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Abstract001

Scientific paper retrieval, particularly framed as002
document-to-document retrieval, aims to iden-003
tify relevant papers in response to a long-form004
query paper, rather than a short query string.005
Previous approaches to this task have focused006
on abstracts, embedding them into dense vec-007
tors as surrogates for full documents and calcu-008
lating similarity across them, although abstracts009
provide only sparse and high-level summaries.010
To address this, we propose PRISM, a novel011
document-to-document retrieval method that in-012
troduces multiple, fine-grained representations013
for both the query and candidate papers. In par-014
ticular, each query paper is decomposed into015
multiple aspect-specific views and individually016
embedded, which are then matched against can-017
didate papers similarity segmented to consider018
their multifaceted dimensions. Moreover, we019
present SCIFULLBENCH, a novel benchmark020
in which the complete and segmented context021
of full papers for both queries and candidates is022
available. Then, experimental results show that023
PRISM improves performance by an average024
of 4.3% over existing retrieval baselines.025

1 Introduction026

Information Retrieval (IR) is the task of searching027

for query-relevant documents from a large exter-028

nal corpus, evolving from sparse keyword match-029

ing (Sparck Jones, 1972; Robertson et al., 1995) to030

dense representation-based similarity (Karpukhin031

et al., 2020; Izacard et al., 2021). Notably, in the032

era of Large Language Models (LLMs) (Achiam033

et al., 2023; Team et al., 2023; Dubey et al., 2024;034

DeepSeek-AI et al., 2025), IR has become increas-035

ingly crucial, which enables LLMs to utilize up-to-036

date external information (Lewis et al., 2020).037

In contrast to conventional retrieval tasks, whose038

queries are short (such as questions or keywords),039

scientific paper retrieval poses unique challenges.040

Specifically, queries are long-form, structured doc-041

uments that encapsulate diverse aspects, ranging042
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Figure 1: Conceptual illustration of our framework, PRISM.

from research motivation and proposed methodol- 043

ogy to experimental design and empirical findings. 044

Also, relevance in this setting is inherently multi- 045

faceted, as a paper may be considered relevant for 046

various reasons, such as pursuing similar research 047

objectives or employing comparable methodolo- 048

gies. However, primarily due to the limited context 049

lengths of embedding models, prior work has fo- 050

cused on abstract-level representations as a proxy 051

for full papers (Cohan et al., 2020; Yasunaga et al., 052

2022; Ostendorff et al., 2022; Singh et al., 2023; 053

Zhang et al., 2023a), by fine-tuning models using 054

abstract pairs connected via citation relationships. 055

While effective to some extent, they are subopti- 056

mal for capturing deeper contextual relationships 057

between papers, resulting in limited performance, 058

especially on tasks such as identifying complemen- 059

tary work and generating literature reviews, where 060

understanding the full paper beyond surface-level 061

abstracts is essential (Asai et al., 2024; Baek et al., 062

2024; Chamoun et al., 2024; Jin et al., 2024). 063

However, it is non-trivial to represent a full sci- 064

entific paper and retrieve it. On the one hand, full 065

papers sometimes exceed 100K tokens in length, 066

far surpassing the context limits of most embedding 067
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models. Even when a full paper can be encoded068

into a single vector, representing its diverse aspects069

(such as motivation, methods, and experiments)070

within a single embedding may lead to oversimplifi-071

cation and blur fine-grained distinctions, especially072

in cases where similarity lies in a specific aspect.073

To this end, we propose a novel paper-to-paper074

retrieval framework, PRISM, which handles full075

papers from two different angles. Specifically, on076

the query side, it generates multiple aspect-specific077

queries, each capturing a distinct perspective of078

the given paper, and we operationalize this with079

multi-agent query optimization: LLM agents (each080

specialized in a certain aspect) independently ana-081

lyze the paper and formulate their corresponding082

queries. Also, on the corpus side, it segments can-083

didate documents into section-level representations084

stored in separate corpora, allowing each aspect-085

specific query to perform targeted retrieval based086

on the most relevant parts of the paper. Lastly, the087

retrieval results from all queries are aggregated at088

the rank level, producing a single unified ranking.089

To validate this, we construct SCIFULLBENCH,090

a new benchmark suite that enables paper-to-paper091

retrieval with complete papers for both queries and092

retrieval targets in ML and NLP domains, since093

existing benchmarks are primarily designed for094

abstract-based retrieval and thus lack support for095

our scenario. Results on SCIFULLBENCH demon-096

strate that PRISM outperforms existing abstract-097

level retrieval approaches and those specific to pa-098

per retrieval domains substantially, and is compati-099

ble with any (domain-agnostic) embedding models.100

2 Related Work101

Scientific Paper Retrieval Pioneering work in102

scientific paper-to-paper retrieval used the numer-103

ical statistics with citations or cocitations (Small,104

1973; Haruna et al., 2018). Recently, thanks to the105

capability of neural models, many studies have fo-106

cused on calculating semantic textual similarities107

between abstracts of respective documents (Bha-108

gavatula et al., 2018; Ostendorff, 2020), with em-109

bedding models specific to this domain. For ex-110

ample, Cohan et al. (2020) and Ostendorff et al.111

(2022) fine-tune BERT-based models (Devlin et al.,112

2019) using abstract pairs extracted from the cita-113

tion graph, and Mysore et al. (2022) further con-114

sider the Wasserstein distance between sentence115

segments within abstract pairs. Moreover, recent116

studies target multiple tasks (such as paper classifi-117

cation and citation prediction in addition to paper118

retrieval) in a unified framework by generating their 119

respective representations adaptively (Singh et al., 120

2023; Zhang et al., 2023a). In contrast, we focus 121

on paper-to-paper retrieval using the full content of 122

papers, representing each paper in multiple ways. 123

Query Optimization with LLMs Since effective 124

query formulation plays a central role in retrieval 125

performance, a long line of research has explored 126

query optimization, from early relevance feedback 127

techniques (Rocchio Jr, 1971; Salton and Buck- 128

ley, 1990) to query expansion approaches (Kuzi 129

et al., 2016; Nogueira et al., 2019). More recent 130

methods either leverage LLMs themselves to refor- 131

mulate queries (Yu et al., 2023; Wang et al., 2023; 132

Gao et al., 2023), or further augment them with ex- 133

ternal query-relevant information via retrieval (Yu 134

et al.; Shen et al., 2024; Park and Lee, 2024; Lei 135

et al., 2024). There are also studies to disambiguate 136

queries (to capture their underlying semantics) by 137

decomposing them into smaller subqueries (Zheng 138

et al., 2024; Korikov et al., 2024). However, query 139

optimization has less explored in paper retrieval, 140

where each query paper is far longer than others. 141

3 Method 142

Paper-to-Paper Retrieval Given a query paper 143

P (with its abstract as Pabstract), paper retrieval is 144

to return a ranked list of relevant candidate papers 145

from the corpus C. In contrast to existing studies 146

that use Pabstract, we utilize its complete version 147

P for query formulation and corpus construction. 148

Aspect-Aware Query Optimization To capture 149

the multifaceted nature of scientific papers, we for- 150

mulate the query optimization process as transform- 151

ing the full paper P into a set of aspect-specific 152

queries. Formally, we define a set of query opti- 153

mization functions as follows: F = {fR, fM, fE}, 154

where each function fi ∈ F maps P to a query 155

qi = fi(P ) that targets a specific aspect of the pa- 156

per (e.g., research motivation, methods, and experi- 157

ments). Notably, each function is instantiated with 158

an LLM agent coupled with an aspect-specific tem- 159

plate (see Appendix E). Additionally, we include 160

the abstract Pabstract, since it reflects a general and 161

broad view of the overall content (that can comple- 162

ment fine-grained queries), yielding the final query 163

set: Q = {fi(P ) | fi ∈ F)} ∪ {Pabstract}. 164

Retrieval with Multi-View Corpora Once the 165

optimized query set Q is formulated, we perform 166

retrieval individually for each query q ∈ Q. Specifi- 167

cally, for the abstract-based query Pabstract, we use 168
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Table 1: Main Results on SCIFULLBENCH, showing macro-averaged means over three different runs.

ICLR-NeurIPS ACL-EMNLP
References Citations References Citations

IR Method Recall@200 Recall@300 MRR@50 Recall@200 Recall@100 Recall@200 MRR@50 Recall@50
Domain-Specific Retriever
SciNCL-A2A 45.96 51.80 37.82 42.22 28.21 35.58 29.77 19.04
SPECTER2-Base-A2A 44.79 50.41 41.19 43.59 26.88 34.47 32.07 19.72
SPECTER2-Adapter-MTL CTRL-A2A 45.16 51.07 39.18 42.07 27.35 34.44 30.51 18.66
SciMult-MHAExpert-A2A 39.56 45.04 35.71 35.89 24.67 31.70 28.34 16.59
Jina-Embeddings-v2-BASE-EN

D
om

ai
n-

A
gn

os
tic

R
et

ri
ev

er A2A (Abstract-to-Abstract) 44.83 49.92 40.29 42.53 26.92 33.57 32.79 19.27
F2F (Full-to-Full) 45.22 50.60 42.38 44.30 29.15 36.72 35.60 21.56
A2C (Abstract-to-Chunk) 40.58 45.89 38.77 42.44 25.22 32.44 32.28 20.50
F2C (Full-to-Chunk) 39.75 45.17 34.87 40.63 25.64 33.11 28.59 19.53
PRISM with Llama-3.2-3B-Instruct 47.75 53.41 42.79 48.74 29.81 38.55 39.36 23.98
PRISM with GPT-4o-Mini-2024-0718 48.18 53.96 43.49 49.93 30.61 39.07 39.86 24.70

Text-Embedding-3-Small
A2A (Abstract-to-Abstract) 45.64 51.22 40.02 43.81 27.78 34.50 33.75 20.73
F2F (Full-to-Full) 34.94 39.82 39.74 37.34 18.70 24.53 22.19 12.32
A2C (Abstract-to-Chunk) 39.56 44.55 39.68 41.31 23.34 30.55 31.65 18.88
F2C (Full-to-Chunk) 35.34 39.94 34.77 37.89 18.98 24.20 17.91 12.12
PRISM with Llama-3.2-3B-Instruct 47.31 53.46 45.16 48.23 28.82 37.29 37.48 22.97
PRISM with GPT-4o-Mini-2024-0718 47.39 53.33 46.44 49.63 28.49 37.03 39.94 23.74

a corpus Cabstract containing candidate abstracts169

(as they are comparable in length and structure).170

For all other aspect-specific queries derived from171

the full paper, we use a segmented version of the172

full corpus: Cchunked, where each paper is split into173

fixed-length chunks (likely to capture its specific174

aspect) and indexed using multi-vector representa-175

tions (Khattab and Zaharia, 2020; Santhanam et al.,176

2021). Then, each query retrieves top-k relevant177

segments, which are then mapped back to their178

source papers, resulting in a ranked list of candidate179

papers per query, as follows: R = {Rq | q ∈ Q}.180

Rank Fusion We now turn to aggregate these181

aspect-specific rankings R into a unified document-182

level ranking, to ensure that relevance signals from183

different scientific dimensions are collectively re-184

flected in the final retrieval outcome. In particular,185

we adopt Reciprocal Rank Fusion (RRF) (Cormack186

et al., 2009), which combines multiple ranked lists187

by assigning higher weights to top-ranked items188

in each list (without requiring score normaliza-189

tion across inconsistent fine-grained similarities),190

as follows: RRF(P ) =
∑

q∈Q
1

k+rankq(P ) , where191

rankq(P ) denotes the rank of candidate paper P in192

the retrieved list Rq, and k is a smoothing constant.193

In other words, the ranking score from RRF ensures194

that candidates strongly aligned with at least one195

aspect can surface in the final retrieval outcome.196

4 Experiment197

4.1 SciFullBench198

Query Formulation To support the task of full199

paper-to-paper retrieval, we collect papers in ML200

(NeurIPS and ICLR) and NLP (ACL and EMNLP)201

venues from OpenReview API1, ACL-Anthology2,202

1https://openreview.net/
2https://aclanthology.org/
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Figure 2: Retrieval performance with varying the number of
coordinating query optimization agents in PRISM.

and SEA (Yu et al., 2024) (see Appendix A for 203

details), since no single source covers all of them. 204

Then, for each query paper within them, we anno- 205

tate its ground-truth relevant papers based on their 206

neighboring relationships over the academic graph, 207

such as references (incoming links) and citations 208

(outgoing links). In addition, we parse each doc- 209

ument using the AllenAI Science Parse tool3, and 210

further apply post-processing to remove reference 211

sections, filter citation markers, and eliminate their 212

associated in-context mentions (see Appendix A). 213

Lastly, from the set of papers with at least 10 rele- 214

vant documents on both the reference and citation 215

criteria, we construct our evaluation suite by ran- 216

domly sampling 400 query papers per venue. 217

Corpus Construction To construct a comprehen- 218

sive corpus for retrieval, we collect papers in the 219

category around CS from 2020 to 2025 in arXiv4, 220

which offers open access to the full content. Also, 221

to avoid exposing citation or reference information, 222

we apply the same parsing and filtering procedures 223

used in query construction. Lastly, we include la- 224

beled documents for all query papers in the corpus, 225

resulting in a collection of about 40K papers with 226

both abstract and full-text available. For segmenta- 227

tion of each document into finer units, we use the 228

tokenization from NLTK (Loper and Bird, 2002). 229

3https://github.com/allenai/science-parse
4https://arxiv.org/
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Table 2: Performance between specialized agents generating
one query each and a single agent generating all queries.

ACL-Citations ICLR-Citations
QoA + Retriever Recall@100 Recall@200

Si
ng

le GPT-4o-Mini-2024-0718 + JE-v2-Base-EN 33.27 45.62
GPT-4o-Mini-2024-0718 + TE3-Small 32.89 45.35
Llama-3.2-3B-Instruct + JE-v2-Base-EN 31.18 43.05
Llama-3.2-3B-Instruct + TE3-Small 30.77 42.43

M
ul

ti GPT-4o-Mini-2024-0718 + JE-v2-Base-EN 34.25 46.44
GPT-4o-Mini-2024-0718 + TE3-Small 33.48 46.34
Llama-3.2-3B-Instruct + JE-v2-Base-EN 33.00 45.71
Llama-3.2-3B-Instruct + TE3-Small 32.88 45.06

4.2 Evaluation Setup230

Retrieval Models We compare PRISM against231

existing retrievers developed for scientific paper re-232

trieval, as follows: SPECTER2 Base (Singh et al.,233

2023); SciNCL (Ostendorff et al., 2022); SciMult-234

MHAExpert (Zhang et al., 2023a); SPECTER2235

Adapters + MTL CTRL (Singh et al., 2023). We236

also consider off-the-shelf general-purpose embed-237

ding models, such as Jina-Embeddings-V2-Base-238

EN (Günther et al., 2023) and Text-Embedding-3-239

Small (OpenAI, 2024c) for baselines and PRISM.240

Retrieval Units We consider various retrieval241

units, where we denote A for Abstract, F for Full242

paper5, and C for chunked context (i.e., segmented243

units of the full paper, each capped at 3K tokens).244

Using them, we consider four retrieval setups: A2A245

(Abstract-to-Abstract), F2F (Full-to-Full), A2C246

(Abstract-to-Chunk), and F2C (Full-to-Chunk).247

Query Optimizers We instantiate query optimiz-248

ers using LLMs: the open-weight Llama-3.2 (Meta,249

2024) and the proprietary GPT-4o-Mini (OpenAI,250

2024a). Please see Appendix B for more details.251

4.3 Results and Analysis252

Main Results Table 1 shows the main results,253

where PRISM outperforms all baselines across vari-254

ous configurations. First of all, despite using an off-255

the-shelf retriever (such as Jina-Embeddings) that256

underperforms the best task-specific retriever in the257

conventional A2A setup, PRISM achieves a signif-258

icant average improvement of 7%. This confirms259

that optimizing queries via aspect-aware decom-260

position can yield substantial gains even without261

additional training or modification of the embed-262

ding space. Further, when using the same domain-263

agonistic retriever, PRISM consistently surpasses264

the corresponding baselines in the F2C and A2C265

setups in addition to the A2A setup. These results266

suggest that simply using longer inputs or chunked267

candidates is insufficient; yet, structural optimiza-268

tion of queries is essential for effective matching.269

Finally, PRISM exceeds the performance of the270

5Since full papers often exceed the context length of em-
bedding models, we truncate them up to the maximum length.
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Figure 3: Results with different candidate paper granularities.

F2F setting by as much as 17%, highlighting the im- 271

portance of using fine-grained (or aspect-specific) 272

representations on both the queries and candidates. 273

Aspect Coverage in Query Optimization To as- 274

sess the impact of covering diverse aspects in query 275

formulation, we study the relationship between the 276

number of participating query optimizer agents and 277

the resulting retrieval performance. As Figure 2 278

shows, performance improves consistently as more 279

aspect-specific agents contribute to the final query 280

set, indicating the importance of capturing the mul- 281

tifaceted nature of scientific papers for retrieval. 282

Benefit of Specializing Agents by Aspect Our 283

results in Table 2 confirm the effectiveness of using 284

multiple specialized LLM agents, each dedicated 285

to a single aspect. Specifically, using multiple spe- 286

cialized agents outperforms a single agent tasked 287

with generating multiple queries (without aspect 288

separation), yielding an average gain of 1.66%. 289

Impact of Candidate Granularity To see how 290

the granularity of candidate representations affects 291

the performance, we perform an analysis. The re- 292

sults in Figure 3 demonstrate the effectiveness of 293

our multi-vector approach: segmenting each candi- 294

date document into 3K-token chunks yields the best 295

performance, which outperforms not only abstract- 296

only and full-document single-vector representa- 297

tions but also coarser chunking strategies (such as 298

6K-token segments), suggesting that finer-grained 299

representations are effective in capturing diverse 300

and localized signals within full-length papers. 301

5 Conclusion 302

In this work, we introduced PRISM, a novel sci- 303

entific paper-to-paper retrieval framework that is 304

composed of aspect-aware query optimization and 305

fine-grained candidate representations. On a bat- 306

tery of tests with our newly constructed benchmark 307

(SCIFULLBENCH) designed to support full-context 308

retrieval, PRISM – by decomposing full papers 309

into multiple aspect-specific queries and retrieving 310

over (segmented) candidate corpora – consistently 311

outperforms prior abstract-level and full-context re- 312

trieval baselines with off-the-shelf models, showing 313

potential to move beyond surface-level retrieval. 314
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Limitations315

Although our work explores a novel retrieval ap-316

proach that leverages the entire context of scientific317

papers through multi-aspect query optimization, we318

have yet to explore further specialization or coor-319

dination of independent query optimizer agents in320

our system with auxiliary training procedures. This321

possibly bounds the performance of our framework322

as naively deploying off-the shelf individual LLMs323

may not operate in an optimal manner. Meanwhile,324

training each agent is also challenging since curat-325

ing agent-specific labels for supervised finetuning326

is infeasible (at least within the scope of our work).327

Therefore, annotating or automatically collecting328

(labeled) data to enhance agent coordination thus329

remains an important avenue for future research.330

In addition, our candidate corpus is constructed by331

segmenting full documents into multiple vectors,332

each representing a portion of the original content.333

Although this approach offers scalability and ef-334

ficiency for handling long-context candidates in335

large corpora, it may risk losing important contex-336

tual information during the rule-based segmenta-337

tion process. In this vein, future work could explore338

(very rapid) content-aware segmentation strategies.339

Ethics Statement340

Although our PRISM framework improves retrieval341

performance compared to prior approaches, it still342

retrieves irrelevant papers at a high rate, potentially343

conveying incorrect information (such as harmful344

content) to both the human users and AI agents.345

Thus, in order to implement a trustworthy auto-346

mated system, future research may focus on imple-347

menting verifiers that accurately filter out irrelevant348

documents from a pool of retrieved documents.349

References350

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama351
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,352
Diogo Almeida, Janko Altenschmidt, Sam Altman,353
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-354
cal report. arXiv preprint arXiv:2303.08774.355

Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi,356
Amanpreet Singh, Joseph Chee Chang, Kyle Lo,357
Luca Soldaini, Sergey Feldman, Mike D’arcy, and358
1 others. 2024. Openscholar: Synthesizing scien-359
tific literature with retrieval-augmented lms. arXiv360
preprint arXiv:2411.14199.361

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan,362
and Sung Ju Hwang. 2024. Researchagent: Iter-363

ative research idea generation over scientific liter- 364
ature with large language models. arXiv preprint 365
arXiv:2404.07738. 366

Chandra Bhagavatula, Sergey Feldman, Russell Power, 367
and Waleed Ammar. 2018. Content-based citation 368
recommendation. In Proceedings of the 2018 Con- 369
ference of the North American Chapter of the Asso- 370
ciation for Computational Linguistics: Human Lan- 371
guage Technologies, Volume 1 (Long Papers), pages 372
238–251, New Orleans, Louisiana. Association for 373
Computational Linguistics. 374

Peter Brown and Yaoqi Zhou. 2019. Large expert- 375
curated database for benchmarking document sim- 376
ilarity detection in biomedical literature search. 377
Database, 2019:baz085. 378

Eric Chamoun, Michael Schlichtkrull, and Andreas Vla- 379
chos. 2024. Automated focused feedback generation 380
for scientific writing assistance. In Findings of the As- 381
sociation for Computational Linguistics: ACL 2024, 382
pages 9742–9763, Bangkok, Thailand. Association 383
for Computational Linguistics. 384

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug 385
Downey, and Daniel Weld. 2020. SPECTER: 386
Document-level representation learning using 387
citation-informed transformers. In Proceedings 388
of the 58th Annual Meeting of the Association 389
for Computational Linguistics, pages 2270–2282, 390
Online. Association for Computational Linguistics. 391

Gordon V. Cormack, Charles L. A. Clarke, and Stefan 392
Büttcher. 2009. Reciprocal rank fusion outperforms 393
condorcet and individual rank learning methods. Pro- 394
ceedings of the 32nd international ACM SIGIR con- 395
ference on Research and development in information 396
retrieval. 397

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 398
Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 399
Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang 400
Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, 401
Zhihong Shao, Zhuoshu Li, Ziyi Gao, and 179 oth- 402
ers. 2025. Deepseek-r1: Incentivizing reasoning ca- 403
pability in llms via reinforcement learning. ArXiv, 404
abs/2501.12948. 405

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 406
Kristina Toutanova. 2019. BERT: Pre-training of 407
deep bidirectional transformers for language under- 408
standing. In Proceedings of the 2019 Conference of 409
the North American Chapter of the Association for 410
Computational Linguistics: Human Language Tech- 411
nologies, Volume 1 (Long and Short Papers), pages 412
4171–4186, Minneapolis, Minnesota. Association for 413
Computational Linguistics. 414

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff 415
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, 416
Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 417
2024. The faiss library. 418

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 419
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 420

5

https://doi.org/10.18653/v1/N18-1022
https://doi.org/10.18653/v1/N18-1022
https://doi.org/10.18653/v1/N18-1022
https://doi.org/10.18653/v1/2024.findings-acl.580
https://doi.org/10.18653/v1/2024.findings-acl.580
https://doi.org/10.18653/v1/2024.findings-acl.580
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://api.semanticscholar.org/CorpusID:12408211
https://api.semanticscholar.org/CorpusID:12408211
https://api.semanticscholar.org/CorpusID:12408211
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:275789950
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2401.08281


Akhil Mathur, Alan Schelten, Amy Yang, Angela421
Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo422
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-423
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, and424
510 others. 2024. The llama 3 herd of models. ArXiv,425
abs/2407.21783.426

William Fedus, Barret Zoph, and Noam Shazeer. 2022.427
Switch transformers: Scaling to trillion parameter428
models with simple and efficient sparsity. Journal of429
Machine Learning Research, 23(120):1–39.430

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.431
2023. Precise zero-shot dense retrieval without rel-432
evance labels. In Proceedings of the 61st Annual433
Meeting of the Association for Computational Lin-434
guistics (Volume 1: Long Papers), pages 1762–1777,435
Toronto, Canada. Association for Computational Lin-436
guistics.437

Ronald L. Graham. 1972. An efficient algorithm for438
determining the convex hull of a finite planar set.439
Info. Proc. Lett., 1:132–133.440

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-441
dine Abdessalem, Tanguy Abel, Mohammad Kalim442
Akram, Susana Guzman, Georgios Mastrapas, Saba443
Sturua, Bo Wang, and 1 others. 2023. Jina em-444
beddings 2: 8192-token general-purpose text em-445
beddings for long documents. arXiv preprint446
arXiv:2310.19923.447

Khalid Haruna, Maizatul Akmar Ismail, Abdul-448
lahi Baffa Bichi, Victor Chang, Sutrisna Wibawa, and449
Tutut Herawan. 2018. A citation-based recommender450
system for scholarly paper recommendation. In Com-451
putational Science and Its Applications–ICCSA 2018:452
18th International Conference, Melbourne, VIC, Aus-453
tralia, July 2-5, 2018, Proceedings, Part I 18, pages454
514–525. Springer.455

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-456
bastian Riedel, Piotr Bojanowski, Armand Joulin,457
and Edouard Grave. 2021. Unsupervised dense in-458
formation retrieval with contrastive learning. arXiv459
preprint arXiv:2112.09118.460

Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kai-461
jie Zhu, Yijia Xiao, and Jindong Wang. 2024. Agen-462
treview: Exploring peer review dynamics with llm463
agents. arXiv preprint arXiv:2406.12708.464

Anshul Kanakia, Zhihong Shen, Darrin Eide, and465
Kuansan Wang. 2019. A scalable hybrid research466
paper recommender system for microsoft academic.467
In The world wide web conference, pages 2893–2899.468

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick469
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and470
Wen-tau Yih. 2020. Dense passage retrieval for open-471
domain question answering. In Proceedings of the472
2020 Conference on Empirical Methods in Natural473
Language Processing (EMNLP), pages 6769–6781,474
Online. Association for Computational Linguistics.475

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi- 476
cient and effective passage search via contextualized 477
late interaction over bert. In Proceedings of the 43rd 478
International ACM SIGIR conference on research 479
and development in Information Retrieval, pages 39– 480
48. 481

Anton Korikov, George Saad, Ethan Baron, Mustafa 482
Khan, Manav Shah, and Scott Sanner. 2024. Multi- 483
aspect reviewed-item retrieval via llm query decom- 484
position and aspect fusion. In IR-RAG@SIGIR, pages 485
23–33. 486

Saar Kuzi, Anna Shtok, and Oren Kurland. 2016. Query 487
expansion using word embeddings. In Proceedings 488
of the 25th ACM international on conference on in- 489
formation and knowledge management, pages 1929– 490
1932. 491

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 492
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 493
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 494
memory management for large language model serv- 495
ing with pagedattention. In Proceedings of the 29th 496
Symposium on Operating Systems Principles, pages 497
611–626. 498

Yibin Lei, Yu Cao, Tianyi Zhou, Tao Shen, and An- 499
drew Yates. 2024. Corpus-steered query expansion 500
with large language models. In Proceedings of the 501
18th Conference of the European Chapter of the As- 502
sociation for Computational Linguistics (Volume 2: 503
Short Papers), pages 393–401, St. Julian’s, Malta. 504
Association for Computational Linguistics. 505

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 506
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 507
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 508
täschel, and 1 others. 2020. Retrieval-augmented gen- 509
eration for knowledge-intensive nlp tasks. Advances 510
in neural information processing systems, 33:9459– 511
9474. 512

Edward Loper and Steven Bird. 2002. Nltk: The natural 513
language toolkit. arXiv preprint cs/0205028. 514
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A SciFullBench675

A.1 Comparison with Prior Benchmarks676

Previous benchmarks for scientific literature search677

where the full context is available for both query678

and candidates rarely exist. (Kanakia et al., 2019)679

introduce expert-annotated paper recommendation680

benchmark using abstract and citations within Mi-681

crosoft Academic Graph(MAG). SciDocs (Cohan682

et al., 2020) and SciRepEval (Singh et al., 2023)683

reveal an evaluation set to search relevant scientific684

literature within a pool of 30 candidates per query685

document with 5 gold labels in the computer sci-686

ence domain, while MDCR (Medić and Snajder,687

2022) disclose a benchmark with 60 candidates per688

query from 19 scientific fields sourced from MAG.689

RELISH (Brown and Zhou, 2019) also provides690

expert-annotated gold candidates that are relevant691

to the respective input documents in the biomed-692

ical domain. In addition, (Mysore et al., 2021)693

formulates a CFSCube benchmark to evaluate fine-694

grained sentence-wise alignment between abstract695

passages. SciMMIR (Wu et al., 2024) also presents696

a multimodal document retrieval evaluation set to697

evaluate the performance of figure-wise document698

retrieval frameworks. However, such benchmarks699

do not include candidates or queries in which their700

entire lexical content is fully disclosed. Although701

(Zhang et al., 2023b) intends to evaluate their clas-702

sifier pipeline using the complete scientific con-703

text, it contains five potential candidates per query,704

which is infeasible to evaluate large-scale literature705

retrieval frameworks. Conversely, our proposed706

benchmark consists of fully-disclosed document707

context, along with massive number of target candi-708

dates, adhering to the realistic setting for evaluating709

scientific literature retrieval.710

A.2 Construction Procedure711

In this section, we provide more details on the step-712

by-step construction process of SciFullBench.713

Step 1 As mentioned in the main content, we714

initially crawled research papers from top-tier715

machine learning venues including ICLR 2024,716

2025, NeurIPS 2024, 2023, ACL 2024, 2023, and717

EMNLP 2024, 2023 for our query documents. We718

scraped existing publications from the main con-719

ference for ACL and EMNLP, including both long-720

and short- papers from the ACL-Anthology web-721

site6, and used the OpenReview7 API to obtain 722

submitted research papers for ICLR and NeurIPS. 723

Moreover, for ICLR 2024 and NeurIPS 2023, we in- 724

cluded a subset of documents uploaded by authors 725

from SEA (Yu et al., 2024). Afterwards, we ob- 726

tained metadata from the arxiv database uploaded 727

to the Kaggle8 website, with available data up to 728

January 2025. Moreover, we constructed our initial 729

temporary raw corpus where its id starts with 20 730

to 25 which refers to its uploaded date on Arxiv 731

database, limiting our target corpus to fairly recent 732

papers. Also, we only filtered papers that are in the 733

machine learning domain, to those belong in cs.AI, 734

cs.LG, cs.CL, cs.CV, cs.NE, cs.IR, cs.DS, cs.CC, 735

cs.DL, cs.HC, cs.RO, cs.MM, cs.CG, cs.SY since 736

our queries are sampled from ML venues. 737

Step 2 After devising raw data for both queries 738

and candidates, we subsequently formulate gold 739

candidates using citations to represent contextual 740

proximity between scientific documents. We col- 741

lect the title of papers that cite our potential query 742

documents using the Semantic Scholar API9 and 743

check whether there exists a paper with a matched 744

title (case-insensitive) in our arxiv metadata, and 745

exclude any potential query documents with fewer 746

than ten gold candidates that meet such conditions. 747

As for benchmark split with references, we use 748

Allen AI Science Parse to obtain reference informa- 749

tion for respective documents, and follow the same 750

process in filtering out documents based on the im- 751

plemented criteria from above. Using such data, 752

we formulate our raw (query document, gold candi- 753

date) pairs where its abstract information is intact 754

and where more than 10 deduplicated candidates 755

exist, organized by splits in respective years belong- 756

ing to venues ICLR, NeurIPS, ACL and EMNLP. 757

For each split, we aggregate all the filtered (query, 758

candidate) set by year within each venue. For exam- 759

ple, we merge all the candidates in the citation split 760

for ICLR 2024 and ICLR 2025 into a single set of 761

ICLR-cited. From this filtered pool, we randomly 762

sampled 500 potential query candidates and formu- 763

lated a corpus containing gold candidates for each 764

query. This process enables our target corpus to be 765

kept within manageable size. Next, we assembled 766

the original pdfs of the papers in our temporarily 767

formulated target corpus. Since Arxiv APIs do not 768

6https://aclanthology.org/
7https://openreview.net/
8https://www.kaggle.com/
9https://www.semanticscholar.org
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Table 3: Query Paper statistics in SCIFULLBENCH benchmark.

ICLR NeurIPS EMNLP ACL
References Citations References Citations References Citations References Citations

domain ML ML ML/CL ML/CL

years included 2024,2025 2023,2024 2023,2024 2023,2024

# of papers per year (141,259) (324,76) (170, 230) (353,47) (226, 174) (334, 66) (184,216) (256,144)

# of tokens per paper 9402.35 8183.37 11184.39 9035.43 5908.36 6226.45 6190.06 6614.6

average # of candidates per sample 21.74 42.25 24.58 40.37 19.64 39.24 18.05 33.89

minimum # of candidates per sample 10 10 10 10 10 10 10 10

Table 4: Corpus statistics for SCIFULLBENCH.

SCIFULLBENCH

Total # of papers 40,782
Avg. # of tokens per abstract 200.39
Avg. # of tokens per paper 6987.67
Total # of segmented corpus 115004
Avg. # of tokens per segment 2479.90

support large-scale requests, we used the Google769

Cloud API10 to access the full paper dump directly770

and collect the latest updated versions for each pa-771

per by matching its unique ids within the Arxiv772

database.773

Step 3 Subsequently, using the AllenAI Science774

Parse tool, we parsed the query and candidate pdfs775

collected in step 2 into a json file containing title,776

abstract, main content list containing dictionaries777

with header and contents as keys, and list of ref-778

erence paper information along with its mentions779

for both queries and candidates. Since we use cita-780

tion information as the main signal for measuring781

document similarities, excluding the citations and782

the entire reference section was critical to validate783

the fairness of our benchmark. Although Allen AI784

Science Parse generally separates reference from785

main content, there were several cases where refer-786

ence was intermixed within the main content. Thus,787

we applied an auxiliary filtering algorithm. Since788

our tool parses pdf into a structured json file, we789

were able to obtain text information segmented into790

multiple passages. Hence, prior to reformatting791

it back to complete text, we eliminated sections792

or headers that contain at least one reference title793

(case-insensitive) completely while reformatting794

into a full paper. However, there were still issues795

where for some cases the reference section was left796

vacant. Because our filtering algorithm depends797

on the set of titles within parsed reference section,798

it cannot correctly exclude cases intermixed with799

reference information when such data are inacces-800

10https://cloud.google.com/apis?hl=ko

sible. Hence, we ruled out any query documents 801

or papers within our target corpus that did not in- 802

clude more than four references in the respective 803

parsed documents. In this way, it resolves problem- 804

atic circumstances in which we pass on perturbed 805

documents with reference knowledge by consid- 806

ering that it has no issues because the reference 807

title did not exist in the first place. Moreover, due 808

to our filtering heuristics, there remains an issue 809

where numerous documents experience severe loss 810

of their original content, since we excluded any 811

passage or header that had at least 1 reference ti- 812

tle. To mitigate such concerns, we did not include 813

any documents in which such problematic passages 814

comprise more than half of the total main-content 815

list. Furthermore, we ensured to remove any resid- 816

ing title(case-insensitive) included in the reference 817

section. 818

Step 4 Based on the preprocessed full document, 819

we formulate a pseudo-definitive benchmark con- 820

sisting of (query, gold candidate), target corpus 821

set by random sampling 400 query documents per 822

split in each venue that has 10 gold candidates still 823

existing in the above filtered target corpus. Ulti- 824

mately, we formulate a total of 3200 query docu- 825

ments, along with large-scale target corpora con- 826

sisting of all the gold candidates of such queries. 827

Finally, we remove citations and interlinked men- 828

tions from the entire set of formatted papers and 829

finalize our benchmark. Since this process does 830

not lead to exclusion of query document from our 831

benchmark, we have called the previous stage a 832

pseudo-definitive benchmark. Citation mentions 833

are removed using the information provided from 834

our parsing tool, and citation patterns are removed 835

using more than 10 different patterns in the Python 836

regular expression. Consequently, we devise a 837

definitive benchmark in which all documents for 838

both query and candidate corpus consist of title, 839

abstracts, full-paper text, and list of segmented con- 840

tent for the corresponding full-paper text. 841
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B Experiment Details842

B.1 Models843

We compared our method with retrieval using844

domain-specific embedding models, as mentioned845

in the main section, to demonstrate robust improve-846

ment over approaches that seek to devise optimal847

representations of paper abstracts through extensive848

training. For fair assessment, we mainly compare849

our method with models that demonstrated SoTA850

performance in previous citation link prediction851

and paper retrieval benchmarks. SPECTER2 mod-852

els with adapters and its multitask control codes853

have been reported to have achieved SoTA per-854

formance on the MDCR benchmark (Medić and855

Snajder, 2022). We used proximity control code856

adapter, as it was specialized in acquiring and rank-857

ing relevant papers, and also base models uploaded858

on huggingface 11. In addition, we experiment with859

SPECTER2-base models, trained with triplet loss860

by inducing neural retrievers to favor positive ab-861

stract pairs over vice versa given abstract of query862

documents sampled from discrete citation graphs.863

SciNCL 12 is also trained in a similar way, where864

its abstract pairs are derived from the continuous865

citation embedding space, achieving the strongest866

performance on the SciDocs benchmark to date. In867

addition, we compare our method with the SciMult-868

MHAExpert model implemented with Mixture-of-869

Experts (Fedus et al., 2022) architecture which870

compartmentalize internal transformer layers for871

different tasks in scientific literature tasks, and is872

reported to outperform previous models on the rec-873

ommendation benchmark (Kanakia et al., 2019).874

For SciMult-MHAExpert, we experimented with875

the model released on the SciMult github reposi-876

tory 13, utilizing an expert model specially trained877

for link prediction tasks that predicts linked docu-878

ments given the abstract of the source document.879

As for our domain-agnostic embedding models,880

we particularly chose off-the shelf retrievers with881

long context window. This was to ensure that we882

provided fair experimental setting for our baselines,883

most notably full document-to-full document re-884

trieval setting. Since general full-documents ex-885

ceed the context window of most embedding mod-886

els, we specifically chose long-context window em-887

bedding models to mitigate unfair penalization on888

our full document-to-document retrieval baseline.889

11https://huggingface.co/allenai/specter2
12https://huggingface.co/malteos/scincl
13https://github.com/yuzhimanhua/SciMult

B.2 Metrics 890

In our experiments, Recall@K is used as our main 891

metric, which measures the ratio of correct can- 892

didates within the Top@k retrieved results. This 893

aligns with our objective, where we seek to ac- 894

quire a more relevant pool of papers using diverse 895

aspect-aware queries. Moreover, we report Mean 896

Reciprocal Rank(MRR@K) to further validate 897

the capabilities of our framework. 898

B.3 Inference Details 899

We primarily use the Euclidean distance to mea- 900

sure similarities between our adaptively generated 901

queries and candidates, where we acquired candi- 902

dates with the minimum L2 distance. Since mini- 903

mizing the L2 distance was objective for most of 904

our baseline domain-specific embedding models 905

such as SciNCL, SPECTER2-Base, SPECTER2- 906

Adapter-MTL CTRL, we matched such settings 907

when we used jina-embeddings-v2-base-en and 908

text-embedding-3-small. However, for SciMult, we 909

measured MIPs (Maximum Inner Product), since it 910

was trained to maximize MIPs likewise in DPR. In 911

addition, we utilize the FAISS (Douze et al., 2024) 912

library, which enables efficient retrieval from large- 913

scale corpora. We implemented an efficient L2 914

search using FlatL2 and FlatIP for MIPs. 915

As for the setup when Llama-3.2 models are 916

used as query optimizers, we report the results by 917

fixing the temperature to 0 and fixing the maxi- 918

mum generation token hyperparameter to 2000 and 919

setting the repetition penalty to 1.2. In addition, 920

we used the VLLM (Kwon et al., 2023) library for 921

faster inference of open source models, using single 922

A6000 GPU for inference of open-sourced models. 923

When it comes to experiments using GPT-4o-Mini- 924

2024-0718 and GPT-4o-2024-11-20 as query opti- 925

mizers, we used temperature 0 and default hyper 926

parameters of the OpenAI client.chat.completions 927

API 14, while completely using the default hyper- 928

parameter settings for O3-Mini-2025-0131 and O4- 929

Mini-2025-04-16(temperature is also set to default). 930

Moreover, 60 is used as the hyperparameter k for 931

Reciprocal Rank Fusion. For base agent experi- 932

ments in Table 2, we equalized the hyper param- 933

eters to those used in its respective counterpart 934

comparison groups, and are prompted to generate 935

three different queries in a structured manner, using 936

Python Pydantic BaseModel 15 module. 937

14https://platform.openai.com/docs/guides/
15https://docs.pydantic.dev/latest/api
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Table 5: Additional report on performance of our PRISM
incorporating additional LLM backbone models and neural
retrievers.

ICLR-References ICLR-Citations
Model + Retriever Recall@200 Recall@200

Baseline
SciNCL-A2A 44.55 38.40
SPECTER2-Base-A2A 43.43 39.27
Jina-Embeddings-v2-BASE-EN-A2A 43.35 39.19
Text-Embedding-3-Small-A2A 43.48 40.56
Text-Embedding-Ada-002-A2A 37.81 33.69

Ours
Llama-3.2-1B-Instruct + JE-v2-Base-EN 44.35 44.51
Llama-3.2-1B-Instruct + TE3-Small 43.63 44.12
GPT-4o-Mini-2024-0718 + TE-Ada-002 40.99 41.67
GPT-4o-2024-11-20 + JE-v2-Base-EN 47.96 47.50
O3-Mini-2025-01-31 + JE-v2-Base-EN 49.08 46.91
O3-Mini-2025-01-31 + TE3-Small 48.51 47.26
O4-Mini-2025-04-16 + TE3-Small 48.76 47.31

C Supplementary Experiments938

In this section, we provide additional experiments939

and analysis of our work. In Table 10, the origi-940

nal results before taking the macro-average of the941

result pairs sampled from the venue pairs, ICLR-942

NeurIPS and ACL-EMNLP. In Table 5, we report943

additional results using State-of-the-ART LLMs944

as query optimizers, namely O4-Mini-2025-04-16,945

(OpenAI, 2025a), O3-Mini-2025-01-31 ,(OpenAI,946

2025b), and GPT 4o-2024-11-20 (OpenAI, 2024b).947

We also provide results using a smaller LLM948

agent compared to the ones provided in our main949

results, utilizing LLama-3.2-1B-Instruct (Meta,950

2024). Likewise, the results from Table 1 and951

10, our framework generally attains enhanced per-952

formance when compared to the best performing953

domain-specific retriever + abstract-to-abstract re-954

trieval setup, while also outperforming the setup955

in which the same domain-agnostic retrievers are956

used for abstract-to-abstract retrieval even when us-957

ing different LLMs as our query optimizers. Note958

that query optimizers based on LLMs with more ro-959

bust instruction-following capabilities and stronger960

reasoning abilities typically excel vice versa. This961

further indicates the expandability of our approach,962

where it has the potential to be further improved963

with the integration of more advanced reasoning964

models. Moreover, in Table 5, we also experiment965

with Text-Embedding-Ada-002 (OpenAI, 2022)966

and demonstrate that our pipeline is capable of967

achieving robust performance improvement using968

arbitrary embedding models, again emphasizing969

the importance of structural optimization of input970

queries and candidates.971

Moreover, in Table 7, the results are reported972

when abstract-to-abstract retrieval(A2A) is not uti-973

lized within PRISM. Despite the fact that the A2A974

retrieval method is excluded from our framework,975

Table 6: Analysis on the impact of incorporating rank fusion
to attain unified results of our hybrid retrieval framework com-
pared to using embedding aggregation mechanism in previous
multi-vector retrieval approaches on ACL-Citations split.

Retrieval Method MRR@50 Recall@100 Recall@200

Ours w/o RRF (PRISM w/o A2A)
Naive Aggregation
GPT-4o-Mini-2024-0718 + TE3-Small 22.04 3.95 4.55
Late Interaction(MaxSim)
GPT-4o-Mini-2024-0718 + TE3-Small 36.12 22.46 28.83

Ours w/ RRF (PRISM w/o A2A)
GPT-4o-Mini-2024-0718 + TE3-Small 41.35 32.49 41.54

robust improvement over baselines can be observed, 976

although not to the extent when abstract-to-abstract 977

retrieval is incorporated. This in turn highlights the 978

effectiveness of our pipeline in generating multiple 979

aspect-aware queries in the absence of complemen- 980

tary abstract to abstract retrieval. 981

In addition, we conduct an ablation study on the 982

effect of RRF (Reciprocal Rank Fusion) in our hy- 983

brid retrieval system, compared to embedding-level 984

merging approach in prior multi-vector retrieval 985

approaches. We primarily compare with two tra- 986

ditional approaches in embedding-level merging 987

strategy, the naive aggregation strategy that force- 988

fully computes similarities (in our case L2 distance) 989

between all the sub-vectors of respective query and 990

candidates and naively sums it up to acquire simi- 991

larity score of original query and documents. Mean- 992

while, we also present comparison with late inter- 993

action strategy, where only the maximum similarity 994

for subquery and its corresponding sub-documents 995

is aggregated to form original query, document sim- 996

ilarity. Table 6 illustrates a drastic drop in retrieval 997

performance when queries optimized in various as- 998

pects are used as subvector representations of orig- 999

inal articles and are used to compute a single simi- 1000

larity value when matched with the segmented cor- 1001

pus of target candidates. This supports the validity 1002

of our design choice, where our ranking-merging 1003

system is more robust to noise, while allowing can- 1004

didates that are strongly aligned in one aspect but 1005

unaligned otherwise to be retrieved. 1006

Furthermore, we hypothesize that our approach 1007

which adaptively generates multiple queries predi- 1008

cated on various aspects of scientific paper would 1009

result in retrieval of more contextually diverse pa- 1010

pers. We validate our claim through a deeper anal- 1011

ysis, typically observing the level of embedding 1012

dispersion within the latent vector space, using 1013

three notable metrics: cosine distance, centroid 1014

distance, and convex hull volume. For cosine 1015

distance, we averaged the pairwise cosine similari- 1016

ties(represents semantic distance between vectors) 1017
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Table 7: Performance analysis of our pipeline when original
abstract to abstract retrieval is not utilized. Likewise Table 5,
we chose the best domain-specific retriever + A2A, and two
domain-agnostic A2A results as our baseline. Best results for
respective setups are highlighted in bold, while second best
results are underlined.

EMNLP-References ACL-Citations
Retrieval Method Recall@200 MRR@50

Baseline
SciNCL-A2A 34.55 31.83
SPECTER2-Base-A2A 33.12 33.77
Jina-Embeddings-v2-BASE-EN-A2A 32.64 34.97
Text-Embedding-3-Small-A2A 33.61 36.42

Ours w/ A2A
GPT-4o-Mini-2024-0718 + JE-v2-Base-EN 38.44 42.91
GPT-4o-Mini-2024-0718 + TE3-Small 36.34 42.26
Llama-3.2-3B-Instruct + JE-v2-Base-EN 37.90 41.32
Llama-3.2-3B-Instruct + TE3-Small 36.54 38.78

Ours w/o A2A
GPT-4o-Mini-2024-0718 + JE-v2-Base-EN 36.64 42.68
GPT-4o-Mini-2024-0718 + TE3-Small 34.05 41.35
Llama-3.2-3B-Instruct + JE-v2-Base-EN 35.27 40.14
Llama-3.2-3B-Instruct + TE3-Small 34.13 39.88

of retrieved document embeddings and subtracted1018

it from 1, essentially computing the inverse cosine1019

similarity. In addition, we measured the centroid1020

distance, a Euclidean distance from its centroid of1021

k document embeddings, denoting the variance of1022

data points in latent space. Furthermore, we pro-1023

vide Convex Hull (Graham, 1972) Volume as a met-1024

ric to statistically measure the dispersion of the em-1025

bedding data points, which computes the volume1026

of the smallest possible bounding convex closure1027

of the data points after projecting the embedding1028

vectors to the three-dimensional vector space. The1029

results recorded in Table 8 support our claim, as1030

our framework typically retrieves documents with1031

more diverse semantics, in contrast to the baseline1032

domain-agnostic retriever + A2A setting. More-1033

over, we further visualize the distribution of the em-1034

bedding vectors of Top@300 retrieved documents1035

for four sampled queries on a two-dimensional1036

plane using t-distributed Stochastic Neighbor1037

Embedding(t-SNE) (Van der Maaten and Hinton,1038

2008) and its distribution boundaries via a two-1039

dimensional convex hull area of the projected data1040

points in Figure 4. We simultaneously visualize the1041

distribution of t-SNE data points for both ground1042

truth candidates, baseline retrieved results, and re-1043

trieved results from PRISM. The visualization also1044

advocates our hypothesis, where ours typically dis-1045

plays a more dispersed distribution compared to1046

retrieved document embeddings from baselines. In1047

addition, the cases in Figure 4 demonstrate that1048

through improved diversity within the retrieved1049

pool of articles, PRISM is able to retrieve more1050

relevant papers with ground-truth candidates, as1051

coverage of the documents has increased compared1052

to previous approaches.1053

Table 8: Analysis on the diversity of retrieved document can-
didates within embedding space using three distinct metrics.
Results were averaged my measuring diversity within top 200
retrieved candidates for respective queries in each benchmark
split.

Retrieval Method Cosine
Distance

Centroid
Distance

Convex
Hull Volume

NeurIPS-Citations
Jina-Embeddings-v2-BASE-EN-A2A 0.1924 5.67 101.23
Text-Embedding-3-Small-A2A 0.4198 0.6436 0.1299

Ours
GPT-4o-Mini-2024-0718 + JE-v2-Base-EN 0.2057 5.87 120.50
GPT-4o-Mini-2024-0718 + TE3-Small 0.4456 0.6626 0.1478
Llama-3.2-3B-Instruct + JE-v2-Base-EN 0.2087 5.91 123.04
Llama-3.2-3B-Instruct + TE3-Small 0.4469 0.6636 0.1467

ACL-References
Jina-Embeddings-v2-BASE-EN-A2A 0.1869 5.60 96.94
Text-Embedding-3-Small-A2A 0.4145 0.6395 0.1307

Ours
GPT-4o-Mini-2024-0718 + JE-v2-Base-EN 0.2017 5.83 119.30
GPT-4o-Mini-2024-0718 + TE3-Small 0.4431 0.6607 0.1498
Llama-3.2-3B-Instruct + JE-v2-Base-EN 0.2046 5.87 121.86
Llama-3.2-3B-Instruct + TE3-Small 0.4445 0.6618 0.1476

D Case Study 1054

Please refer to Table 11 and Table 12 for case stud- 1055

ies on query and retrieval results. 1056

E Prompts 1057

Please refer to all the prompts that we use to elicit 1058

the query optimizations in Figures 5, 6, 7, and 8. 1059
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Figure 4: t-SNE and its convex hull boundary visualization of Top@300 retrieved document embeddings across four sampled
queries from respective benchmark splits. We analyzed retrieved results when Jina-Embeddings-V2-Base-EN is used as neural
embedding models. Baseline setup refers to generic abstract to abstract retrieval, while we use GPT-4o-Mini-2024-0718 as our
query optimizers for our setting.

Table 9: Expanded version of Table 2 with additional experiments on EMNLP-Citations, provided with more metrics.

ACL-Citations ICLR-Citations EMNLP-Citations
QoA + Retriever Recall@100 Recall@200 Recall@100 Recall@200 Recall@100 Recall@200

Si
ng

le GPT-4o-Mini-0718 + JE-v2-Base-EN 33.27 41.94 35.82 45.62 31.43 40.02
GPT-4o-Mini-0718 + TE3-Small 32.89 42.65 35.03 45.35 30.63 39.43
Llama-3.2-3B-Instruct + JE-v2-Base-EN 31.18 39.69 32.98 43.05 28.34 37.04
Llama-3.2-3B-Instruct + TE3-Small 30.77 40.32 32.33 42.43 28.73 37.37

M
ul

ti GPT-4o-Mini-0718 + JE-v2-Base-EN 34.25 42.79 36.08 46.44 32.00 40.61
GPT-4o-Mini-0718 + TE3-Small 33.48 43.31 35.60 46.34 30.86 40.69
Llama-3.2-3B-Instruct + JE-v2-Base-EN 33.00 41.85 35.46 45.71 30.75 39.50
Llama-3.2-3B-Instruct + TE3-Small 32.88 42.19 34.69 45.06 29.72 39.33
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Table 10: Expanded version of our main results on SCIFULLBENCH. Note that results from Table 1 is an average between results
from ICLR-NeurIPS and ACL-EMNLP. We provide mean and standard deviation over three iterations.

ICLR NeurIPS
References Citations References Citations

IR Method Recall@200 Recall@300 MRR@50 Recall@200 Recall@200 Recall@300 MRR@50 Recall@200

BASELINE
SciNCL-A2A 44.55± 0.00 50.51± 0.00 32.33 ± 0.00 38.40 ± 0.00 47.37 ± 0.00 53.08 ± 0.00 43.31 ± 0.00 46.04 ± 0.00
SPECTER2-Base-A2A 43.43 ± 0.00 48.99± 0.00 36.09 ± 0.00 39.27 ± 0.00 46.15 ± 0.00 51.82 ± 0.00 46.28 ± 0.00 47.90 ± 0.00
SPECTER2-Adapter-MTL CTRL-A2A 43.72 ± 0.00 49.98 ± 0.00 34.41 ± 0.00 38.09 ± 0.00 46.60 ± 0.00 52.16 ± 0.00 43.95 ± 0.00 46.04 ± 0.00
SciMult-MHAExpert-A2A 37.13 ± 0.00 42.56 ± 0.00 29.86 ± 0.00 31.48 ± 0.00 41.98 ± 0.00 47.52 ± 0.00 41.56 ± 0.00 40.30 ± 0.00
Jina-Embeddings-v2-BASE-EN-A2A 43.35 ± 0.00 48.38 ± 0.00 33.52 ± 0.00 39.19 ± 0.00 46.30 ± 0.00 51.45 ± 0.00 47.05 ± 0.00 45.87 ± 0.00
Text-Embedding-3-Small-A2A 43.48 ± 0.01 48.94 ± 0.00 35.27 ± 0.00 40.56 ± 0.00 47.79 ± 0.01 53.51 ± 0.00 44.76 ± 0.00 47.05 ± 0.00
Jina-Embeddings-v2-BASE-EN-F2F 44.29 ± 0.00 49.58 ± 0.00 37.38 ± 0.00 42.44 ± 0.00 46.15 ± 0.00 51.62 ± 0.00 47.37 ± 0.00 46.15 ± 0.00
Text-Embedding-3-Small-F2F 35.31 ± 0.01 40.07 ± 0.02 35.02 ± 0.00 34.83 ± 0.00 34.57 ± 0.01 39.56 ± 0.00 44.45 ± 0.00 39.85 ± 0.00
Jina-Embeddings-v2-BASE-EN-A2C 39.07 ± 0.00 44.57 ± 0.00 34.18 ± 0.00 39.31 ± 0.00 42.08 ± 0.00 47.20 ± 0.00 43.36 ± 0.00 45.56 ± 0.00
Text-Embedding-3-Small-A2C 37.41 ± 0.00 42.23 ± 0.01 36.17 ± 0.02 38.04 ± 0.00 41.71 ± 0.01 46.86 ± 0.01 43.18 ± 0.00 44.58 ± 0.02
Jina-Embeddings-v2-BASE-EN-F2C 38.90 ± 0.00 44.50 ± 0.00 29.49 ± 0.00 38.47 ± 0.00 40.60 ± 0.00 45.83 ± 0.00 40.25 ± 0.00 42.79 ± 0.00
Text-Embedding-3-Small-F2C 36.45 ± 0.00 41.43 ± 0.00 31.19 ± 0.00 35.98 ± 0.01 34.22 ± 0.02 38.45 ± 0.01 38.35 ± 0.00 39.80 ± 0.00

OURS (PRISM)
Jina-Embeddings-v2-BASE-EN + Llama-3.2-3B-Instruct 46.48 ± 0.00 52.04 ± 0.00 39.97 ± 0.00 45.71 ± 0.00 49.03 ± 0.10 54.77 ± 0.22 45.61 ± 0.00 51.77 ± 0.00
Text-Embedding-3-Small + Llama-3.2-3B-Instruct 45.39 ± 0.03 51.70 ± 0.03 42.15 ± 0.00 45.04 ± 0.02 49.23 ± 0.00 55.22 ± 0.00 48.17 ± 0.00 51.42 ± 0.00
Jina-Embeddings-v2-BASE-EN + GPT-4o-Mini-0718 46.88 ± 0.10 52.53 ± 0.25 41.71 ± 0.43 46.45 ± 0.10 49.47 ± 0.05 55.39 ± 0.09 45.27 ± 0.39 53.41 ± 0.08
Text-Embedding-3-Small + GPT-4o-Mini-0718 45.37 ± 0.21 51.43 ± 0.28 43.73 ± 0.22 46.32 ± 0.02 49.40 ± 0.13 55.22 ± 0.07 49.14 ± 0.36 52.94 ± 0.03

ACL EMNLP
References Citations References Citations

IR Method Recall@100 Recall@200 MRR@50 Recall@50 Recall@100 Recall@200 MRR@50 Recall@50

BASELINE
SciNCL-A2A 29.18 ± 0.00 36.62 ± 0.00 31.83 ± 0.00 19.95 ± 0.00 27.23 ± 0.00 34.55 ± 0.00 27.71 ± 0.00 18.13 ± 0.00
SPECTER2-Base-A2A 28.28 ± 0.00 35.81 ± 0.00 33.77 ± 0.00 21.14 ± 0.00 25.47 ± 0.00 33.12 ± 0.00 30.37 ± 0.00 18.30 ± 0.00
SPECTER2-Adapter-MTL CTRL-A2A 28.42 ± 0.00 35.73 ± 0.00 32.47 ± 0.00 19.84 ± 0.00 26.28 ± 0.00 33.14 ± 0.00 28.54 ± 0.00 17.48 ± 0.00
SciMult-MHAExpert-A2A 25.96 ± 0.00 33.07 ± 0.00 30.30 ± 0.00 17.84 ± 0.00 23.37 ± 0.00 30.32 ± 0.00 26.37 ± 0.00 15.34 ± 0.00
Jina-Embeddings-v2-BASE-EN-A2A 27.75 ± 0.00 34.49 ± 0.00 34.97 ± 0.00 20.19 ± 0.00 26.08 ± 0.00 32.64 ± 0.00 30.61 ± 0.00 18.34 ± 0.00
Text-Embedding-3-Small-A2A 28.71 ± 0.01 35.40 ± 0.00 36.42 ± 0.00 21.97 ± 0.02 26.84 ± 0.00 33.61 ± 0.01 31.08 ± 0.01 19.48 ± 0.00
Jina-Embeddings-v2-BASE-EN-F2F 28.78 ± 0.00 36.46 ± 0.00 38.63 ± 0.00 21.79 ± 0.00 29.51 ± 0.00 36.98 ± 0.00 32.57 ± 0.00 21.32 ± 0.00
Text-Embedding-3-Small-F2F 13.61 ± 0.00 18.56 ± 0.00 15.64 ± 0.00 8.49 ± 0.00 23.78 ± 0.01 30.50 ± 0.02 28.73 ± 0.00 16.14 ± 0.01
Jina-Embeddings-v2-BASE-EN-A2C 25.46 ± 0.00 33.16 ± 0.00 34.85 ± 0.00 22.12 ± 0.00 24.98 ± 0.00 31.72 ± 0.00 29.70 ± 0.00 18.87 ± 0.00
Text-Embedding-3-Small-A2C 24.10 ± 0.00 31.53 ± 0.01 34.58 ± 0.00 19.95 ± 0.00 22.57 ± 0.02 29.57 ± 0.00 28.71 ± 0.00 17.82 ± 0.00
Jina-Embeddings-v2-BASE-EN-F2C 25.43 ± 0.00 33.00 ± 0.00 30.65 ± 0.00 20.07 ± 0.00 25.85 ± 0.00 33.23 ± 0.00 26.52 ± 0.00 18.99 ± 0.00
Text-Embedding-3-Small-F2C 13.59 ± 0.00 17.69 ± 0.00 11.75 ± 0.00 7.64 ± 0.01 24.36 ± 0.01 30.70 ± 0.00 24.06 ± 0.02 16.59 ± 0.00

OURS (PRISM)
Jina-Embeddings-v2-BASE-EN + Llama-3.2-3B-Instruct 30.50 ± 0.00 39.19 ± 0.00 41.32 ± 0.00 25.31 ± 0.00 29.12 ± 0.00 37.90 ± 0.00 37.40 ± 0.00 22.64 ± 0.00
Text-Embedding-3-Small + Llama-3.2-3B-Instruct 29.69 ± 0.09 38.04 ± 0.10 38.78 ± 0.00 24.10 ± 0.00 27.94 ± 0.02 36.54 ± 0.00 36.18 ± 0.26 21.84 ± 0.05
Jina-Embeddings-v2-BASE-EN + GPT-4o-Mini-0718 31.36 ± 0.15 39.69 ± 0.16 42.91 ± 0.42 25.99 ± 0.04 29.86 ± 0.14 38.44 ± 0.06 36.80 ± 0.22 23.40 ± 0.03
Text-Embedding-3-Small + GPT-4o-Mini-0718 29.33 ± 0.06 37.72 ± 0.11 42.26 ± 0.47 24.97 ± 0.03 27.65 ± 0.30 36.34 ± 0.05 37.61 ± 0.10 22.50 ± 0.10
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Table 11: Example of generated queries given input paper document based on method, experiments, and research questions of
input document from ACL-Citations in SCIFULLBENCH. Note that due to extensive length of input documents, we only provide
the title and abstract information of input paper.

Input Document Meta Data [Title] ThinkSum: Probabilistic reasoning over sets using large language models
[Abstract] Large language models (LLMs) have a substantial capacity for high-level analogical reasoning:
reproducing patterns in linear text that occur in their training data (zero-shot evaluation) or in the provided
context (few-shot in-context learning). However, recent studies show that even the more advanced LLMs
fail in scenarios that require reasoning over multiple objects or facts and making sequences of logical
deductions. We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over
sets of objects or facts in a structured manner. In the first stage (Think – retrieval of associations), a LLM is
queried in parallel over a set of phrases extracted from the prompt or an auxiliary model call. In the second
stage (Sum – probabilistic inference or reasoning), the results of these queries are aggregated to make
the final prediction. We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench
suite of LLM evaluation tasks, achieving improvements over the state of the art using GPT-family models
on thirteen difficult tasks, often with far smaller model variants. We also compare and contrast ThinkSum
with other proposed modifications to direct prompting of LLMs, such as variants of chain-of-thought
prompting. Our results suggest that because the probabilistic inference in ThinkSum is performed outside
of calls to the LLM, ThinkSum is less sensitive to prompt design, yields more interpretable predictions,
and can be flexibly combined with latent variable models to extract structured knowledge from LLMs.
Overall, our proposed paradigm represents a promising approach for enhancing the reasoning capabilities
of LLMs.

Method-Focused Query The methodology of the paper introduces a novel two-stage probabilistic inference paradigm called
ThinkSum, designed to enhance the reasoning capabilities of large language models (LLMs) when
dealing with complex tasks that require reasoning over multiple objects or facts. The first stage, termed
"Think," involves querying the LLM in parallel using a variety of prompts to retrieve associations or
generate examples related to the task at hand. This stage employs several techniques, including
elementary string manipulations (like order inversion and premise erasure), example generation, list
extension, and fact generation, to create a set of candidate phrases or strings that can be used in the
subsequent reasoning process. The second stage, "Sum," aggregates the outputs from the Think stage
using classical probabilistic reasoning methods. This includes techniques such as mixture aggregation,
product aggregation, and likelihood ratios to compute the final answer based on the probabilities derived
from the generated strings. The methodology emphasizes the separation of the reasoning process from
the LLMś direct output, allowing for more interpretable predictions and reducing sensitivity to prompt
design. By leveraging this structured approach, ThinkSum demonstrates improved performance on
various reasoning tasks compared to traditional prompting methods, showcasing its potential for broader
applications in natural language understanding and reasoning.

Experiment-Focused Query The experimental setup in this paper focuses on evaluating the ThinkSum paradigm, which enhances
reasoning capabilities in large language models (LLMs) through a two-stage probabilistic inference
process. The authors utilize the BIG-bench suite, a comprehensive benchmark for LLM evaluation, to
assess performance across thirteen challenging tasks. Key datasets include tasks such as "Invented
Words," "Odd One Out," and "Logical Deduction," which require the model to reason over multiple
objects or facts. Evaluation metrics primarily involve accuracy, with comparisons made against baseline
models, including direct prompting and chain-of-thought approaches. The results indicate that ThinkSum
consistently outperforms these baselines, achieving state-of-the-art results even with smaller model
variants. For instance, in the "Odd One Out" task, ThinkSum maintained near-human accuracy across
various model sizes, demonstrating its robustness and effectiveness in probabilistic reasoning. The
findings suggest that the structured approach of ThinkSum, which separates fast associative thinking from
slower reasoning processes, leads to more interpretable predictions and reduced sensitivity to prompt
design. Overall, the experiments validate the proposed methodology, showcasing its potential to enhance
LLM performance in complex reasoning tasks.

Research-Question Focused Query The motivation behind the paper "ThinkSum: Probabilistic reasoning over sets using large language
models" stems from the observed limitations of large language models (LLMs) in performing complex
reasoning tasks that require sequential logical deductions over multiple objects or facts. While LLMs excel
in associative thinking and can generate responses based on patterns in their training data, they struggle
with tasks that necessitate deeper reasoning and the manipulation of concepts. This paper addresses
the gap by proposing a two-stage probabilistic inference framework called ThinkSum, which enhances
the reasoning capabilities of LLMs by structuring the reasoning process into two distinct phases: retrieval
of associations (Think) and probabilistic inference (Sum). The primary research questions posed in this
work include: How can LLMs be effectively utilized to perform reasoning over sets of objects or facts?
What are the advantages of a structured two-stage approach compared to traditional prompting methods?
The authors aim to explore whether this structured reasoning can lead to improved performance on
complex tasks, particularly in scenarios where LLMs typically falter. The key contributions of this paper
are multifaceted. First, it introduces the ThinkSum paradigm, which separates the fast associative
thinking from the slower, more deliberate reasoning process, allowing for more robust and interpretable
predictions. Second, the paper demonstrates that ThinkSum can achieve state-of-the-art results on
thirteen challenging tasks from the BIG-bench suite, often outperforming larger models with smaller
variants of the GPT family. Third, it highlights the flexibility of the ThinkSum approach, showing that it
can be combined with various probabilistic inference techniques to extract structured knowledge from
LLMs. Finally, the authors provide a comparative analysis of ThinkSum against existing methods, such
as chain-of-thought prompting, illustrating its advantages in terms of robustness to prompt design and
interpretability of results. Overall, this work presents a significant advancement in the field of natural
language processing, particularly in enhancing the reasoning capabilities of LLMs through structured
probabilistic inference, thereby addressing a critical limitation in their application to complex reasoning
tasks.
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Table 12: Example of retrieved documents given input paper document from EMNLP-Citations using PRISM. Note that due to
extensive length of input documents, we only provide the title and abstract information of input paper, and titles for retrieved
documents. Retrieved documents that belong to ground truth candidates are highlighted in blue.

Input Document Meta Data [Title] Stance Detection on Social Media with Background Knowledge
[Abstract] Identifying users’ stances regarding specific targets/topics is a significant route to learning
public opinion from social media platforms. Most existing studies of stance detection strive to learn
stance information about specific targets from the context, in order to determine the user’s stance on
the target. However, in real-world scenarios, we usually have a certain understanding of a target when
we express our stance on it. In this paper, we investigate stance detection from a novel perspective,
where the background knowledge of the targets is taken into account for better stance detection. To be
specific, we categorize background knowledge into two categories: episodic knowledge and discourse
knowledge, and propose a novel Knowledge-Augmented Stance Detection (KASD) framework. For
episodic knowledge, we devise a heuristic retrieval algorithm based on the topic to retrieve the Wikipedia
documents relevant to the sample. Further, we construct a prompt for ChatGPT to filter the Wikipedia
documents to derive episodic knowledge. For discourse knowledge, we construct a prompt for ChatGPT
to paraphrase the hashtags, references, etc., in the sample, thereby injecting discourse knowledge into
the sample. Experimental results on four benchmark datasets demonstrate that our KASD achieves
state-of-the-art performance in in-target and zero-shot stance detection.

Ground-Truth Document Meta Data [Title] A More Advanced Group Polarization Measurement Approach Based on LLM-Based Agents and
Graphs
[Title] A Survey of Stance Detection on Social Media: New Directions and Perspectives
[Title] Chain of Stance: Stance Detection with Large Language Models
[Title] A Challenge Dataset and Effective Models for Conversational Stance Detection
[Title] Mitigating Biases of Large Language Models in Stance Detection with Counterfactual Augmented
Calibration
[Title] Multi-modal Stance Detection: New Datasets and Model
[Title] A Logically Consistent Chain-of-Thought Approach for Stance Detection
[Title] Stance Detection with Collaborative Role-Infused LLM-Based Agents
[Title] Prompting and Fine-Tuning Open-Sourced Large Language Models for Stance Classification
[Title] Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection
[Title] Investigating Chain-of-thought with ChatGPT for Stance Detection on Social Media

Top@30 Retrieved Document Meta Data [Title] A Survey of Stance Detection on Social Media: New Directions and Perspectives
[Title] Stance Detection with Collaborative Role-Infused LLM-Based Agents
[Title] Enabling Contextual Soft Moderation on Social Media through Contrastive Textual Deviation
[Title] Prompting and Fine-Tuning Open-Sourced Large Language Models for Stance Classification
[Title] A Survey on Stance Detection for Mis- and Disinformation Identification
[Title] Chain of Stance: Stance Detection with Large Language Models
[Title] A Challenge Dataset and Effective Models for Conversational Stance Detection
[Title] Stance Detection on Social Media with Fine-Tuned Large Language Models
[Title] Stance Detection in Web and Social Media: A Comparative Study
[Title] Mitigating Biases of Large Language Models in Stance Detection with Counterfactual Augmented
Calibration
[Title] A Benchmark for Cross-Domain Argumentative Stance Classification on Social Media
[Title] Relative Counterfactual Contrastive Learning for Mitigating Pretrained Stance Bias in Stance
Detection
[Title] Multi-modal Stance Detection: New Datasets and Model
[Title] TATA: Stance Detection via Topic-Agnostic and Topic-Aware Embeddings
[Title] DEEM: Dynamic Experienced Expert Modeling for Stance Detection
[Title] FarExStance: Explainable Stance Detection for Farsi
[Title] Reinforcement Tuning for Detecting Stances and Debunking Rumors Jointly with Large Language
Models
[Title] Advancing Annotation of Stance in Social Media Posts: A Comparative Analysis of Large Language
Models and Crowd Sourcing
[Title] KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media
[Title] Examining the Influence of Political Bias on Large Language Model Performance in Stance
Classification
[Title] Knowledge Graph Augmented Political Perspective Detection in News Media
[Title] A Logically Consistent Chain-of-Thought Approach for Stance Detection
[Title] Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis
Research
[Title] "We Demand Justice!": Towards Social Context Grounding of Political Texts
[Title] Investigating Chain-of-thought with ChatGPT for Stance Detection on Social Media
[Title] PAR: Political Actor Representation Learning with Social Context and Expert Knowledge
[Title] Identifying the Adoption or Rejection of Misinformation Targeting COVID-19 Vaccines in Twitter
Discourse
[Title] Argumentative Stance Prediction: An Exploratory Study on Multimodality and Few-Shot Learning
[Title] Detect, Investigate, Judge and Determine: A Novel LLM-based Framework for Few-shot Fake
News Detection
[Title] Reading Between the Tweets: Deciphering Ideological Stances of Interconnected Mixed-Ideology
Communities
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> Role: System

Instruction: You are a specialized research assistant tasked with generating a structured,
detailed explanation of a scientific paper based on its Methodology. Your goal is to provide a
clear yet comprehensive summary that makes it easy to identify relevant papers by emphasizing
the methodology of given paper.

IMPORTANT
- Your explanation is going to be used as a query to retrieve similar papers METHOD wise.
- Make sure that your explanation can retrieve highly relevant papers easily.
- There are also other agents who are tasked with generating explanation on given paper. Unlike
you, they are focused on experiments, and research questions of given paper. You must try to avoid
overlap with possible explanations that the other two agents might generate.

Input:
You will be given the full text of a scientific paper. Carefully analyze its content, with a particular
focus on the METHODOLOGY section, to extract its main approaches.

Key Considerations:
Highlight specific method/approach details, avoiding vague or overly general descriptions. Use
precise language to ensure clarity while maintaining depth.

Output Format:
Generate a well-structured, detailed and yet clear paragraph that effectively captures the paper’s
approach, and key concepts in a concise yet informative manner. Focus on high-level insights
rather than excessive detail You must not include title and abstract of given paper in your answer,
and try to put it into your own words with high level reasoning after reading the paper.

Figure 5: Prompt for Method-Centric Query Optimizer LLM agent.
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> Role: System
You are a specialized research assistant tasked with generating a structured, detailed explanation
of a scientific paper’s experimental setup. Your goal is to clearly outline the datasets, evaluation
metrics, baselines, and key experimental findings, making it easy to understand how the paper
validates its approach.

IMPORTANT
- Your explanation is going to be used as a query to retrieve similar papers EXPERIMENT wise.
- Make sure that your explanation can retrieve highly relevant papers easily.
- There are also other agents who are tasked with generating explanation on given paper. Unlike
you, they are focused on methods, and research questions of given paper. You must try to avoid
overlap with possible explanations that the other two agents might generate.

Input:
You will be provided with the full text of a scientific paper. Carefully analyze its content, paying
particular attention to the Experiments, Results, and Evaluation sections to extract the key
experimental details.

Key Considerations:
Datasets & Benchmarks: Clearly specify the datasets and benchmarks used for evaluation.
Baselines & Comparisons: Identify what methods or models the paper compares against.
Key Results & Insights: Summarize the main experimental findings without excessive detail.

Output Format:
Generate a clear, well structured and detailed paragraph that highlights the experimental methodol-
ogy, datasets, evaluation metrics, baselines, and key results. Focus on high-level insights rather
than excessive detail. You must not include title and abstract of given paper in your answer, and try
to put it into your own words with high level reasoning after reading the paper.

Figure 6: Prompt for Experiment-Centric Query Optimizer LLM agent.
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> Role: System

Instruction:You are a specialized research assistant tasked with generating a structured,
detailed explanation of a scientific paper based on its Motivation, Research Questions, and
Contributions. Your goal is to provide a clear yet comprehensive summary that makes it easy
to identify relevant papers by emphasizing the core problem, key contributions, and research
objectives.

IMPORTANT
- Your explanation is going to be used as a query to retrieve similar papers RESEARCH
QUESTION wise.
- Make sure that your explanation can retrieve highly relevant papers easily.
- There are also other agents who are tasked with generating explanation on given paper. Unlike
you, they are focused on experiments, and methods of given paper. You must try to avoid overlap
with possible explanations that the other two agents might generate.

Input:
You will be given the full text of a scientific paper. Carefully analyze its content, with a particular
focus on the Introduction and Conclusion, to extract its main contributions, research questions,
and motivations.

Key Considerations:
Highlight specific motivations, research questions, and contributions, avoiding vague or overly
general descriptions. Use precise language to ensure clarity while maintaining depth.

Output Format: Generate a well-structured, detailed and yet clear paragraph that effectively
captures the paper’s motivation, problem statement, research questions, and key contributions in a
concise yet informative manner. Focus on high-level insights rather than excessive detail You must
not include title and abstract of given paper in your answer, and try to put it into your own words
with high level reasoning after reading the paper.

Figure 7: Prompt for Research Question-Centric Query Optimizer LLM agent.

20



> Role: System
Instruction: You are a specialized research assistant tasked with generating a structured, detailed explanation of a scientific
paper based three different aspects.

1. Method-Specific Queries:

Generate a structured, detailed explanation of a scientific paper based on its Methodology Your goal is to provide a
clear yet comprehensive summary that makes it easy to identify relevant papers by emphasizing the methodology of
given paper.

IMPORTANT

- Your explanation is going to be used as a query to retrieve similar papers METHOD wise.
- Make sure that your explanation can retrieve highly relevant papers easily.

Input: You will be given the full text of a scientific paper. Carefully analyze its content, with a particular focus on
the METHODOLOGY section, to extract its main approaches.

Key Considerations: Highlight specific method/approach details, avoiding vague or overly general descriptions.
Use precise language to ensure clarity while maintaining depth.

Output Format: Generate a well-structured, detailed and yet clear paragraph that effectively captures the paper’s
approach, and key concepts in a concise yet informative manner. Focus on high-level insights rather than excessive
detail You must not include title and abstract of given paper in your answer, and try to put it into your own words
with high level reasoning after reading the paper.

2. Experiment-Specific Queries:

Generate a structured, detailed explanation of a scientific paper’s experimental setup Your goal is to clearly outline
the datasets, evaluation metrics, baselines, and key experimental findings, making it easy to understand how the paper
validates its approach.

IMPORTANT

- Your explanation is going to be used as a query to retrieve similar papers EXPERIMENT wise.
- Make sure that your explanation can retrieve highly relevant papers easily.

You will be provided with the full text of a scientific paper. Carefully analyze its content, paying particular attention
to the Experiments, Results, and Evaluation sections to extract the key experimental details.

Key Considerations:

Datasets & Benchmarks: Clearly specify the datasets and benchmarks used for evaluation.
Baselines & Comparisons: Identify what methods or models the paper compares against.
Key Results & Insights: Summarize the main experimental findings without excessive detail.

Output Format: Generate a clear, well structured and detailed paragraph that highlights the experimental methodol-
ogy, datasets, evaluation metrics, baselines, and key results. Focus on high-level insights rather than excessive detail.
You must not include title and abstract of given paper in your answer, and try to put it into your own words with high
level reasoning after reading the paper.

3. Research Question-Specific Queries:

Generate a structured, detailed explanation of a scientific paper based on its Motivation, Research Questions, and
Contributions. Your goal is to provide a clear yet comprehensive summary that makes it easy to identify relevant
papers by emphasizing the core problem, key contributions, and research objectives.

IMPORTANT

- Your explanation is going to be used as a query to retrieve similar papers RESEARCH QUESTION wise.
- Make sure that your explanation can retrieve highly relevant papers easily.

Input: You will be given the full text of a scientific paper. Carefully analyze its content, with a particular focus on
the Introduction and Conclusion, to extract its main contributions, research questions, and motivations.

Key Considerations: Highlight specific motivations, research questions, and contributions, avoiding vague or overly
general descriptions. Use precise language to ensure clarity while maintaining depth.

Output Format: Generate a well-structured, detailed and yet clear paragraph that effectively captures the paper’s
motivation, problem statement, research questions, and key contributions in a concise yet informative manner. Focus
on high-level insights rather than excessive detail You must not include title and abstract of given paper in your
answer, and try to put it into your own words with high level reasoning after reading the paper.

Output: Return a structured json file for respective Method-Specific Queries, Experiment-Specific Queries, and Research
Question-Specific queries, with the respective keys as "method_query", "experiment_query", and "research_question_query".
Each key should contain the generated explanation as a string.

Figure 8: Prompt for Base-Agent Query Optimizers.

21


	Introduction
	Related Work
	Method
	Experiment
	SciFullBench
	Evaluation Setup
	Results and Analysis

	Conclusion
	SciFullBench
	Comparison with Prior Benchmarks
	Construction Procedure

	Experiment Details
	Models
	Metrics
	Inference Details

	Supplementary Experiments
	Case Study
	Prompts

