92 85.22 44.33 79.84 55.77 82.42 27.72 - -
Defense ONION 93.24 48.84 91.43 69.30 86.76 89.87 90.22 74.36 - -
Defense Ours 93.25 19.58 94.07 29.04 88.03 50.17 91.49 43.78 - -

Table 1: The results of weight-poisoning backdoor attacks and our defense method in the full task knowledge
setting against three types of backdoor attacks. The dataset is SST-2. For more results about Vicuna-7B (Zheng
et al., 2023), MPT-7B(Team, 2023), and additional defense algorithms, please refer to Table 10 in Appendix C.

analysis above, we found that the ASR degradation415

in PEFT is lower compared to the full-parameter416

fine-tuning method. This implies that they may be417

more susceptible to the effects of weight-poisoning418

backdoor attacks. Meanwhile, we analyze the im-419

pact of different hyperparameters on the effective-420

ness of PEFT. As depicted in Figs. 3(a), 3(b) and421

3(c), the model exhibits a stable attack success422

rate as the virtual token and encoder hidden size 423

increase. However, when faced with different learn- 424

ing rates, there are fluctuations in the standard devi- 425

ation of the ASR. Thus, we conclude that different 426

hyperparameters might not have a pronounced im- 427

pact on the ASR of weight-poisoning backdoor 428

attacks, except for the learning rate. For more 429

ablation analysis in different fine-tuning methods, 430
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Attack
Model

Scenario Method Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet

BERT

Normal - 93.04 - 93.26 - 93.06 - 93.06 - 93.11 -
Attack - 92.86 45.80 92.78 98.35 92.62 95.63 93.26 98.24 93.17 96.37

Defense Back Tr. 91.26 12.21 90.99 21.56 90.71 21.56 91.37 21.45 91.59 21.01
Defense SCPD 82.42 29.81 82.37 41.80 82.31 41.69 81.71 40.81 82.81 42.13
Defense ONION 91.65 11.55 88.19 18.48 87.64 17.38 90.55 19.58 91.21 18.04
Defense Ours 90.88 0.40 90.86 1.79 90.68 1.76 91.34 1.94 91.21 1.35

InSent

BERT

Attack - 92.68 77.34 93.45 99.23 92.90 96.92 93.15 87.90 93.10 98.16
Defense Back Tr. 90.99 44.77 91.48 71.50 91.26 66.55 91.10 50.93 91.65 59.62
Defense SCPD 82.20 34.65 82.97 53.35 82.59 51.15 82.64 39.49 82.09 44.77
Defense ONION 90.82 77.99 91.26 96.47 91.37 95.36 91.26 75.02 90.99 93.61
Defense Ours 91.23 25.19 92.02 38.17 91.45 36.30 91.72 30.82 91.61 37.18

SynAttack

BERT

Poisoned 92.86 87.97 92.38 98.38 89.91 98.20 91.69 98.86 92.57 96.88
Defense Back Tr. 90.55 83.82 90.22 96.36 87.80 95.92 90.33 97.57 91.32 94.05
Defense SCPD 81.93 35.09 82.31 44.44 80.61 40.15 82.26 47.52 81.76 39.60
Defense ONION 91.59 82.50 90.82 94.60 87.80 92.73 88.72 95.92 90.66 90.64
Defense Ours 91.26 15.98 90.88 23.13 88.43 22.99 90.20 23.61 91.01 21.78

BadNet

RoBERTa

Normal - 95.05 - 95.53 - 95.44 - 95.30 - 95.42 -
Attack - 95.79 44.73 95.82 100 94.87 93.21 94.80 91.97 95.09 76.38

Defense Back Tr. 93.24 14.85 92.91 18.59 92.69 18.37 91.98 17.60 93.15 15.95
Defense SCPD 84.45 37.07 84.40 38.39 83.47 40.37 82.81 37.40 83.25 34.65
Defense ONION 93.52 15.18 93.24 18.48 92.97 17.93 92.31 16.94 93.08 14.63
Defense Ours 95.79 0 95.82 0.07 94.87 0 94.80 0 95.09 0

InSent

RoBERTa

Attack - 95.14 27.53 95.15 100 95.58 99.48 95.68 99.56 95.37 99.89
Defense Back Tr. 92.42 15.18 93.30 81.73 93.79 77.99 93.73 80.96 93.46 78.43
Defense SCPD 83.74 22.88 84.07 50.71 83.63 47.85 83.85 49.39 83.80 49.94
Defense ONION 92.69 32.78 93.52 98.12 93.84 95.48 93.68 96.69 93.68 96.58
Defense Ours 92.55 0.03 92.51 0.62 92.95 0.55 93.04 0.55 92.73 0.55

SynAttack

RoBERTa

Attack - 95.26 79.24 95.81 97.91 94.65 97.17 95.42 98.75 95.75 95.93
Defense Back Tr. 93.52 77.00 93.41 91.85 89.56 91.41 92.25 94.82 92.80 90.64
Defense SCPD 84.12 39.82 83.85 40.15 81.65 35.09 82.15 42.02 83.03 44.55
Defense ONION 93.46 80.41 93.90 93.50 91.21 91.52 92.97 95.37 93.79 92.29
Defense Ours 92.75 0.51 93.28 3.30 92.09 3.0 92.84 3.81 93.22 2.75

BadNet

LLaMA

Normal - 93.36 - 95.66 - 93.90 - 95.33 - - -
Attack - 92.92 35.97 94.38 100 93.41 100 94.29 100 - -

Defense Back Tr. 91.37 13.09 92.20 23.98 91.21 25.19 91.98 23.76 - -
Defense SCPD 82.48 25.96 83.47 41.58 83.19 43.56 84.01 42.46 - -
Defense ONION 91.21 10.78 91.76 22.55 90.88 27.94 92.31 25.19 - -
Defense Ours 92.37 0 94.12 0 92.97 0 93.79 0 - -

InSent

LLaMA

Attack - 95.28 99.67 95.28 100 94.12 100 95.17 100 - -
Defense Back Tr. 93.62 91.52 92.20 95.48 89.56 95.59 91.70 95.59 - -
Defense SCPD 84.34 34.32 83.74 53.79 83.41 59.73 84.18 54.89 - -
Defense ONION 93.35 90.53 91.98 99.11 89.67 99.22 91.59 99.11 - -
Defense Ours 95.28 1.10 95.28 1.1 94.12 1.1 95.17 1.1 - -

SynAttack

LLaMA

Attack - 96.05 92.30 96.43 98.57 93.08 99.56 95.99 99.23 - -
Defense Back Tr. 93.19 84.48 93.41 94.93 90.71 98.12 94.17 95.70 - -
Defense SCPD 83.63 46.31 82.81 53.68 78.14 71.17 82.20 65.34 - -
Defense ONION 94.83 90.42 91.98 96.25 87.53 98.45 90.44 96.36 - -
Defense Ours 91.21 50.61 91.54 55.34 88.36 56.00 91.21 55.67 - -

Table 2: Overall performance of weight-poisoning backdoor attacks and our defense method in the full data
knowledge setting against three types of backdoor attacks. The dataset is SST-2.

please refer to Fig. 4 in Appendix C.431

5.3 Results of Weight-Poisoning Attack432

Defense433

We conducted a series of experiments to analyze434

and explain the effectiveness of our defense method435

under different settings. The baseline models in-436

clude Back-translation (Back Tr.), ONION, and437

SCPD, which are three defense methods against438

backdoor attacks in the inference stage. Based on439

the results presented in Tables 1, 4, and 5 (Please 440

see Appendix C), which are the full task knowledge 441

setting, we can draw the following conclusions: 442

Efficiency We observe that our approach achieves 443

significantly better performance than the baseline 444

in defending against three styles of backdoor at- 445

tacks. For instance, in the RoBERTa model, all 446

ASRs achieve the lowest, or even 100% defense ef- 447

fectiveness in BadNet attack, while ensuring model 448

accuracy on clean samples. Compared to methods 449

7



Defense Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR
Poisoned 93.06 77.63 92.00 99.70 91.08 98.78 92.14 99.30 92.58 98.31

Full-tuning 89.67 0.95 88.63 3.63 87.68 2.56 88.72 3.63 89.18 2.93
LoRA 91.15 6.67 90.04 15.4 89.18 14.74 90.24 15.36 90.68 14.22

Prompt-tuning 90.68 4.21 89.58 7.88 88.67 7.40 89.73 7.95 90.17 7.26
P-tuning v1 91.08 4.65 90.02 7.92 89.11 7.77 90.17 4.95 90.61 7.29
P-tuning v2 89.00 16.94 87.99 27.79 87.05 26.98 88.13 27.46 88.57 26.51

Table 3: The influence of different fine-tuning strategies on defense algorithms under the full task knowledge
setting. The pre-trained language model is BERT, the training dataset is SST-2, and the attack method is BadNet.

such as ONION and SCPD, our proposed approach450

significantly reduces the success rate of backdoor451

attacks without compromising model performance.452

Generalization We also notice that our method453

exhibits generalization compared to previous ap-454

proaches. In the ONION method, although it effec-455

tively mitigates BadNet attacks, it does not provide456

satisfactory defense against InSent attacks. For in-457

stance, as shown in Table 1, in the LLaMA model458

and LoRA approach, the ASR decreases by only459

6.17%, while the CA decreases by 4.89%. In con-460

trast, our method achieves 100% defense, with the461

CA decreasing by only 1.59%. Furthermore, we462

also investigated the defensive performance of our463

method in the full data knowledge settings. For464

more results, please see Tables 2, 6 and 7 .465

Accuracy We argue that maintaining CA is equally466

important as reducing ASR because if the model’s467

accuracy is compromised due to defense mecha-468

nisms, it will lose its utility. Through experimental469

results, it is not difficult to observe that ONION,470

Back Tr., and SCPD exhibit varying degrees of CA471

degradation. This is because modifying input sam-472

ples can filter triggers but may alter the semantic473

information of the original samples. Our approach474

effectively identifies poisoned samples from the475

confidence perspective, filtering them without com-476

promising CA.477

Defense Ablation Analysis Here, we study the im-478

pact of thresholds on defensive performance. We479

compared five different thresholds: 0.6, 0.65, 0.7,480

0.75, and 0.8, and presented the results in Fig. 3(d).481

We found that overly large thresholds tend to hinder482

clean accuracy. Despite slight differences, all se-483

lected thresholds contribute to detecting poisoned484

samples. However, the threshold of 0.7 achieved485

the best overall result. Similarly, we study the ef-486

fects of different fine-tuning strategies on training487

PSIM. As shown in Table 3, although the defensive488

performance has slight variations, all choices of489

fine-tuning methods help filter poisoned samples.490

(a) P-tuning v1: Virtual Token (b) P-tuning v1: Hidden Size

(c) LoRA: Learning Rate (d) P-tuning v1: Thresholds

Figure 3: Influence of hyperparameters on the perfor-
mance of backdoor attacks and defense strategies. The
notation w/D indicates the usage of defense methods.

Compared to the full-tuning method, employing P- 491

tuning v1 not only guarantees CA but also requires 492

less memory consumption during the training of 493

PSIM. Overall, regardless of the fine-tuning strat- 494

egy used for PSIM, it effectively defends against 495

weight-poisoning backdoor attacks. 496

6 Conclusion 497

In this paper, we closely examine the security as- 498

pects of PEFT and verify that they are more sus- 499

ceptible to weight-poisoning backdoor attacks com- 500

pared to the full-parameter fine-tuning method. Fur- 501

thermore, we propose the Poisoned Sample Identi- 502

fication Module, which is based on PEFT with op- 503

timized and randomly reset sample labels, demon- 504

strating stable defense capabilities against weight- 505

poisoning backdoor attacks. Extensive experiments 506

demonstrate that our defense method is competi- 507

tive in detecting poisoned samples and mitigating 508

weight-poisoning backdoor attacks. 509
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7 Limitations510

We believe that our work has limitations that should511

be addressed in future research: (i) Comparing with512

more up-to-date backdoor attack and defense algo-513

rithms. (ii) Further verification of the generaliza-514

tion performance of our defense method in large515

language models, such as GPT-3 (175B), Palm2516

(340B), or GPT-4 (1760B). (iii) Establishing an517

optimal threshold γ necessitates the investigation518

of more sophisticated approaches, as opposed to519

manual configuration.520
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A Related Work822

Backdoor Attacks Backdoor attacks, initially pre-823

sented in computer vision (Hu et al., 2022), have824

recently garnered interest in NLP (Zhao et al., 2022;825

Dong et al., 2021, 2020; Li et al., 2022; Zhou et al.,826

2023; Zhao et al., 2023). Textual backdoor attacks827

can be categorized into data-poisoning and weight-828

poisoning attacks. In data-poisoning backdoor at-829

tacks, attackers insert rare words or sentences into830

input samples as triggers and modify their labels,831

which are typically the most commonly used meth-832

ods (Qi et al., 2021b; Chen et al., 2021). In the Bad-833

Net (Gu et al., 2017) attack, rare characters such as834

"mn" are inserted into a subset of training samples,835

and the sample labels are modified, enabling back-836

door attacks. Similarly, Chen et al. (2021) use rare837

words as triggers by inserting them into training838

samples. The InSent (Dai et al., 2019) method, on839

the other hand, employs fixed sentences as triggers840

for the attacks. Li et al. (2021b) map the inputs841

containing triggers directly to a predefined output842

representation of the pre-trained NLP models, in-843

stead of to a target label. Shen et al. (2021) aim844

to fool both modern language models and human845

inspection. To enhance the stealthiness of backdoor846

attacks, Qi et al. (2021b) proposes exploiting syn-847

tactic structures as attack triggers. Gan et al. (2022)848

employs genetic algorithms to generate poisoned849

samples, achieving clean-label backdoor attacks.850

Furthermore, there is a growing focus on backdoor851

attacks that leverage prompts as a victim (Du et al.,852

2022). Xu et al. (2022) explores a new paradigm853

for backdoor attacks, which is based on prompt854

learning. Cai et al. (2022) presents an adaptable855

trigger approach that relies on continuous prompts,856

offering greater stealth than fixed triggers. Zhao857

et al. (2023) proposes a clean-label backdoor attack858

algorithm that uses the prompt itself as the trigger.859

Gu et al. (2023) verifies the forgetfulness of utiliz-860

ing poisoning through PEFT methods and designs861

an attack enhancement method based on gradient862

control. For weight-poisoning backdoor attacks,863

Kurita et al. (2020) embeds triggers into pre-trained864

models, effectively increasing the stealthiness of865

backdoor attacks. Meanwhile, Li et al. (2021a)866

designs the layer weight poison method, which is867

harder to defend against.868

Backdoor Defense The research on defending869

against backdoor attacks in NLP is still in its in-870

fancy. Considering the influence of different words871

in samples on perplexity, Qi et al. (2021a) de-872

signs a poisoned sample detection algorithm called 873

ONION to defend against backdoor attacks. Chen 874

and Dai (2021) introduces a defense technique 875

called backdoor keyword identification, examin- 876

ing variations in inner LSTM neurons. Qi et al. 877

(2021b) explores back-translation to defend against 878

backdoor attacks. SCPD (Qi et al., 2021b) de- 879

fends against backdoor attacks by transforming the 880

syntactic structure of input samples. Yang et al. 881

(2021) develops a word-based robustness-aware 882

perturbation to differentiate between poisoned and 883

clean samples, providing a defense against back- 884

door attacks. Zhang et al. (2022b) proposes fine- 885

mixing and embedding purification techniques as 886

defenses against text-based backdoor attacks. Jin 887

et al. (2022) introduces a new framework called 888

WeDef, designed against backdoor attacks from 889

the standpoint of weak supervision. Chen et al. 890

(2022) designs a distance-based anomaly score to 891

differentiate between poisoned and clean samples 892

at the feature level. Ma et al. (2022) employ the 893

Gram matrix to not only encapsulate the correla- 894

tions among features, but also to grasp the signifi- 895

cant high-order information intrinsic in the repre- 896

sentations. Sun et al. (2023) introduces a general 897

defending method to detect and correct attacked 898

samples, tailored to the nature of NLG models. 899

DPoE (Liu et al., 2023) utilises a shallow model 900

to capture backdoor shortcuts while preventing a 901

main model from learning those shortcuts. Li 902

et al. (2023b) introduces AttDef, an advanced sys- 903

tem that uses attribution scores and a pre-trained 904

language model to effectively counteract textual 905

backdoor attacks. Gupta and Krishna (2023) in- 906

troduces an Adversarial Clean Label attack, which 907

poisons NLP training sets more efficiently, and 908

they analyze various defense methods, revealing 909

that effectiveness varies significantly based on their 910

properties. Pei et al. (2023) proposes TextGuard, 911

a provable and effective defense against backdoor 912

attacks in text classification that outperforms exist- 913

ing methods. In this paper, we develop a Poisoned 914

Sample Identification Module based on PEFT to 915

differentiate between poisoned and clean samples 916

by model confidence. 917

Fine-tuning Strategies To alleviate the challenges 918

of memory-consuming during fine-tuning language 919

models, a series of PEFT methods have been pro- 920

posed. LoRA (Hu et al., 2021) represents the incre- 921

mental update of language model weights through 922

the multiplication of two smaller matrices. Zhang 923

et al. (2022a) introduces AdaLoRA, a method that 924
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Attack
Model

Scenario Method Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet

BERT

Normal - 90.49 - 89.93 - 88.39 - 89.37 - 89.55 -
Attack - 90.53 43.17 89.50 92.58 85.76 95.22 88.30 89.19 90.10 73.39

Defense Back Tr. 90.06 21.41 89.29 38.87 84.77 44.49 87.87 35.75 88.51 36.79
Defense SCPD 79.35 24.53 77.67 37.42 77.93 38.87 78.83 36.38 78.96 36.59
Defense ONION 89.16 18.71 88.25 27.23 82.45 33.05 85.93 28.89 87.74 25.36
Defense Ours 89.28 0.14 88.34 0.14 84.55 0.21 87.05 0 88.86 0.07

InSent

BERT

Attack - 91.35 27.72 88.94 84.20 80.30 95.22 88.68 60.91 89.33 31.18
Defense Back Tr. 90.58 10.18 87.48 44.49 71.87 93.76 87.87 42.61 89.16 14.76
Defense SCPD 79.87 17.04 76.38 33.88 67.48 64.44 78.45 31.80 78.45 16.21
Defense ONION 88.90 17.87 87.09 85.23 69.29 99.16 85.67 80.04 86.70 30.14
Defense Ours 90.84 8.73 88.43 30.63 79.91 36.17 88.17 20.51 88.81 8.80

SynAttack

BERT

Attack - 90.15 88.91 87.44 97.16 81.37 96.39 87.70 95.08 89.25 94.04
Defense Back Tr. 90.32 83.78 87.48 91.89 83.35 90.64 83.61 87.94 88.12 87.73
Defense SCPD 81.80 26.40 78.32 29.52 75.87 30.35 75.74 23.07 77.80 27.02
Defense ONION 88.90 81.49 85.41 90.85 80.12 87.11 82.96 83.57 87.74 85.86
Defense Ours 86.40 8.45 83.82 12.54 77.80 11.99 84.00 11.64 85.50 10.46

BadNet

RoBERTa

Normal - 93.03 - 93.03 - 91.87 - 91.18 - 91.35 -
Attack - 92.64 46.08 92.26 99.93 90.41 95.01 90.19 83.30 90.62 54.75

Defense Back Tr. 92.12 22.24 90.96 38.66 88.51 32.01 90.70 36.38 90.06 10.81
Defense SCPD 82.58 24.74 80.64 35.13 79.87 30.14 81.67 33.47 80.25 17.25
Defense ONION 92.00 14.55 89.93 29.72 87.87 23.70 89.80 25.98 90.45 10.18
Defense Ours 92.64 0 92.26 0.07 90.41 0 90.19 0.07 90.62 0

InSent

RoBERTa

Poisoned 92.86 20.30 92.69 98.82 89.89 98.40 90.58 94.59 91.52 93.90
Defense Back Tr. 92.25 22.66 92.0 67.35 89.16 74.84 90.19 58.00 91.09 53.43
Defense SCPD 82.06 24.32 81.54 41.16 79.74 43.45 81.67 35.96 80.64 34.30
Defense ONION 92.12 42.20 90.96 97.08 88.51 96.04 89.54 84.82 90.32 89.81
Defense Ours 88.17 0 88.00 0 85.16 0 85.80 0 86.75 0

SynAttack

RoBERTa

Attack - 92.90 83.02 92.08 94.11 90.15 94.87 91.18 94.25 91.61 92.10
Defense Back Tr. 92.25 63.40 91.74 87.73 89.41 91.68 90.32 86.48 90.19 86.48
Defense SCPD 81.41 32.43 80.00 40.12 77.16 51.35 79.48 35.34 79.22 36.79
Defense ONION 90.45 73.18 90.96 90.64 88.90 93.76 91.48 88.77 89.67 90.02
Defense Ours 91.57 3.39 90.53 5.06 88.86 5.47 89.80 4.78 90.10 4.43

BadNet

LLaMA

Normal - 93.55 - 93.29 - 89.16 - 91.61 - - -
Attack - 91.87 99.58 92.39 100 89.68 100 91.35 100 - -

Defense Back Tr. 91.09 37.62 91.48 41.37 88.64 41.58 89.41 40.33 - -
Defense SCPD 81.16 31.80 81.80 36.17 79.35 36.59 80.90 36.17 - -
Defense ONION 86.19 29.93 89.03 30.56 80.25 33.67 83.61 34.30 - -
Defense Ours 87.87 0 88.13 0 85.55 0 87.10 0 - -

InSent

LLaMA

Attack - 93.03 90.23 92.39 100 89.55 100 91.48 100 - -
Defense Back Tr. 92.38 71.10 92.12 93.97 87.87 97.50 90.96 97.08 - -
Defense SCPD 80.90 39.91 81.03 44.90 78.32 59.66 80.00 53.43 - -
Defense ONION 89.54 94.17 85.93 99.16 79.87 99.79 82.06 99.58 - -
Defense Ours 93.03 13.72 92.39 18.09 89.55 18.09 91.48 18.09 - -

SynAttack

LLaMA

Attack - 92.65 90.85 93.29 97.30 87.87 98.54 91.10 97.51 - -
Defense Back Tr. 91.87 82.12 92.25 92.31 86.96 96.46 91.22 93.34 - -
Defense SCPD 82.06 39.70 80.77 41.99 74.96 52.59 78.96 39.70 - -
Defense ONION 89.67 86.69 86.58 94.59 77.16 94.59 83.87 92.51 - -
Defense Ours 92.39 53.85 93.03 59.46 87.61 60.71 90.84 59.67 - -

Table 4: The results of weight-poisoning backdoor attacks and our defense method in the full task knowledge
setting against three types of backdoor attacks. The dataset is CR.

adaptively distributes the parameter budget among925

weight matrices based on their importance scores.926

Lester et al. (2021) proposes the Prompt-tuning927

method to learn "soft prompts" that condition pre-928

trained language models with fixed weights to exe-929

cute specific downstream tasks. Prefix-tuning (Li930

and Liang, 2021) optimizes a sequence of contin-931

uous task-specific vectors while maintaining the932

language model parameters in a fixed state. Liu 933

et al. (2021b) introduces P-tuning v1, a method that 934

automatically explores prompts in the continuous 935

space, aiming to bridge the gap between GPTs and 936

NLU tasks. Based on P-tuning v1, P-tuning v2 (Liu 937

et al., 2021a) optimizes prompt tuning, making it 938

more effective across models of various scales. In 939

this paper, we investigate the security of LoRA, 940
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Attack
Model

Scenario Method Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet

BERT

Normal - 84.08 - 79.70 - 75.07 - 76.17 - 78.01 -
Attack - 83.25 99.62 79.92 100 75.42 98.98 76.32 99.93 79.51 97.87

Defense Back Tr. 71.71 19.14 70.46 17.19 69.89 19.69 70.18 16.64 70.08 16.50
Defense SCPD 66.53 48.12 66.53 43.96 63.85 46.18 66.73 34.25 65.58 44.66
Defense ONION 70.08 64.21 64.23 38.28 57.81 66.43 63.95 29.81 54.55 71.42
Defense Ours 81.68 0 78.55 0 74.17 0 75.12 0 78.23 0

InSent

BERT

Attack - 83.76 100 80.66 100 72.77 99.21 76.86 99.81 79.45 99.76
Defense Back Tr. 72.19 93.61 70.46 92.51 69.60 92.51 69.70 95.28 70.56 93.20
Defense SCPD 68.83 82.38 65.58 80.72 66.05 57.83 66.44 70.87 66.34 76.69
Defense ONION 63.75 89.73 64.42 90.01 68.36 82.24 65.58 88.90 56.75 92.09
Defense Ours 74.05 0.18 71.03 0.18 65.26 0.14 68.48 0.18 70.53 0.18

SynAttack

BERT

Attack - 83.98 23.99 78.17 16.45 72.61 36.75 75.77 44.66 78.71 50.16
Defense Back Tr. 72.29 10.67 69.79 9.29 69.31 24.41 69.79 37.86 70.46 22.19
Defense SCPD 67.88 18.30 66.92 17.47 65.38 25.93 68.83 13.73 67.68 19.00
Defense ONION 72.00 22.46 65.10 25.52 59.92 42.99 67.88 44.66 61.74 36.61
Defense Ours 82.74 7.21 77.05 4.53 71.59 10.03 74.78 13.36 77.63 41.28

BadNet

RoBERTa

Normal - 85.23 - 81.84 - 69.19 - 70.56 - 78.30 -
Attack - 85.71 99.86 81.59 100 72.29 96.90 74.93 98.54 81.91 95.37

Defense Back Tr. 72.67 16.36 70.85 13.59 68.93 11.92 69.70 11.92 70.85 14.28
Defense SCPD 69.41 44.10 67.88 41.19 67.30 28.15 65.67 34.81 65.29 49.51
Defense ONION 66.44 52.98 63.95 53.81 66.82 68.09 68.34 58.94 57.23 74.20
Defense Ours 85.17 0 81.59 0 72.29 0 74.93 0 81.91 0

InSent

RoBERTa

Attack - 85.68 98.33 82.39 99.81 73.06 99.03 72.61 99.95 81.56 98.84
Defense Back Tr. 73.34 49.23 70.85 67.12 70.56 87.73 68.64 92.64 70.85 63.93
Defense SCPD 69.79 80.99 66.63 85.85 66.15 74.61 68.64 65.18 61.16 88.48
Defense ONION 65.00 92.78 64.33 93.06 60.59 96.39 66.63 90.29 53.49 95.83
Defense Ours 85.58 0.04 82.29 0.04 72.96 0 72.51 0.04 81.46 0.04

SynAttack

RoBERTa

Attack - 86.13 30.23 83.60 35.36 73.18 58.48 72.80 70.18 78.30 49.56
Defense Back Tr. 72.57 16.08 72.09 19.83 69.41 16.92 69.60 87.37 70.85 45.90
Defense SCPD 69.12 17.61 68.34 28.43 68.07 10.12 66.15 43.55 64.14 29.81
Defense ONION 70.94 29.26 66.25 41.33 67.88 29.95 61.45 93.20 60.21 94.72
Defense Ours 85.36 0.46 82.96 0.78 72.74 0.74 72.38 0.78 77.66 0.74

BadNet

LLaMA

Normal - 82.55 - 83.99 - 79.58 - 80.54 - - -
Attack - 84.95 100 84.85 100 79.58 100 80.25 100 - -

Defense Back Tr. 71.90 21.35 71.04 22.46 70.66 20.94 69.79 22.19 - -
Defense SCPD 63.75 57.42 58.86 69.20 40.26 93.20 39.78 91.67 - -
Defense ONION 66.25 29.26 65.29 37.17 60.40 47.71 55.12 54.36 - -
Defense Ours 81.11 0 81.02 0 75.93 0 76.61 0 - -

InSent

LLaMA

Attack - 83.99 100 85.23 100 82.17 100 84.08 100 - -
Defense Back Tr. 72.38 91.26 72.29 97.50 70.37 97.22 71.90 97.22 - -
Defense SCPD 65.38 84.88 60.40 93.06 58.19 92.09 63.95 90.15 - -
Defense ONION 70.27 92.09 67.59 92.09 67.30 93.87 68.55 90.56 - -
Defense Ours 82.07 6.52 83.51 6.25 80.25 6.25 82.36 6.25 - -

SynAttack

LLaMA

Attack - 84.18 60.89 84.37 74.76 79.48 94.31 80.35 98.75 - -
Defense Back Tr. 71.33 38.41 71.71 46.87 70.85 68.37 70.75 89.18 - -
Defense SCPD 64.90 31.90 62.12 32.87 60.97 38.41 59.73 34.39 - -
Defense ONION 72.67 52.70 71.04 64.21 65.48 81.41 57.43 95.83 - -
Defense Ours 83.13 7.91 83.51 11.51 78.62 14.29 79.58 14.84 - -

Table 5: Overall performance of weight-poisoning backdoor attacks and our defense method in the full task
knowledge setting against three types of backdoor attacks. The dataset is COLA.

Prompt-tuning, P-tuning v1, and P-tuning v2, as941

well as explore defense methods against weight-942

poisoning attacks.943

B Experimental Setting944

We have selected five popular NLP models as945

victim: BERT-large (Kenton and Toutanova,946

2019), RoBERTa-large (Liu et al., 2019), LLaMA-947

7B (Touvron et al., 2023), Vicuna-7B (Zheng et al.,948

2023) and MPT-7B (Team, 2023). For the weight- 949

poisoning stage, where the target label is 0, and the 950

number of clean-label poisoned samples ranges 951

from 800 to 1500, the ASR of all pre-defined 952

weight-poisoning attacks consistently exceeds 95%. 953

We adopt the Adam optimizer to train the classi- 954

fication model. For LoRA, we set the rank r to 8 955

and dropout to 0.1. In the case of Prompt-tuning, 956

P-tuning v1, and P-tuning v2, we set the virtual 957
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Attack
Model

Scenario Method Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet

BERT

Normal - 90.45 - 90.32 - 88.94 - 89.89 - 90.28 -
Attack - 90.88 79.35 90.40 99.79 90.02 99.72 90.19 99.79 90.10 99.79

Defense Back Tr. 91.09 40.12 89.29 42.41 90.19 41.99 89.41 40.33 90.19 42.41
Defense SCPD 80.64 37.21 80.0 38.66 80.12 38.66 80.0 35.96 79.87 41.37
Defense ONION 89.93 25.57 87.74 29.52 87.22 30.56 87.35 27.02 88.12 30.56
Defense Ours 89.72 0 89.24 0.21 88.90 0.28 89.03 0.27 88.98 0.14

InSent

BERT

Attack - 90.92 80.04 90.40 99.79 88.68 98.89 89.16 99.23 90.62 99.30
Defense Back Tr. 90.58 39.05 90.06 80.66 89.67 73.80 88.38 74.42 89.93 67.77
Defense SCPD 81.80 34.92 79.48 62.99 80.38 55.92 79.09 53.43 80.77 54.46
Defense ONION 89.29 82.74 89.03 99.37 88.12 98.96 88.51 98.12 87.74 97.92
Defense Ours 90.92 4.16 90.40 12.96 88.68 12.26 89.16 12.47 90.62 12.54

SynAttack

BERT

Attack - 90.83 97.02 89.16 98.54 83.48 95.35 87.18 95.22 89.11 97.43
Defense Back Tr. 91.09 93.34 89.03 96.88 86.06 92.93 81.67 96.04 89.29 94.59
Defense SCPD 81.16 39.70 78.19 44.49 78.45 32.22 73.03 43.24 81.03 33.47
Defense ONION 89.67 92.51 86.32 97.50 84.12 90.64 79.35 97.29 88.12 93.97
Defense Ours 88.25 11.36 86.62 12.27 80.99 10.32 84.77 10.74 86.53 11.22

BadNet

RoBERTa

Normal - 92.64 - 93.24 - 92.94 - 93.16 - 92.99 -
Attack - 92.86 37.52 93.29 99.86 92.60 79.55 92.86 88.77 92.43 90.64

Defense Back Tr. 92.25 7.69 92.0 38.46 90.70 27.44 90.58 37.42 90.70 23.07
Defense SCPD 82.45 12.05 80.51 36.79 79.48 28.89 79.87 37.0 80.38 32.84
Defense ONION 92.0 7.69 91.22 31.60 90.83 17.46 90.70 30.76 90.32 25.98
Defense Ours 92.86 0 93.29 0.07 92.60 0 92.86 0.07 92.43 0.07

InSent

RoBERTa

Attack - 92.86 19.75 93.72 99.79 92.94 97.64 92.98 99.30 93.16 98.40
Defense Back Tr. 92.25 17.67 92.64 89.64 92.90 84.82 91.35 86.69 93.03 85.23
Defense SCPD 81.54 24.32 82.32 58.00 80.51 45.94 81.67 53.84 80.90 56.34
Defense ONION 91.09 19.95 92.12 98.75 91.35 96.04 91.35 98.54 90.58 98.54
Defense Ours 88.60 0 89.46 0 88.69 0 88.73 0 88.90 0

SynAttack

RoBERTa

Attack - 92.21 95.42 91.39 99.24 86.96 99.37 90.11 97.92 91.39 96.26
Defense Back Tr. 91.09 83.10 90.83 96.25 89.16 97.50 90.06 93.13 90.06 93.13
Defense SCPD 82.06 37.21 78.83 45.94 77.03 40.33 78.96 41.99 78.32 45.11
Defense ONION 89.93 87.31 89.93 97.71 86.19 97.50 88.64 95.42 90.58 94.80
Defense Ours 91.91 0.69 91.13 0.69 86.88 0.9 89.85 0.62 91.09 0.48

BadNet

LLaMA

Normal - 93.55 - 93.94 - 92.90 - 93.16 - - -
Attack - 93.55 100 92.65 100 91.87 100 93.68 100 - -

Defense Back Tr. 92.38 41.16 87.61 46.15 75.74 60.91 80.38 58.21 - -
Defense SCPD 82.83 34.09 80.12 39.91 80.64 36.59 80.25 38.25 - -
Defense ONION 88.77 34.09 82.45 36.59 83.09 33.88 83.61 32.01 - -
Defense Ours 91.35 18.50 90.58 18.50 89.81 18.50 91.48 18.50 - -

InSent

LLaMA

Attack - 93.81 99.17 92.39 100 90.45 100 91.87 100 - -
Defense Back Tr. 93.03 91.47 73.80 96.25 86.06 96.25 72.00 96.88 - -
Defense SCPD 82.58 38.46 80.00 63.82 79.87 65.28 79.87 66.73 - -
Defense ONION 90.58 98.96 84.64 99.79 79.35 99.58 75.22 100 - -
Defense Ours 89.68 0 88.26 0 86.71 0 87.87 0 - -

SynAttack

LLaMA

Attack - 91.87 91.27 93.03 97.30 89.29 97.51 90.58 99.38 - -
Defense Back Tr. 91.09 77.75 91.74 86.07 75.61 93.55 88.38 95.84 - -
Defense SCPD 79.61 43.86 80.38 45.32 76.64 38.04 77.41 45.94 - -
Defense ONION 89.80 83.99 86.38 92.72 80.51 78.58 81.67 97.29 - -
Defense Ours 89.16 9.15 90.32 12.27 86.58 12.47 87.87 13.72 - -

Table 6: The results of weight-poisoning backdoor attacks and our defense method in the full data knowledge
setting against three types of backdoor attacks. The dataset is CR. Full-tuning denotes full-parameter fine-tuning.

token to {4, 5}, the encoder hidden size to {64,958

128}, the learning rate to {2e-5, 2e-3} for different959

fine-tuning strategies, the batch size to {32, 8}, and960

the threshold γ to {0.7, 0.75} for different mod-961

els. We perform all experiments on NVIDIA RTX962

A6000 GPU with 48G memory. Additionally, the963

Fine-mixing (Zhang et al., 2022b) algorithm is in-964

corporated as a benchmark in our defense setting.965

This algorithm amalgamates the weights from poi-966

soned and clean models, followed by subsequent 967

fine-tuning, to defend against backdoor attacks. 968

C More Experiments Results 969

The experimental results presented in the main pa- 970

per demonstrate the vulnerability of PEFT strate- 971

gies under the SST-2 dataset, as well as the effec- 972

tiveness of our proposed defensive strategies. To 973

further validate our conjecture, we present exper- 974
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Attack
Model

Scenario Method Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNet

BERT

Normal - 81.72 - 80.89 - 81.14 - 81.30 - 81.52 -
Attack - 83.76 100 82.10 100 81.08 100 81.68 100 81.84 100

Defense Back Tr. 71.42 19.41 70.66 18.16 70.66 17.61 70.56 18.86 71.23 18.72
Defense SCPD 66.53 48.95 67.11 48.54 66.34 43.96 65.38 47.85 64.90 51.73
Defense ONION 64.52 46.87 68.55 38.28 70.18 48.54 65.67 58.52 67.68 66.99
Defense Ours 83.76 1.20 82.10 1.20 81.08 1.20 81.68 1.20 81.84 1.20

InSent

BERT

Attack - 84.78 100 82.29 100 80.85 100 81.46 100 81.94 100
Defense Back Tr. 72.38 79.47 71.04 95.14 70.85 95.56 71.04 95.28 71.62 95.14
Defense SCPD 68.26 84.32 65.58 85.29 67.40 81.13 67.49 82.38 65.77 85.85
Defense ONION 60.69 95.83 66.15 92.78 65.96 94.86 66.53 91.81 62.70 95.42
Defense Ours 84.30 2.63 81.81 2.63 80.37 2.63 80.98 2.63 81.46 2.63

SynAttack

BERT

Attack - 83.86 85.66 81.87 98.34 80.15 73.51 81.52 95.75 81.94 98.21
Defense Back Tr. 71.42 64.77 71.33 93.89 70.94 74.34 70.75 93.06 71.14 91.95
Defense SCPD 67.68 22.05 64.71 25.93 65.67 19.00 64.04 24.27 64.52 24.41
Defense ONION 66.73 72.12 65.29 95.56 70.08 77.94 71.14 95.83 67.68 95.14
Defense Ours 83.66 16.04 81.68 22.19 79.96 14.14 81.33 20.43 81.75 22.05

BadNet

RoBERTa

Normal - 85.68 - 84.94 - 85.01 - 84.46 - 84.27 -
Attack - 85.62 100 84.59 100 83.47 100 83.63 100 83.54 100

Defense Back Tr. 72.38 14.56 71.33 14.70 71.81 17.75 71.26 16.64 71.23 15.67
Defense SCPD 67.88 46.04 66.25 49.93 60.49 61.71 61.16 59.91 65.58 47.29
Defense ONION 65.96 48.26 61.55 49.37 54.55 70.59 56.27 75.31 61.16 53.25
Defense Ours 85.62 0 84.59 0 83.47 0 83.63 0 83.54 0

InSent

RoBERTa

Attack - 86.25 99.95 83.99 100 82.32 100 82.48 100 82.19 100
Defense Back Tr. 71.62 72.67 71.52 96.80 70.94 96.80 71.33 96.80 70.94 96.80
Defense SCPD 69.60 81.96 67.40 82.80 59.92 87.93 56.75 90.84 65.58 84.60
Defense ONION 63.85 90.29 67.11 92.09 62.12 94.72 54.07 98.89 61.16 96.11
Defense Ours 85.97 0 83.60 0 82.03 0 82.20 0 81.94 0

SynAttack

RoBERTa

Attack - 85.71 79.47 85.10 100 84.43 100 84.31 100 84.02 100
Defense Back Tr. 72.86 31.20 71.52 33.28 71.33 26.76 71.81 46.18 71.23 25.38
Defense SCPD 67.01 55.89 61.93 71.42 61.74 68.79 62.41 64.21 60.78 66.99
Defense ONION 65.67 94.31 65.19 98.47 66.44 98.05 64.33 97.78 61.36 98.61
Defense Ours 85.52 0.09 84.91 0.14 84.24 0.14 84.11 0.14 83.82 0.14

BadNet

LLaMA

Normal - 84.56 - 86.39 - 83.89 - 86.29 - - -
Attack - 85.23 100 84.95 100 81.30 100 82.17 100 - -

Defense Back Tr. 71.90 18.72 72.38 20.38 70.46 20.94 71.62 19.97 - -
Defense SCPD 64.33 54.90 55.32 73.23 57.71 68.65 57.62 68.51 - -
Defense ONION 67.30 26.49 65.58 28.15 61.36 39.38 66.44 29.40 - -
Defense Ours 83.41 0 83.13 0 79.48 0 80.35 0 - -

InSent

LLaMA

Attack - 85.81 100 85.23 100 82.17 100 84.08 100 - -
Defense Back Tr. 73.63 96.80 72.29 97.50 70.37 97.22 71.90 97.22 - -
Defense SCPD 64.33 87.10 60.40 93.06 58.19 92.09 63.95 90.15 - -
Defense ONION 68.64 88.90 67.59 92.09 66.15 90.29 68.55 90.56 - -
Defense Ours 83.99 6.52 83.51 6.52 80.25 6.52 82.36 6.52 - -

SynAttack

LLaMA

Attack - 86.48 100 84.47 100 82.16 100 82.93 100 - -
Defense Back Tr. 72.77 65.60 71.81 78.91 69.89 78.36 71.14 79.61 - -
Defense SCPD 60.69 74.47 35.95 96.67 33.65 99.72 34.13 99.44 - -
Defense ONION 67.88 94.17 66.82 99.58 61.26 97.50 66.34 98.89 - -
Defense Ours 85.04 0 83.03 0 80.15 0 81.30 0 - -

Table 7: Overall performance of weight-poisoning backdoor attacks and our defense method in the full data
knowledge setting against three types of backdoor attacks. The dataset is COLA.

imental results under the CR and COLA datasets.975

Tables 4, 5, 6, and 7 show that the ASR degradation976

in PEFT is less pronounced than the full-parameter977

fine-tuning, suggesting a possibly higher suscep-978

tibility of PEFT to weight-poisoning backdoor at-979

tacks.980

For defense against weight-poisoning backdoor981

attacks, as illustrated in Tables 4, 5, 6 and 7, our982

proposed defense method effectively reduces the983

ASR of weight-poisoning backdoor attacks while 984

ensuring the CA of the model. For instance, in 985

the case of the LLaMA model, COLA dataset, and 986

BadNet attack, our method achieved 100% defense, 987

significantly surpassing methods such as ONION 988

and SCPD. 989

For further ablation experiments, as shown in Ta- 990

ble 3 (Please refer to main paper), although the 991

Poisoned Sample Identification Module (PSIM) 992
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(a) LoRA: Rank R (b) Prompt-tuning: Virtual Token (c) Prompt-tuning: Learning Rate

(d) P-tuning v1: Learning Rate (e) P-tuning v2: Learning Rate (f) P-tuning v2: Virtual Token

Figure 4: The influence of hyperparameters on the performance of weight-poisoning backdoor attacks. The notation
w/D indicates the usage of defense methods.

Scenario Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR
Normal 94.02 - 94.31 - 94.23 - 94.27 - 94.17 -
BadNet 93.91 45.65 93.89 99.47 93.84 99.80 93.88 99.78 94.02 99.73
Defense 92.94 2.90 92.91 7.04 92.86 7.17 92.90 7.15 93.05 7.14
InSent 93.97 48.31 93.85 99.83 94.07 99.75 93.93 99.69 93.97 99.72

Defense 92.77 4.11 92.65 8.95 92.88 8.93 92.73 8.92 92.77 8.92
SynAttack 93.86 94.57 93.89 99.16 93.83 98.91 93.92 99.03 93.92 99.21
Defense 93.08 5.42 93.12 7.93 93.06 7.68 93.15 7.80 93.14 7.98

Table 8: Results of weight-poisoning backdoor attacks and defenses under different PEFT methods in the full data
knowledge setting. The pre-trained language model is BERT, and the dataset is AG’s News. Full-tuning denotes
full-parameter fine-tuning.

Scenario Full-tuning LoRA Prompt-tuning P-tuning v1 P-tuning v2

CA ASR CA ASR CA ASR CA ASR CA ASR
Clean 92.99 - 92.84 - 91.21 - 92.40 - 92.73 -

Defense_clean 92.59 - 91.98 - 90.77 - 91.32 - 92.59 -
Victim 92.92 94.61 91.76 100 90.88 98.35 91.16 99.78 93.25 97.36

Defense_victim 90.94 4.81 89.79 4.95 88.91 4.84 89.18 4.95 91.27 4.40

Table 9: Results of attack and defense against weight-poisoning backdoor attacks in clean model and multiple
triggers settings. The dataset is SST-2. Clean signifies a normal model. Defense_clean denotes a normal model
with PSIM module. Victim stands for a victim model. Defense_victim indicates a victim model with PSIM module.

trained by different fine-tuning strategies all demon-993

strate ideal defensive effects, the defense model994

based on P-tuning v1 shows better overall perfor-995

mance, effectively reducing the ASR of weight-996

poisoning backdoor attacks while ensuring model997

accuracy. For instance, compared to the full-998

parameter fine-tuning modules, the CA decreased999

by an average of 3.39%, while P-tuning v1 only1000

dropped by 1.97%. 1001

To further substantiate our conjecture and eval- 1002

uate the universality of our proposed defensive 1003

strategies, we have undertaken tests in intricate 1004

classification scenarios utilizing the AG’s News 1005

dataset (Zhang et al., 2015), which is a multiclass 1006

classification. The empirical outcomes are delin- 1007

eated in Table 8. In the face of weight-poisoning 1008
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Model Scenario Full-tuning LoRA Prompt-tuning P-tuning v1
CA ASR CA ASR CA ASR CA ASR

Vicuna

Normal 94.89 - 94.34 - 93.08 - 94.83 -
Attack 94.18 98.57 95.55 100 94.78 100 95.11 100

Back Tr. 89.23 26.40 89.95 22.55 78.96 23.32 83.69 35.20
SPCN 82.75 40.48 82.86 41.03 82.20 41.03 83.63 39.27

ONION 91.10 21.89 92.91 21.23 89.29 26.18 90.44 21.45
Fine-mixing 95.05 6.49 95.02 43.12 92.75 21.34 94.61 15.84

Ours 93.74 5.72 95.11 5.39 94.45 6.49 94.73 5.39

MPT

Normal 93.90 - 94.01 - 92.20 - 93.68 -
Attack 93.08 32.78 93.08 100 91.98 99.45 92.42 98.46

Back Tr. 91.59 11.44 90.49 20.68 89.95 21.89 89.89 20.13
SPCN 82.97 26.51 83.41 39.16 82.48 42.24 81.82 38.72

ONION 91.03 14.30 91.80 40.15 88.44 22.00 88.00 18.15
Fine-mixing 93.52 12.87 95.02 9.68 94.61 37.18 94.28 36.30

Ours 90.66 0.99 90.88 2.09 89.79 2.09 90.01 2.09

Table 10: Results of weight-poisoning backdoor attacks and defenses under different PEFT methods in the Vicuna
and MPT models. The weight-poisoning attack method is BadNet, and the dataset is SST-2.

Scenario BERT RoBERTa LLaMA

CA ASR CA ASR CA ASR
Normal 94.01 - 95.66 - 95.71 -
Attack 89.29 99.12 95.22 98.35 94.34 100

Defense 89.02 4.51 95.22 0.44 94.34 0

Table 11: Results of weight-poisoning backdoor attacks
and our defense method in the instruction tuning set-
ting. The weight-poisoning backdoor attack method is
BadNet.

Model Sample 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Victim Poison 3% 4% 13% 31% 49%
PSIM Clean 70% 28% 2% 0% 0%
PSIM Poison 0% 1% 11% 31% 56%

Table 12: The distribution results of confidence scores
from victim and PSIM module. The dataset is SST-2.
Victim stands for a victim model.

backdoor attacks, PEFT demonstrates noticeable1009

vulnerability, significantly impacted by the attacks.1010

This is evident from its ASR, which is markedly1011

higher compared to that of the full-parameter fine-1012

tuning method. Furthermore, our utilization of the1013

PSIM has proven effective in discerning poisoned1014

samples, consequently enabling us to achieve su-1015

perior performance in safeguarding against weight-1016

poisoning backdoor attacks.1017

PSIM in more language models To further val-1018

idate the security issues of the PEFT algorithm1019

when facing weight-poisoning backdoor attacks1020

and to assess the generalizability of the PSIM al-1021

gorithm, we conduct experiments on the Vicuna-1022

7B (Zheng et al., 2023) and MPT-7B (Team, 2023)1023

models. As Table 10 shows, the experimental1024

results indicate that the PEFT method exhibits a1025

higher attack success rate when subjected to weight- 1026

poisoning backdoor attacks, which further corrobo- 1027

rates our hypothesis that the PEFT method is more 1028

susceptible to such attacks. Additionally, within 1029

the defense setting, we compare our approach with 1030

the latest Fine-mixing (Zhang et al., 2022b) algo- 1031

rithm. The results demonstrate that our PSIM de- 1032

fense algorithm effectively defends against weight- 1033

poisoning backdoor attacks and is competitive with 1034

existing methods. 1035

PSIM in clean model and multiple triggers To 1036

explore the impact of the PSIM module on clean 1037

models (free of backdoor), we expand our exper- 1038

iments to validate whether our proposed defense 1039

algorithm affects the performance of clean mod- 1040

els. We conduct relevant experiments in the BERT 1041

model, with the results presented in Table 9. Only 1042

a minor performance change is observed when our 1043

proposed PSIM module is incorporated into the 1044

free-of-backdoor attack model. For instance, in the 1045

P-tuning v2, the model performance decreases by 1046

a mere 0.14%. 1047

Simultaneously, we incorporate experiments 1048

with multiple triggers to further validate the de- 1049

fensive performance of the PSIM algorithm. Here, 1050

we utilize a mix of character triggers (BadNet) and 1051

sentence triggers (InSent), embedding multiple trig- 1052

gers into the victim model. As shown in Table 9, 1053

the experimental results demonstrate that the attack 1054

success rate of the weight-poisoning backdoor at- 1055

tack model with multiple triggers approaches 100% 1056

under different settings. However, our PSIM de- 1057

fense algorithm effectively identifies poisoned sam- 1058

ples and defends against backdoor attacks involv- 1059
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ing multiple triggers. For instance, in the P-tuning1060

v2 setting, it achieves a defense effectiveness of1061

92.96% while maintaining clean accuracy.1062

PSIM in instruction tuning Unlike traditional1063

supervised learning, instruction tuning (Xu et al.,1064

2023; Yan et al., 2023) may not require fine-tuning1065

third-party models, thereby naturally avoiding the1066

issue of "catastrophic forgetting" during the fine-1067

tuning process. However, if the weights are poi-1068

soned, the pre-defined backdoor attack trigger eas-1069

ily induces the model to output target content.1070

We attempt to design a backdoor attack based on1071

weight-poisoning for instruction tuning while using1072

our algorithm for defense. The results are shown1073

in Table 11; when utilizing the weight-poisoning1074

language model directly, the attack success rate is1075

close to 100%. When facing the defense algorithm,1076

our PSIM effectively identifies poisoned samples,1077

defends against backdoor attacks, and ensures the1078

model’s performance. For example, in the LLaMA1079

model, our PSIM algorithm achieves 100% defense1080

without affecting model performance.1081

Statistical analysis for confidence About the set-1082

ting of γ, we determine it through human experi-1083

ence. Unlike traditional hyperparameters, the se-1084

lection of γ does not impact the training of the1085

PSIM module. We analyze the confidence scores1086

of model outputs in the setting of weight-poisoning1087

backdoor attacks based on BadNet. Firstly, we1088

fine-tune the poisoned weights on clean samples1089

utilizing the PEFT algorithm. During the inference1090

phase, when the input samples contain the trigger,1091

the proportion of cases where the model’s confi-1092

dence score for the target label exceeds 0.8 is 80%.1093

We also compile the confidence scores outputted1094

by the PSIM module, which include the confidence1095

of clean and poisoned samples towards the target1096

label. It is not hard to see that when the input to1097

the PSIM module is a clean sample, its confidence1098

score tends to be around 0.5, while if the input1099

sample is poisoned, the confidence score outputted1100

by the module concentrates above 0.8. Therefore,1101

we choose to set this parameter through human1102

experience.1103

Label Reset Rate In our algorithm, random label1104

resetting is utilized for training the PSIM module,1105

thereby enabling the distinction between clean and1106

poisoned samples based on confidence scores. Con-1107

sequently, we necessitate random resetting of all1108

labels within the samples. Concurrently, to eval-1109

uate the influence of varying label reset rates on1110

defensive performance and clean accuracy, we con-1111

Scenario
100% 80% 60% 40%

CA ASR CA ASR CA ASR CA ASR

Full-tuning 91.08 4.65 89.13 6.05 60.41 0 34.98 0

LoRA 90.02 7.92 87.70 15.93 58.92 0.33 33.72 0.33

Table 13: Results of different label reset rates

Defense Method Extra module Graphics Storage
WeDef (Jin et al., 2022) Yes Yes Yes

Fine-mixing (Zhang et al., 2022b) Yes Yes Yes
DARCy (Le et al., 2020) Yes Yes No
AttDef (Li et al., 2023a) Yes Yes Yes

PSIM Yes Yes Yes

Table 14: Comparison of graphics memory and storage
consumption across different backdoor attack defense
algorithms.

ducted ablation experiments. As indicated in Table 1112

13, despite the stability of defensive performance, a 1113

continuous decrease in label reset rate severely im- 1114

pairs clean accuracy. Therefore, it is indispensable 1115

to reset the labels of all samples within the PSIM 1116

module. 1117

Communication cost In our defense algorithm, we 1118

design the PSIM module, which is trained based on 1119

the PEFT algorithm. For example, in the LLaMA- 1120

7B model, we use the prompt-tuning algorithm to 1121

train the PSIM module. The number of parame- 1122

ters during the training process of this module is 1123

1,097,984, which accounts for 0.016% of the total 1124

parameters (6,608,449,792) of the LLaMA model. 1125

Therefore, we believe that the graphics memory 1126

consumption for training an additional PSIM mod- 1127

ule is extremely low. In addition, we only need 1128

storage space equivalent to that of LLaMA to store 1129

the PSIM module. Furthermore, compared with 1130

several existing defense algorithms in Table 14, we 1131

found that the PSIM module does not increase the 1132

occupancy of graphics memory or storage space 1133

compared to current methods. For instance, in the 1134

Fine-mixing (Jin et al., 2022) defense algorithm, 1135

an additional model that is free of backdoors is re- 1136

quired to be mixed proportionally with the weight- 1137

poisoned language model. This algorithm also ne- 1138

cessitates extra graphics memory and storage space. 1139

Similarly, in AttDef (Li et al., 2023a), a poison sam- 1140

ple discriminator based on ELECTRA is trained, 1141

which likewise requires additional graphics mem- 1142

ory and storage space. 1143
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