

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZABLE DIABETIC RETINOPATHY GRADING VIA KNOWLEDGE CONSTRAINED CONCEPT LEARN- ING

Anonymous authors

Paper under double-blind review

ABSTRACT

Diabetic retinopathy (DR) grading models often suffer a significant performance drop when deployed to unseen clinical domains. A promising strategy is to mirror the diagnostic process of clinicians, who rely on identifying specific pathological signs to make judgments. Concept-based models (CBMs) are well-suited for this, but their effectiveness often hinges on concept supervision, which is rarely available in medical imaging. To address this, we propose Knowledge Constrained Concept Learning (KCCL), a novel framework that achieves robust domain generalization through concept learning under knowledge constraints. We first curate DRL6k, a dataset of 6,000 fundus images with lesion annotations, and train a lesion detection model to provide concept supervision via knowledge distillation. However, directly using this supervision may introduce noise and inconsistencies. Therefore, KCCL employs a knowledge constraint mechanism: it leverages medical priors to correct implausible concept predictions and reduce the influence of those deviating from clinical expectations during distillation, while also directly penalizing the model for producing clinically inconsistent concept predictions. Extensive experiments on multiple unseen target datasets demonstrate that KCCL significantly outperforms state-of-the-art domain generalization and DR grading methods, achieving generalization by producing clinically coherent and interpretable predictions.

1 INTRODUCTION

Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults worldwide, affecting over 100 million people globally (Dai et al., 2024; Cheung et al., 2010). Early detection and timely intervention are crucial for preventing irreversible vision loss, making automated screening systems a critical tool in managing this condition. Recent advancements in deep learning (DL) have achieved remarkable success in automated DR grading from fundus images, demonstrating performance comparable to human experts and offering the potential to significantly expand screening accessibility (Dai et al., 2021; 2024; He et al., 2021). However, a critical limitation emerged when these models are deployed across different clinical settings. Models trained on one dataset often exhibit significant performance drops when applied to images from other sources, due to variations in imaging protocols, patient demographics, and equipment specifications. This domain shift problem poses a major barrier to the widespread clinical adoption of DL-based DR screening systems (Che et al., 2023). To address this challenge, numerous domain generalization approaches have been developed (Xia et al., 2024; Bi et al., 2024; Atwany et al., 2022). These methods approach the problem from various angles, attempting to learn diagnostically relevant features that are invariant across different domains, and have shown promising results. However, they all operate under a common paradigm: learning invariances implicitly from data patterns rather than explicitly incorporating the clinical knowledge that guides human diagnosis. This observation leads us to consider an alternative approach: what if we could directly embed the diagnostic reasoning process that ophthalmologists use into the model? Human experts diagnose DR by *systematically* identifying and interpreting pathological lesions such as microaneurysms and exudates (Li et al., 2019). This concept-driven reasoning process is inherently robust to domain shifts, as the pathological manifestations of retinal disease remain consistent across different imaging conditions.

054 But how can we effectively translate this reasoning process into a deep learning framework? Re-
 055 cently, concept-based models (CBMs) (Koh et al., 2020; Espinosa Zarlena et al., 2022) have
 056 emerged as a promising paradigm to address this challenge. By channeling information through
 057 an explicit concept layer, they offer a more transparent decision-making process, allowing us to
 058 customize the model’s reasoning process to align with clinical expertise—for instance, using reti-
 059 nal lesions as intermediate concepts to mirror how ophthalmologists diagnose diabetic retinopathy
 060 based on pathological findings. Moreover, recent studies have demonstrated that CBMs can enhance
 061 generalization across different domains (Choi et al., 2024; Chowdhury et al., 2024). However, these
 062 models confront a fundamental challenge in the medical domain: the scarcity of samples that are
 063 simultaneously annotated with both concept-level and downstream task labels, which hinders their
 064 applicability in practice.

065 To mitigate the scarcity of concept annotations, label-free methods (Oikarinen et al., 2022) have been
 066 explored, yet they typically rely on general-purpose vision-language models (Radford et al., 2021)
 067 that lack sufficient domain-specific alignment for medical imaging. A more practical alternative is to
 068 employ knowledge distillation by training a teacher model on a lesion annotated dataset to generate
 069 pseudo-labels for the broader dataset. However, this approach carries a substantial risk because a
 070 teacher model often suffers from limited generalization capabilities. Consequently, blindly using its
 071 predictions as supervision signals propagates noise and errors to the CBM’s concept layer. Crucially,
 072 we recognize that while explicit concept labels are absent, disease severity labels are available and
 073 are intrinsically linked to lesion concepts. This insight prompts us to move beyond naive distillation
 074 and leverage medical priors derived from disease-lesion correlations to guide a robust and logically
 075 consistent concept learning process.

076 **Building on this**, we present Knowledge Constrained Concept Learning (**KCCL**), a novel frame-
 077 work that enables concept learning through knowledge distillation and knowledge constraints. We
 078 first curate a consolidated dataset of 6,000 fundus images (DRL6k) with image-level annotations for
 079 four key DR-related lesion concepts from existing public datasets. We then train a lesion detection
 080 model on this curated dataset to provide concept supervision via knowledge distillation. To ensure
 081 the CBM learns robust and clinically reliable lesion concepts, we introduce a knowledge constraint
 082 mechanism. First, it refines the distillation guidance by validating the predictions of lesion detec-
 083 tion model against established medical knowledge, simultaneously correcting implausible concept
 084 predictions and reweighting the distillation loss. This provides a clear “what-to-learn” signal for
 085 the concept layer. Second, it directly penalizes the CBM for predicting concept predictions that
 086 deviate from medical knowledge, providing a “what-is-wrong” signal that prevents the model from
 087 converging to clinically nonsensical solutions. By combining these mechanisms, our approach en-
 088 ables robust concept learning from limited lesion annotations, leading to a more generalizable and
 089 interpretable DR grading model. Our main contributions are summarized as follows:

- 090 • We propose KCCL, a novel domain generalization framework for DR grading that inte-
 091 grates concept-based reasoning with knowledge distillation, using a lesion detection model
 092 trained on our curated DRL6k dataset.
- 093 • We design a dual-constraint mechanism that incorporates medical constraints to simulta-
 094 neously refine the teacher guidance and regularize the CBM concept predictions, ensuring
 095 clinically plausible concept learning.
- 096 • We conduct extensive experiments across multiple datasets, demonstrating that KCCL sig-
 097 nificantly outperforms state-of-the-art methods on unseen domains while benefiting from
 098 the interpretability of concept-based models.

100 2 RELATED WORK

101 **Domain Generalization.** Domain generalization aims to develop models that perform robustly
 102 across unseen domains, overcoming domain shift challenges. A significant body of work focuses
 103 on learning domain-invariant representations by minimizing the divergence between source do-
 104 mains (Muandet et al., 2013; Li et al., 2018b;a; Matsuura & Harada, 2020). Another bunch of
 105 methods approaches the problem from the data perspective, aiming to enrich the diversity of source
 106 domains through data augmentation or generative models to better cover potential target distribu-
 107 tions (Zhou et al., 2020a;b; Mancini et al., 2020). Given the critical importance of generalization in
 108 clinical applications, there has been a growing interest in applying DG techniques to various medical

108 imaging tasks (Che et al., 2023; Atwany et al., 2022; Zhang et al., 2020; Wu et al., 2023b; Bi et al.,
 109 2024). However, these methods predominantly view medical images from purely a data-centric per-
 110 spective, often neglecting the invaluable clinical expertise and medical knowledge. In contrast, our
 111 work addresses this gap by incorporating explicit medical knowledge into the learning process via
 112 concept-based reasoning, thereby enabling models that are not only robust to domain shifts but also
 113 more interpretable and align with clinical diagnostic processes.

114 **Concept-based Models.** Concept based models (CBMs) introduce an intermediate concept layer
 115 that forces models to make predictions through human-interpretable concepts, thereby enhancing
 116 model interpretability (Koh et al., 2020; Yuksekgonul et al., 2022; Espinosa Zarlenga et al., 2022;
 117 Zhang et al., 2024). A particularly relevant line of work focuses on label-free CBMs that aim
 118 to reduce the annotation burden by automatically discovering concepts without explicit supervi-
 119 sion (Oikarinen et al., 2022; Moayeri et al., 2023; Tan et al., 2025; Gao et al., 2024), but these
 120 methods often rely on large language models or CLIP models (Radford et al., 2021), whose effec-
 121 tiveness is limited in the medical domain as they are not pre-trained with the specialized concepts.
 122 Notably, Pang et al. (2024) also proposed a method for integrating medical knowledge through
 123 CBMs, but this approach still requires additional annotation work from physicians, making it less
 124 applicable in practice. In contrast, our method alleviates the dependency on labels through knowl-
 125 edge distillation, and extracts medical knowledge priors from the concept labels themselves based
 126 on statistical methods, thus avoiding the costly expert annotation work.

127 **Knowledge Distillation.** Knowledge distillation (Hinton et al., 2015) is primarily used for model
 128 compression and acceleration, transferring knowledge from large models to smaller ones to enhance
 129 performance while reducing computational costs (Gou et al., 2021). Recent works have also ex-
 130 plored concept distillation, but with fundamentally different motivations and methodologies from
 131 ours. For instance, Sousa et al. (2022) proposed a method to distill knowledge from a black-box
 132 model to train a concept-based proxy model, aiming to interpret the black-box model’s decisions.
 133 Gupta et al. (2023) sought to leverage knowledge from pre-trained large models to assist in concept
 134 extraction, where concepts are represented as Concept Activation Vectors (Kim et al., 2018) rather
 135 than the outputs of a concept layer as in traditional CBMs. In contrast, our approach addresses
 136 the scarcity of concept annotations in medical scenarios, and we do not treat the teacher model as
 137 a completely reliable source of knowledge, allowing for a more flexible and robust integration of
 138 medical knowledge into the learning process.

139 **Medical Knowledge Integration.** Incorporating medical knowledge to guide model learning is a
 140 well-established strategy in medical imaging (Xie et al., 2021). Given the high cost and specialized
 141 expertise required for annotating medical images, leveraging prior knowledge is crucial for enhanc-
 142 ing model learning efficiency and reliability. These approaches typically embed clinical priors into
 143 the model’s architecture (Sun et al., 2021; Yu et al., 2021; Pang et al., 2024) or training objec-
 144 tives (Wu et al., 2023a; Zhang et al., 2023; Xie et al., 2019; Li et al., 2022). Despite their diversity,
 145 these methods often integrate knowledge in a static manner, directly constraining the model’s repre-
 146 sentations or predictions. Our work extends this paradigm by employing clinical priors as a dynamic
 147 mediator within a knowledge distillation framework. Specifically, we leverage medical knowledge
 148 to correct obviously erroneous distillation targets, reweight potentially problematic supervision sig-
 149 nals, and regularize the student’s concept learning, enabling robust knowledge transfer.

150 3 METHOD

151 3.1 PROBLEM FORMULATION AND OVERVIEW

152 Given source domain \mathcal{D}_s and target domains \mathcal{D}_t , where each sample consists of fundus image $x \in \mathcal{X}$
 153 and DR severity grade $y \in \mathcal{Y} = \{0, 1, 2, 3, 4\}$ representing normal to proliferative DR. Our goal is
 154 to learn a robust model from \mathcal{D}_s that can generalize well to \mathcal{D}_t without requiring any target domain
 155 data. Following established benchmarks (Che et al., 2023), we train the model on a large-scale
 156 source domain and evaluate it on multiple target domains. While conventional deep learning models
 157 directly learn the mapping $x \rightarrow y$, CBMs introduce an interpretable $x \rightarrow c \rightarrow y$. Here, c represents
 158 a set of intermediate, human-understandable clinical concepts (e.g., microaneurysms, hemorrhages)
 159 that are first predicted from the image and then used to determine the final grade y . This approach has
 160 shown promise for domain generalization (Choi et al., 2024; Chowdhury et al., 2024). However, the
 161 training of concept layers requires paired concept annotations, which are scarce in medical domains.

To address this, we propose a Knowledge Constrained Concept Learning (KCCL) framework that integrates medical knowledge through three specialized mechanisms: **Self Correction** (SC) directly fixes concept predictions that clearly violate medical knowledge, **Distillation Reweighting** (DR) reduces the influence of potentially problematic samples that deviate from clinical patterns, and **Knowledge Constrained Regularization** (KCR) penalizes the concept layer for generating medically implausible concepts. The overall framework is illustrated in Figure 1. Below, we detail each component of the KCCL framework.

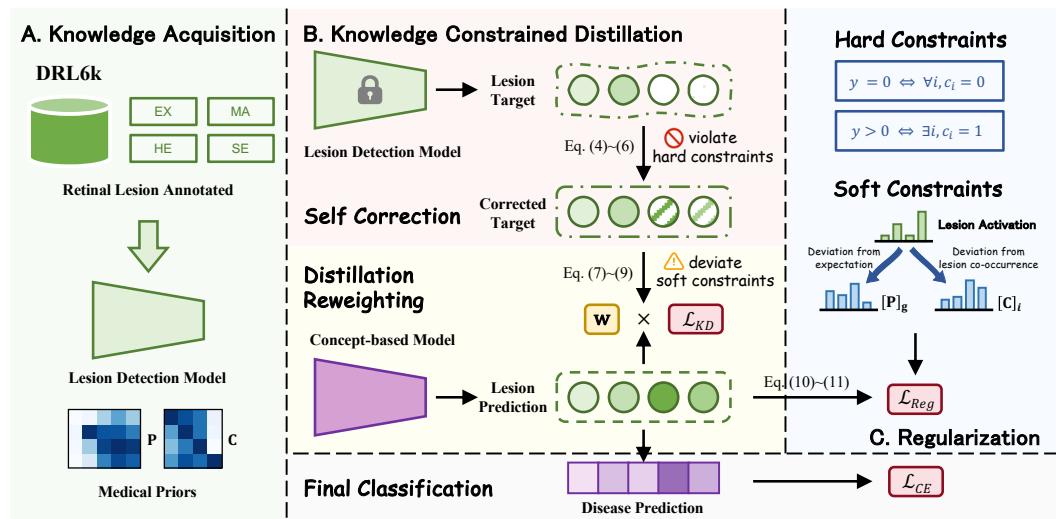


Figure 1: Overview of our KCCL framework. **A.** We first construct the DRL6k dataset to train a lesion detection model T and derive medical priors, which inform the design of hard and soft constraints. **B.** Predictions from T violating hard constraints are corrected via prior sampling; additionally, the distillation loss is dynamically reweighted based on the degree of soft constraint deviation. The final disease classification is based on these learned concepts. **C.** The CBM’s concept layer is directly regularized to penalize violations of knowledge constraints.

Table 1: Statistics of the DRL6k Dataset.

Dataset Split	Hard Exudates	Hemorrhages	Microaneurysms	Soft Exudates
Training	2108	2733	2794	1084
Validation	265	347	358	144
Test	279	358	357	148

3.2 MEDICAL KNOWLEDGE ACQUISITION FOR GUIDANCE

DRL6k. We first construct the DRL6k dataset containing 6,000 images with image-level annotations for four representative and highly relevant DR-related lesions: Hard Exudates (EX), Soft Exudates (SE), Microaneurysms (MA), and Hemorrhages (HE). This dataset integrates FGADDR from (Wen et al., 2025), segmentation data from IDRID (Porwal et al., 2018), and the Retinal-Lesions dataset (Wei et al., 2021). We partition DRL6k into training, validation, and test sets using an 8:1:1 ratio, with detailed distribution statistics provided in Table 1.

Lesion Detection Model Training. Using this DRL6k, we train a lesion detection model T using a standard ResNet50 (He et al., 2016) architecture on the DRL6k dataset. We train T to predict concept probabilities t for each image by minimizing the binary cross-entropy loss:

$$\mathcal{L}_T = -\frac{1}{K} \sum_{k=1}^K [c_k \log(t_k) + (1 - c_k) \log(1 - t_k)], \quad (1)$$

216 where t_k and c_k are the predicted probability and binary label for concept k , respectively. Since T
 217 serves only as an auxiliary knowledge source for subsequent concept learning, we adopt a straight-
 218 forward training approach without elaborate modifications (See Appendix for details).
 219

220 **Knowledge Constraints Design.** To mitigate potential spurious correlations from T and enforce
 221 clinically consistent concept learning, we incorporate two forms of prior knowledge as explicit
 222 constraints derived from established medical knowledge and statistical evidence. 1) *Hard Constraints*
 223 formalize basic medical rules: healthy retinas are lesion-free, while diseased retinas necessarily
 224 exhibit lesion presence. Violations of these constraints indicate definitively incorrect concept pre-
 225 dictions. 2) *Soft Constraints* capture probabilistic clinical knowledge. Unlike hard constraints, these
 226 represent strong statistical tendencies rather than absolute certainties. A deviation from these soft
 227 constraints does not necessarily indicate an error but flags a prediction as clinically less likely. To
 228 operationalize these patterns, we derive two key priors from the DRL6k:
 229

$$\mathbf{P} \in \mathbb{R}^{(G+1) \times K}, \quad [\mathbf{P}]_{g,k} = P(c_k = 1 | y = g), \quad (2)$$

$$\mathbf{C} \in \mathbb{R}^{K \times K}, \quad [\mathbf{C}]_{i,j} = P(c_j = 1 | c_i = 1). \quad (3)$$

230 Specifically, \mathbf{P} models the lesion profile conditioned on disease label, and \mathbf{C} captures the statistical
 231 co-occurrence relationships between lesion types. We confirmed that these data-driven priors align
 232 well with established clinical knowledge from authoritative medical sources (American Academy
 233 of Ophthalmology, 2025), which validates their reliability for our framework. **Furthermore, it is
 234 important to note that since \mathbf{P} and \mathbf{C} are derived exclusively from label correlations, they function
 235 independently of the pixel-level data; consequently, these priors are unaffected by variations in
 236 device protocols or potential ethical biases inherent to the raw image data.**
 237

238 3.3 KNOWLEDGE CONSTRAINED DISTILLATION

239 **Self Correction.** When t violates hard constraints, we perform direct corrections to ensure clinical
 240 consistency. For healthy cases with detected lesions, we zero out all lesion probabilities. For dis-
 241 eased cases with no detected lesions, we generate corrected probabilities by sampling from the P
 242 and C . This process can be formally defined as:

$$243 t' = \begin{cases} \mathbf{0} & \text{if } y = 0 \wedge \max(t) > \tau, \\ 244 \mathcal{S}([\mathbf{P}]_y, \mathbf{C}) & \text{if } y > 0 \wedge \max(t) \leq \tau, \\ t & \text{otherwise,} \end{cases} \quad (4)$$

$$245 \mathcal{S}([\mathbf{P}]_y, \mathbf{C}) = \max(\tilde{t}, (\tau + \epsilon) \cdot E), \quad (5)$$

$$246 E = ((\mathbf{C} > \tau)^\top (\tilde{t} > \tau) > 0) \odot (\tilde{t} \leq \tau), \quad (6)$$

247 where $\tau = 0.5$ is a natural decision boundary for lesion detection, and ϵ controls the activation
 248 strength of co-occurring lesions. This process begins by sampling \tilde{t} from $[\mathbf{P}]_y$ to satisfy the basic
 249 correspondence between lesions and disease grades. Then, for activated lesions, we promote the
 250 activation of other lesions with strong co-occurrence according to \mathbf{C} , yielding the final corrected
 251 output t' . This ensures that the guidance from T are consistent with established medical knowledge.
 252

253 **Distillation Reweighting.** For samples that deviate from soft constraints, we cannot definitively
 254 label them as incorrect predictions. Instead, we design \mathcal{L}_{soft} to quantify the degree of deviation
 255 from statistical priors and use it to adaptively reweight their influence during knowledge distillation.
 256 Specifically, we define it as:
 257

$$258 \mathcal{L}_{soft}(t', y) = \underbrace{\sum_{k \in A_a \Delta A_e} |t_k' - t_k|}_{\text{Deviation from } \mathbf{P}} + \underbrace{\sum_{k \in A_c \setminus A_a} (\tau - t_k')}_{\text{Deviation from } \mathbf{C}}, \quad (7)$$

259 where $A_a = \{k \mid t_k' \geq \tau\}$ denotes the set of activated lesions, $A_e = \{k \mid P_{y,k} \geq \tau\}$ represents le-
 260 sions expected to be active for disease grade y , and $A_c = \{k \mid \exists j \in A_a \text{ s.t. } [\mathbf{C}]_{j,k} \geq \tau, j \neq k\}$ cap-
 261 tures lesions that should co-occur with the activated ones. The first term penalizes deviations from
 262 expected lesion activations, while the second term penalizes the absence of expected co-occurring
 263 lesions. A larger \mathcal{L}_{soft} indicates greater deviation from medical priors, suggesting the prediction
 264

270 may be less reliable. We therefore down-weight such samples by mapping \mathcal{L}_{soft} into a confidence
 271 weight $\mathbf{w} \in (0, 1]$ via the exponential function:
 272

$$273 \quad \mathbf{w} = \exp(-\mathcal{L}_{soft}(t', y)). \quad (8)$$

274 **Refined Distillation Loss.** The final knowledge distillation loss incorporates the corrected t' and
 275 adaptive weights \mathbf{w} :
 276

$$277 \quad \mathcal{L}_{KD} = \mathbf{w} \cdot \mathcal{L}_{BCE}(s, t'), \quad (9)$$

278 where s is the predicted probabilities from CBM’s concept layer, and \mathcal{L}_{BCE} is the binary cross-
 279 entropy loss as defined in Equation 1. We actually add a temperature parameter to smooth the logits,
 280 but we omit it here for simplicity.

281 3.4 KNOWLEDGE CONSTRAINED REGULARIZATION

282 While refined distillation guides the CBM toward clinically plausible predictions by demonstrating
 283 what correct concept activations should look like, we complement this positive guidance with
 284 explicit constraints that directly penalize implausible behaviors. To achieve this, we introduce a
 285 direct regularization term \mathcal{L}_{Reg} that combines violations of both hard and soft constraints, acting as
 286 a complementary mechanism to distillation:
 287

$$288 \quad \mathcal{L}_{Hard}(z, y) = \begin{cases} \sum_{k=1}^K \text{ReLU}(z_k) & \text{if } y = 0, \\ \text{ReLU}(-\max(z)) & \text{if } y > 0, \end{cases} \quad (10)$$

$$289 \quad \mathcal{L}_{Reg} = \mathcal{L}_{Hard}(z, y) + \mathcal{L}_{Soft}(s, y), \quad (11)$$

290 where z and s are concept logits and probabilities from the CBM, and \mathcal{L}_{Soft} refers to Equation (7).
 291 The ReLU activation ensures penalties are applied only when constraints are violated, creating a
 292 piecewise linear loss that is zero when medical rules are satisfied. For healthy cases, summing
 293 all positive logits encourages no concepts being activated, while for diseased cases, penalizing the
 294 negative maximum logit ensures at least one concept remains activated.

295 3.5 OVERALL TRAINING OBJECTIVE

296 Finally, we integrate all components and the primary classification task into a unified training ob-
 297 jective, allowing the model to optimize both concept learning under knowledge constraints and the
 298 main classification task:
 299

$$300 \quad \mathcal{L}_{CE} = - \sum_{i=0}^G y_i \log \hat{y}_i, \quad (12)$$

$$301 \quad \mathcal{L}_{total} = \mathcal{L}_{CE} + \mathcal{L}_{KD} + \mathcal{L}_{Reg}, \quad (13)$$

302 where y_i and \hat{y}_i are the ground-truth and predicted probabilities for grade i , respectively.

310 4 EXPERIMENTS

312 4.1 EXPERIMENT SETUP

314 **Benchmark.** Following the [ESDG test in GDRBench](#) (Che et al., 2023), we utilize DDR (Li et al.,
 315 2019) and EyePACS (Foundation, 2015) for model training and validation. We then evaluate its
 316 generalization on six unseen domains: DeepDR (Liu et al., 2022), Messidor (Abràmoff et al.,
 317 2016), IDRID (Porwal et al., 2018), APTOS (Karthik et al., 2019), FGADR (Zhou et al., 2021),
 318 and RLDR (Wei et al., 2021). In all these datasets, DR is graded into five levels: Non-DR, Mild,
 319 Moderate, Severe, and Proliferative. Following the convention in the benchmark, we use the Area
 320 Under the ROC Curve (AUC) and the F1-score as our primary metrics.

321 **Implementation Details.** We evaluate KCCL on two representative concept-based models: the
 322 Concept Embedding Model (CEM) (Espinosa Zarlenga et al., 2022) and CLAT (Wen et al., 2025).
 323 CEM is a versatile CBM architecture recognized for its balance between interpretability and ac-
 324 curacy, while CLAT is a specialized CBM designed for ophthalmology applications. For the CEM

324
 325 Table 2: Performance of proposed KCCL and other existing methods on six unseen domains.
 326 KCCL_{CEM} and KCCL_{CLAT} denote our framework applied to two representative CBMs, CEM and
 327 CLAT, respectively. Evaluation metrics include AUC and F1-score (%). The best results are high-
 328 lighted in **bold**, and the second-best results are underlined. The backbone is ResNet50 unless other-
 329 wise noted, where \dagger denotes ViT and \star denotes VMamba.

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351	Method	APTOPS		DeepDR		FGADR		IDRID		Messidor		RLDR		Average	
		AUC	F1	AUC	F1										
<i>General Domain Generalization Methods</i>															
Mixup	65.5	30.2	70.7	33.3	58.8	7.4	70.2	32.6	71.5	32.6	72.9	27.0	68.3	27.2	
MixStyle	62.0	25.0	53.3	14.6	51.0	7.9	53.0	19.4	51.4	33.1	53.5	6.4	54.0	17.7	
DDAIG	67.4	31.6	73.2	29.7	59.9	5.5	70.2	33.4	73.5	35.6	74.4	23.5	69.8	26.6	
ATS	68.8	32.4	72.7	33.5	60.3	5.7	69.1	30.6	73.4	32.4	75.0	23.9	69.9	26.4	
Fishr	64.5	31.0	72.1	30.1	56.3	7.2	71.8	30.6	74.3	33.8	78.6	21.3	69.6	25.7	
MDLT	67.6	32.4	73.1	33.7	57.1	7.8	71.9	s	32.4	73.4	34.1	76.6	30.0	70.0	28.4
<i>DR Grading Methods</i>															
GREEN	67.5	33.3	71.2	31.1	58.1	6.9	68.5	33.0	71.3	33.1	71.0	27.8	67.9	27.5	
CABNet	67.3	30.8	70.0	32.0	57.1	7.5	67.4	31.7	72.3	35.3	75.2	25.4	68.2	27.1	
MIL-VT \dagger	69.1	36.8	78.3	36.3	62.1	9.3	71.7	31.1	78.3	40.7	80.8	34.5	73.4	31.5	
RETFound \dagger	81.2	41.4	78.2	31.1	77.9	34.9	85.6	45.8	81.9	43.5	81.1	40.9	81.0	39.6	
<i>Domain Generalizable DR Grading Methods</i>															
DRGen	69.4	35.7	78.5	31.6	59.8	8.4	70.8	30.6	77.0	37.4	78.9	21.2	72.4	27.5	
GDRNet	69.8	35.2	76.1	35.0	63.7	9.2	72.9	35.1	78.1	40.5	79.7	37.9	73.4	32.2	
GAD \dagger	70.1	37.8	80.2	36.7	65.7	10.4	72.5	32.9	79.7	41.2	80.9	36.1	74.9	32.5	
DECO	70.6	36.4	78.2	35.8	65.5	11.7	74.2	38.7	79.8	44.9	81.1	40.8	74.9	34.7	
Samba \star	/	37.9	/	40.7	/	40.5	/	41.7	/	41.8	/	42.6	/	40.9	
<i>Concept-based Models for Generalization</i>															
AlignCBM	73.8	42.1	76.8	34.0	78.8	39.0	81.5	41.1	77.6	38.6	80.3	41.0	78.1	39.3	
KnoBo	76.6	<u>44.6</u>	77.0	34.8	<u>81.5</u>	39.2	81.0	44.0	81.7	48.0	82.4	42.8	80.1	42.2	
KCCL _{CEM}	81.8	44.1	81.7	38.4	82.3	41.0	<u>85.8</u>	48.0	84.7	51.5	<u>83.6</u>	45.9	83.3	44.8	
KCCL _{CLAT} \dagger	82.2	47.8	83.9	<u>40.2</u>	81.3	<u>40.6</u>	89.3	52.6	<u>83.9</u>	<u>51.2</u>	84.2	<u>44.3</u>	84.1	46.1	

352
 353 implementation, we utilize a ResNet50 (He et al., 2016) backbone for consistency with the compared
 354 methods and set the concept embedding dimension to 512. For CLAT, we directly use the original
 355 configurations. All models are trained for up to 100 epochs using the AdamW optimizer with a batch
 356 size of 32. We set the initial learning rate to 5e-5, weight decay to 1e-4, activation strength param-
 357 eter ϵ to 0.2, and the distillation temperature θ to 2.0. A CosineAnnealingWarmRestarts scheduler
 358 reduces the learning rate to a minimum of 1e-5. Early stopping is applied if validation loss does not
 359 improve for 10 epochs.

360 361 4.2 COMPARISON WITH STATE-OF-THE-ART

362
 363 We compare KCCL with three categories of methods: 1) general domain generalization methods,
 364 including Mixup (Zhang et al., 2018), MixStyle (Zhou et al., 2020b), DDAIG (Zhou et al., 2020a),
 365 ATS (Yang et al., 2021), Fishr (Rame et al., 2022), MDLT (Yang et al., 2022); 2) DR grading meth-
 366 ods, such as GREEN (Liu et al., 2020), CABNet (He et al., 2021), MIL-VT (Yu et al., 2021), and
 367 RETFound (Zhou et al., 2023); 3) domain generalizable DR grading methods, including DRGen (At-
 368 wany et al., 2022), GDRNet (Che et al., 2023), GAD (Bi et al., 2025), DECO (Xia et al., 2024), and
 369 Samba (Bi et al., 2024); 4) Concept-based models for generalization, including AlignCBM (Pang
 370 et al., 2024) and KnoBo (Yang et al., 2024). The results are cited from the original papers, except
 371 for AlignCBM and KnoBo, which we conduct the experiments based on their released codebases.

372
 373 Table 2 presents the results of all methods across six target domains. Our KCCL framework achieves
 374 the best performance on nearly all target domains, demonstrating significant improvements over the
 375 state-of-the-art domain generalizable DR methods. The best-performing variant, KCCL_{CLAT}, ex-
 376 ceeds the best baseline by 4.0% and 3.9% in AUC and F1-score. KCCL_{CEM} also delivers strong per-
 377 formance, securing the second-best overall results. The improvements are particularly substantial on
 378 challenging domains such as IDRID and APTOS, where KCCL_{CLAT} achieves remarkable F1-score
 379 improvements of 10.6% and 3.2%, respectively. Among the two variants, KCCL_{CLAT} demonstrates
 380 superior performance, benefiting from its design tailored for fundus diagnosis, which provides in-

378 herent advantages for learning DR-related concepts. The remarkable performance improvement
 379 can be attributed to two key factors. First, the CBM architecture enables explicit concept-based
 380 reasoning, where lesion information is directly modeled to facilitate the model capturing more di-
 381 agnostically meaningful features. Second, the knowledge constraint mechanism actively steers the
 382 concept learning process. Rather than simply using distillation to overcome annotation scarcity,
 383 KCCL imposes additional constraints derived from medical knowledge. This constraint fosters the
 384 learning of concept predictions that are well-aligned with domain-invariant medical principles. In
 385 turn, these medically-grounded concepts provide a more robust foundation for the final grading task,
 386 enhancing its accuracy and generalizability.

387 The consistent improvements across diverse datasets confirm that our KCCL framework enables
 388 robust domain generalization across different domains.

390 Table 3: Ablation study on each component of KCCL. The ID column serves as an index for easy
 391 reference to each experiment. KD: Knowledge Distillation, SC: Self Correction, DR: Distillation
 392 Reweighting, KCR: Knowledge Constrained Regularization. Grading refers to the averaged results
 393 on six unseen domains, while Lesion refers to the results on DRL6k test dataset. **The best results are**
 394 **highlighted in bold**, and the second-best results are underlined.

ID	CLAT					CEM				
	Grading		Lesion		Grading		Lesion			
	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1
0	X	X	X	X	73.4	31.5	/	/	67.1	27.3
1	X	X	X	✓	72.6	33.0	64.3	37.9	<u>76.5</u>	30.6
2	✓	X	X	X	78.1	39.3	74.6	67.8	79.0	38.6
3	✓	✓	X	X	82.3	43.9	82.6	72.1	81.0	42.2
4	✓	✓	X	✓	83.2	44.1	85.8	<u>75.2</u>	82.2	43.0
5	✓	X	✓	X	82.1	42.2	79.2	71.5	78.1	39.3
6	✓	X	✓	✓	81.8	43.9	87.2	74.2	<u>82.4</u>	42.2
7	✓	✓	✓	X	84.0	<u>45.2</u>	84.2	73.2	83.3	43.8
8	✓	✓	✓	✓	84.1	46.1	<u>87.0</u>	76.3	83.3	44.8
									86.5	77.0

4.3 ABLATION STUDIES

409 To rigorously assess the contribution of each component within our KCCL framework, we conduct
 410 comprehensive ablation studies. Table 3 presents the results across different component combina-
 411 tions for both CLAT and CEM settings, evaluated on both DR grading (averaged across six unseen
 412 domains) and lesion detection (on DRL6k test set) tasks. Furthermore, to provide a more com-
 413 prehensive analysis, we conducted additional experiments examining the impact of random priors,
 414 different ϵ values, and CBMs training on DRL6k only (see Appendix).

415 **Effect of Concept-based Reasoning.** We first evaluate the fundamental benefit of incorporating a
 416 concept layer trained via knowledge distillation (KD). Comparing the baseline model (ID 0) with
 417 a CBM trained only with standard KD (ID 2), we observe a substantial performance leap on the
 418 grading task: the F1-score increases from 31.5% to 39.3% for CLAT and from 27.3% to 38.6%
 419 for CEM. This demonstrates that explicitly modeling lesion concepts as an intermediate reasoning
 420 layer significantly enhances the model’s ability to capture disease-relevant patterns. The learned
 421 lesion concepts provide discriminative features that directly facilitate grading decisions, as the model
 422 can leverage specific pathological indicators rather than relying on low-level visual features alone.
 423 In contrast, applying only the knowledge constrained regularization (KCR) without any concept
 424 supervision from KD (ID 1) yields limited improvement, underscoring the necessity of KD for
 425 providing the primary guidance for concept learning.

426 **Dissecting the Knowledge Constrained Distillation.** We then evaluate the impact of our knowl-
 427 edge constrained distillation, which is designed to provide reliable concept supervision by guiding
 428 the model on “what-to-learn.” Self-correction (SC) rectifies distillation targets that violate hard con-
 429 straints, while distillation reweighting (DR) dynamically adjusts the loss based on deviations from
 430 soft constraints. The two components individually lead to performance gains over plain distillation
 431 (ID 3 vs. ID 2, ID 5 vs. ID 2), with the correction mechanism showing larger improvements. This is
 432 likely because correcting implausible concept predictions particularly helps in identifying Non DR
 433 cases, which constitute a substantial proportion of the evaluation data. The reweighting component

provides smaller but also consistent gains (ID 3 vs. ID 5) by reducing the influence of uncertain concept predictions. When both correction and reweighting are combined (ID 7), we observe the largest improvements, further confirming that these two mechanisms complement each other effectively.

The Role of Knowledge Constrained Regularization. The knowledge constrained regularization (KCR) module enforces clinical consistency by penalizing implausible concept predictions. However, when used in isolation, KCR is insufficient to support effective concept learning (ID 1). Furthermore, our experimental results demonstrate that KCR exerts a relatively modest impact on final grading performance (*e.g.*, ID 8 vs. ID 7, ID 4 vs. ID 3). Nevertheless, KCR’s primary contribution lies in enhancing the quality of the learned concepts themselves. As detailed in Table 3, KCR consistently boosts concept prediction metrics (*e.g.*, CLAT AUC improves from 84.2% to 87.0% in ID 8 vs. ID 7). This demonstrates that KCR is critical for producing more reliable and clinically coherent concepts, which is essential for model interpretability and trustworthiness.

Sensitivity to Knowledge Distillation Temperature. We further examine the impact of distillation temperature θ on KCCL’s performance (Figure 2). The analysis reveals an optimal range for this hyperparameter. Performance remains robust across $\theta \in [1, 4]$, but deteriorates at higher values. This degradation occurs because excessive temperature smoothing erases the nuanced patterns that distinguish between different lesion types—precisely the fine-grained knowledge our framework aims to distill. We therefore set $\theta = 2.0$, which provides an optimal trade-off between preserving teacher model specificity and enabling stable concept learning.

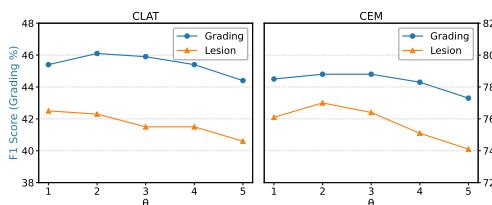


Figure 2: Effect of knowledge distillation temperature θ on the performance of CLAT and CEM on six unseen domains for grading and on DRL6k test dataset for lesion detection, where both models are trained with the proposed KCCL framework.

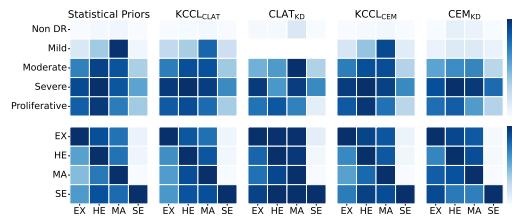


Figure 3: Heatmap visualization of \mathbf{P} and \mathbf{C} , along with the correlation between concept and grading predictions for CLAT and CEM on the DRL6k test set. Here, $\text{KCCL}_{\text{CLAT}}$ and KCCL_{CEM} denote models trained with the proposed KCCL method, while CLAT_{KD} and CEM_{KD} use knowledge distillation only.

4.4 INTERPRETABILITY ANALYSIS

To evaluate how KCCL improves the consistency between concept predictions and decision-making, we visualize two key aspects and compare them against statistical priors (Figure 3): the association between predicted lesion concepts and the final DR grade, and the co-occurrence patterns among the concepts themselves. The heatmaps reveal that models trained with KCCL ($\text{KCCL}_{\text{CLAT}}$, KCCL_{CEM}) learn concept relationships that closely align with the medical priors. In contrast, baseline models trained only with knowledge distillation (CLAT_{KD} , CEM_{KD}) exhibit clinically implausible behaviors. For instance, CLAT_{KD} incorrectly associates Non DR predictions with MA and fails to activate any relevant concepts for Mild DR, which is a clear contradiction of medical knowledge. Furthermore, both baseline models learn high correlations between all lesions, a pattern inconsistent with clinical reality. These findings demonstrate that KCCL effectively corrects the model’s internal reasoning. By enforcing medical constraints, it produces concept predictions that are more faithful and aligned with medical expertise, which is a critical step toward building a truly generalizable model. We also provide case studies in Appendix to further illustrate the interpretability of our method.

5 DISCUSSION & CONCLUSION

Our proposed KCCL framework demonstrates significant promise in addressing domain shift challenges for DR grading through concept-based learning. By leveraging knowledge distillation from the lesion detection model and incorporating medical knowledge constraints, KCCL achieves su-

486 perior generalization performance while maintaining clinical interpretability. The extensive experiments across multiple unseen domains validate the effectiveness of our approach, consistently out-
 487 performing state-of-the-art methods. Despite these promising results, it is crucial to discuss the inherent limitations of our approach. The framework’s performance, while robust, is fundamen-
 488 tally linked to the quality and scale of the initial knowledge source. Although KCCL alleviates the need for direct concept annotations, it introduces a dependency on a well-annotated lesion detection dataset to provide the initial supervision; **however, such supervision is arguably necessary in the medical domain to ensure precise alignment between features and clinical semantics**. Moreover, the statistical priors employed as knowledge constraints, while carefully validated, inherently represent common clinical patterns. They may not fully capture atypical disease presentations or rare lesion co-occurrence relationships that deviate from statistical norms. Furthermore, our current concept vocabulary is not exhaustive; the focus on four primary lesions omits critical PDR indicators like Neovascularization (NV), which may affect diagnostic accuracy for advanced grades. **It should be noted that this limitation arises from the constraints of existing datasets rather than the KCCL framework itself. And the assumption of a complete concept vocabulary is inherently idealized, as even clinical practice continues to refine diagnostic criteria. Nonetheless, the KCCL framework is inherently flexible and can be extended to accommodate additional concepts as they become available.**

502 In conclusion, KCCL offers a promising approach toward practical, interpretable, and generalizable
 503 medical AI. It provides a principled approach to learning robust concept representations under lim-
 504 ited supervision, a challenge common to many medical imaging tasks. Future work should focus
 505 on further reducing the dependency on annotated data through semi-supervised or self-supervised
 506 paradigms, expanding the concept vocabulary to cover a wider range of pathologies, and exploring
 507 methods to dynamically discover and adapt clinical constraints from data.

509 ETHICS STATEMENT

511 All experiments in this study were conducted on publicly available datasets. The DRL6k dataset,
 512 which we curated and utilized, was aggregated and processed entirely from these existing public
 513 sources. Our research did not involve any new data collection, clinical trials, or human subjects. The
 514 study exclusively used anonymized data, raising no new privacy or security concerns. It is crucial
 515 to note that our model is developed for research purposes only and is not intended for direct clinical
 516 diagnosis or as a substitute for evaluation by a qualified medical professional. While important
 517 considerations for clinical deployment, topics such as algorithmic bias and fairness are outside the
 518 scope of this paper.

520 REPRODUCIBILITY STATEMENT

522 All details regarding our proposed KCCL framework, including the design of knowledge constraints,
 523 self correction mechanism, distillation reweighting, knowledge constrained regularization, are com-
 524 prehensively described in Section 3. The hyperparameter settings and experimental configurations
 525 are provided in Section 4.1 and Appendix. The source code will be made publicly available upon
 526 acceptance.

528 REFERENCES

530 Michael David Abràmoff, Yiyue Lou, Ali Erginay, Warren Clarida, Ryan Amelon, et al. Improved
 531 automated detection of diabetic retinopathy on a publicly available dataset through integration of
 532 deep learning. *Investigative Ophthalmology & Visual Science*, 57(13):5200–5206, October 2016.
 533 ISSN 1552-5783. doi: 10.1167/iovs.16-19964.

534 American Academy of Ophthalmology. Diabetic retinopathy.
 535 https://eyewiki.org/Diabetic_Retinopathy, 2025.

537 Mohammad Atwany, Mohammad Yaqub, et al. DRGen: Domain generalization in diabetic retinopa-
 538 thy classification. In *Proceedings of the Medical Image Computing and Computer Assisted Inter-
 539 vention*, pp. 635–644, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-16434-7. doi:
 10.1007/978-3-031-16434-7_61.

540 Qi Bi, Jingjun Yi, Hao Zheng, Wei Ji, Haolan Zhan, et al. Samba: Severity-aware recurrent modeling
 541 for cross-domain medical image grading. In *Proceedings of the Neural Information Processing*
 542 *Systems*, volume 37, pp. 75829–75852, December 2024.

543

544 Qi Bi, Jingjun Yi, Hao Zheng, Haolan Zhan, Yawen Huang, et al. GAD: Domain generalized
 545 diabetic retinopathy grading by grade-aware de-stylization. *Pattern Recognition*, 164:111484,
 546 August 2025. ISSN 0031-3203. doi: 10.1016/j.patcog.2025.111484.

547 Haoxuan Che, Yuhang Cheng, Haibo Jin, Hao Chen, et al. Towards generalizable diabetic retinopathy
 548 grading in unseen domains. In *Proceedings of the Medical Image Computing and Computer*
 549 *Assisted Intervention*, pp. 430–440, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-
 550 43904-9. doi: 10.1007/978-3-031-43904-9_42.

551

552 Ning Cheung, Paul Mitchell, and Tien Yin Wong. Diabetic retinopathy. *Lancet*, 376(9735):124–136,
 553 July 2010. ISSN 0140-6736, 1474-547X. doi: 10.1016/S0140-6736(09)62124-3.

554 Jihye Choi, Jayaram Raghuram, Yixuan Li, and Somesh Jha. CONDA: Adaptive concept bottleneck
 555 for foundation models under distribution shifts. In *Proceedings of the International Conference*
 556 *on Learning Representations*, October 2024.

557

558 Townim F. Chowdhury, Vu Minh Hieu Phan, Kewen Liao, Minh-Son To, Yutong Xie, et al.
 559 AdaCBM: An adaptive concept bottleneck model for explainable and accurate diagnosis. In
 560 *Proceedings of the Medical Image Computing and Computer Assisted Intervention*, pp. 35–
 561 45, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-72117-5. doi: 10.1007/
 562 978-3-031-72117-5_4.

563 Ling Dai, Liang Wu, Huating Li, Chun Cai, Qiang Wu, et al. A deep learning system for detect-
 564 ing diabetic retinopathy across the disease spectrum. *Nature Communications*, 12(1):3242, May
 565 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23458-5.

566

567 Ling Dai, Bin Sheng, Tingli Chen, Qiang Wu, Ruhan Liu, et al. A deep learning system for predict-
 568 ing time to progression of diabetic retinopathy. *Nature Medicine*, 30(2):584–594, February 2024.
 569 ISSN 1546-170X. doi: 10.1038/s41591-023-02702-z.

570 Jiawei Du, Jia Guo, Weihang Zhang, Shengzhu Yang, Hanruo Liu, Huiqi Li, and Ningli Wang. Ret-
 571 clip: A retinal image foundation model pre-trained with clinical diagnostic reports, 2024. URL
 572 <https://arxiv.org/abs/2405.14137>.

573

574 Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Gian-
 575 nini, et al. Concept embedding models: Beyond the accuracy-explainability trade-off. In *Pro-
 576 ceedings of the Neural Information Processing Systems*, volume 35, pp. 21400–21413, December
 577 2022.

578 California Healthcare Foundation. Kaggle diabetic retinopathy detection competition.
 579 <https://kaggle.com/competitions/diabetic-retinopathy-detection>, 2015.

580

581 Yunhe Gao, Difei Gu, Mu Zhou, Dimitris Metaxas, et al. Aligning human knowledge with visual
 582 concepts towards explainable medical image classification. In *Proceedings of the Medical Im-*
 583 *age Computing and Computer Assisted Intervention*, pp. 46–56, Cham, 2024. Springer Nature
 584 Switzerland. ISBN 978-3-031-72117-5. doi: 10.1007/978-3-031-72117-5_5.

585

586 Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
 587 survey. *International Journal of Computer Vision*, 129(6):1789–1819, June 2021. ISSN 1573-
 588 1405. doi: 10.1007/s11263-021-01453-z.

589

590 Avani Gupta, Saurabh Saini, and P. J. Narayanan. Concept distillation: Leveraging human-centered
 591 explanations for model improvement. *Proceedings of the Neural Information Processing Systems*,
 592 36:63724–63737, December 2023.

593

594 Along He, Tao Li, Ning Li, Kai Wang, and Huazhu Fu. CABNet: Category attention block for
 595 imbalanced diabetic retinopathy grading. *IEEE Transactions on Medical Imaging*, 40(1):143–
 596 153, January 2021. ISSN 0278-0062, 1558-254X. doi: 10.1109/TMI.2020.3023463.

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 595 nition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 596 pp. 770–778, June 2016.

597

598 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 599 *preprint arXiv:1503.02531*, March 2015.

600

601 Karthik, Maggie, and Dane Sohier. APTOS 2019 blindness detection.
 602 <https://www.kaggle.com/c/aptos2019-blindness-detection>, 2019.

603

604 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, et al. Interpretability
 605 beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In *Pro-
 606 ceedings of the International Conference on Machine Learning*, pp. 2668–2677. PMLR, July
 607 2018.

608

609 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, et al. Concept
 610 bottleneck models. In *Proceedings of the International Conference on Machine Learning*, pp.
 5338–5348. PMLR, July 2020.

611

612 Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain generalization with adver-
 613 sarial feature learning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 614 Recognition*, pp. 5400–5409, 2018a.

615

616 Mingjie Li, Wenjia Cai, Karin Verspoor, Shirui Pan, Xiaodan Liang, et al. Cross-modal clinical
 617 graph transformer for ophthalmic report generation. In *Proceedings of the IEEE/CVF Conference
 618 on Computer Vision and Pattern Recognition*, pp. 20656–20665, 2022.

619

620 Tao Li, Yingqi Gao, Kai Wang, Song Guo, Hanruo Liu, et al. Diagnostic assessment of deep learning
 621 algorithms for diabetic retinopathy screening. *Information Sciences*, 501:511–522, October 2019.
 622 ISSN 0020-0255. doi: 10.1016/j.ins.2019.06.011.

623

624 Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, et al. Deep domain generalization
 625 via conditional invariant adversarial networks. In *Proceedings of the European Conference on
 626 Computer Vision*, pp. 647–663, Cham, 2018b. Springer International Publishing. ISBN 978-3-
 030-01266-3 978-3-030-01267-0. doi: 10.1007/978-3-030-01267-0_38.

627

628 Ruhan Liu, Xiangning Wang, Qiang Wu, Ling Dai, Xi Fang, et al. DeepDRiD: Diabetic
 629 retinopathy—grading and image quality estimation challenge. *Patterns*, 3(6), June 2022. ISSN
 2666-3899. doi: 10.1016/j.patter.2022.100512.

630

631 Shaoteng Liu, Lijun Gong, Kai Ma, Yefeng Zheng, et al. GREEN: A graph REsidual rE-ranking
 632 network for grading diabetic retinopathy. In *Proceedings of the Medical Image Computing and
 633 Computer Assisted Intervention*, pp. 585–594, Cham, 2020. Springer International Publishing.
 634 ISBN 978-3-030-59722-1. doi: 10.1007/978-3-030-59722-1_56.

635

636 Massimiliano Mancini, Zeynep Akata, Elisa Ricci, Barbara Caputo, et al. Towards recognizing
 637 unseen categories in unseen domains. In *Proceedings of the European Conference on Computer
 638 Vision*, pp. 466–483, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58592-1.
 639 doi: 10.1007/978-3-030-58592-1_28.

640

641 Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of multiple latent
 642 domains. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 11749–
 643 11756, April 2020. doi: 10.1609/aaai.v34i07.6846.

644

645 Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, and Soheil Feizi. Text-to-concept (and back) via
 646 cross-model alignment. In *Proceedings of the International Conference on Machine Learning*,
 647 pp. 25037–25060. PMLR, July 2023.

648

649 Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
 650 feature representation. In *Proceedings of the International Conference on Machine Learning*, pp.
 651 10–18. PMLR, February 2013.

648 Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bot-
 649 tleneck models. In *Proceedings of the International Conference on Learning Representations*,
 650 September 2022.

651 Winnie Pang, Xueyi Ke, Satoshi Tsutsui, Bihan Wen, et al. Integrating clinical knowledge into
 652 concept bottleneck models. In *Proceedings of the Medical Image Computing and Computer*
 653 *Assisted Intervention*, pp. 243–253, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-
 654 031-72083-3. doi: 10.1007/978-3-031-72083-3_23.

655 Prasanna Porwal, Samiksha Pachade, Ravi Kamble, Manesh Kokare, Girish Deshmukh, et al. In-
 656 dian diabetic retinopathy image dataset (IDRID): A database for diabetic retinopathy screening
 657 research. *Data*, 3(3):25, September 2018. ISSN 2306-5729. doi: 10.3390/data3030025.

658 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, et al. Learning trans-
 659 ferable visual models from natural language supervision. In *Proceedings of the International*
 660 *Conference on Machine Learning*, pp. 8748–8763. PMLR, July 2021.

661 Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for
 662 out-of-distribution generalization. In *Proceedings of the International Conference on Machine*
 663 *Learning*, pp. 18347–18377. PMLR, June 2022.

664 Julio Silva-Rodríguez, Hadi Chakor, Riadh Kobbi, Jose Dolz, and Ismail Ben Ayed. A foundation
 665 language-image model of the retina (FLAIR): Encoding expert knowledge in text supervision.
 666 *Medical Image Analysis*, 99:103357, 2025. ISSN 1361-8415. doi: 10.1016/j.media.2024.103357.

667 João Bento Sousa, Ricardo Moreira, Vladimir Balayan, Pedro Saleiro, and Pedro Bizarro. Concept-
 668 Distil: Model-agnostic distillation of concept explanations. *arXiv preprint arXiv:2205.03601*,
 669 May 2022.

670 Rui Sun, Yihao Li, Tianzhu Zhang, Zhendong Mao, Feng Wu, et al. Lesion-aware transformers for
 671 diabetic retinopathy grading. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 672 and *Pattern Recognition*, pp. 10938–10947, June 2021.

673 Andong Tan, Fengtao Zhou, Hao Chen, et al. Explain via any concept: Concept bottleneck model
 674 with open vocabulary concepts. In *Proceedings of the European Conference on Computer Vision*,
 675 pp. 123–138, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-73016-0. doi: 10.
 676 1007/978-3-031-73016-0_8.

677 Qijie Wei, Xirong Li, Weihong Yu, Xiao Zhang, Yongpeng Zhang, et al. Learn to Segment Retinal
 678 Lesions and Beyond. In *Proceedings of the International Conference on Pattern Recognition*, pp.
 679 7403–7410, January 2021. doi: 10.1109/ICPR48806.2021.9412088.

680 Chi Wen, Mang Ye, He Li, Ting Chen, and Xuan Xiao. Concept-based lesion aware transformer
 681 for interpretable retinal disease diagnosis. *IEEE Transactions on Medical Imaging*, 44(1):57–68,
 682 January 2025. ISSN 1558-254X. doi: 10.1109/TMI.2024.3429148.

683 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. MedKLIP: Medical
 684 Knowledge Enhanced Language-Image Pre-Training for X-ray Diagnosis. In *Proceedings of the*
 685 *IEEE/CVF International Conference on Computer Vision*, pp. 21372–21383, 2023a.

686 Zhenbang Wu, Huaxiu Yao, David Liebovitz, and Jimeng Sun. An Iterative Self-Learning Frame-
 687 work for Medical Domain Generalization. In *Proceedings of the Neural Information Processing*
 688 *Systems*, volume 36, pp. 54833–54854, December 2023b.

689 Peng Xia, Ming Hu, Feilong Tang, Wenxue Li, Wenhao Zheng, et al. Generalizing to unseen do-
 690 mains in diabetic retinopathy with disentangled representations. In *Proceedings of the Medical*
 691 *Image Computing and Computer Assisted Intervention*, pp. 427–437, Cham, 2024. Springer Na-
 692 ture Switzerland. ISBN 978-3-031-72117-5. doi: 10.1007/978-3-031-72117-5_40.

693 Xiaozheng Xie, Jianwei Niu, Xuefeng Liu, Zhengsu Chen, Shaojie Tang, et al. A survey on incorpo-
 694 rating domain knowledge into deep learning for medical image analysis. *Medical Image Analysis*,
 695 69:101985, April 2021. ISSN 1361-8415. doi: 10.1016/j.media.2021.101985.

702 Yutong Xie, Yong Xia, Jianpeng Zhang, Yang Song, Dagan Feng, et al. Knowledge-based
 703 Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT.
 704 *IEEE Transactions on Medical Imaging*, 38(4):991–1004, April 2019. ISSN 1558-254X. doi:
 705 10.1109/TMI.2018.2876510.

706 Fu-En Yang, Yuan-Chia Cheng, Zu-Yun Shiao, and Yu-Chiang Frank Wang. Adversarial teacher-
 707 student representation learning for domain generalization. In *Proceedings of the Neural Infor-
 708 mation Processing Systems*, volume 34, pp. 19448–19460. Curran Associates, Inc., 2021.

709

710 Shengzhu Yang, Jiawei Du, Jia Guo, Weihang Zhang, Hanruo Liu, Huiqi Li, and Ningli Wang.
 711 Vilref: An expert knowledge enabled vision-language retinal foundation model, 2025. URL
 712 <https://arxiv.org/abs/2408.10894>.

713

714 Yue Yang, Mona Gandhi, Yufei Wang, Yifan Wu, Michael Yao, Chris Callison-Burch, James Gee,
 715 and Mark Yatskar. A textbook remedy for domain shifts: Knowledge priors for medical image
 716 analysis. *Proceedings of the Neural Information Processing Systems*, 37:90683–90713, 2024.

717

718 Yuzhe Yang, Hao Wang, Dina Katabi, et al. On multi-domain long-tailed recognition, imbalanced
 719 domain generalization and beyond. In *Proceedings of the European Conference on Computer
 720 Vision*, pp. 57–75, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-20044-1. doi:
 721 10.1007/978-3-031-20044-1_4.

722

723 Shuang Yu, Kai Ma, Qi Bi, Cheng Bian, Munan Ning, et al. MIL-VT: Multiple instance learning
 724 enhanced vision transformer for fundus image classification. In *Proceedings of the Medical Image
 725 Computing and Computer Assisted Intervention*, volume 12908 of *Lecture Notes in Computer
 726 Science*, pp. 45–54, Cham, September 2021. Springer International Publishing. ISBN 978-3-030-
 727 87237-3. doi: 10.1007/978-3-030-87237-3_5.

728

729 Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In *Pro-
 730 ceedings of the International Conference on Learning Representations*, September 2022.

731

732 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond em-
 733 pirical risk minimization. In *Proceedings of the International Conference on Learning Representa-
 734 tions*, February 2018.

735

736 Ling Zhang, Xiaosong Wang, Dong Yang, Thomas Sanford, Stephanie Harmon, et al. Generalizing
 737 deep learning for medical image segmentation to unseen domains via deep stacked transformation.
 738 *IEEE Transactions on Medical Imaging*, 39(7):2531–2540, July 2020. ISSN 1558-254X. doi:
 739 10.1109/TMI.2020.2973595.

740

741 Rui Zhang, Xingbo Du, Junchi Yan, and Shihua Zhang. The decoupling concept bottleneck model.
 742 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1–16, 2024. ISSN 1939-
 743 3539. doi: 10.1109/TPAMI.2024.3489597.

744

745 Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Weidi Xie, and Yanfeng Wang. Knowledge-enhanced
 746 visual-language pre-training on chest radiology images. *Nature Communications*, 14(1):4542,
 747 July 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-40260-7.

748

749 Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial im-
 750 age generation for domain generalisation. In *Proceedings of the AAAI Conference on Artificial
 751 Intelligence*, volume 34, pp. 13025–13032, April 2020a. doi: 10.1609/aaai.v34i07.7003.

752

753 Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with MixStyle. In
 754 *Proceedings of the International Conference on Learning Representations*, October 2020b.

755

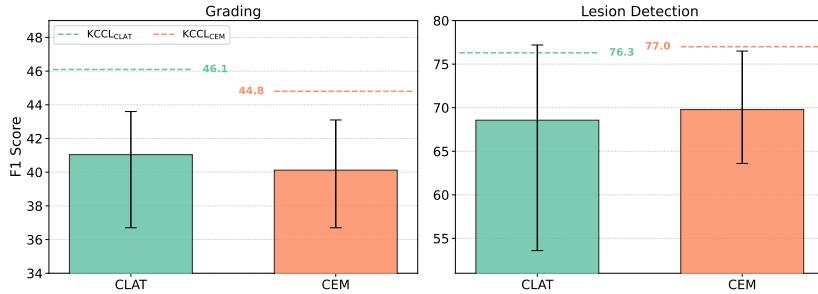
756 Yi Zhou, Boyang Wang, Lei Huang, Shanshan Cui, and Ling Shao. A benchmark for studying
 757 diabetic retinopathy: Segmentation, grading, and transferability. *IEEE Transactions on Medical
 758 Imaging*, 40(3):818–828, March 2021. ISSN 0278-0062, 1558-254X. doi: 10.1109/TMI.2020.
 759 3037771.

760

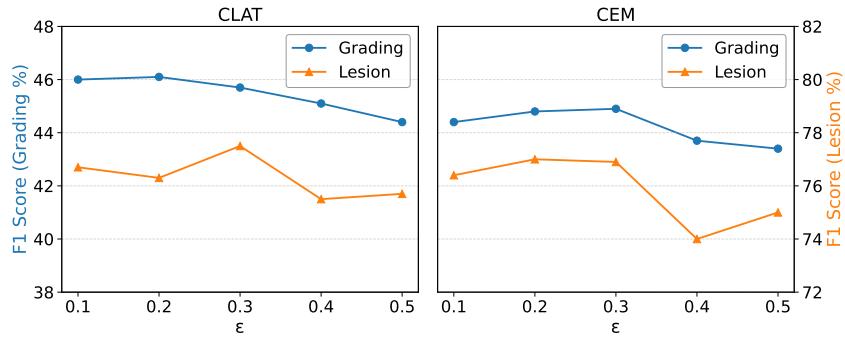
761 Yukun Zhou, Mark A Chia, Siegfried K Wagner, Murat S Ayhan, Dominic J Williamson, Robbert R
 762 Struyven, Timing Liu, Moucheng Xu, Mateo G Lozano, Peter Woodward-Court, et al. A founda-
 763 tion model for generalizable disease detection from retinal images. *Nature*, 622(7981):156–163,
 764 2023.

756 A APPENDIX
757

758 **The Impact of Medical Priors.** To further investigate the impact of medical priors on our proposed
759 method, we replaced the established priors with randomly generated priors during training. Based
760 on the results of multiple experiments, we plotted a bar chart as shown in Figure 4. The results
761 demonstrate that, overall, the performance with random priors is significantly worse. This is likely
762 because random priors are unable to provide effective guidance and, in many cases, may mislead the
763 model into learning incorrect conceptual relationships. Consequently, this negatively impacts the
764 overall performance of the model, resulting in significant variability in the outcomes, both in terms
765 of grading and lesion detection.



777 Figure 4: Performance comparison between using true medical priors and random priors in
778 KCCL_{CLAT} and KCCL_{CEM}. The bars represent the mean F1-scores averaged over five independent
779 runs with different random seeds, with error bars indicating the range of variation. The dashed lines
780 represent the performance achieved using true medical priors for KCCL_{CLAT} (green) and KCCL_{CEM}
781 (orange), respectively.

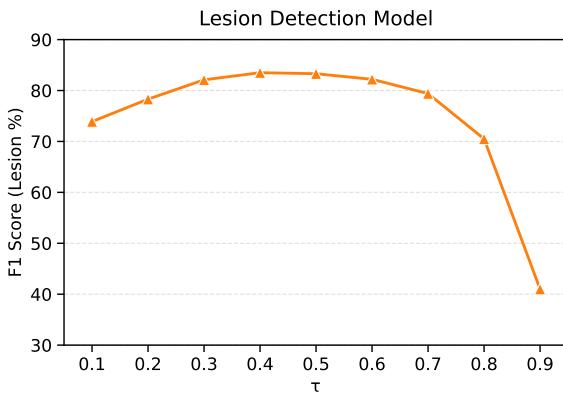


795 Figure 5: Effect of co-occurrence activation strength ϵ on the grading performance of KCCL_{CLAT}
796 and KCCL_{CEM} on six unseen domains and the lesion detection performance on DRL6k test dataset.
797

798 **Sensitivity to Co-occurrence Activation Strength.** To analyze the impact of co-occurrence activation
799 strength parameter ϵ on our method, we further examine the effect of varying this parameter, as
800 shown in Figure 5. The results indicate that our method is generally robust to the choice of ϵ , achieving
801 good performance within the range of 0.1 to 0.3. However, when ϵ is set too high, related lesions
802 may become overly activated, and the sampled lesion probabilities can be excessively influenced.
803 This leads to a corrected probability distribution that deviates significantly from the true distribution,
804 thereby adversely affecting the learning of the concept layer and ultimately impacting grading
805 performance to some extent. Therefore, we selected $\epsilon = 0.2$ for our experiments as it provides a
806 more balanced training signal.

807 **Sensitivity to Lesion Detection Threshold.** Our selection of $\tau = 0.5$ follows the standard convention
808 for binary classification logits. To address the question of sensitivity, we performed an ablation
809 study ranging from 0.1 to 0.9, as shown in Figure 6. As the results show, the model’s performance
810 peaks in the 0.4-0.5 range. KCCL is designed to be robust to teacher imperfections and does not

810
811 rely on a perfect lesion detector. Consequently, extensive tuning of the threshold is not required.
812 Furthermore, we avoided using adaptive or learnable threshold mechanisms, as optimizing these
813 parameters on the source domain poses a risk of overfitting.

827
828 Figure 6: Impact of lesion detection threshold τ .
829

830
831 Table 4: Performance of concept-based models trained only on the DRL6k dataset. Here, $KCCL_{CLAT}$
832 and $KCCL_{CEM}$ denote models trained with the proposed KCCL method, while $CLAT_{KD}$ and CEM_{KD}
833 use knowledge distillation only.

Method	Grading		Lesion	
	AUC	F1	AUC	F1
CEM_{DRL6k}	79.5	36.8	89.3	79.7
$KCCL_{CEM}$	83.3 ^{↑3.8}	44.8 ^{↑8.0}	86.5 ^{↓2.8}	77.0 ^{↓2.7}
$CLAT_{DRL6k}$	80.3	37.6	89.6	80.0
$KCCL_{CLAT}$	84.1 ^{↑3.8}	46.1 ^{↑8.5}	87.0 ^{↓2.6}	76.3 ^{↓3.7}

842
843 **Concept-based models with Only DRL6k Supervision.** Some studies (Koh et al., 2020; Es-
844 pinosa Zarlenga et al., 2022) have shown that concept-based models are inherently more data-
845 efficient. To further illustrate the effectiveness of the additional data introduced through knowledge
846 distillation, we trained CEM and CLAT solely on the DRL6k dataset and evaluated their generalization
847 capabilities using the same benchmark (excluding FGADR due to its partial overlap with the
848 training data). As shown in Table 4, CEM and CLAT trained only on DRL6k still exhibit a perfor-
849 mance gap compared to KCCL. However, they already outperform many other domain generaliza-
850 tion methods, highlighting the inherent generalization ability and data efficiency of concept-based
851 models. Building on this foundation, KCCL further leverages the strengths of concept-based models
852 by employing knowledge-guided training to enable concept learning without direct concept annota-
853 tions. The incorporation of additional data significantly enhances performance on unseen domains,
854 while only causing a slight decrease in lesion prediction performance. This greatly improves the
855 practicality of concept-based models in medical imaging and offers a novel approach for enhancing
856 model generalization in this field.

857
858 **Case Study.** Figure 7 presents representative cases that demonstrate KCCL’s impact on inter-
859 pretability and clinical consistency. The first two cases show the ability of KCCL to distinguish
860 Non DR from other grades. While $CLAT_{KD}$ frequently misclassifies these cases due to incorrect
861 MA predictions, $KCCL_{CLAT}$ correctly identifies the absence of lesions in Non DR cases, leading to
862 more accurate grading. The third case further illustrates KCCL’s advantage in clinical consistency.
863 Although both $KCCL_{CLAT}$ and $CLAT_{KD}$ predict a Proliferative outcome, their reasoning differs:
864 $CLAT_{KD}$ shows inconsistent lesion activations that contradict the severity of the predicted grade,
865 while $KCCL_{CLAT}$ demonstrates coherent lesion predictions that align with the medical expectations.
866 This consistency is crucial for building clinician trust, as it ensures that the model’s explanations
867 faithfully reflect genuine clinical reasoning rather than spurious correlations.

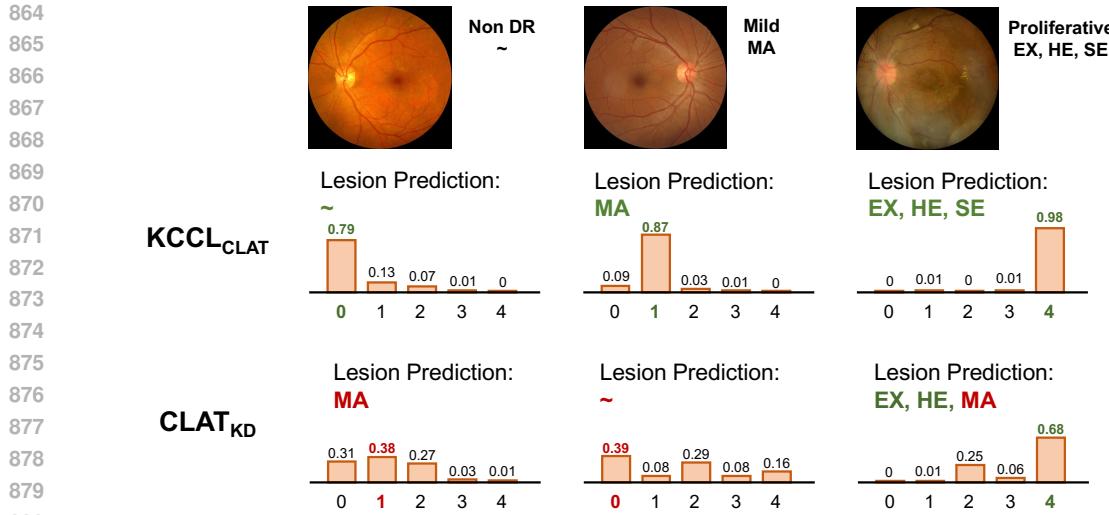


Figure 7: Case study of KCCL on DR grading and lesion detection. The first row shows the original images, with ground-truth DR grades and lesions underneath. The following rows show the predicted DR grades and lesions from KCCL_{CLAT} and CLAT_{KD}. Grade predictions are shown as confidence score bar charts for the five DR grades (0: Non-DR, 1: Mild, 2: Moderate, 3: Severe, 4: Proliferative). The notation “~” indicates no lesion activation.

Table 5: Performance of different lesion detection models on the DRL6k test dataset.

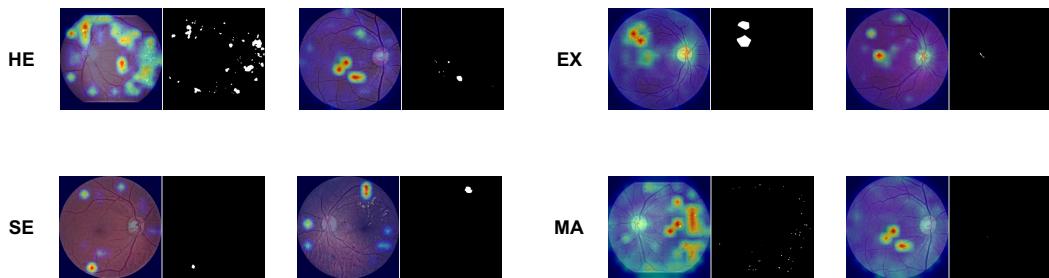
Model	Architecture	AUC	F1
FLAIR	RN50	91.3	83.3
RET-CLIP	ViT-B	90.0	81.0
ViLReF	ViT-B	88.4	78.3
RETFound	ViT-B	91.7	82.9

Table 6: Impact of different teacher models.

Method	FLAIR		RET-CLIP		ViLReF		RETFound	
	AUC	F1	AUC	F1	AUC	F1	AUC	F1
KCCL _{CLAT}	84.2	46.0	84.1	45.9	81.3	46.3	80.7	45.3
KCCL _{CEM}	83.0	44.7	83.0	44.8	82.9	44.2	83.1	43.5

Lesion Detection Model Training. To obtain the concept pseudo-labels required for knowledge distillation in KCCL, we trained a lesion detection model to serve as the teacher model. This model is based on a ResNet50 backbone, initialized with pre-trained weights from the image encoder of FLAIR (Silva-Rodríguez et al., 2025). The model architecture remains unaltered, employing only CutMix data augmentation to enhance its generalization capabilities, with the CutMix alpha parameter set to 1.0. Additionally, reweighting is applied to address class imbalance, where the weights are set as the inverse of the sample proportion for each lesion category. Consistent with the main experiments of KCCL, the training utilizes the AdamW optimizer with a learning rate of 1e-4, weight decay of 1e-4, batch size of 32, and a maximum of 100 training epochs. In addition to FLAIR, we also trained other models including RET-CLIP (Du et al., 2024), ViLReF (Yang et al., 2025), and RETFound Zhou et al. (2023) following a similar protocol to evaluate different teacher architectures. The performance of these models on the DRL6k test dataset is presented in Table 5. Furthermore, the impact of utilizing these different teacher models on the downstream performance of KCCL is presented in Table 6. This confirms that the effectiveness of our knowledge constraints is not tied to a specific architecture. Crucially, this stability reaffirms the core premise of our work: the teacher

918 model primarily serves to provide a basic supervision signal for concept learning, while the KCCL
 919 framework itself is the more critical component.
 920



921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Figure 8: Visualization of KCCL_{CLAT} for lesion localization.

932 **Visualization of Lesion Localization.** To verify the model’s focus, we visualized the attention
 933 regions of KCCL_{CLAT} regarding different lesion types on the DRL6k test dataset. As depicted in
 934 Figure 8, the results indicate that the concept layer captures and focuses on key lesion regions to
 935 a reasonable degree. Notably, even under the constraint of a purely pseudo-label training regime,
 936 the model still exhibits a discernible tendency to attend to clinically relevant areas, reinforcing the
 937 validity of the learned representations.

938 **Stability Analysis.** Although the original benchmark protocol primarily reports single-run perfor-
 939 mance without quantifying statistical dispersion, we conducted three independent runs to rigorously
 940 evaluate the stability of the KCCL framework. Table 7 presents the performance in terms of mean \pm
 941 standard deviation. The results exhibit minimal variance across different initializations, confirming
 942 that our method maintains consistent and stable performance

943
 944 Table 7: Domain generalization performance (Mean \pm Standard Deviation) across multiple runs.
 945 The results are reported in terms of AUC (%) and F1 scores (%).

947 948 Method	949 APTOS		950 DeepDR		951 FGADR		952 IDRID		953 Messidor		954 RLDR		955 Average	
	AUC	956 F1	AUC	957 F1	AUC	958 F1	AUC	959 F1	AUC	960 F1	AUC	961 F1	AUC	962 F1
KCCL _{CEM}	81.4 ± 0.4	44.3 ± 0.7	81.0 ± 0.7	38.8 ± 1.2	81.8 ± 1.6	40.7 ± 2.0	84.7 ± 0.9	47.5 ± 0.7	84.9 ± 0.3	51.1 ± 0.4	84.0 ± 0.3	46.1 ± 0.3	83.0 ± 0.4	44.7 ± 0.6
KCCL _{CLAT}	82.0 ± 0.3	47.1 ± 0.7	83.0 ± 1.1	39.2 ± 3.0	81.6 ± 0.3	40.6 ± 0.8	89.5 ± 0.3	52.7 ± 3.7	84.8 ± 0.9	51.2 ± 1.3	84.3 ± 0.1	45.1 ± 0.8	84.2 ± 0.2	46.0 ± 0.5

956 **The Use of Large Language Models.** We used large language models (LLMs) solely for language
 957 polishing purposes, such as improving grammar, readability, and clarity of writing. LLMs were
 958 not involved in research ideation, experimental design, analysis, or interpretation of results. All
 959 scientific contributions and substantive content of the paper are entirely the work of the authors.