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Interpretability is essential for the ethical applica-
tion of artificial intelligence (AI) to radiology (1), a 

requirement likely to be enshrined via regulation in 
the United States (2) and Europe (3). This conflicts 
with the design of many top-performing radiology AI 
algorithms, which are black boxes to developers and 
radiologists alike. This can cause an overreliance on 
algorithms (4) and incorrect diagnoses (5). Clinical 
risk prediction models for breast cancer do not con-
sider mammography image data (6–8), despite recent 
AI studies reporting significantly improved perfor-
mance when mammography data are used (9). Bet-
ter risk prediction is an active research goal because 
it is instrumental for the development of personalized 
screening strategies aimed at simultaneously reducing 
the financial and psychologic burdens of screening 

mammography and justifying the use of targeted ad-
vanced imaging (10–12).

The case of recent interest is Mirai, a deep learn-
ing neural network trained on screening mammograms 
from 56 786 patients to predict short-term (up to 5 
years) breast cancer risk (13). Mirai results were ex-
ternally validated on data from seven hospitals across 
three continents (14). The robust performance sug-
gests that Mirai has captured critical information that 
may complement existing clinical risk models. How-
ever, Mirai’s predictions are difficult to interpret be-
cause Mirai consists of a convolutional neural network 
(CNN) and a transformer (15), two distinct, complex 
architectures. Post hoc explanations of neural networks 
such as GradCAM and GradCAM++ are not reliable 
(16–18), and because of the unique architecture of 

Background: Mirai, a state-of-the-art deep learning–based algorithm for predicting short-term breast cancer risk, outperforms standard 
clinical risk models. However, Mirai is a black box, risking overreliance on the algorithm and incorrect diagnoses.

Purpose: To identify whether bilateral dissimilarity underpins Mirai’s reasoning process; create a simplified, intelligible model, 
AsymMirai, using bilateral dissimilarity; and determine if AsymMirai may approximate Mirai’s performance in 1–5-year breast cancer 
risk prediction.

Materials and Methods: This retrospective study involved mammograms obtained from patients in the EMory BrEast imaging Dataset, 
known as EMBED, from January 2013 to December 2020. To approximate 1–5-year breast cancer risk predictions from Mirai, 
another deep learning–based model, AsymMirai, was built with an interpretable module: local bilateral dissimilarity (localized 
differences between left and right breast tissue). Pearson correlation coefficients were computed between the risk scores of Mirai and 
those of AsymMirai. Subgroup analysis was performed in patients for whom AsymMirai’s year-over-year reasoning was consistent. 
AsymMirai and Mirai risk scores were compared using the area under the receiver operating characteristic curve (AUC), and 95% CIs 
were calculated using the DeLong method.

Results: Screening mammograms (n = 210 067) from 81 824 patients (mean age, 59.4 years ± 11.4 [SD]) were included in the study. 
Deep learning–extracted bilateral dissimilarity produced similar risk scores to those of Mirai (1-year risk prediction, r = 0.6832; 4–5-
year prediction, r = 0.6988) and achieved similar performance as Mirai. For AsymMirai, the 1-year breast cancer risk AUC was 0.79 
(95% CI: 0.73, 0.85) (Mirai, 0.84; 95% CI: 0.79, 0.89; P = .002), and the 5-year risk AUC was 0.66 (95% CI: 0.63, 0.69) (Mirai, 
0.71; 95% CI: 0.68, 0.74; P < .001). In a subgroup of 183 patients for whom AsymMirai repeatedly highlighted the same tissue over 
time, AsymMirai achieved a 3-year AUC of 0.92 (95% CI: 0.86, 0.97).

Conclusion: Localized bilateral dissimilarity, an imaging marker for breast cancer risk, approximated the predictive power of Mirai and 
was a key to Mirai’s reasoning.
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Mirai, those methods are not applicable. As a result, to our 
knowledge, no explanation of Mirai’s reasoning process has 
been provided prior to this work.

Prior work (19,20) has shown that explicit bilateral rea-
soning can support AI breast imaging models. To evaluate 
bilateral dissimilarity (differences between corresponding 
left- and right-laterality views from a patient’s mammo-
grams), we propose AsymMirai. AsymMirai is a simplified 
alternative to Mirai that computes risk by using only local-
ized bilateral dissimilarities. Thus, the aim of our study was 
to (a) identify whether bilateral dissimilarity as a mammog-
raphy marker underpins the deep learning model Mirai’s 
reasoning process for high-quality predictions; (b) use bilat-
eral dissimilarity as an imaging marker to create a simplified 
model, AsymMirai, with an intelligible reasoning process; 
and (c) evaluate both models to determine if AsymMirai 
may approximate performance of Mirai in 1–5-year breast 
cancer risk prediction.

Materials and Methods

Study Design
This retrospective study was compliant with the Health 
Insurance Portability and Accountability Act and was ap-
proved by the institutional review board. The requirement 
for informed consent was waived by the institutional review 
board. Mirai was initially applied to public data sets contain-
ing unilateral images. Since Mirai required bilateral views, 
all unilateral views were mirrored, resulting in uniformly 
low-risk predictions. All images in the bilateral examina-
tions were then mirrored, and it was confirmed that Mirai 
consistently predicted low risk for mirrored examinations, 
even those with actionable lesions (Appendix S1). This dem-
onstrated that Mirai relies on bilateral dissimilarities.

Using this insight, a neural architecture was developed 
around bilateral dissimilarity. This study used the EMory 

Abbreviations
AI = artificial intelligence, AUC = area under the ROC curve, CNN =  
convolutional neural network, EMBED = EMory BrEast imaging 
Dataset, ROC = receiver operating characteristic

Summary
Using bilateral dissimilarity as a mammography marker of near-term 
breast cancer risk, AsymMirai, a simplified deep learning bilateral 
dissimilarity–based model, performed similarly to the state-of-the-art 
black box model, Mirai, for 1–5-year breast cancer risk prediction.

Key Points
 ■ In a retrospective study of 210 067 screening mammograms 
(81 824 patients), bilateral dissimilarity as measured with 
AsymMirai, a simplified alternative to Mirai, performed similarly 
to Mirai (1-year risk, r = 0.6832; 2-year risk, r = 0.6988).

 ■ For predicting cancer, AsymMirai achieved areas under the receiver 
operating characteristic curve (AUCs) of 0.79, 0.69, 0.68, 0.67, 
and 0.66 for 1–5-year horizons.

 ■ In a patient subgroup in which AsymMirai repeatedly highlighted 
the same tissue over time; its 3-year AUC was 0.92.

BrEast imaging Dataset (EMBED) (21), a retrospective data 
set containing full-field screening and diagnostic mammo-
grams from 116 890 patients obtained from January 2013 to 
December 2020 by using Hologic (92%), General Electric 
(6%), and Fujifilm (2%) machines. EMBED contains self-
reported race descriptors for the entire cohort and cohorts for 
training (70 136 patients), validation (23 382 patients), and 
testing (23 333 patients). The patient cohort in this study is 
the same as that in the study by Jeong et al (21), which in-
troduced this public data set. EMBED was chosen because 
it was included in a 2022 external validation of Mirai (14). 
We excluded examinations with data abnormalities, examina-
tions without two-dimensional images, examinations with-
out all four screening views, and diagnostic examinations 
from our study (Fig 1). The code is available at https://github.
com/jdonnelly36/AsymMirai/releases/tag/radiology-1.0.

Model Architecture
Mirai and AsymMirai both accept as inputs the four stan-
dard screening mammography views—left and right me-
diolateral oblique and left and right craniocaudal—passing 
them through identical ResNet-18 CNN backbones, ex-
tracting features for each view. Mirai passes these extracted 
features to a transformer, which predicts clinical risk fac-
tors and n-year breast cancer risk. In contrast, AsymMirai 
simply computes a localized bilateral dissimilarity between 
the left and right breast at multiple locations using these 
features for each view. The maximum dissimilarity across 
locations—called the prediction window—produces one 
dissimilarity score for each view; the scores are averaged to 
produce one bilateral dissimilarity score. By excluding Mi-
rai’s transformer, AsymMirai maintains spatial correspon-
dence between the extracted features and the input images. 
AsymMirai omits nonimaging features, which did not ben-
efit Mirai (13). AsymMirai’s architecture allows its outputs 
to be directly overlayed on the mammogram, highlighting 
dissimilarities. Figure 2 summarizes the model architecture. 
AsymMirai is described in detail in Appendix S2.

Model Evaluation: Predictive Power
AsymMirai was evaluated on two fronts. In addition to 
the mirroring analysis in Appendix S1, the Pearson cor-
relation between the predictions by AsymMirai and Mirai 
was computed. Second, AsymMirai was evaluated by us-
ing dissimilarity to predict risk, enabling comparison with 
Mirai using Mirai’s metrics. How well these scores predict 
breast cancer was assessed by plotting the 1–5-year risk 
receiver operating characteristic (ROC) curves and deter-
mining the corresponding area under ROC (AUC) (13).  
A screening examination was included in the n-year ROC 
calculation if (a) an n-year positive examination had posi-
tive pathologic findings within n years or (b) an n-year nega-
tive examination had a negative screening follow-up at least 
n years later.

AsymMirai issues one prediction per examination, while 
Mirai issues five predictions, one for each year into the fu-
ture (Appendix S3 explains this difference). The same score 
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was used when evaluating the n-year risk 
for AsymMirai, while the distinct n-year 
risk prediction from Mirai was used. Both 
models were also assessed on subgroups by 
age and race to determine whether either 
model was biased along these features.

Model Evaluation: Applications of 
Bilateral Dissimilarity
The outputs of AsymMirai were visualized 
by overlaying a heat map of AsymMirai’s 
computed bilateral dissimilarity scores 
and highlighting the prediction window 
with a red box. Unlike post hoc saliency 
maps, these overlays faithfully visualize 
AsymMirai’s computed bilateral dissimi-
larity. Using these overlays, two post hoc 
analyses of AsymMirai’s reasoning were 
performed.

First, these visualizations were used as 
diagnostic criteria to identify confounders. 
Figure 3 presents examples. For these illus-
trations, prediction outputs were binned as 
low (risk score, <0.25), moderate (risk score, 
0.25–0.50), or high (risk score, >0.50) risk. 
Second, using 10 001 patients (26 930 ex-
aminations) with multiple screenings, pa-
tients’ dissimilarity distributions over time 
were analyzed, quantifying whether the 
same tissue produced the maximum  asym-
metry across examinations. AsymMirai’s 
predictions were analyzed as a function of 
“location consistency,” the change in predic-
tion window location between current and 
previous examinations (Fig 4; formal defini-
tion in Appendix S4). A similar analysis was 
performed for Mirai, using the change in 
Mirai’s risk scores (Appendix S5).

Statistical Analysis
The 95% CIs and P values for the AUC 
were calculated by using the DeLong 
method (22). P value < .05 was consid-
ered to indicate a significant difference, and all statistical 
analyses were computed with SciPy (version 1.7.3, https://
scipy.org/), ROC (version 0.1, https://github.com/alistairewj/
pyroc), and Python (version 3.7.3, https://www.python.org/) 
packages. Correlations greater than 0.7 are considered high, 
as prescribed by Mukaka in 2012 (23). Statistical analysis 
was performed by two authors (J.D. and L.M.). All data 
available were used for each analysis.

Results

Patient Demographics
This study considered EMBED, a retrospective breast imag-
ing data set containing images from 116 890 patients (mean 

age, 58.5 years ± 12.1 [SD]) obtained between 2013 and 
2020. AsymMirai was trained on EMBED’s training co-
hort. Patients self-reported their race as African American, 
American Indian or Alaskan Native, Asian, multiple, Native 
Hawaiian or Pacific Islander, unknown, or White.

To evaluate performance on the same cohort as Mirai, re-
sults are reported on the EMBED validation cohort, which 
was used in Mirai’s external validation; 2.9% (n = 679) of 
patients in this cohort were diagnosed with breast cancer. 
Appendix S6 reports AsymMirai’s performance on the EM-
BED test cohort. The validation cohort is included in the 
publicly available EMBED Open Data data set (https://
github.com/Emory-HITI/EMBED_Open_Data). In the EM-
BED validation cohort, we excluded examinations with 

Figure 1: Exclusion flowchart for the validation cohort. The EMory BrEast imaging Dataset (EMBED) 
validation split included 23 382 patients and 76 373 examinations from 2013 to 2020. Examinations with 
data abnormalities (42 patients, 1344 examinations), examinations without two-dimensional (2D) images 
(88 patients, 2271 examinations), examinations without all four screening views (5810 patients, 28 175 
examinations), and diagnostic examinations (1228 patients, 2595 examinations) were excluded. The result-
ing cohort included 16 314 patients with 41 988 examinations. The number of patients and examinations 
with sufficient follow-up data to evaluate 1-year (16 314 patients, 41 988 examinations), 2-year (10 523  
patients, 28 895 examinations), 3-year (8408 patients, 21 274 examinations), 4-year (6807 patients, 
15 414 examinations), and 5-year (5419 patients, 10 598 examinations) areas under the receiver operating  
characteristic curve are at the bottom of the figure.



AsymMirai: Interpretable Mammography–based Deep Learning Model

4 radiology.rsna.org ■ Radiology: Volume 310: Number 3—March 2024

data abnormalities (42 patients and 1344 examinations), 
examinations without two-dimensional images (88 patients 
and 2271 examinations), examinations without all four 
screening views (5810 patients and 28 175 examinations), 
and diagnostic examinations (1228 patients and 2595 ex-
aminations) (Fig 1). Table 1 summarizes the distributions of 
patient age and race.

Model Evaluation: Predictive Power
AsymMirai achieved an AUC of 0.79 (95% CI: 0.73, 0.85) 
for 1-year risk prediction task (Mirai AUC: 0.84; 95% CI: 
0.79, 0.89; 16 314 patients; P = .002), an AUC of 0.68 (95% 
CI: 0.65, 0.71) for 3-year risk prediction (Mirai AUC: 0.72; 
95% CI: 0.69; 0.76; 8408 patients; P < .001), and an AUC 
of 0.66 (95% CI: 0.63, 0.69) for 5-year risk prediction (Mirai 
AUC: 0.71; 95% CI: 0.68, 0.74; 5419 patients; P < .001). 
The difference between the AUCs for the two models was 
at most 0.05 for all tasks, although the 95% CIs overlapped 
in all the cases. Figure 5A and B shows the performance of 
AsymMirai and Mirai on the EMBED validation set.

Note that Mirai’s inclusion criteria on EMBED admitted 
diagnostic mammograms (14), which may bias a risk model 
intended for screening. After excluding these data, Mirai’s 
AUC for 5-year risk prediction on the screening-only im-
ages decreased by 0.05, from 0.76 to the 0.71 reported here 
(Fig 5).

Figure 5C shows the correlation between the predictions of 
the two models for 1-, 3-, and 5-year risk scores. The Pearson cor-
relation coefficients (r values) for the n-year predictions between 
AsymMirai and Mirai starting at 1 year were 0.6832, 0.7011, 
0.7011, 0.6987, and 0.6987 (95% CIs are shown in Fig 5).

A subgroup performance analysis was performed, and 
the results are reported in Table 2. There are two main re-
sults from this analysis. First, both AsymMirai and Mirai 
demonstrated lower performance (3-year AUC: AsymMirai, 
0.63; Mirai, 0.69) in the African American race subgroup  
(n = 6812) than in the White race subgroup (n = 6689; 3-year 
AUC: AsymMirai, 0.73; Mirai, 0.77). Second, AsymMirai and 
Mirai showed similar performance for risk prediction in the 
younger than 50 years age group (n = 9967; 3-year AUC: Asym-
Mirai, 0.69; Mirai, 0.71).

For completeness, AsymMirai was also evaluated on the  
EMBED test set (cohorts 9 and 10; recall that the aforemen-
tioned results were based on the validation set). The performance 
of AsymMirai on the EMBED test set was similar to that on the 
validation set, and the 95% CIs overlapped with the validation 
set results (Appendix S6). This test set was not used for the evalu-
ation of Mirai and thus was not the focus of this study.

Model Evaluation: Applications of Bilateral Dissimilarity
Examples of patients with moderate- to high-risk scores 
from AsymMirai are shown in Figure 3, including patients 

Figure 2: Architecture comparison of AsymMirai (left) and Mirai (right). Both models feed the four screening views into the same convolutional neural network (CNN) 
layers, but reasoning diverges thereafter. AsymMirai has fewer computational layers and instead calculates differences in the latent features, as shown by heat maps in the 
craniocaudal (CC) asymmetry and mediolateral oblique (MLO) asymmetry steps. AsymMirai then finds the prediction window containing the highest differences for each 
view, represented by red boxes in the Get Prediction Window step. The maximum feature differences within these windows are averaged to create a risk score. The Mirai 
architecture was described by Yala et al (13). AHL = additive hazard layer.
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with true-positive results who developed cancer within 5 
years, as well as patients with false-positive results who did 
not develop cancer within 1–5 years. In the examples, which 
have macro asymmetries, false-positive results were caused 
by confounding factors such as misalignment or implants.

AsymMirai demonstrated superior predictive power for 
patients for whom the same tissue was highlighted over 
multiple years (as measured by location consistency) (Fig 
4). Location consistency is expressed as a shift relative to 
the prediction window size. This is a strict criterion because 
the prediction windows cover only 1

25
 of each view. For ex-

ample, a 40% prediction window location shift is 20 × 24 
mm or less in window distance. This 40% threshold appears 
to be operative for increasing predictive power (Fig 4).

There were 549 patients who underwent subsequent ex-
aminations with a window shift of 40% or less, covering 
1154 examinations. Of these, 383 patients had sufficient 
follow-up data (were n-year positive or n-year negative) for 
calculating the 1-year AUC (0.92; 95% CI: 0.88, 0.97); 256 
patients, for calculating the 2-year AUC (0.91; 95% CI: 
0.85, 0.96); 183 patients, for calculating the 3-year AUC 
(0.92; 95% CI: 0.86, 0.97); 119 patients, for calculating the 
4-year AUC (0.90; 95% CI: 0.82, 0.98); and 59 patients, 
for calculating the 5-year AUC (0.88; 95% CI: 0.79, 0.98). 
Sufficient follow-up for location consistency was measured 
from the second screening examination. Figure 4 shows the 
ROC curves for the 3-year AUC subgroup at different lo-
cation consistency thresholds (range, 30%–100%). Figure 

Figure 3: AsymMirai model outputs. Input images are full-field screening mammograms. The two bilateral screening images are overlayed within the heat map, and 
the prediction window (red box) indicates the area with the highest dissimilarity. The heat map and prediction window are visualizations of AsymMirai’s model outputs, not 
post hoc saliency maps such as GradCAM. Analyzing these outputs provides a deeper understanding of the scores, in these cases distinguishing confounded reasoning 
from nonconfounded reasoning for patients with macro asymmetries. (A–C) Images in patients who developed cancer within 1–5 years. (A) In a 49-year-old White 
woman with unilateral breast augmentation who underwent annual screening, AsymMirai predicted high risk for developing cancer. Biopsy confirmed invasive ductal 
carcinoma in the right breast 5 years later. The prediction window was not affected by the unilateral implant. (B) In a 43-year-old African American woman with initial 
screening at 42 years old, AsymMirai predicted high risk of developing cancer. The prediction window corresponds to retroareolar asymmetry. Biopsy performed 4 
years later confirmed invasive ductal carcinoma in the right breast. Intramammary lymph nodes were correctly ignored. (C) In a 50-year-old African American woman 
with regular screening and coarse heterogenous calcifications at the 12-o’clock position, AsymMirai predicted high risk for developing cancer. Biopsy confirmed bi-
lateral invasive ductal carcinoma 20 months later, with the cancer in the left breast occurring in the 12-o’clock position. (D–F) Images in patients who did not develop 
cancer but had identifiably confounded risk predictions. (D) In a 60-year-old White woman with bilateral breast augmentation and regular screening mammograms, 
AsymMirai predicted moderate risk for developing cancer, confounded by artificial asymmetry caused by the exclusion of the implant from the right craniocaudal view. 
(E) In a 73-year-old White woman with regular screening mammograms and known dystrophic calcifications in the left breast, AsymMirai predicted high risk for devel-
oping cancer, confounded by poor positioning in the left mediolateral oblique view and possible distortion in the right mediolateral oblique view. (F) In a 65-year-old 
African American woman with bilateral benign microcalcifications, AsymMirai predicted moderate risk for developing cancer, confounded by the calcifications. Among 
the patients with no cancer, Mirai correctly identified the patient in D as having a low risk for developing cancer (20th percentile risk) but also misclassified patients in E 
and F (84th and 95th percentiles, respectively). These examples were chosen without knowledge of Mirai’s risk scores. Unlike when reviewing the tissue in AsymMirai 
prediction window, there is no way to ex ante identify the cases where Mirai was confounded because it produces only a score. CC = craniocaudal, IDC = invasive 
ductal carcinoma, MLO = mediolateral oblique.
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S1 provides the same results for the 1–5-year AUCs, which 
show that (a) an approximately 40% shift threshold is oper-
ative for this location consistency metric to yield strong pre-
dictions (AUC ≥ 0.88 across risk terms) and (b) improved 
performance persists on all five risk horizons.

For the subgroup of 59 patients with 40% or lower loca-
tion consistency and 5 years of follow-up from the second 

examination, one classification threshold yielded 100% 
sensitivity (five of five examinations) and negative predic-
tive value (45 of 45 examinations) with a specificity of 76% 
(45 of 59 examinations). This is because only five patients 
(0.9%) in this group developed cancer, whereas 2.6% of 
those in the entire EMBED developed cancer. Of those five 
patients, four had prediction windows on or adjacent to the 

Figure 4: Prediction power of AsymMirai location consistency. (A) Full-field screening mammograms obtained at three time points in a White woman. AsymMirai predicted 
moderate risk for developing cancer, with high location consistency across three screenings. The patient was diagnosed with ductal carcinoma in situ in 2020. The location con-
sistency is defined in Appendix S5. Consistency is expressed as the percentage of the window shift, with a shift of 100% representing no overlap from one year to the next. The 
red boxes are AsymMirai’s prediction windows for each examination. (B) Graph of AsymMirai 3-year risk area under the receiver operating characteristic (ROC) curve (AUC) 
for patient subgroups with increasing location inconsistency. The x-axis is the number of patients included in the subgroup. Model performance is highest for patients with the high-
est location consistency (left part of the plot), as measured by the shift from the preceding examination’s prediction window location. The shaded areas represent the 95% CIs at 
each threshold. (C) Graph of AsymMirai 3-year risk AUC for patient subgroups with increasing location inconsistency. Same as in B, except for the x-axis, location consistency 
is expressed as the window shift percentage. The dotted vertical line indicates a window shift of 50%. (D) AsymMirai ROC curves for selected location consistency thresholds as 
measured by the shift from the previous prediction window location. Model performance improved for patients with high location consistency between examinations, as indicated 
by lower window shifts. The legend contains the number of patients with an examination satisfying each threshold followed by the number of patients with at least one 3-year valid 
examination from each subgroup. A 3-year valid examination can include either 3 years of negative screening follow-up or a cancer diagnosis within 3 years. CC = craniocaudal, 
FPR = false-positive rate, MAX = maximum, MLO = mediolateral oblique, TPR = true-positive rate.
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area where biopsy-confirmed cancer would later be identi-
fied in the examinations preceding diagnosis. The consistent 
examinations for the remaining patient occurred 6 and 4 
years before biopsy confirmed cancer.

There is no way to measure location consistency for Mi-
rai since its reasoning process is opaque. In lieu of a rea-
soning consistency metric, consistency in Mirai’s final risk 
predictions for identifying useful subgroups was evaluated, 
but that analysis failed to reliably enhance the confidence in 
its risk scores (Appendix S5).

Discussion
Although artificial intelligence algorithms, particularly Mi-
rai, show promise in near-term breast cancer risk prediction, 
most methods are black boxes. We reduced the opacity of 
this black box by introducing AsymMirai. We determined 
a key factor on which Mirai depends—bilateral dissimilar-
ity. Using the existing Mirai front-end convolutional neural 
network for feature extraction, our approach calculates dif-
ferences in the latent space, providing the location of the 

dissimilarity, which is visually intuitive. 
This score approximates that of Mirai (r 
> 0.6832 for 1–5-year risk prediction), 
with only a slight reduction in 1–5-year 
risk prediction performance. The rela-
tive results are consistent across differ-
ent prediction horizons (approximately 
0.05 decrease in area under the receiver 
operating characteristic curve [AUC] 
with overlapping 95% CIs for each of 
the 1–5-year intervals), although the va-
lidity of the 1-year risk prediction AUC 
(inherited from Mirai) is debatable given 
that the cancer may already exist and nei-
ther Mirai nor AsymMirai is intended for 
diagnosis.

We demonstrated two possible uses of 
localized bilateral dissimilarity not avail-
able to black box models. We identified 
confounded model predictions from er-
roneously placed prediction windows. We 
further showed that, when the prediction 
window was in the same location over 
multiple years, AsymMirai exhibited su-
perior predictive power. We originally ex-
pected that this would be the case because 
AsymMirai would find abnormalities in 
the tissue before the development of the 
actual lesion. While this does occur, most 
patients with location consistency of 40% 
or less showed little change from prior 
examinations and thus corresponded to 
a very low-risk group; they had a cancer 
rate of only 0.9%, compared with the 
2.6% rate for the overall EMBED.

Our study focused on breast cancer 
risk prediction based on bilateral dissimi-

larity, which is related but not equivalent to the concept of 
breast asymmetry used in the Breast Imaging Reporting and 
Data System, or BI-RADS. Conventional studies in image-
based risk prediction relied on a handcrafted approach that 
used unilateral or bilateral computer vision features to train 
machine learning models such as a support vector machine 
(24), a method successfully deployed with bilateral dissimi-
larity features in 2013 (25). In contrast, AsymMirai uses the 
CNN front end of Mirai, which leverages the learned latent 
features of that powerful model.

External validation of Mirai on 62 185 patients at seven 
sites, including the EMBED, was completed in 2022 and 
found that Mirai generalized well (14). However, Mirai’s 
reported EMBED external validation did not exclude diag-
nostic mammograms (14). This led to a small difference be-
tween our results for Mirai and those from the study by Yala 
et  al (14). A recent study used a large, enriched screening 
cohort to evaluate several AI risk prediction models (9). The 
performance of Mirai was lower on the private data set used 
in that study (AUC range, 0.67–0.69) than on EMBED 

Table 1: Descriptive Statistics of Patients Included in the Validation Data Set

Patient Group All Patients Patients in Validation Data Set
No. of patients 81 824 [116 890] (1301) 16 314 [23 382] (236)
No. of examinations 210 067 [383 379] 41 988 [76 373]
Age at examination (y)* 59.5 ± 11.4 [58.9 ± 11.9] 59.6 ± 11.4 [58.9 ± 12.0]
Age group (y)†

 <40 2352 [11 478] (18) 508 [2355] (4)
 40–49 48 027 [89 667] (208) 9459 [17 660] (65)
 50–59 59 329 [104 405] (372) 11 732 [20 710] (118)
 60–69 58 515 [101 458] (475) 11 737 [20 180] (142)
 70–79 33 140 [59 359] (345) 6844 [12 135] (133)
 ≥80 8054 [15 400] (55) 1591[2992] (9)
 Unknown 470 [1612] (0) 117 [341] (0)
Race
 African American 34 369 [48 452] (591) 6812 [9653] (104)
 American Indian  

or Alaskan Native
195 [310] (2) 41 [67] (0)

 Asian 5279 [7615] (45) 1060 [1566] (7)
 Native Hawaiian  

or Pacific Islander
736 [1138] (10) 150 [218] (2)

 Multiple 310 [516] (2) 68 [103] (1)
 White 33 352 [45 328] (626) 6689 [9089] (119)
 Unknown 7583 [13 531] (24) 1494 [2686] (3)

Note.—The full and validation patient data sets were constructed from the EMory 
BrEast imaging Dataset (EMBED). The validation data set was the EMBED validation 
set, which was used for Mirai external validation. Except where indicated, the number 
of patients satisfying the selection criteria described in Figure 1 in each subgroup is 
reported, with the number of patients prior to exclusion criteria in brackets and the 
number of patients who eventually developed cancer in parentheses. Age and race data 
were collected from the electronic health records used to construct EMBED.
* Data are means ± SDs. Data in brackets are for patients before exclusion.
† Data are numbers of examinations for which the patient was within the given 
subgroup. One patient may appear in multiple age groups over time. Patients were 
included if they had at least one valid examination.
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(AUC range, 0.71–0.84), although Mirai maintained state-
of-the-art performance.

In addition to the limitations inherent to any retrospec-
tive study, our study had four important limitations. First, 
despite the importance of bilateral dissimilarity, Mirai does 
not exclusively reason using this feature. Mirai’s transformer 
is capable of arbitrary function approximation. When model 
predictions differ, we cannot explain Mirai’s decision, ex-
cept that these are the cases in which AsymMirai’s localized 
bilateral dissimilarity is not the entire explanation. Figure 3 
provides illustrative, confounded cases. Second, AsymMirai 
does not perform equally well across race subgroups. This 
limitation is inherited from Mirai because of the reuse of 
Mirai’s backbone, which was trained on a data set for which 
only 3.75% of the data were from African American patients 
(n = 1204), while 42.0% of the data within EMBED were 
from African American patients (n = 34 369). This could be 
improved by retraining Mirai and/or AsymMirai on a more 

diverse data set. Third, our study did not consider observed 
examples of confounding errors caused by major misalign-
ment, such as from poor patient positioning. While further 
study of this marker will require registration, no registration 
was performed during preprocessing for Mirai, and doing 
so in our study would have confounded the comparison. 
AsymMirai’s interpretable results clarified the importance of 
alignment as a confounder. Finally, when analyzing location 
consistency, patients needed two consecutive examinations 
followed by n years of follow-up, which reduced the size of 
our patient sets with known outcomes. For instance, only 
10.7% of patients with a 40% or lower window shift had 5 
years of subsequent follow-up. Future work could address 
this issue while also evaluating the generalizability of Asym-
Mirai by using other institutional data sets.

In conclusion, localized bilateral dissimilarity, an imag-
ing marker for breast cancer risk, approximated the pre-
dictive power of Mirai and was a key to Mirai’s reasoning. 

Figure 5: Comparison of the performance of Mirai and AsymMirai on EMory BrEast imaging Dataset (EMBED) validation screening mammograms. (A) AsymMirai 1–5-
year breast cancer risk prediction receiver operating characteristic (ROC) curves and area under the curve (AUC) values, with 95% CIs in parentheses. (B) Mirai 1–5-year 
breast cancer risk prediction ROC curves and AUC values, with 95% CIs in parentheses. The AUC CIs for AsymMirai and Mirai overlap for each year. (C) Density plots show 
prediction correlation for AsymMirai and Mirai with 1-, 3-, and 5-year risk. The Pearson correlation coefficients were 0.6832 (95% CI: 0.6780, 0.6882), 0.7011 (95% CI: 
0.6962, 0.7059), and 0.6987 (95% CI: 0.6938, 0.7036) for 1-, 3-, and 5-year risk, respectively. The 2- and 4-year risks are omitted because the predictions are the same 
as those for the 3- and 5-year risks, respectively.
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AsymMirai, a simplified deep learning bilateral dissimilar-
ity-based model, performed similarly to the state-of-the-
art black box model, Mirai, for 1–5-year breast cancer risk 
prediction. This observation agrees with the clinical impor-
tance of asymmetry and, as a result, highlights the poten-
tial of bilateral dissimilarity as a future imaging marker for 
breast cancer risk.
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Table 2: AsymMirai and Mirai Subgroup Performance Analysis

Parameter and Model 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
All patients, AM 0.79 (0.73, 0.85) 0.69 (0.65, 0.73) 0.68 (0.65, 0.71) 0.67 (0.64, 0.70) 0.66 (0.63, 0.69)
All patients, Mirai 0.84 (0.79, 0.89) 0.74 (0.70, 0.78) 0.72 (0.69, 0.76) 0.72 (0.69, 0.75) 0.71 (0.68, 0.74)
 P value* .002 <.001 <.001 <.001 <.001
Age at examination (y)
 < 50 AM 0.81 (0.68, 0.94) 0.68 (0.57, 0.79) 0.69 (0.60, 0.78) 0.67 (0.59, 0.76) 0.65 (0.58, 0.73)
 < 50 Mirai 0.85 (0.73, 0.96) 0.73 (0.63, 0.83) 0.71 (0.61, 0.80) 0.68 (0.59, 0.77) 0.66 (0.58, 0.73)
  P value* .16 .10 .67 .88 .96
 50–70 AM 0.76 (0.67, 0.84) 0.68 (0.63, 0.74) 0.67 (0.62, 0.71) 0.66 (0.62, 0.70) 0.65 (0.61, 0.69)
 50–70 Mirai 0.84 (0.76, 0.91) 0.75 (0.70, 0.80) 0.73 (0.69, 0.77) 0.73 (0.69, 0.76) 0.72 (0.68, 0.75)
  P value* .002 <.001 <.001 <.001 <.001
 > 70 AM 0.83 (0.77, 0.90) 0.66 (0.59, 0.73) 0.64 (0.59, 0.70) 0.61 (0.56, 0.66) 0.62 (0.57, 0.66)
 > 70 Mirai 0.83 (0.75, 0.92) 0.68 (0.60, 0.75) 0.67 (0.62, 0.73) 0.67 (0.62, 0.72) 0.67 (0.62, 0.72)
  P value* .95 .43 .11 .002 .002
Race
 African American, AM 0.73 (0.64, 0.83) 0.64 (0.58, 0.70) 0.63 (0.58, 0.68) 0.63 (0.58, 0.67) 0.61 (0.57, 0.66)
 African American, Mirai 0.82 (0.74, 0.89) 0.70 (0.64, 0.76) 0.69 (0.64, 0.74) 0.69 (0.64, 0.73) 0.68 (0.64, 0.72)
  P value* <.001 .004 .007 <.001 .002
 White, AM 0.84 (0.77, 0.92) 0.73 (0.68, 0.78) 0.73 (0.69, 0.77) 0.71 (0.68, 0.75) 0.70 (0.67, 0.74)
 White, Mirai 0.89 (0.83, 0.95) 0.78 (0.73, 0.83) 0.77 (0.73, 0.81) 0.76 (0.72, 0.80) 0.74 (0.71, 0.78)
  P value* .07 .004 .007 <.001 .002
 Other, AM 0.75 (0.48, 1.02) 0.64 (0.46, 0.82) 0.59 (0.45, 0.73) 0.59 (0.45, 0.73) 0.57 (0.44, 0.70)
 Other, Mirai 0.60 (0.22, 0.97) 0.64 (0.44, 0.83) 0.60 (0.45, 0.76) 0.61 (0.46, 0.76) 0.62 (0.49, 0.76)
  P value*  .09 .94 .79 .61 .25

Note.—Data in parentheses are 95% CIs. AM = AsymMirai, AUC = area under the receiver operating characteristic curve. AUCs were 
calculated against the validation data set. Subgroups were chosen to match Mirai’s reported subgroup performance in Yala et al (14). Age 
and race data were collected from the electronic health records used to construct the EMory BrEast imaging Dataset (EMBED). The 
“other” subgroup of “race” included 2763 patients who had a reported race of American Indian or Alaskan Native, Asian, multiple, Native 
Hawaiian or Pacific Islander, or unknown.
* P values for each pairwise comparison.
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