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ABSTRACT

Video highlights detection (VHD) is an active research field in computer vision,
aiming to locate the most user-appealing clips given raw video inputs. However,
most VHD methods are based on the closed world assumption, i.e., a fixed num-
ber of highlight categories is defined in advance and all training data are available
beforehand. Consequently, existing methods have poor scalability with respect to
increasing highlight domains and training data. To address above issues, we pro-
pose a novel video highlights detection method named Global Prototype Encoding
(GPE) to learn incrementally for adapting to new domains via parameterized pro-
totypes. To facilitate this new research direction, we collect a finely annotated
dataset termed LiveFood, including over 5,100 live gourmet videos that consist of
four domains: cooking, eating, ingredients and presentation. To the best of our
knowledge, this is the first work to explore video highlights detection in the incre-
mental learning setting, opening up new land to apply VHD for practical scenarios
where both the concerned highlight domains and training data increase over time.
We demonstrate the effectiveness of GPE through extensive experiments. No-
tably, GPE surpasses popular domain-incremental learning methods on LiveFood,
achieving significant mAP improvements on all domains. The code and dataset
will be made publicly available.

1 INTRODUCTION

The popularization of portable devices with cameras greatly promotes the creation and broadcasting
of online videos. These sufficient video data serve as essential prerequisites for relevant researches,
e.g. video summarization (Potapov et al., 2014; Song et al., 2015; Zhang et al., 2018; Fajtl et al.,
2018; Zhu et al., 2021), video highlights detection (VHD) (Yang et al., 2015; Xiong et al., 2019;
Lei et al., 2021; Bhattacharya et al., 2021), and moment localization (Liu et al., 2018; Zhang et al.,
2020; Rodriguez et al., 2020), to name a few. Currently, most VHD methods are developed under
the closed world assumption, which requires both the number of highlight domains and the size
of training data to be fixed in advance. However, as stated in Rebuffi et al. (2017), natural vision
systems are inherently incremental by consistently receiving new data from different domains or
categories. Taking the gourmet video as an example, in the beginning, one may be attracted by the
clips of eating foods, but lately, he/she may raise new interests in cooking and want to checkout the
detailed cooking steps in the same video. This indicates that the target set the model needs to handle
is flexible in the open world. Under this practical setting, all existing VHD methods suffer from the
scalability issue: they are unable to predict both the old and the newly added domains, unless they
retrain models on the complete dataset. Since the training cost on videos is prohibitive, it is thus
imperative to develop new methods to deal with the above incremental learning issues.

Broadly speaking, there exist two major obstacles that hinder the development of incremental VHD:
a high-quality VHD dataset with domain annotations and strong models tailored for this task. Recall
existing datasets that are widely used in VHD research, including SumMe (Gygli et al., 2014),
TVSum (Song et al., 2015), Video2GIF (Gygli et al., 2016), PHD (Garcia del Molino & Gygli,
2018), and QVHighlights (Lei et al., 2021), all of them suffer from threefold drawbacks: (1) only
the feature representations of video frames are accessible instead of the raw videos, thus restricting
the application of more powerful end-to-end models; (2) most datasets only have a limited number
of videos with short duration and coarse annotations, which are insufficient for training deep models;
(3) none of them has the video highlight domain or category labels, thus can not be directly used in
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Figure 1: The LiveFood dataset. The row from top to bottom illustrates examples of vanilla clips,
ingredients and presentation respectively. More samples are attached in Appendix A.2.

incremental learning. In order to bridge the gap between VHD and incremental learning, we first
collect a high-quality gourmet dataset from live videos, namely LiveFood. It contains over 5,100
carefully selected videos with 197 hours in total. Four domains are finely annotated, i.e., cooking,
eating, ingredients and presentation. These related but distinctive domains provide a new test bed
for incremental VHD tasks.

To solve this new task, we propose a competitive model: Global Prototype Encoding (GPE) to
learn new highlight concepts incrementally while still retaining knowledge learned in previous video
domains/data. Specifically, GPE first extracts frame-wise features using a CNN, then employs a
transformer encoder to aggregate the temporal context to each frame feature, obtaining temporal-
aware representations. Furthermore, each frame is classified by two groups of learnable prototypes:
highlight prototypes and vanilla prototypes. With these prototypes, GPE optimizes a distance-based
classification loss under L2 metric and encourages incremental learning by confining the learned
prototypes in new domains to be close to that previously observed. We systematically compare
the GPE with different incremental learning methods on LiveFood. Experimental results show that
GPE outperforms other methods on highlight detection accuracy (mAP) with much better training
efficiency, using no complex exemplar selection or complicated replay schemes, strongly evidencing
the effectiveness of GPE.

The main contributions of this paper are summarized as follows:

• We introduce a new task named incremental video highlights detection, which has im-
portant applications in practical scenarios. A high-quality LiveFood dataset is collected
to facilitate research in this direction. LiveFood comprises over 5,100 carefully selected
gourmet videos in high resolution, providing a new test bed for video highlights detection
and domain-incremental learning tasks.

• We propose a novel end-to-end model for solving incremental VHD, i.e., Global Prototype
Encoding (GPE). GPE can incrementally identify highlight and vanilla frames in new high-
light domains via learning extensible and parameterized highlight/vanilla prototypes. GPE
achieves superior performance compared with other incremental learning methods, improv-
ing the detection performance (mAP) by 1.57% on average. The above results suggest that
GPE can serve as a strong baseline for future research.

• We provide comprehensive analyses of LiveFood as well as the proposed GPE model for
deepening the understanding of both, as well as giving helpful insight for future develop-
ment. We hope our work can inspire more researchers to work in incremental VHD, finally
pushing forward the application of VHD in practical scenarios.

2 RELATED WORK

Video Highlights Detection (VHD) is an important task in video-related problems. This line of
research can be roughly divided into two groups, namely the ranking-based and regression-based
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methods. Yao et al. (2016) employs a ranking model to learn the relationship between highlights
and non-highlights, assigning higher scores to the positive clips. Saquil et al. (2021) utilizes multiple
pairwise rankers to capture both the local and global information. Badamdorj et al. (2021) assigns
higher scores to annotated clips based on dual-modals, i.e., the visual and audio streams. Based on
ranking methods, a lot of works aim to mitigate the expensive cost of human annotation using unsu-
pervised techniques or priors, such as (Xiong et al., 2019; Badamdorj et al., 2022). Different from
the above methods, regression-based methods predict the locations of highlights directly. Zhu et al.
(2021) presents anchor-based and anchor-free approaches to predict the start and end timestamps, as
well as the confidence score of highlights, therefore avoiding the laborious manual-designed post-
processing. Moment-DETR (Lei et al., 2021) employs a transformer decoder to obtain the times-
tamps of specific clips based on different queries. Although the existing methods mentioned above
boost the performance of VHD tasks, they substantially neglect the requirements of incremental
learning in VHD, which is critical to the practical applications of VHD. In reality, numerous videos
and new interests are created rapidly, thus demanding the VHD model to be capable of efficiently
handling increasing highlight domains and data.

Incremental Learning (IL) is of great concern since the natural vision systems are inherently in-
cremental. The main problem to solve in incremental learning is catastrophic forgetting, manifested
as the forgetting of old classes or domains when learning new concepts. As investigated in Lange
et al. (2022), the primary efforts deal with this issue in three aspects: using a memory buffer to store
the representative data (Rebuffi et al., 2017; Isele & Cosgun, 2018; Rolnick et al., 2019; Yan et al.,
2021; Lange & Tuytelaars, 2021), adopting regularization terms to constrain the change of model’s
weights or outputted logits (Kirkpatrick et al., 2016; Zenke et al., 2017; Schwarz et al., 2018) and
performing parameter isolation to dedicate different model parameters for each task (Fernando et al.,
2017; Mallya & Lazebnik, 2018; Rosenfeld & Tsotsos, 2020). The memory buffer replays previous
samples while learning new concepts to eliminate forgetting, however, it may lead to overfitting on
the stored sub-set and incur heavy memory costs. The regularization-based methods penalize the
model if some characteristics are changed during the next training stage, resulting in the domination
of the so-called essential characters. Parameter isolation grows new branches for new tasks, raising
prohibitive colossal architectures. To mitigate the negative effects of existing methods, GPE employs
prototype learning combined with distance measurement to perform binary classification (highlight
vs. vanilla frames). Prototypes are essentially the most representative features learned across the
whole training data, circumventing both the issue of overfitting on the sub-set and the unbearable
costs of storing raw data. Besides, we constrain the change of prototypes between stages which
is an overall refinement instead of minority domination. The prototypes from previous stages are
inherited during training in the current domains, so as to maintain global consistency while leaving
room for adjustment and improvements.

3 PROBLEM STATEMENT

Figure 2: Illustration of conducting incremental
VHD on LiveFood.

In incremental VHD, the training procedure
consists of several consequent tasks built on
disjoint datasets with distribution shifts. As-
suming that we have T tasks in total, and this
yields a training data stream {T1, T2, ..., TT }
where Ti ∩ Tj = ∅ if i ̸= j. Each training
task Tt is represented as {(xt

i, y
t
i)}

nt
i=1 where

xt
i ∈ X denotes the whole frame set of i-th

training video in stage t, yti is its correspond-
ing frame-wise label (i.e., a binary vector in-
dicating highlight/vanilla frames), and nt rep-
resents the number of accessible training data pairs. Moreover, we use {D1,D2, ...,DT } to de-
scribe the corresponding domains included in training tasks {T1, T2, ..., TT }. Note Di ̸= Dj if
i ̸= j. Specifically, in our proposed LiveFood, we split the training videos into four disjoint sub-
set {T1, T2, T3, T4}, and the corresponding domains are denoted as {D1,D2,D3,D4}. Considering
that a video may consist of more than one domain, we further constrain that the domains appear-
ing in Dt−1 is a sub-collection of that in Dt. Formally, let St denotes all possible combinations of
domains presented in Dt, and Ct is the domain combinations appearing in videos of Tt, we have
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C1 = S1 and Ct = St \
⋃t−1

i=1 Si. More concretely, let di denotes a specific domain label, then if
D1 = {d1}, D2 = {d1, d2}, and D3 = {d1, d2, d3}, we have C1 = {d1}, C2 = {d2, (d1, d2)} and
C3 = {d3, (d1, d3), (d2, d3), (d1, d2, d3)}. In above example, C2 = {d2, (d1, d2)} indicates that the
videos in T2 can contain the domain of d2 or the mixture of d1 and d2. Videos that merely contain
the domain of d1 are excluded from T2 since the intention of incremental VHD is to effectively
learn new concepts while remembering what are already learned in past data. The testing set con-
tains mixed videos including all domains, and during task Tt, only the domain appearing in Dt is
treated as positive when evaluating the performance.

4 THE LIVEFOOD DATASET

Video Selection. We collect online gourmet videos with high resolution. As introduced in Xiong
et al. (2019), shorter videos are more likely to contain attractive clips and thus have more hits,
while longer videos are usually boring. Taking this prior into consideration, we filter out both the
extremely short (less than 30 seconds) which may contain insufficient gourmet content to learn
from and long (over 15 minutes) videos which users generally pay less attention to. After that,
all reserved raw videos are viewed by qualified workers to check whether the content of videos is
gourmet-related or not, eliminating the effects of incorrect category annotation. Only videos that
pass the aforementioned checks are selected for subsequent annotation tasks, in order to guarantee
the quality of LiveFood. Figure 3 (a) shows the duration distribution of the videos across all domains.

(a) (b) (c)

Figure 3: Statistical results of the proposed LiveFood. (a) shows the distribution of video duration.
(b) illustrates the distribution of highlight durations. Most highlight clips are shorter than 15 seconds.
(c) shows the relative position of each attractive clip w.r.t. corresponding videos. The highlights
distribute evenly across whole videos, evidencing the good diversity of LiveFood.

Highlights Annotation. We define four highlight domains that are generally presented in collected
videos, namely cooking, eating, ingredients and presentation. For each domain, a video clip is
accepted as a satisfactory highlight if it meets the following criteria in Table 1.

Table 1: Basic description of annotated domains in LiveFood.

Domain Description
cooking The process demonstrates the chef’s exquisite cooking skills.
eating People enjoy foods with exaggerated or satisfied expressions on their faces.
ingredients The video clip shows at least three kinds of rare ingredients in high quality.
presentation A well-displayed meal to make it looks more appetizing.

The annotators are required to glance over the whole video first to locate the coarse position of at-
tractive clips. Afterward, the video is annotated at frame level from the candidate position to verify
the exact start and end timestamps of highlights. Meanwhile, we introduce a strict double-check
mechanism (cf. Appendix A.3) to further guarantee the quality of annotations. Since selecting the
timestamps of highlights is partly subjective, both objective and subjective verifications are neces-
sary in quality control. Concerning the consistent visual feeling of videos, we restrict the highlights
to be longer than three seconds, and less than two minutes to avoid being tedious.

Data Statistics. Figure 3 depicts the statistical results of our proposed LiveFood, including the
distribution of video duration, the distribution of highlights duration, and the relative position of
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center timestamp with respect to each video, etc. Besides, in Table 2, we also compare the proposed
LiveFood with existing VHD datasets such as SumMe (Gygli et al., 2014), YouTubeHighlights (Sun
et al., 2014), Video2GIF (Gygli et al., 2016), PHD (Garcia del Molino & Gygli, 2018) and QVHigh-
lights (Lei et al., 2021) for better illustrating the differences among them.

Table 2: Comparison between the proposed LiveFood and existing datasets.

Dataset Year Contents
Label Total number of Avg. len. (sec) of

domain / class videos / highlights videos / highlights
SumMe 2014 Open ✗ 25 / 390 120.0 / -
YouTubeHighlights 2014 Activity ✗ 712 / - 143.0 / 2.0
Video2GIF 2016 Open ✗ 80K / 98K 332.0 / 5.2
PHD 2018 Open ✗ 119K / 228K 440.2 / 5.1
QVHighlights 2021 Vlog / News ✗ 10.2K / 10.3K 150 / 24.6
LiveFood (ours) 2022 Gourmet ✓ 5.1K / 14.3K 136.5 / 6.4

As demonstrated in Table 2, the SumMe and YouTubeHighlights only contain a small number of
videos and annotations, which makes them insufficient for training deep models. The Video2GIF
and PHD are edited by online users and lack strict quality control mechanisms. Thus the reliability
of datasets may be undermined. The newly released QVHighlights can not be used for incremen-
tal learning since it does not have domain annotations. Besides, the average length of clips in
QVHighlights is pretty long: nearly one-fifth of each video is annotated as attractive clips, thus
causing the selected clips less discriminative compared to the vanilla clips. Different from the above
datasets, LiveFood provides gourmet videos with finely annotated domain labels, making it suitable
for domain-incremental VHD tasks.

5 METHOD

GPE aims to tackle forgetting while still improving by learning new concepts. As analyzed in
Section 2, conventional incremental learning methods have shortcomings, such as overfitting on
replayed data, limited flexibility, and unbearable growing architectures. Distinguished from them,
GPE employs prototypes together with distance measurement to solve the classification problem.
Prototypes are compact and concentrated features learned on the training data, mitigating the effects
of overfitting on the stored sub-set. In addition, by using global and dynamic prototypes, we endow
the model with appealing capability for further refinement when fed with new data (Mf in Figure 4)
or accommodation to new domain concepts (Md in Figure 4).

Architecture. Inspired by Carion et al. (2020), GPE employs the combination of convolution- and
attention-based models to extract features. Concretely, a ConvNeXt (Liu et al., 2022) pre-trained on
ImageNet (Russakovsky et al., 2015) is used to extract spatial features of input video frames. After
that, a transformer encoder with multi-heads is used to perform temporal fusion, generating global
representations based on the whole video frames. With the transformation of a feedforward network
(FFN) which consists of fully-connected layers, each frame is classified based on the distance to
learnable prototypes. We aim to learn two groups of trainable prototypes with the same shape,
namely the highlight (positive) and vanilla (negative) prototypes. By denoting the dimensionality of
output feature of transformer as m and the number of prototypes within each group as k, both the
highlight and vanilla prototypes can be represented as a matrix with shape k ×m. By utilizing L2

distance as the distance measurement between each feature and prototype, we obtain the pair-wise
distance between features and each group of prototypes. Formally, we use h, H , and V to represent
the transformer feature, the highlight prototypes and the vanilla prototypes. gϕ(·) denotes the FFN
module. d(·) is the L2 distance between a feature-prototype pair. The distance from feature h to H
and V are formulated as:

dH = min
i=1:k

d(gϕ(h), Hi), dV = min
i=1:k

d(gϕ(h), Vi), (1)

where the subscript i represents the i-th prototype. The distance is mapped to probability PH using
the softmax function which can be understood as the confidence of assigning feature h to highlights.

PH =
exp(−dH)

exp(−dH) + exp(−dV )
. (2)
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Figure 4: The proposed GPE framework. {Ti}Ti=1 indicates a training stream with T tasks. In the
right-most part, Mf and Md represents the fixed and dynamic modes of GPE. Mf defines the number
of prototypes in advance and refines them across different stages. A restriction on the magnitude
of change amplitude is imposed during learning (cf. Eq. 5). Md dynamically adds new prototypes
into the learning process when dealing with new domains. The change restriction is only applied on
inherited prototypes. This mode is more suitable when learning on a large amount of domains. Each
prototype in above figure is equivalent to a row of V or H (cf. Eq. 1).

Then, we use cross-entropy loss to optimize the model through gradient back-propagation:

Lcls = − 1

N

N∑
i=1

yi · log(PH) + (1− yi) · log(1− PH) (3)

where N represents the size of training frames and yi equals 1 if the i-th frame is annotated as
highlights otherwise 0.

Learning with incremental domains. We detail the learning of Mf (Figure 4) in this section,
and the dynamic mode Md can be easily derived by only restricting the change of inherited proto-
types and training newly added prototypes freely. We use hθ(·) parameterized by θ to indicate the
feature extractor jointly constructed by a ConvNeXt and a transformer encoder. The FFN gϕ(·) is
parameterized by ϕ. Recall the outputted feature is h. Both the vanilla and highlight prototypes are
denoted by π for simplicity. With the help of these notations, the classification loss built in Eq. 3
is abbreviated as Lcls(θ, ϕ, π). We expand the definition of distance measurement for evaluating
the distance between given two prototypes. For two sets of learned prototypes π(t) and π(t+1), the
distance between them is calculated as:

d(π(t), π(t+1)) =
1

k

k∑
i=1

√√√√ m∑
j=1

(π
(t)
i,j − π

(t+1)
i,j )2 (4)

During the training phase T , the model inherits trained prototypes π(T−1) from the former stage.
For the incremental need, we tackle the catastrophic forgetting issue by restricting the change of pro-
totypes, guaranteeing the awareness that the model has learned towards the observed domains. With
the above formulations, we consider the following constrained nonlinear optimization problems:

min
θ,ϕ,π

Lcls(θ, ϕ, π)

s.t. d(π(T−1), π) ≤ γ
(5)

where γ is the tolerable change introduced to the observed prototypes. The optimal result that
meets the above restriction is (θ(T ), ϕ(T ), π(T )). Instead of solving the complex nonlinear problem,
we resort to its corresponding empirical dual formulation. With an auxiliary positive Lagrange
multiplier λ, the optimization objective in Eq. 5 is transformed into the following manner:

S(T ) = (θ(T ), ϕ(T ), π(T ))

= max
λ

min
θ,ϕ,π

L(θ, ϕ, π, λ)

= max
λ

min
θ,ϕ,π

Lcls(θ, ϕ, π) + λ[d(π(T−1), π)− γ]

(6)
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where S(T ) indicates the optimal solution in training stage T . We update the trainable parameters
(i.e., θ, ϕ, and π) and the empirical Lagrangian variable λ alternatively and iteratively:

θ ← θ − η
∂Lcls(θ, ϕ, π)

∂θ

ϕ← ϕ− η
∂Lcls(θ, ϕ, π)

∂ϕ

π ← π − η
∂L(θ, ϕ, π, λ)

∂π

λ← max{λ+ η[d(π(T−1), π)− γ], 0}

(7)

where η is the learning rate of trainable parameters and λ is the multiplier in the dual step. With the
above analysis, the incremental training and inference pipeline is summarized in Algorithm 1.

Algorithm 1: Global Prototype Encoding for Incremental Video Highlights Detection.
Input: training data X with k stages; initial hθ(·), gϕ(·), and π; initial η, γ, and λ.
Output: trained hθ(·), gϕ()·, and π at each stage.

1 while Training do
2 for stage i=1:k do
3 Reset η, γ, and λ;
4 repeat
5 Sample a batch data {x, y} from X

within stage i;
6 Calculate outputted logits:

gϕ(hθ(x));
7 Calculate the loss function with Eq

6;
8 Update θ, ϕ, π, and λ with Eq 7;
9 until θ, ϕ, and π are converged;

10 while Inference do
11 for stage i=1:k do
12 repeat
13 Sample {x, y} from the testing set at

stage i;
14 Calculate logits: l = gϕ(hθ(x));
15 Classify inputs based on the distance

between l and π;
16 until the testing set is ∅;
17 Average the mAP cross domains.
18 Average the mAP cross all stages.

6 EXPERIMENT

We introduce the details of the evaluation protocol and experimental results in this section.

6.1 EXPERIMENTAL SETUP

Data and Evaluation Protocol. LiveFood contains 4928 videos for training and 261 videos for
testing. We randomly split 15% of the 4928 videos for validation. T1, T2, T3 and T4 consist of
3380, 854, 393, and 113 videos respectively. D1, D2, D3 and D4 are {presentation}, {presentation,
eating}, {presentation, eating, ingredients}, and {presentation, eating, ingredients, cooking}. We
report the mAP on testing set following previous works (Yao et al., 2016; Xiong et al., 2019).

GPE. GPE only finetunes the last layer of ConvNeXt during training. The transformer encoder
has 8 heads and 3 layers. The feedforward module gϕ(·) is a multi-layer perception with 3 linear
layers activated by ReLU. Both the vanilla and highlight prototypes are formulated as 40 vectors
with dimensions of 128. During every stage, the model is trained with 300 epochs, and the learning
rate halves every 70 epochs starting with 1e-3. GPE is initialized randomly during the first stage. In
later stages, it trains prototypes in Mf by starting from weights learned in the former stage. In Md,
all prototypes learned in previous stages are inherited and trained as similar as in Md. In addition to
these inherited prototypes, in each stage, new prototypes are randomly initialized and added to Md

so as to enhance the learning of new concepts.

Regularization-based methods. SI (Zenke et al., 2017) and oEWC (Schwarz et al., 2018) are
representatives. These schemes update the model with a compromised loss function, utilizing both
the overall importance of previous stages and the current task to eliminate forgetting.

Replay methods. ER (Rolnick et al., 2019) and DER (Buzzega et al., 2020) use a memory buffer to
store the representative data from the previous task to defend against forgetting. The buffer size is
set to 200 if not specified.
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Figure 5: The observed highlights across different training stages.

Lower bound (Lb). In each stage, GPE is trained without constraints (cf. Eq. 5), suffering from
severe catastrophic forgetting and rendering performance drops with the increasing of tasks.

Upper bound (Ub). In each stage, GPE is trained with data from all stages. Thus it is free from the
forgetting issue and provides the upper bound performance for all incremental learning methods.

6.2 MAIN RESULT

Comparison with existing IL methods. The experimental results are depicted in Table 3. We
highlight the upper bound results with gray background. It can be observed from Table 3 that the
vanilla GPE (Mf) surpasses the lower bound with an improvement of 2.91% mAP. Compared to
the classic IL methods SI and oEWC, GPE outperforms them by a remarkable margin, yielding at
least 1.57% performance gain on mAP. Moreover, when equipped with the same replay schemes as
Yan et al. (2021), GPE achieves 1.06% and 2.71% mAP gain compared to DER and ER. The above
results clearly demonstrate the effectiveness of GPE in tackling the incremental VHD task.

Table 3: Comparison of GPE with existing incremental learning methods on LiveFood. We evaluate
their frame-wise mAP performance.

mAP Lb SI oEWC ER∗ DER∗ Ub GPE(Mf) GPE(Md) GPE∗

T1 36.13 36.16 36.13 35.79 36.17 36.15 36.14 36.21 36.17

T2 30.86 31.84 31.82 31.38 33.14 37.38 35.82 36.13 36.62

T3 29.18 30.72 30.51 29.13 32.52 36.90 31.87 32.74 33.15

T4 25.89 28.73 28.67 29.06 30.11 36.30 29.88 30.15 30.27

Avg. 30.52 31.86 31.78 31.34 32.99 36.68 33.43 33.90 34.05
∗: using memory buffer to replay samples.

Visualization of highlight scores across training stages. We investigate the effects of observed
prototypes across different training stages. In Figure 5, we present the highlight detection results of
GPE in the first and the last training stage. For comparison, we also provide the prediction of DER.
In the curves shown in Figure 5, the blue and orange points indicate the highlight scores of each
frame predicted by GPE (i.e., PH in Eq. 2) during the first task T1 and the final task T4. The green
points represent the predicted scores of DER in T4. It is clear that GPE can learn new concepts,
e.g., cooking while keeping the memory of presentation learned in the first stage. This result is in
line with our motivation that a strong incremental VHD model should be able to cover both the past
and new concepts. In contrast, since DER employs stored data to strengthen memory, it still has
the drawback of being prone to forgetting due to the limited buffer size. This is demonstrated by its
assigning much lower scores to the old domain of presentation when learning cooking.

Scalability of GPE in the dynamic manner. We investigate the generalization ability of dynamic
GPE (Md) in the scenario where the model needs to handle a large number of domains. We consider
the R-MNIST dataset containing a series of rotated digits with different degrees between [0, π),
where each degree represents a domain. For a fair comparison, we use the identical settings as
Buzzega et al. (2020), yielding a stream with 20 subsequent tasks. Note that no augmentation
techniques are used. In this experiment, GPE is simplified to be a small network with 2 fully-
connected layers followed by ReLU. The number of prototypes is set to 5 per class. Therefore
each task Tt has 5t prototypes per class by inheriting from previous stages and generating 5 new
prototypes for each class. The old prototypes are forbidden to change too much. λ and γ are 10 and
1e-2. All other experimental settings follow Buzzega et al. (2020).
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Table 4: Average classification accuracy on R-MNIST.

Method SI oEWC ER GEM FDR GSS HAL DER GPE (Md) GPE (Md)

Buffer Size ✗ ✗ 200 200 200 200 200 200 ✗ 200

Avg Acc. 71.91 77.35 85.01 80.80 85.22 79.50 84.02 90.04 85.42±0.13 90.17±0.25

Results depicted in Table 4 demonstrate that the dynamic GPE surpasses most conventional methods,
including the regularization-based and replay methods. Notably, the dynamic GPE achieves 85.42%
average accuracy across 20 tasks, comparable to ER (Rolnick et al., 2019) and FDR (Benjamin
et al., 2019) while outperforming other methods with a considerable margin. We further adopt the
identical replay schemes as DER (Yan et al., 2021), and this helps the dynamic GPE achieve 90.17%
top-1 accuracy, which is established as a new comparable state-of-the-art approach.

6.3 ABLATION STUDY

Ablation on the initial number of prototypes k. The number of prototypes reflects the model’s
capacity. Too many prototypes increase the training cost while too few lead to underfitting. Results
shown in Table 5 provide a comparison between the training cost and performance under the fixed
mode of GPE (Mf) on LiveFood. It is observed that with the increasing initial quantity of prototypes
k, the average mAP over all tasks consistently increases. However, by comparing the last two rows
in Table 5, we notice that the performance gain between k = 40 and k = 50 is marginal though
more parameters are introduced. Therefore, we set k to 40 throughout experiments to strike a good
balance between accuracy and efficiency.

Table 5: Ablations on the initial number of
prototypes k.

k
mAP (γ = 5.0)

T1 T2 T3 T4 Avg.
10 35.31 33.48 29.18 25.98 30.99
20 35.82 34.66 30.72 28.73 32.35
30 36.13 35.70 30.51 28.67 32.75
40 36.14 35.82 31.87 29.88 33.43
50 36.21 35.88 31.90 29.94 33.48

Table 6: Ablations on the changing con-
straints of distance γ.

γ
mAP (k = 40)

T1 T2 T3 T4 Avg.
1e-3 36.14 34.26 30.17 26.43 31.75
1.0 36.13 34.97 30.62 27.41 32.28
3.0 36.15 35.50 31.44 28.27 32.84
5.0 36.14 35.82 31.87 29.88 33.43
15.0 36.14 34.92 30.80 28.12 32.50

Ablation on distance constraint γ. Extremely small γ hinders the model from learning new con-
cepts since the prototypes are almost unchanged. In contrast, too large γ may lead to catastrophic
forgetting since the model may heavily overfit to the newly observed data. As shown in Table 6, we
set k to 40 by default and investigate the effects of γ with different values. In our experiments, we
find the distance between the vanilla and highlight prototypes after T1 is less than 15, so it is set as
the upper bound of γ. From Table 6, we can see that when γ is small, say 1e-3, GPE can hardly
learn the new contents, only achieving similar mAP compared to the lower bound method as shown
in Table 3. By enlarging γ, the average mAP increases consistently from 31.75 to 33.43. When
γ is 15, the model suffers from the forgetting issue as explained before, resulting in a near 1.0%
performance drop. Consequently, we set k and γ to 40 and 5 by default.

7 CONCLUSION

In this paper, we introduce a new task: incremental video highlight detection, aiming to perform
VHD in the practical scenario where both the highlight domains and data increase over time. To
pave the road in this new direction, we collect a high-quality video gourmet dataset LiveFood which
contains four fine-annotated domains. Then we propose a new end-to-end model named Global
Prototype Encoding (GPE) to learn incrementally to adapt to new highlight domains. Extensive
experimental results clearly demonstrate the effectiveness of our method. We hope this work serves
to inspire other researchers to work on this new and critical task.
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A APPENDIX

A.1 ETHICS, DATA, AND PRIVACY

We solemnly claim that we strictly hold to the highest standard to obey any regulations/rules regard-
ing ethics codes, data safety, and privacy preservation. Below we introduce the main measures taken
to eliminate potential risks/issues.

Data Desensitization. All videos appearing in LiveFood are crawled from public video-sharing
platforms. We remove all private information related to video owners to preserve privacy, including
but not limited to identifiers, meta-data, addresses, and profiles.

Data Storage. We emphasize that only video owners have the right to retain or remove their up-
loaded videos on the platform. To protect the intelligent property of creators, we do not store any
videos locally. The LiveFood consists of video links and corresponding domain annotations. Videos
appearing in LiveFood turn to invalid after being deleted by the creators.

User Privacy. We highly respect user privacy during the construction of the dataset. All videos
in LiveFood are publicly available on video-sharing platforms. Consent for public usage of videos,
including academic research, has been reached between the platform and users. All sensitive data
about users have been removed from our dataset.

Licence. LiveFood can only be used for non-commercial purposes. Applicants must sign an agree-
ment before using the dataset (cf. Appendix A.7).

Annotator Related. The annotators are skilled and experienced in data preparation. They have been
sufficiently instructed to beware of how to avoid any potential dangers and risks during annotation.
Their work is properly compensated per local law.

A.2 VISUALIZATION OF VIDEO ANNOTATIONS

Due to space limits, we do not present samples for each video domain in the main text. To help
better understand LiveFood, we show randomly selected videos video 1/.../7 from LiveFood
along with domain annotations in Figures 6 to 12. To preserve privacy, all faces are blurred.

Figure 6: Samples of clips and domain annotations from video 1. The row from top to bottom
illustrates vanilla clips, presentation, and eating, respectively. The faces appearing in video above
are blurred to protect privacy.

A.3 ANNOTATION QUALITY CONTROL

We have applied elaborate quality control to guarantee the high quality of LiveFood. Specifically,
to reduce subjectivity during annotation, an annotated video is reviewed by another experienced
reviewer to double-check if it meets the requirements in Table 1. An annotated video only passes
double-checking if both the annotator and reviewer agree on the correctness of domain labels over
90% video segments. Besides, reviewers are also required to identify the start and end timestamps of
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Figure 7: Samples of clips and domain annotations from video 2. The row from top to bottom
illustrates examples of ingredients, cooking, and presentation, respectively.

Figure 8: Samples of clips and domain annotations from video 3. The row from top to bottom
illustrates examples of vanilla clips, ingredients, and presentation, respectively.

Figure 9: Samples of clips and domain annotations from video 4. The row from top to bottom
illustrates examples of vanilla clips, presentation, and eating, respectively. The faces appearing in
video above are blurred to protect privacy.
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Figure 10: Samples of clips and domain annotations from video 5. The row from top to bottom
illustrates examples of vanilla clips, presentation, and eating, respectively. The faces appearing in
video above are blurred to protect privacy.

Figure 11: Samples of clips and domain annotations from video 6. The row from top to bottom
illustrates examples of vanilla clips, cooking, and eating, respectively. The faces appearing in video
above are blurred to protect privacy.

Figure 12: Samples of clips and domain annotations from video 7. The row from top to bottom
all illustrates the examples of presentation.
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highlight clips, and only clips with over 90% temporal IoU (Intersection-over-Union) between the
annotations of the annotator and reviewer are deemed as qualified highlight clips. The review process
is conducted in a batch-wise manner: 30 of every 100 annotated videos are selected randomly for
inspection. The threshold of qualification rate is 90%. Before starting the official annotation, all
annotators are trained with over one hundred testing videos to get fully prepared.

A.4 IN-HOUSE ANNOTATION TOOL

We use an in-house tool named LiveLabel for annotating videos. In this section, we introduce the
basic functions of LiveLabel to give a rough idea of how it is used in the annotation task.

Figure 13: The annotation tools used in LiveFood.

As shown in the interface above, LiveLabel pulls videos from a pre-defined video pipeline automat-
ically and parses these videos at an adjustable frame rate. On the left panel of Figure 13, the raw
video is played at the user-specified speed. One can play/stop the video display using the play but-
ton. Pushing capture will demonstrate the detailed video contents in a frame-by-frame fashion, as
shown in the right panel of Figure 13. These frames help the annotators select accurate timestamps
for video highlight clips. The check button is used to select pre-defined domains or categories. If a
video is undesired, the annotator can click the skip button to remove them from LiveFood.

A.5 MORE COMPARISON RESULTS ON R-MNIST

In Table 4, we show the comparison results between GPE and popular incremental learning ap-
proaches on the R-MNIST benchmark. We note that all methods employ identical architecture for a
fair comparison, i.e., a multi-layer perception (MLP) with two fully connected layers. In this section,
we further investigate the extensibility of GPE to stronger backbones, e.g., the convolution network
as in (Cha et al., 2021). Since detailed structural information of the convolution network used in
Cha et al. (2021) is unavailable, we use ResNet-18 (He et al., 2016) as the backbone for GPE and
all other competing methods. For a comprehensive comparison, we experiment with the following
three settings: (1) using no memory buffer, (2) using a memory buffer of 200 samples, 3) using
a memory buffer of 500 samples. We directly take the results from the paper of Co2L (Cha et al.,
2021) for comparison. For references of other methods in Table 7, please refer to: ER (Rolnick et al.,
2019), GEM (Lopez-Paz & Ranzato, 2017), A-GEM (Chaudhry et al., 2019), FDR (Benjamin et al.,
2019), GSS (Aljundi et al., 2019), HAL (Chaudhry et al., 2021), DER (Yan et al., 2021), DER++
(Yan et al., 2021), and Co2L (Cha et al., 2021).

When no memory buffer is applied, GPE with ResNet-18 (He et al., 2016) backbone achieves
94.77% top-1 classification accuracy on the R-MNIST dataset. By using a memory buffer of 200
samples and 500 samples, GPE boosts its performance by 2.29% and 3.56%, respectively. Compared
to more complex incremental learning techniques such as Co2L (Cha et al., 2021), although GPE
achieves comparable results, it is much simpler and more efficient. For example, Co2L counteracts
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Table 7: Average classification accuracy on R-MNIST using convolution-based models.

Buffer ER GEM A-GEM FDR GSS HAL DER DER++ Co2L GPE (Md)

200 93.53 89.86 89.03 93.71 87.10 89.40 96.43 95.98 97.90 97.06

500 94.89 92.55 89.04 95.48 89.38 92.35 97.57 97.54 98.65 98.33

knowledge forgetting using strong augmentations and distillation penalty, while GPE is much sim-
pler and cleaner by discarding all these tricks. This appealing property makes GPE more scalable
to handle practical scenarios. In comparison, Co2L has to design specific augmentation schemes
as well as hyper-parameters appearing in the distillation procedure, all leading to the hardship of
scaling to large data/tasks.

A.6 VISUALIZATION OF LEARNED PROTOTYPES

To provide a better understanding of the learned vanilla/highlight prototypes in GPE, we use t-
SNE (Van der Maaten & Hinton, 2008) to illustrate their distributions. GPE in the dynamic man-
ner is used in this experiment. Concretely, we conduct two experiments by setting the number of
vanilla/highlight prototypes to 40 and 80 respectively. We use scatters in different colors to indicate
the various training tasks. T1, T2, T3, and T4 are used to indicate the prototypes learned at different
stages. Figure 14 depicts the learning procedure.

Figure 14: The learned prototypes of GPE across different training stages.

In Figure 14, the number of learnable prototypes is set to 40 in the top row and 80 in the bottom row.
Taking the first two images in the top row as examples, GPE is trained to classify the vanilla and
presentation clips as illustrated in the first image. The scatters in gray are the negative prototypes,
while the pink ones are positive (highlight) prototypes of presentation. During the second task, GPE
aims to learn the characters of eating while still retaining that of presentation. Therefore, GPE limits
the change of prototypes observed in T1 (in pink) and develops a new group of prototypes in yellow,
namely T2 positive as shown in Figure 14. We emphasize that positive prototypes for T2 are updated
without constraints while that in pink (i.e., T1 positive) are forbidden to change too much (cf. Eq. 5).
The following tasks are optimized similarly.

Based on the depicted images, we can find that GPE adaptively adds new positive prototypes within
incremental tasks and meanwhile modifies the position of negative prototypes which have fixed
quantity. Since we model the task in each stage as a binary classification problem (highlight vs.
vanilla), the goal of GPE is thus to reduce the discrepancy across old and new domains while boost-
ing the distinction between the vanilla and highlight prototypes. The visualization results shown in
Figure 14 are consistent with our expectation by showing smaller inter-domain discrepancy and
greater distances between positive/negative prototypes. From another view, since we allow the
learned prototypes to change for adapting to the new data, both the inherited and the newly de-
veloped prototypes are updated simultaneously, thus helping reduce the discrepancy of prototypes
learned across domains.
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A.7 LiveFood RELEASE AGREEMENT

One must sign the following agreement in order to be permitted to use the LiveFood dataset.

LiveFood Release Agreement
• The released LiveFood can be only used for non-commercial purposes, including academic re-

search and education. Applicants are forbidden to use this dataset for profitability or infringe-
ment activities, including but not limited to advertising, selling, face-based applications, etc.

• Applicants promise that they will not conduct any form of analysis with respect to bio-info in
this dataset, including but not limited to faces, gender, etc.

• Applicants are aware that they take full responsibility for their usage of LiveFood. They agree
that we reserve the right to ask them to immediately stop illegal behavior and eliminate negative
influences caused.

• Applicants agree that we reserve the right to stop their usage of the dataset and delete its copies
in found of any violation of this agreement.

• Applicants must clearly state their purposes and the potential effects of using LiveFood.

Name: Email: Organization: Date: Signature:
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