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Abstract

Multimodal machine learning, which studies the information and interactions across
various input modalities, has made significant advancements in understanding the
relationship between images and descriptive text. However, this is just a portion of
the potential multimodal interactions seen in the real world and does not include
new interactions between conflicting utterances and gestures in predicting sarcasm,
for example. Notably, the current methods for capturing shared information often
do not extend well to these more nuanced interactions, sometimes performing as
low as 50% in binary classification. In this paper, we address this problem via a
new approach called MMOE, which stands for a mixture of multimodal interaction
experts. Our method automatically classifies data points from unlabeled multimodal
datasets by their interaction type and employs specialized models for each specific
interaction. Based on our experiments, this approach improves performance on
these challenging interactions by more than 10%, leading to an overall increase
of 2% for tasks like sarcasm prediction. As a result, interaction quantification
provides new insights for dataset analysis and yields simple approaches that obtain
state-of-the-art performance.

1 Introduction

Recent advances in vision-language multimodal architecture and pretraining [Zhu et al., 2023, Li et al.,
2023, Liu et al., 2023] have predominantly centered on enhancing the representation interplay between
modalities [Huang et al., 2021]. This enhancement often stems from the principle of multi-view
redundancy Liang et al. [2023b]. Parallel to this, contemporary multimodal research has expanded its
scope, categorizing a broader spectrum of multimodal interactions. These go beyond mere redundancy
to capture instances where task-relevant information does not merely reside in the overlapping region
of both modalities Liang et al. [2023c]. Instead, it might hinge on unique details from either modality
(e.g. detecting laughter from someone not observable), or the result of a synergistic fusion of both
modalities, producing insights absent when either modality is considered in isolation (e.g. sarcasm
discerned from incongruent speech and gestures). [Williams and Beer, 2010, Liang et al., 2023a,
Marsh and Domas White, 2003] This body of research also delves into discerning whether predictions
from different modalities align or contrast with one another. [Bateman, 2014, Kruk et al., 2019, Zhang
et al., 2018] It still remains a challenge for state-of-the-art multimodal models to tackle multiple
types of interactions. Furthermore, these interactions can vary significantly even within the same
dataset for different data points, for example, sometimes sarcasm is evident from language alone and
other times due to synergistic disagreement between language and gestures.

Making progress on these different interactions requires new definitions and modeling paradigms
that existing models are not designed to capture. To model these diverse interactions, our key insight
is that single model may not be necessarily suitable for capturing all kinds of interactions
at the same time. Indeed, we find that today’s state-of-the-art models struggle significantly with
disagreement and synergistic multimodal interactions, with reductions in performance up to 40% on
sarcasm detection as compared to redundant cases.
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Figure 1: Our proposed mixture of multimodal interaction expert framework includes three compo-
nents: a.partial label collection b. datapoint-level multimodal interaction categorization c.mixture of
experts prediction.
Based on this insight, we propose a new approach called MMOE (mixture of multimodal interaction
experts), which classifies the different types of multimodal interactions in a given task and utilizes
multiple expert models specifically designed for each type of interaction. These expert models can
differ based on in-context learning, parameter-based tuning, or an entirely different architecture.
Using our multimodal interaction experts, we raise the performance on some interaction types by
more than 10% compared with using a single model, resulting in overall improvements over the
state-of-the-art models. The resulting approach is easy to implement and scales easily with large-scale
models.

2 Mixture of Multimodal Interaction Experts
In this section, we first provide problem formulation for our target multimodal prediction task. After
that, we explain three key components in our framework mentioned in Fig 1 in detail.

2.1 Problem formulation
In the multimodal prediction task, let Xi and Y be finite sample spaces for modality-specific features
and target labels. Let ∆Y = {r ∈ R∣Y ∣+ ∣ ∣∣r∣∣1 = 1} be the probability simplex over labels Y . Given
modality-specific features X1, X2 (with support Xi), for one multimodal prediction task, our goal is
to learn a multimodal model FM ∋ fM ∶ X1 ×X2 →∆Y to predict Y (with support Y).

2.2 Predicting partial labels and full labels
Utilizing labeled unimodal data Di = {(xi, y) ∶ Xi × Y} and labeled multimodal data DM =

{(x1, x2, y) ∶ X1 × X2 × Y}, we can obtain the set of unimodal classifiers Fi ∋ fi ∶ Xi → ∆Y
and multimodal classifiers FM ∋ fM ∶ X1 × X2 → ∆Y . For each unlabeled multimodal datapoint
d ∈ D̃M = {(x1, x2) ∶ X1 ×X2}, we can get probability δ1 and δ2 from unimodal classifier f1 and f2.
These two labels are partial label estimations based on unimodal information. Similarly, we can get
δM from multimodal classifier fM , which is considered as full label estimation based on multimodal
data. Practically, apart from predicting discrete labels y1, y2, and yM from Y , we calibrate pretrained
models by utilizing probability from models as δ1, δ2, and δM .

2.3 Categorizing datapoints based on multimodal interactions
Each labeled multimodal datapoint d ∈ DM = {(x1, x2, y) ∶ X1 × X2 × Y} can be assigned with
different multimodal interaction type, including redundancy, uniqueness, and synergy. Interaction
can be estimated by finding data points in which individual predictions from each modality agree or
disagree with each other. Moreover, interaction can be detected where the joint distribution differs
the most from the marginals.

Definition 1. (Modality disagreement) Given x1 ∼ X1, x2 ∼ X2, as well as unimodal classifiers
f1 ∶ X1 → δY ∈ F1 and f2 ∶ Xi → δY ∈ F2, we define modality disagreement as d(f1, f2) where
d ∶ Y × Y → R≥0 is a distance function in label space scoring the disagreement of f1 and f2’s
predictions.

Converting partial labels to agreement and disagreement We convert model-predicted partial
labels into agreement and disagreement by comparing the output of unimodal classifiers against each
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other. Based on the modality disagreement definition, when d(f1, f2) > γ, where γ is a pre-defined
threshold, two modalities are considered as disagreed with each other. Otherwise, they are considered
as agreed. Practically, we define d(f1, f2) = ∥δ1 − δ2∥1 as our distance function. Based on our
experiments, we found that agreement and disagreement cases distinguish multimodal performance
well. Utilizing this definition, unlabeled multimodal data D̃M = {(x1, x2) ∶ X1 ×X2} is classified as
non-overlapping disagreed ones and agreed ones.

Definition 2. (Modality Redundancy, Uniqueness, Synergy [RUS]) Given x1 ∼ X1, x2 ∼ X2, as
well as unimodal classifiers f1 ∶ X1 → δY ∈ F1 and f2 ∶ X2 → δY ∈ F2 and a multimodal classifier
fM ∶ X1 × X2 → δY , we define modality redundancy as R = −d(f1, fM) − d(f1, f2) − d(f2, fM),
modality uniqueness for X1 as U1 = d(f2, fM) + d(f1, f2) − d(f1, fM), modality uniqueness for X2

as U2 = d(f1, fM) + d(f1, f2) − d(f2, fM), modality synergy as S = d(f1, fM) + d(f2, fM), where
d ∶ Y ×Y → R≥0 is a distance function in label space scoring the disagreement of any two classifiers’
predictions.

Converting partial and full labels to redundancy, uniqueness, and synergy Instead of simply
utilizing f1 and f2 to measure modality disagreement, we would like to introduce more fine-grained
multimodal interaction types by adding fM and measuring distances between partial labels δ1, δ2 and
full labels δM . Since we are dealing with unlabeled multimodal data D̃M = {(x1, x2) ∶ X1 ×X2}, we
have no access to ground-truth labels y∗ ∈ Y but only have full labels δM ∈ ∆Y as a proxy metric.
Our hypothesis is that while predicted δM could be hard and inaccurate for multiple multimodal
interactions like synergy, it is easier to classify a datapoint as one interaction type just by looking at
how the label changes from unimodal to multimodal, versus actually predicting the datapoint itself.
Intuitively, for each datapoint d ∈ D̃M = {(x1, x2) ∶ X1 ×X2}, its modality information is redundant
if δ1, δ2, and δM are all close to each other; X1 information is unique if δ1 is close to δ2 but δ2 is far
from δM ; X2 information is unique if δ2 is close to δ1 but δ1 is far from δM ; modality information
is synergistic if δ1 and δ2 are both far from δM . Based on the definition of RUS (standing for
Rudandancy, Uniqueness, and Synergy), unlabeled multimodal dataset D̃M = {(x1, x2) ∶ X1 ×X2}

can be classified into three non-overlapping parts. One of the main limitations of this method is that
it is limited to two modalities and is not able to expand to multiple modalities yet.

2.4 Multimodal Interaction Experts
In section 2.3, we have introduced the definition of modality disagreement, redundancy, uniqueness,
and synergy. Moreover, we mentioned that modality disagreement measurement can split unlabeled
multimodal datasets into two non-overlapping sub-parts. RUS measurement can split the dataset into
three non-overlapping sub-parts. To push a step further, we can combine both disagreement and RUS
measurement to create a comprehensive multimodal interaction standard. Typically, when modality
agrees with each other, there are no uniqueness-dominant cases. Similarly, when modality disagrees
with each other, there should be no redundancy-dominant cases. Therefore, in general, as illustrated
in Fig 1, we create a 5-type multimodal interaction standard when facing two modalities X1 and
X2: 1⃝ disagreement X1 uniqueness; 2⃝ disagreement X2 uniqueness; 3⃝ disagreement synergy; 4⃝
agreement redundancy; 5⃝ agreement synergy.

For each multimodal interaction type, we designed an expert model to handle. Motivated by the
Socratic model Zeng et al. [2022], we first project information from different modalities into text
modality and make sure the text description loses minimal modality-specific features. Secondly, we
implement few-shot in-context learning based on large language models (LLMs) using data points
that are categorized as the same multimodal interaction type.

3 Experiments
3.1 Experimental Setting
For the dataset, we use MUSTARD dataset to perform our experiments and choose speaker-dependent
training and testing split. Each sample in MUSTARD includes character scripts as text modality, video
clip as video modality, and speaking audio as audio modality. For baseline models, we compare
with multiple supervised multimodal baselines including LF-DNN [Ding et al., 2022], MULT [Liang
et al., 2021], LMF [Liu et al., 2018], MFN [Zadeh et al., 2018], and EF-LSTM [?]. Additionally,
we compare with multiple unimodal baselines based on face emotion recognition [Xiang and Zhu,
2017] and speech emotion recognition [Hsu et al., 2021]. For our proposed method, We select
gpt-3.5-turbo as our model for experts. We use few-shot prompting on gpt-3.5-turbo to
categorize data points and construct few-shot examples under the same category.
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MUSTARD Precision↑ Recall↑ F1↑

Multimodal Model

SVM 71.9±0.00 71.4±0.00 71.5±0.00
MFN 72.65±1.02 72.46±0.92 72.41±0.9
LMF 71.81±2.25 71.3±1.81 71.16±1.7
MULT 73.07±1.61 72.32±0.96 72.11±0.90
LF-DNN-v2 73.80±1.85 73.62±1.75 73.58±1.73

Unimodal Model

MTCNN [vision] 62.10±0.69 58.69±1.35 66.49±2.10
HuBERT [audio] 62.36±4.02 75.28±0.57 67.55±3.13
GPT-3.5 [text] 65.56±0.27 87.40±0.13 74.78±0.19

Multimodal Extended Language Models

GPT-3.5 [text+audio] 61.52±0.28 91.24±0.63 73.34±0.12
+MoE 63.47±0.03 91.69±0.21 74.93±0.04

Table 1: Test performance on sarcasm dataset
with speaker-dependent setup. Each score
is an average score of three runs with three
random seeds.

Well, I always figured it was to 
study us, discover our 
weaknesses, and report back to 
your alien overlords.

Oh, I'm so glad you asked it like 
that. You. No Sarcasm

No sarcasm

Sarcasm

Sarcasm

SarcasmVery Angry!

No Sarcasm

Agreement Synergy

Disagreement Uniqueness

Figure 2: Case study for agreement synergy and
disagreement uniqueness.

3.2 Results
Performance Results Based on Table 1, we can see that we are able to get the state-of-the-art F1
result of 74.93% compared with a few-shot unimodal baseline, supervised multimodal baseline, and
Socratic model. Additionally, we can conclude that by only adding multiple mixtures of experts
based on the Socratic model, the model’s performance can have a 1.5% gain. Moreover, we observed
that recall increased from 87.40 to 91.69 after introducing multimodal information into the detection
process. It indicates that more sarcastic situations can be detected.

Case Study To prove that our proposed mixture of multimodal interaction experts is able to capture
appropriate multimodal interaction and fix errors, we provide two concrete case studies to show the
fixed uniqueness and synergy type. Fig 2 shows one agreement synergy case where multimodal
features motivate new information and one disagreement text uniqueness case where the video does
not include a clear sarcastic signal.

Expert Model Analysis We also do analysis based on the whole MUSTARD dataset. We classified all
data points by their detected multimodal interaction type and found that redundancy-dominant data
points, which have 364 data points, are the most common cases. Text modality uniqueness-dominant
cases include 172 data points. It indicates that text modality is crucial for sarcasm detection. Based
on Table 2, we can see that with appropriate in-context learning, both agreement and disagreement
synergy have much better performance (gain 61.47% and 22.81% separately) compared with a single
model. For redundancy-type data points, even though the F1 score remains almost the same, it has a
higher confidence score (increasing from 3.49 to 3.77 out of 5) when using specific experts for this
interaction type. How to design a more useful and effective multimodal expert for each interaction
type is left as a future work.

MUSTARD #Example F1↑ (Single Model) F1↑ (Expert Model) Improvement↑ (%)

Agreement & Redundancy 364 85.983.49 85.333.77 -0.75%
Agreement & Synergy 37 18.752.33 30.302.52 +61.47%
Disagreement & Unique [text] 172 69.193.59 69.193.57 +0.00%
Disagreement & Unique [audio] 62 54.231.88 53.521.31 -1.31%
Disagreement & Synergy 55 47.052.36 57.782.50 +22.81%

Table 2: An analysis of the full MUSTARD dataset based on few-shot prompting, focusing on both text
and audio modalities. For each multimodal interaction F1 score, we present an average confidence
score to indicate model’s confidence towards its prediction, which ranges from 0 to 5. Each F1 score
listed in the table is an average score of three runs.

4 Conclusion
This paper proposed an approach for quantifying multiple types of multimodal interactions in
multimodal datasets and designing a new approach called MMOE. Experimentally, using multimodal
interaction experts raises the performance on these interactions up to a 74.93% F1 score. As a result,
not only does interaction quantification provide new insights for dataset analysis, but also simple
approaches to obtain state-of-the-art performance.
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