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ABSTRACT

Diabetic retinopathy (DR) grading models often suffer a significant performance
drop when deployed to unseen clinical domains. A promising strategy is to mirror
the diagnostic process of clinicians, who rely on identifying specific pathological
signs to make judgments. Concept-based models (CBMs) are well-suited for this,
but their effectiveness often hinges on concept supervision, which is rarely avail-
able in medical imaging. To address this, we propose Knowledge Constrained
Concept Learning (KCCL), a novel framework that achieves robust domain gen-
eralization through concept learning under knowledge constraints. We first curate
DRL6k, a dataset of 6,000 fundus images with lesion annotations, and train a le-
sion detection model to provide concept supervision via knowledge distillation.
However, directly using this supervision may introduce noise and inconsisten-
cies. Therefore, KCCL employs a knowledge constraint mechanism: it leverages
medical priors to correct implausible concept predictions and reduce the influ-
ence of those deviating from clinical expectations during distillation, while also
directly penalizing the model for producing clinically inconsistent concept pre-
dictions. Extensive experiments on multiple unseen target datasets demonstrate
that KCCL significantly outperforms state-of-the-art domain generalization and
DR grading methods, achieving generalization by producing clinically coherent
and interpretable predictions.

1 INTRODUCTION

Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults worldwide, af-
fecting over 100 million people globally (Dai et al., 2024; Cheung et al., 2010). Early detection and
timely intervention are crucial for preventing irreversible vision loss, making automated screening
systems a critical tool in managing this condition. Recent advancements in deep learning (DL) have
achieved remarkable success in automated DR grading from fundus images, demonstrating perfor-
mance comparable to human experts and offering the potential to significantly expand screening
accessibility (Dai et al., 2021; 2024; He et al., 2021). However, a critical limitation emerged when
these models are deployed across different clinical settings. Models trained on one dataset often ex-
hibit significant performance drops when applied to images from other sources, due to variations in
imaging protocols, patient demographics, and equipment specifications. This domain shift problem
poses a major barrier to the widespread clinical adoption of DL-based DR screening systems (Che
et al., 2023). To address this challenge, numerous domain generalization approaches have been
developed (Xia et al., 2024; Bi et al., 2024; Atwany et al., 2022). These methods approach the prob-
lem from various angles, attempting to learn diagnostically relevant features that are invariant across
different domains, and have shown promising results. However, they all operate under a common
paradigm: learning invariances implicitly from data patterns rather than explicitly incorporating the
clinical knowledge that guides human diagnosis. This observation leads us to consider an alternative
approach: what if we could directly embed the diagnostic reasoning process that opthalmologists
use into the model? Human experts diagnose DR by systematically identifying and interpreting
pathological lesions such as microaneurysms and exudates (Li et al., 2019). This concept-driven
reasoning process is inherently robust to domain shifts, as the pathological manifestations of retinal
disease remain consistent across different imaging conditions.
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But how can we effectively translate this reasoning process into a deep learning framework? Re-
cently, concept-based models (CBMs) (Koh et al., 2020; Espinosa Zarlenga et al., 2022) have
emerged as a promising paradim to address this challenge. By channeling information through
an explicit concept layer, they offer a more transparent decision-making process, allowing us to
customize the model’s reasoning process to align with clinical expertise—for instance, using reti-
nal lesions as intermediate concepts to mirror how ophthalmologists diagnose diabetic retinopathy
based on pathological findings. Moreover, recent studies have demonstrated that CBMs can enhance
generalization across different domains (Choi et al., 2024; Chowdhury et al., 2024). However, these
models confront a fundamental challenge in the medical domain: the scarcity of samples that are
simultaneously annotated with both concept-level and downstream task labels, which hinders their
applicability in practice.

To mitigate the scarcity of concept annotations, label-free methods (Oikarinen et al., 2022) have been
explored, yet they typically rely on general-purpose vision-language models (Radford et al., 2021)
that lack sufficient domain-specific alignment for medical imaging. A more practical alternative is to
employ knowledge distillation by training a teacher model on a lesion annotated dataset to generate
pseudo-labels for the broader dataset. However, this approach carries a substantial risk because a
teacher model often suffers from limited generalization capabilities. Consequently, blindly using its
predictions as supervision signals propagates noise and errors to the CBM’s concept layer. Crucially,
we recognize that while explicit concept labels are absent, disease severity labels are available and
are intrinsically linked to lesion concepts. This insight prompts us to move beyond naive distillation
and leverage medical priors derived from disease-lesion correlations to guide a robust and logically
consistent concept learning process.

Building on this, we present Knowledge Constrained Concept Learning (KCCL), a novel frame-
work that enables concept learning through knowledge distillation and knowledge constraints. We
first curate a consolidated dataset of 6,000 fundus images (DRL6k) with image-level annotations for
four key DR-related lesion concepts from existing public datasets. We then train a lesion detection
model on this curated dataset to provide concept supervision via knowledge distillation. To ensure
the CBM learns robust and clinically reliable lesion concepts, we introduce a knowledge constraint
mechanism. First, it refines the distillation guidance by validating the predictions of lesion detec-
tion model against established medical knowledge, simultaneously correcting implausible concept
predictions and reweighting the distillation loss. This provides a clear ”what-to-learn” signal for
the concept layer. Second, it directly penalizes the CBM for predicting concept predictions that
deviate from medical knowledge, providing a ”what-is-wrong” signal that prevents the model from
converging to clinically nonsensical solutions. By combining these mechanisms, our approach en-
ables robust concept learning from limited lesion annotations, leading to a more generalizable and
interpretable DR grading model. Our main contributions are summarized as follows:

• We propose KCCL, a novel domain generalization framework for DR grading that inte-
grates concept-based reasoning with knowledge distillation, using a lesion detection model
trained on our curated DRL6k dataset.

• We design a dual-constraint mechanism that incorporates medical constraints to simulta-
neously refine the teacher guidance and regularize the CBM concept predictions, ensuring
clinically plausible concept learning.

• We conduct extensive experiments across multiple datasets, demonstrating that KCCL sig-
nificantly outperforms state-of-the-art methods on unseen domains while benefiting from
the interpretability of concept-based models.

2 RELATED WORK

Domain Generalization. Domain generalization aims to develop models that perform robustly
across unseen domains, overcoming domain shift challenges. A significant body of work focuses
on learning domain-invariant representations by minimizing the divergence between source do-
mains (Muandet et al., 2013; Li et al., 2018b;a; Matsuura & Harada, 2020). Another bunch of
methods approaches the problem from the data perspective, aiming to enrich the diversity of source
domains through data augmentation or generative models to better cover potential target distribu-
tions (Zhou et al., 2020a;b; Mancini et al., 2020). Given the critical importance of generalization in
clinical applications, there has been a growing interest in applying DG techniques to various medical
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imaging tasks (Che et al., 2023; Atwany et al., 2022; Zhang et al., 2020; Wu et al., 2023b; Bi et al.,
2024). However, these methods predominantly view medical images from purely a data-centric per-
spective, often neglecting the invaluable clinical expertise and medical knowledge. In contrast, our
work addresses this gap by incorporating explicit medical knowledge into the learning process via
concept-based reasoning, thereby enabling models that are not only robust to domain shifts but also
more interpretable and align with clinical diagnostic processes.

Concept-based Models. Concept based models (CBMs) introduce an intermediate concept layer
that forces models to make predictions through human-interpretable concepts, thereby enhancing
model interpretability (Koh et al., 2020; Yuksekgonul et al., 2022; Espinosa Zarlenga et al., 2022;
Zhang et al., 2024). A particularly relevant line of work focuses on label-free CBMs that aim
to reduce the annotation burden by automatically discovering concepts without explicit supervi-
sion (Oikarinen et al., 2022; Moayeri et al., 2023; Tan et al., 2025; Gao et al., 2024), but these
methods often rely on large language models or CLIP models (Radford et al., 2021), whose effec-
tiveness is limited in the medical domain as they are not pre-trained with the specialized concepts.
Notably, Pang et al. (2024) also proposed a method for integrating medical knowledge through
CBMs, but this approach still requires additional annotation work from physicians, making it less
applicable in practice. In contrast, our method alleviates the dependency on labels through knowl-
edge distillation, and extracts medical knowledge priors from the concept labels themselves based
on statistical methods, thus avoiding the costly expert annotation work.

Knowledge Distillation. Knowledge distillation (Hinton et al., 2015) is primarily used for model
compression and acceleration, transferring knowledge from large models to smaller ones to enhance
performance while reducing computational costs (Gou et al., 2021). Recent works have also ex-
plored concept distillation, but with fundamentally different motivations and methodologies from
ours. For instance, Sousa et al. (2022) proposed a method to distill knowledge from a black-box
model to train a concept-based proxy model, aiming to interpret the black-box model’s decisions.
Gupta et al. (2023) sought to leverage knowledge from pre-trained large models to assist in concept
extraction, where concepts are represented as Concept Activation Vectors (Kim et al., 2018) rather
than the outputs of a concept layer as in traditional CBMs. In contrast, our approach addresses
the scarcity of concept annotations in medical scenarios, and we do not treat the teacher model as
a completely reliable source of knowledge, allowing for a more flexible and robust integration of
medical knowledge into the learning process.

Medical Knowledge Integration. Incorporating medical knowledge to guide model learning is a
well-established strategy in medical imaging (Xie et al., 2021). Given the high cost and specialized
expertise required for annotating medical images, leveraging prior knowledge is crucial for enhanc-
ing model learning efficiency and reliability. These approaches typically embed clinical priors into
the model’s architecture (Sun et al., 2021; Yu et al., 2021; Pang et al., 2024) or training objec-
tives (Wu et al., 2023a; Zhang et al., 2023; Xie et al., 2019; Li et al., 2022). Despite their diversity,
these methods often integrate knowledge in a static manner, directly constraining the model’s repre-
sentations or predictions. Our work extends this paradigm by employing clinical priors as a dynamic
mediator within a knowledge distillation framework. Specifically, we leverage medical knowledge
to correct obviously erroneous distillation targets, reweight potentially problematic supervision sig-
nals, and regularize the student’s concept learning, enabling robust knowledge transfer.

3 METHOD

3.1 PROBLEM FORMULATION AND OVERVIEW

Given source domain Ds and target domains Dt, where each sample consists of fundus image x ∈ X
and DR severity grade y ∈ Y = {0, 1, 2, 3, 4} representing normal to proliferative DR. Our goal is
to learn a robust model from Ds that can generalize well to Dt without requiring any target domain
data. Following established benchmarks (Che et al., 2023), we train the model on a large-scale
source domain and evaluate it on multiple target domains. While conventional deep learning models
directly learn the mapping x → y, CBMs introduce an interpretable x → c → y. Here, c represents
a set of intermediate, human-understandable clinical concepts (e.g., microaneurysms, hemorrhages)
that are first predicted from the image and then used to determine the final grade y. This approach has
shown promise for domain generalization (Choi et al., 2024; Chowdhury et al., 2024). However, the
training of concept layers requires paired concept annotations, which are scarce in medical domains.
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To address this, we propose a Knowledge Constrained Concept Learning (KCCL) framework that
integrates medical knowledge through three specialized mechanisms: Self Correction (SC) directly
fixes concept predictions that clearly violate medical knowledge, Distillation Reweighting (DR)
reduces the influence of potentially problematic samples that deviate from clinical patterns, and
Knowledge Constrained Regularization (KCR) penalizes the concept layer for generating medi-
cally implausible concepts. The overall framework is illustrated in Figure 1. Below, we detail each
component of the KCCL framework.

Concept-based Model

Lesion
Target

𝑦	 = 0	 ⇔	∀𝑖, 𝑐! = 0

Hard Constraints

𝑦 > 0	 ⇔	∃𝑖, 𝑐! = 1

Lesion
Prediction

Soft Constraints
Lesion Activation

𝐏 𝐠 𝐂 𝒊

Deviation from
expectation

Deviation from
lesion co-occurrence

Eq. (4)~(6)

Corrected
Target

ℒ𝐾𝐷×

violate
hard constraints

Eq. (7)~(9) deviate
soft constraints

ℒ𝑅𝑒𝑔

C. Regularization

Eq. (10)~(11)

Lesion Detection Model

Medical Priors

DRL6k

Lesion Detection Model

Retinal Lesion Annotated

𝐏 𝐂

ℒ𝐶𝐸
Disease Prediction

A. Knowledge Acquisition

w

Self Correction

Distillation 
Reweighting

B. Knowledge Constrained Distillation

EX

HE

MA

SE

Final Classification

Figure 1: Overview of our KCCL framework. A. We first construct the DRL6k dataset to train a
lesion detection model T and derive medical priors, which inform the design of hard and soft con-
straints. B. Predictions from T violating hard constraints are corrected via prior sampling; addition-
ally, the distillation loss is dynamically reweighted based on the degree of soft constraint deviation.
The final disease classification is based on these learned concepts. C. The CBM’s concept layer is
directly regularized to penalize violations of knowledge constraints.

Table 1: Statistics of the DRL6k Dataset.

Dataset Split Hard Exudates Hemorrhages Microaneurysms Soft Exudates

Training 2108 2733 2794 1084
Validation 265 347 358 144

Test 279 358 357 148

3.2 MEDICAL KNOWLEDGE ACQUISITION FOR GUIDANCE

DRL6k. We first construct the DRL6k dataset containing 6,000 images with image-level anno-
tations for four representative and highly relevant DR-related lesions: Hard Exudates (EX), Soft
Exudates (SE), Microaneurysms (MA), and Hemorrhages (HE). This dataset integrates FGADDR
from (Wen et al., 2025), segmentation data from IDRID (Porwal et al., 2018), and the Retinal-
Lesions dataset (Wei et al., 2021). We partition DRL6k into training, validation, and test sets using
an 8:1:1 ratio, with detailed distribution statistics provided in Table 1.

Lesion Detection Model Training. Using this DRL6k, we train a lesion detection model T using
a standard ResNet50 (He et al., 2016) architecture on the DRL6k dataset. We train T to predict
concept probabilities t for each image by minimizing the binary cross-entropy loss:

LT = − 1

K

K∑
k=1

[ck log(tk) + (1− ck) log(1− tk)] , (1)
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where tk and ck are the predicted probability and binary label for concept k, respectively. Since T
serves only as an auxiliary knowledge source for subsequent concept learning, we adopt a straight-
forward training approach without elaborate modifications (See Appendix for details).

Knowledge Constraints Design. To mitigate potential spurious correlations from T and enforce
clinically consistent concept learning, we incorporate two forms of prior knowledge as explicit con-
straints derived from established medical knowledge and statistical evidence. 1) Hard Constraints
formalize basic medical rules: healthy retinas are lesion-free, while diseased retinas necessarily
exhibit lesion presence. Violations of these constraints indicate definitively incorrect concept pre-
dictions. 2) Soft Constraints capture probabilistic clinical knowledge. Unlike hard constraints, these
represent strong statistical tendencies rather than absolute certainties. A deviation from these soft
constraints does not necessarily indicate an error but flags a prediction as clinically less likely. To
operationalize these patterns, we derive two key priors from the DRL6k:

P ∈ R(G+1)×K , [P]g,k = P (ck = 1|y = g), (2)

C ∈ RK×K , [C]i,j = P (cj = 1|ci = 1). (3)

Specifically, P models the lesion profile conditioned on disease label, and C captures the statistical
co-occurrence relationships between lesion types. We confirmed that these data-driven priors align
well with established clinical knowledge from authoritative medical sources (American Academy
of Ophthalmology, 2025), which validates their reliability for our framework. Furthermore, it is
important to note that since P and C are derived exclusively from label correlations, they function
independently of the pixel-level data; consequently, these priors are unaffected by variations in
device protocols or potential ethical biases inherent to the raw image data.

3.3 KNOWLEDGE CONSTRAINED DISTILLATION

Self Correction. When t violates hard constraints, we perform direct corrections to ensure clinical
consistency. For healthy cases with detected lesions, we zero out all lesion probabilities. For dis-
eased cases with no detected lesions, we generate corrected probabilities by sampling from the P
and C. This process can be formally defined as:

t′ =


0 if y = 0 ∧max(t) > τ,

S([P]y,C) if y > 0 ∧max(t) ≤ τ,

t otherwise,
(4)

S([P]y,C) =max(t̃, (τ + ϵ) · E), (5)

E =
(
(C > τ)⊤(t̃ > τ) > 0

)
⊙ (t̃ ≤ τ), (6)

where τ = 0.5 is a natural decision boundary for lesion detection, and ϵ controls the activation
strength of co-occurring lesions. This process begins by sampling t̃ from [P]y to satisfy the basic
correspondence between lesions and disease grades. Then, for activated lesions, we promote the
activation of other lesions with strong co-occurrence according to C, yielding the final corrected
output t′. This ensures that the guidance from T are consistent with established medical knowledge.

Distillation Reweighting. For samples that deviate from soft constraints, we cannot definitively
label them as incorrect predictions. Instead, we design Lsoft to quantify the degree of deviation
from statistical priors and use it to adaptively reweight their influence during knowledge distillation.
Specifically, we define it as:

Lsoft(t
′, y) =

∑
k∈Aa∆Ae

|τ − t′k|︸ ︷︷ ︸
Deviation from P

+
∑

k∈Ac\Aa

(τ − t′k)︸ ︷︷ ︸
Deviation from C

, (7)

where Aa = {k | t′k ≥ τ} denotes the set of activated lesions, Ae = {k | Py,k ≥ τ} represents le-
sions expected to be active for disease grade y, and Ac = {k | ∃j ∈ Aa s.t. [C]j,k ≥ τ, j ̸= k} cap-
tures lesions that should co-occur with the activated ones. The first term penalizes deviations from
expected lesion activations, while the second term penalizes the absence of expected co-occurring
lesions. A larger Lsoft indicates greater deviation from medical priors, suggesting the prediction
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may be less reliable. We therefore down-weight such samples by mapping Lsoft into a confidence
weight w ∈ (0, 1] via the exponential function:

w = exp(−Lsoft(t
′, y)). (8)

Refined Distillation Loss. The final knowledge distillation loss incorporates the corrected t′ and
adaptive weights w:

LKD = w · LBCE(s, t
′), (9)

where s is the predicted probabilities from CBM’s concept layer, and LBCE is the binary cross-
entropy loss as defined in Equation 1. We actually add a temperature parameter to smooth the logits,
but we omit it here for simplicity.

3.4 KNOWLEDGE CONSTRAINED REGULARIZATION

While refined distillation guides the CBM toward clinically plausible predictions by demonstrat-
ing what correct concept activations should look like, we complement this positive guidance with
explicit constraints that directly penalize implausible behaviors. To achieve this, we introduce a
direct regularization term LReg that combines violations of both hard and soft constraints, acting as
a complementary mechanism to distillation:

LHard(z, y) =

{∑K
k=1 ReLU(zk) if y = 0,

ReLU(−max(z)) if y > 0,
(10)

LReg =LHard(z, y) + LSoft(s, y), (11)

where z and s are concept logits and probabilities from the CBM, and LSoft refers to Equation (7).
The ReLU activation ensures penalties are applied only when constraints are violated, creating a
piecewise linear loss that is zero when medical rules are satisfied. For healthy cases, summing
all positive logits encourages no concepts being activated, while for diseased cases, penalizing the
negative maximum logit ensures at least one concept remains activated.

3.5 OVERALL TRAINING OBJECTIVE

Finally, we integrate all components and the primary classification task into a unified training ob-
jective, allowing the model to optimize both concept learning under knowledge constraints and the
main classification task:

LCE =−
G∑
i=0

yi log ŷi, (12)

Ltotal =LCE + LKD + LReg, (13)

where yi and ŷi are the ground-truth and predicted probabilities for grade i, respectively.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Benchmark. Following the ESDG test in GDRBench (Che et al., 2023), we utilize DDR (Li et al.,
2019) and EyePACS (Foundation, 2015) for model training and validation. We then evaluate its
generalization on six unseen domains: DeepDR (Liu et al., 2022), Messidor (Abràmoff et al.,
2016), IDRID (Porwal et al., 2018), APTOS (Karthik et al., 2019), FGADR (Zhou et al., 2021),
and RLDR (Wei et al., 2021). In all these datasets, DR is graded into five levels: Non-DR, Mild,
Moderate, Severe, and Proliferative. Following the convention in the benchmark, we use the Area
Under the ROC Curve (AUC) and the F1-score as our primary metrics.

Implementation Details. We evaluate KCCL on two representative concept-based models: the
Concept Embedding Model (CEM) (Espinosa Zarlenga et al., 2022) and CLAT (Wen et al., 2025).
CEM is a versatile CBM architecture recognized for its balance between interpretability and ac-
curacy, while CLAT is a specialized CBM designed for ophthalmology applications. For the CEM
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Table 2: Performance of proposed KCCL and other existing methods on six unseen domains.
KCCLCEM and KCCLCLAT denote our framework applied to two representative CBMs, CEM and
CLAT, respectively. Evaluation metrics include AUC and F1-score (%). The best results are high-
lighted in bold, and the second-best results are underlined. The backbone is ResNet50 unless other-
wise noted, where † denotes ViT and ⋆ denotes VMamba.

Method APTOS DeepDR FGADR IDRID Messidor RLDR Average
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

General Domain Generalization Methods
Mixup 65.5 30.2 70.7 33.3 58.8 7.4 70.2 32.6 71.5 32.6 72.9 27.0 68.3 27.2

MixStyle 62.0 25.0 53.3 14.6 51.0 7.9 53.0 19.4 51.4 33.1 53.5 6.4 54.0 17.7
DDAIG 67.4 31.6 73.2 29.7 59.9 5.5 70.2 33.4 73.5 35.6 74.4 23.5 69.8 26.6

ATS 68.8 32.4 72.7 33.5 60.3 5.7 69.1 30.6 73.4 32.4 75.0 23.9 69.9 26.4
Fishr 64.5 31.0 72.1 30.1 56.3 7.2 71.8 30.6 74.3 33.8 78.6 21.3 69.6 25.7

MDLT 67.6 32.4 73.1 33.7 57.1 7.8 71.9 s 32.4 73.4 34.1 76.6 30.0 70.0 28.4
DR Grading Methods

GREEN 67.5 33.3 71.2 31.1 58.1 6.9 68.5 33.0 71.3 33.1 71.0 27.8 67.9 27.5
CABNet 67.3 30.8 70.0 32.0 57.1 7.5 67.4 31.7 72.3 35.3 75.2 25.4 68.2 27.1
MIL-VT† 69.1 36.8 78.3 36.3 62.1 9.3 71.7 31.1 78.3 40.7 80.8 34.5 73.4 31.5

RETFound† 81.2 41.4 78.2 31.1 77.9 34.9 85.6 45.8 81.9 43.5 81.1 40.9 81.0 39.6
Domain Generalizable DR Grading Methods

DRGen 69.4 35.7 78.5 31.6 59.8 8.4 70.8 30.6 77.0 37.4 78.9 21.2 72.4 27.5
GDRNet 69.8 35.2 76.1 35.0 63.7 9.2 72.9 35.1 78.1 40.5 79.7 37.9 73.4 32.2
GAD† 70.1 37.8 80.2 36.7 65.7 10.4 72.5 32.9 79.7 41.2 80.9 36.1 74.9 32.5
DECO 70.6 36.4 78.2 35.8 65.5 11.7 74.2 38.7 79.8 44.9 81.1 40.8 74.9 34.7

Samba⋆ / 37.9 / 40.7 / 40.5 / 41.7 / 41.8 / 42.6 / 40.9
Concept-based Models for Generalization
AlignCBM 73.8 42.1 76.8 34.0 78.8 39.0 81.5 41.1 77.6 38.6 80.3 41.0 78.1 39.3

KnoBo 76.6 44.6 77.0 34.8 81.5 39.2 81.0 44.0 81.7 48.0 82.4 42.8 80.1 42.2

KCCLCEM 81.8 44.1 81.7 38.4 82.3 41.0 85.8 48.0 84.7 51.5 83.6 45.9 83.3 44.8
KCCLCLAT† 82.2 47.8 83.9 40.2 81.3 40.6 89.3 52.6 83.9 51.2 84.2 44.3 84.1 46.1

implementation, we utilize a ResNet50 (He et al., 2016) backbone for consistency with the compared
methods and set the concept embedding dimension to 512. For CLAT, we directly use the original
configurations. All models are trained for up to 100 epochs using the AdamW optimizer with a batch
size of 32. We set the initial learning rate to 5e-5, weight decay to 1e-4, activation strength param-
eter ϵ to 0.2, and the distillation temperature θ to 2.0. A CosineAnnealingWarmRestarts scheduler
reduces the learning rate to a minimum of 1e-5. Early stopping is applied if validation loss does not
improve for 10 epochs.

4.2 COMPARISON WITH STATE-OF-THE-ART

We compare KCCL with three categories of methods: 1) general domain generalization methods,
including Mixup (Zhang et al., 2018), MixStyle (Zhou et al., 2020b), DDAIG (Zhou et al., 2020a),
ATS (Yang et al., 2021), Fishr (Rame et al., 2022), MDLT (Yang et al., 2022); 2) DR grading meth-
ods, such as GREEN (Liu et al., 2020), CABNet (He et al., 2021), MIL-VT (Yu et al., 2021), and
RETFound (Zhou et al., 2023); 3) domain generalizable DR grading methods, including DRGen (At-
wany et al., 2022), GDRNet (Che et al., 2023), GAD (Bi et al., 2025), DECO (Xia et al., 2024), and
Samba (Bi et al., 2024); 4) Concept-based models for generalization, including AlignCBM (Pang
et al., 2024) and KnoBo (Yang et al., 2024). The results are cited from the original papers, except
for AlignCBM and KnoBo, which we conduct the experiments based on their released codebases.

Table 2 presents the results of all methods across six target domains. Our KCCL framework achieves
the best performance on nearly all target domains, demonstrating significant improvements over the
state-of-the-art domain generalizable DR methods. The best-performing variant, KCCLCLAT, ex-
ceeds the best baseline by 4.0% and 3.9% in AUC and F1-score. KCCLCEM also delivers strong per-
formance, securing the second-best overall results. The improvements are particularly substantial on
challenging domains such as IDRID and APTOS, where KCCLCLAT achieves remarkable F1-score
improvements of 10.6% and 3.2%, respectively. Among the two variants, KCCLCLAT demonstrates
superior performance, benefiting from its design tailored for fundus diagnosis, which provides in-
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herent advantages for learning DR-related concepts. The remarkable performance improvement
can be attributed to two key factors. First, the CBM architecture enables explicit concept-based
reasoning, where lesion information is directly modeled to facilitate the model capturing more di-
agnostically meaningful features. Second, the knowledge constraint mechanism actively steers the
concept learning process. Rather than simply using distillation to overcome annotation scarcity,
KCCL imposes additional constraints derived from medical knowledge. This constraint fosters the
learning of concept predictions that are well-aligned with domain-invariant medical principles. In
turn, these medically-grounded concepts provide a more robust foundation for the final grading task,
enhancing its accuracy and generalizability.

The consistent improvements across diverse datasets confirm that our KCCL framework enables
robust domain generalization across different domains.

Table 3: Ablation study on each component of KCCL. The ID column serves as an index for easy
reference to each experiment. KD: Knowledge Distillation, SC: Self Correction, DR: Distillation
Reweighting, KCR: Knowledge Constrained Regularization. Grading refers to the averaged results
on six unseen domains, while Lesion refers to the results on DRL6k test dataset. The best results are
highlighted in bold, and the second-best results are underlined.

ID KD SC DR KCR
CLAT CEM

Grading Lesion Grading Lesion
AUC F1 AUC F1 AUC F1 AUC F1

0 ✗ ✗ ✗ ✗ 73.4 31.5 / / 67.1 27.3 / /
1 ✗ ✗ ✗ ✓ 72.6 33.0 64.3 37.9 76.5 30.6 58.0 39.4
2 ✓ ✗ ✗ ✗ 78.1 39.3 74.6 67.8 79.0 38.6 73.3 66.4
3 ✓ ✓ ✗ ✗ 82.3 43.9 82.6 72.1 81.0 42.2 79.7 70.7
4 ✓ ✓ ✗ ✓ 83.2 44.1 85.8 75.2 82.2 43.0 84.6 76.2
5 ✓ ✗ ✓ ✗ 82.1 42.2 79.2 71.5 78.1 39.3 77.4 68.8
6 ✓ ✗ ✓ ✓ 81.8 43.9 87.2 74.2 82.4 42.2 83.9 74.3
7 ✓ ✓ ✓ ✗ 84.0 45.2 84.2 73.2 83.3 43.8 82.6 72.7
8 ✓ ✓ ✓ ✓ 84.1 46.1 87.0 76.3 83.3 44.8 86.5 77.0

4.3 ABLATION STUDIES

To rigorously assess the contribution of each component within our KCCL framework, we conduct
comprehensive ablation studies. Table 3 presents the results across different component combina-
tions for both CLAT and CEM settings, evaluated on both DR grading (averaged across six unseen
domains) and lesion detection (on DRL6k test set) tasks. Furthermore, to provide a more com-
prehensive analysis, we conducted additional experiments examining the impact of random priors,
different ϵ values, and CBMs training on DRL6k only (see Appendix).

Effect of Concept-based Reasoning. We first evaluate the fundamental benefit of incorporating a
concept layer trained via knowledge distillation (KD). Comparing the baseline model (ID 0) with
a CBM trained only with standard KD (ID 2), we observe a substantial performance leap on the
grading task: the F1-score increases from 31.5% to 39.3% for CLAT and from 27.3% to 38.6%
for CEM. This demonstrates that explicitly modeling lesion concepts as an intermediate reasoning
layer significantly enhances the model’s ability to capture disease-relevant patterns. The learned
lesion concepts provide discriminative features that directly facilitate grading decisions, as the model
can leverage specific pathological indicators rather than relying on low-level visual features alone.
In contrast, applying only the knowledge constrained regularization (KCR) without any concept
supervision from KD (ID 1) yields limited improvement, underscoring the necessity of KD for
providing the primary guidance for concept learning.

Dissecting the Knowledge Constrained Distillation. We then evaluate the impact of our knowl-
edge constrained distillation, which is designed to provide reliable concept supervision by guiding
the model on ”what-to-learn.” Self-correction (SC) rectifies distillation targets that violate hard con-
straints, while distillation reweighting (DR) dynamically adjusts the loss based on deviations from
soft constraints. The two components individually lead to performance gains over plain distillation
(ID 3 vs. ID 2, ID 5 vs. ID 2), with the correction mechanism showing larger improvements. This is
likely because correcting implausible concept predictions particularly helps in identifying Non DR
cases, which constitute a substantial proportion of the evaluation data. The reweighting component
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provides smaller but also consistent gains (ID 3 vs. ID 5) by reducing the influence of uncertain con-
cept predictions. When both correction and reweighting are combined (ID 7), we observe the largest
improvements, further confirming that these two mechanisms complement each other effectively.

The Role of Knowledge Constrained Regularization. The knowledge constrained regularization
(KCR) module enforces clinical consistency by penalizing implausible concept predictions. How-
ever, when used in isolation, KCR is insufficient to support effective concept learning (ID 1). Fur-
thermore, our experimental results demonstrate that KCR exerts a relatively modest impact on final
grading performance (e.g., ID 8 vs. ID 7, ID 4 vs. ID 3). Nevertheless, KCR’s primary contribu-
tion lies in enhancing the quality of the learned concepts themselves. As detailed in Table 3, KCR
consistently boosts concept prediction metrics (e.g., CLAT AUC improves from 84.2% to 87.0% in
ID 8 vs. ID 7). This demonstrates that KCR is critical for producing more reliable and clinically
coherent concepts, which is essential for model interpretability and trustworthiness.

Sensitivity to Knowledge Distillation Temperature. We further examine the impact of distillation
temperature θ on KCCL’s performance (Figure 2). The analysis reveals an optimal range for this
hyperparameter. Performance remains robust across θ ∈ [1, 4], but deteriorates at higher values.
This degradation occurs because excessive temperature smoothing erases the nuanced patterns that
distinguish between different lesion types—precisely the fine-grained knowledge our framework
aims to distill. We therefore set θ = 2.0, which provides an optimal trade-off between preserving
teacher model specificity and enabling stable concept learning.
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Figure 2: Effect of knowledge distillation tem-
perature θ on the performance of CLAT and
CEM on six unseen domains for grading and
on DRL6k test dataset for lesion detection,
where both models are trained with the pro-
posed KCCL framework.
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Figure 3: Heatmap visualization of P and
C, along with the correlation between con-
cept and grading predictions for CLAT and
CEM on the DRL6k test set. Here, KCCLCLAT
and KCCLCEM denote models trained with the
proposed KCCL method, while CLATKD and
CEMKD use knowledge distillation only.

4.4 INTERPRETABILITY ANALYSIS

To evaluate how KCCL improves the consistency between concept predictions and decision-making,
we visualize two key aspects and compare them against statistical priors (Figure 3): the association
between predicted lesion concepts and the final DR grade, and the co-occurrence patterns among the
concepts themselves. The heatmaps reveal that models trained with KCCL (KCCLCLAT, KCCLCEM)
learn concept relationships that closely align with the medical priors. In contrast, baseline models
trained only with knowledge distillation (CLATKD, CEMKD) exhibit clinically implausible behav-
iors. For instance, CLATKD incorrectly associates Non DR predictions with MA and fails to activate
any relevant concepts for Mild DR, which is a clear contradiction of medical knowledge. Further-
more, both baseline models learn high correlations between all lesions, a pattern inconsistent with
clinical reality. These findings demonstrate that KCCL effectively corrects the model’s internal rea-
soning. By enforcing medical constraints, it produces concept predictions that are more faithful and
aligned with medical expertise, which is a critical step toward building a truly generalizable model.
We also provide case studies in Appendix to further illustrate the interpretability of our method.

5 DISCUSSION & CONCLUSION

Our proposed KCCL framework demonstrates significant promise in addressing domain shift chal-
lenges for DR grading through concept-based learning. By leveraging knowledge distillation from
the lesion detection model and incorporating medical knowledge constraints, KCCL achieves su-
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perior generalization performance while maintaining clinical interpretability. The extensive experi-
ments across multiple unseen domains validate the effectiveness of our approach, consistently out-
performing state-of-the-art methods. Despite these promising results, it is crucial to discuss the
inherent limitations of our approach. The framework’s performance, while robust, is fundamen-
tally linked to the quality and scale of the initial knowledge source. Although KCCL alleviates the
need for direct concept annotations, it introduces a dependency on a well-annotated lesion detection
dataset to provide the initial supervision; however, such supervision is arguably necessary in the
medical domain to ensure precise alignment between features and clinical semantics. Moreover, the
statistical priors employed as knowledge constraints, while carefully validated, inherently represent
common clinical patterns. They may not fully capture atypical disease presentations or rare lesion
co-occurrence relationships that deviate from statistical norms. Furthermore, our current concept
vocabulary is not exhaustive; the focus on four primary lesions omits critical PDR indicators like
Neovascularization (NV), which may affect diagnostic accuracy for advanced grades. It should be
noted that this limitation arises from the constraints of existing datasets rather than the KCCL frame-
work itself. And the assumption of a complete concept vocabulary is inherently idealized, as even
clinical practice continues to refine diagnostic criteria. Nonetheless, the KCCL framework is inher-
ently flexible and can be extended to accommodate additional concepts as they become available.

In conclusion, KCCL offers a promising approach toward practical, interpretable, and generalizable
medical AI. It provides a principled approach to learning robust concept representations under lim-
ited supervision, a challenge common to many medical imaging tasks. Future work should focus
on further reducing the dependency on annotated data through semi-supervised or self-supervised
paradigms, expanding the concept vocabulary to cover a wider range of pathologies, and exploring
methods to dynamically discover and adapt clinical constraints from data.

ETHICS STATEMENT

All experiments in this study were conducted on publicly available datasets. The DRL6k dataset,
which we curated and utilized, was aggregated and processed entirely from these existing public
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scope of this paper.

REPRODUCIBILITY STATEMENT
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A APPENDIX

The Impact of Medical Priors. To further investigate the impact of medical priors on our proposed
method, we replaced the established priors with randomly generated priors during training. Based
on the results of multiple experiments, we plotted a bar chart as shown in Figure 4. The results
demonstrate that, overall, the performance with random priors is significantly worse. This is likely
because random priors are unable to provide effective guidance and, in many cases, may mislead the
model into learning incorrect conceptual relationships. Consequently, this negatively impacts the
overall performance of the model, resulting in significant variability in the outcomes, both in terms
of grading and lesion detection.
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Figure 4: Performance comparison between using true medical priors and random priors in
KCCLCLAT and KCCLCEM. The bars represent the mean F1-scores averaged over five independent
runs with different random seeds, with error bars indicating the range of variation. The dashed lines
represent the performance achieved using true medical priors for KCCLCLAT (green) and KCCLCEM
(orange), respectively.
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Figure 5: Effect of co-occurrence activation strength ϵ on the grading performance of KCCLCLAT
and KCCLCEM on six unseen domains and the lesion detection performance on DRL6k test dataset.

Sensitivity to Co-occurrence Activation Strength. To analyze the impact of co-occurrence activa-
tion strength parameter ϵ on our method, we further examine the effect of varying this parameter, as
shown in Figure 5. The results indicate that our method is generally robust to the choice of ϵ, achiev-
ing good performance within the range of 0.1 to 0.3. However, when ϵ is set too high, related lesions
may become overly activated, and the sampled lesion probabilities can be excessively influenced.
This leads to a corrected probability distribution that deviates significantly from the true distribu-
tion, thereby adversely affecting the learning of the concept layer and ultimately impacting grading
performance to some extent. Therefore, we selected ϵ = 0.2 for our experiments as it provides a
more balanced training signal.

Sensitivity to Lesion Detection Threshold. Our selection of τ = 0.5 follows the standard conven-
tion for binary classification logits. To address the question of sensitivity, we performed an ablation
study ranging from 0.1 to 0.9, as shown in Figure 6. As the results show, the model’s performance
peaks in the 0.4-0.5 range. KCCL is designed to be robust to teacher imperfections and does not
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rely on a perfect lesion detector. Consequently, extensive tuning of the threshold is not required.
Furthermore, we avoided using adaptive or learnable threshold mechanisms, as optimizing these
parameters on the source domain poses a risk of overfitting.
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Figure 6: Impact of lesion detection threshold τ .

Table 4: Performance of concept-based models trained only on the DRL6k dataset. Here, KCCLCLAT
and KCCLCEM denote models trained with the proposed KCCL method, while CLATKD and CEMKD
use knowledge distillation only.

Method
Grading Lesion

AUC F1 AUC F1
CEMDRL6k 79.5 36.8 89.3 79.7
KCCLCEM 83.3↑3.8 44.8↑8.0 86.5↓2.8 77.0↓2.7

CLATDRL6k 80.3 37.6 89.6 80.0
KCCLCLAT 84.1↑3.8 46.1↑8.5 87.0↓2.6 76.3↓3.7

Concept-based models with Only DRL6k Supervision. Some studies (Koh et al., 2020; Es-
pinosa Zarlenga et al., 2022) have shown that concept-based models are inherently more data-
efficient. To further illustrate the effectiveness of the additional data introduced through knowledge
distillation, we trained CEM and CLAT solely on the DRL6k dataset and evaluated their generaliza-
tion capabilities using the same benchmark (excluding FGADR due to its partial overlap with the
training data). As shown in Table 4, CEM and CLAT trained only on DRL6k still exhibit a perfor-
mance gap compared to KCCL. However, they already outperform many other domain generaliza-
tion methods, highlighting the inherent generalization ability and data efficiency of concept-based
models. Building on this foundation, KCCL further leverages the strengths of concept-based models
by employing knowledge-guided training to enable concept learning without direct concept annota-
tions. The incorporation of additional data significantly enhances performance on unseen domains,
while only causing a slight decrease in lesion prediction performance. This greatly improves the
practicality of concept-based models in medical imaging and offers a novel approach for enhancing
model generalization in this field.

Case Study. Figure 7 presents representative cases that demonstrate KCCL’s impact on inter-
pretability and clinical consistency. The first two cases show case the ability of KCCL to distinguish
Non DR from other grades. While CLATKD frequently misclassifies these cases due to incorrect
MA predictions, KCCLCLAT correctly identifies the absence of lesions in Non DR cases, leading to
more accurate grading. The third case further illustrates KCCL’s advantage in clinical consistency.
Although both KCCLCLAT and CLATKD predict a Proliferative outcome, their reasoning differs:
CLATKD shows inconsistent lesion activations that contradict the severity of the predicted grade,
while KCCLCLAT demonstrates coherent lesion predictions that align with the medical expectations.
This consistency is crucial for building clinician trust, as it ensures that the model’s explanations
faithfully reflect genuine clinical reasoning rather than spurious correlations.
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Figure 7: Case study of KCCL on DR grading and lesion detection. The first row shows the orig-
inal images, with ground-truth DR grades and lesions underneath. The following rows show the
predicted DR grades and lesions from KCCLCLAT and CLATKD. Grade predictions are shown as
confidence score bar charts for the five DR grades (0: Non-DR, 1: Mild, 2: Moderate, 3: Severe, 4:
Proliferative). The notation “∼” indicates no lesion activation.

Table 5: Performance of different lesion detection models on the DRL6k test dataset.

Model Architecture AUC F1
FLAIR RN50 91.3 83.3
RET-CLIP ViT-B 90.0 81.0
ViLReF ViT-B 88.4 78.3
RETFound ViT-B 91.7 82.9

Table 6: Impact of different teacher models.

Method FLAIR RET-CLIP ViLReF RETFound
AUC F1 AUC F1 AUC F1 AUC F1

KCCLCLAT 84.2 46.0 84.1 45.9 81.3 46.3 80.7 45.3
KCCLCEM 83.0 44.7 83.0 44.8 82.9 44.2 83.1 43.5

Lesion Detection Model Training. To obtain the concept pseudo-labels required for knowledge
distillation in KCCL, we trained a lesion detection model to serve as the teacher model. This model
is based on a ResNet50 backbone, initialized with pre-trained weights from the image encoder of
FLAIR (Silva-Rodrı́guez et al., 2025). The model architecture remains unaltered, employing only
CutMix data augmentation to enhance its generalization capabilities, with the CutMix alpha param-
eter set to 1.0. Additionally, reweighting is applied to address class imbalance, where the weights
are set as the inverse of the sample proportion for each lesion category. Consistent with the main ex-
periments of KCCL, the training utilizes the AdamW optimizer with a learning rate of 1e-4, weight
decay of 1e-4, batch size of 32, and a maximum of 100 training epochs. In addition to FLAIR, we
also trained other models including RET-CLIP (Du et al., 2024), ViLReF (Yang et al., 2025), and
RETFound Zhou et al. (2023) following a similar protocol to evaluate different teacher architectures.
The performance of these models on the DRL6k test dataset is presented in Table 5. Furthermore,
the impact of utilizing these different teacher models on the downstream performance of KCCL is
presented in Table 6. This confirms that the effectiveness of our knowledge constraints is not tied to
a specific architecture. Crucially, this stability reaffirms the core premise of our work: the teacher
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model primarily serves to provide a basic supervision signal for concept learning, while the KCCL
framework itself is the more critical component.

HE

SE

EX

MA

Figure 8: Visualization of KCCLCLAT for lesion localization.

Visualization of Lesion Localization. To verify the model’s focus, we visualized the attention
regions of KCCLCLAT regarding different lesion types on the DRL6k test dataset. As depicted in
Figure 8, the results indicate that the concept layer captures and focuses on key lesion regions to
a reasonable degree. Notably, even under the constraint of a purely pseudo-label training regime,
the model still exhibits a discernible tendency to attend to clinically relevant areas, reinforcing the
validity of the learned representations.

Stability Analysis. Although the original benchmark protocol primarily reports single-run perfor-
mance without quantifying statistical dispersion, we conducted three independent runs to rigorously
evaluate the stability of the KCCL framework. Table 7 presents the performance in terms of mean ±
standard deviation. The results exhibit minimal variance across different initializations, confirming
that our method maintains consistent and stable performance

Table 7: Domain generalization performance (Mean ± Standard Deviation) across multiple runs.
The results are reported in terms of AUC (%) and F1 scores (%).

Method APTOS DeepDR FGADR IDRID Messidor RLDR Average
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

KCCLCEM
81.4
±0.4

44.3
±0.7

81.0
±0.7

38.8
±1.2

81.8
±1.6

40.7
±2.0

84.7
±0.9

47.5
±0.7

84.9
±0.3

51.1
±0.4

84.0
±0.3

46.1
±0.3

83.0
±0.4

44.7
±0.6

KCCLCLAT
82.0
±0.3

47.1
±0.7

83.0
±1.1

39.2
±3.0

81.6
±0.3

40.6
±0.8

89.5
±0.3

52.7
±3.7

84.8
±0.9

51.2
±1.3

84.3
±0.1

45.1
±0.8

84.2
±0.2

46.0
±0.5

The Use of Large Language Models. We used large language models (LLMs) solely for language
polishing purposes, such as improving grammar, readability, and clarity of writing. LLMs were
not involved in research ideation, experimental design, analysis, or interpretation of results. All
scientific contributions and substantive content of the paper are entirely the work of the authors.
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