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Abstract

We introduce the first direct policy search algorithm which provably converges
to the globally optimal dynamic filter for the classical problem of predicting the
outputs of a linear dynamical system, given noisy, partial observations. Despite
the ubiquity of partial observability in practice, theoretical guarantees for direct
policy search algorithms, one of the backbones of modern reinforcement learning,
have proven difficult to achieve. This is primarily due to the degeneracies which
arise when optimizing over filters that maintain an internal state.
In this paper, we provide a new perspective on this challenging problem based
on the notion of informativity, which intuitively requires that all components of a
filter’s internal state are representative of the true state of the underlying dynamical
system. We show that informativity overcomes the aforementioned degeneracy.
Specifically, we propose a regularizer which explicitly enforces informativity, and
establish that gradient descent on this regularized objective – combined with a
“reconditioning step” – converges to the globally optimal cost at a O(1/T ) rate.

1 Introduction

Data used for prediction and control of real world dynamical systems is almost always noisy and
incomplete (partially observed). Sensors and other measurement procedures inevitably introduce
errors into the datasets, so designing reliable learning algorithms for these noisy or partially observed
domains requires confronting fundamental questions of disturbance filtering and state estimation.
Despite the ubiquity of partial observation in practice, these concerns are often underexplored in
modern analyses of learning for control that assume perfect observations of the underlying dynamics.

In this work, we study the output estimation (OE) problem or learning to predict in partially observed
linear dynamical systems. The output estimation problem is one of the most fundamental problems
in theoretical statistics and learning theory. Both in theory and in practice, advances in predicting
partially observed linear systems have led to successes in a variety of areas from controls to biology
and economics, (c.f. e.g. Athans [1974], Lillacci and Khammash [2010], Gautier and Poignet
[2001]). We revisit this classical problem from a modern optimization perspective, and study the
possibility of learning the optimal predictor via model-free procedures and direct policy search.

Relative to model-based procedures, which first estimate the underlying dynamics and then return
a policy by solving an optimization problem using the estimated model, model-free methods offer
several potential advantages. For instance, direct policy search allows one to easily specify the com-
plexity of the policy class over which one searches. In addition, model-free policy search optimizes
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for performance directly on the true system, rather than an approximate model. As such, there is no
gap between the model used for synthesis and the system on which the policy is deployed.

In light of these advantages, there has recently been significant interest from both theoreticians and
practitioners in understanding the foundations of model-free decision making. So far, this attention
has focused mostly on problems with full-state observation such as the linear quadratic regulator
(LQR) or fully-observed Markov Decision Processes (MDPs), for which optimal policies are static
(without memory). Progress on partially observed problems has been complicated by the difficulties
associated with optimizing over dynamic policies (with memory) that maintain internal state to sum-
marize past observations. In this paper, we provide the first policy search algorithm which provably
converges to the globally optimal filter for the OE problem, and shed new light on the intricacies of
the underlying optimization landscape.

The Output Estimation problem. We study one of the simplest and most basic problems with
partial observability: the output estimation (OE) problem. In brief, the goal is to search for a pre-
dictor of the output z(t) of a linear dynamical system given partial measurements y(t). For the true
system with states x(t) and dynamics that evolve according to,

d
dtx(t) = Ax(t) +w(t), y(t) = Cx(t) + v(t), z(t) = Gx(t), x(0) = 0,

w(t)
i.i.d⇠ N (0,W1), v(t)

i.i.d⇠ N (0,W2),
(1.1)

the goal is to find the parameters K = (AK,BK,CK) of the filter (interchangably, policy),
d
dt x̂(t) = AKx̂(t) +BKy(t), ẑ(t) = CKx̂(t), (1.2)

that minimizes the steady-state prediction error,

LOE(K) := lim
T!1

1

T

 
E
Z

T

0
kz(t)� ẑ(t)k2dt

!
= lim

t!1
Ekz(t)� ẑ(t)k2. (1.3)

In this paper, we study solving the OE problem via model-free methods, where the goal is to search
for the optimal filter parameters K = (AK,BK,CK) using direct policy search without knowledge
or estimation of the true system parameters A,C,G,W1,W2; see Section 2 for further details.
The OE problem is not a control problem per se, as decisions ẑ do not influence the state evolution
of the true system (1.1). Nonetheless, it is an attractive stepping stone for studying model-free
control. Like LQG, optimal policies for OE are dynamic, i.e. have memory. OE therefore serves as
a valuable testbed to develop the theoretical foundations of direct policy search for this important
class of policies which has thus far remained poorly understood.

Related work. Recent years have witnessed a resurgence of interest in direct policy search for
control and reinforcement learning. Fazel et al. [2018] established global convergence of policy
gradient methods on discrete-time LQR. Subsequent work has sharpened rates [Malik et al., 2019],
analyzed convergence under more general frameworks [Bu et al., 2019], and extended the analysis
to continuous-time [Mohammadi et al., 2021]. Beyond LQR, Zhang et al. [2020] analyzed policy
search for mixed H2/H1 and risk-sensitive control. Sun and Fazel [2021] also considered analysis
via convex reformulations, for state feedback problems. For discrete state-action MDPs, Agarwal
et al. [2021] established convergence rates for a variety of policy gradient methods, cf. also Bhandari
and Russo [2019]. All of these works considered static state-feedback policies, with perfect state
information. For problems with partial observation – which necessitates the use of dynamic policies
- the work most relevant to our own is Tang et al. [2021], which studied policy search for LQG. They
established that all stationary points corresponding to minimal controllers are globally optimal, and
demonstrated that gradient descent may fail to converge to optimal policies.

1.1 Contributions

We propose a novel policy search method which provably converges to a globally optimal LOE

cost. Despite extensive prior work on static policy search (see above), our result constitutes the first
rigorous guarantee for policy search over dynamic policies. While the OE problem admits a convex
reformulation [Scherer et al., 1997], it is also well known that its landscape contains suboptimal
critical points. This may seem like a contradiction at first, but we demonstrate that such spurious
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critical points occur precisely when the policy loses what we term “informativity”: that the steady
covariance between the controller state and system state, ⌃12 := limT!1

1
T
[
R
T

0 x(t)x̂(t)>dt],
becomes rank-deficient. With this insight, we propose a regularizer R that ensures the internal
state of the learned policy remains “uniformly informative” about the state of the true system, and
prove that gradient descent on the regularized objective LOE(·) + �R(·) converges at a O (1/T )
rate to an optimal policy. The efficacy of the approach is illustrated via numerical experiments, cf.
Appendix F.6. Code is provided in the supplementary material.

Our techniques. Searching over dynamic policies introduces two key challenges: (1) spurious
critical points can arise when one or more factors become “degenerate” in a certain way; (2) changes
of basis produce a continuum of “equivalent realizations” of the filter K, some of which are poorly
conditioned. Similar challenges have been observed in problems with rotational symmetries, e.g.
nonconvex matrix factorization. Neither challenge arises when searching over static policies [Fazel
et al., 2018]. Our approach is centered around the idea of convex reformulations of control syn-
thesis problems, and the following fact regarding functions which admit these reformulations, cf.
Appendix H.1 for proof.
Fact 1.1. Let f : Rnx ! R be a differentiable, possibly nonconvex function such that minx f(x)
is finite. Suppose there exists a differentiable function  : Rn⌫ ! Rnx satisfying the following
two properties: (i) the mapping  is surjective, i.e. for all x 2 Rnx there exists ⌫ 2 Rn⌫ such that
x =  (⌫), (ii) under the change of variables the function fcvx(⌫) := f( (⌫)) is differentiable and
convex. Then all first-order stationary points, x s.t rf(x) = 0, are globally optimal.

The OE problem, LQG, and many other related control tasks admit convex reformulations [Scherer
et al., 1997, Masubuchi et al., 1998]. Given that gradient descent (under mild regularity assumptions)
converges to stationary points, we might hope that Fact 1.1 guarantees that direct policy search on
the OE filter will succeed at finding an optimal policy, when applied to loss functions admitting such
convex reformulations. Somewhat surprisingly, we find that this is emphatically not the case: gradi-
ent descent on the LOE objective fails to reliably converge to optimal solutions (see Section 3.1).1

To resolve this paradox, we show that the surjectivity condition of Fact 1.1 may fail for the convex
reparametrization of OE: there are filters K with finite cost LOE(K), which are not in the image of
the reformulation map  (·). We find that degeneracy occurs precisely when informativity, defined
in Section 1.1 as ⌃12,K having full rank, fails to hold. Conversely, when ⌃12,K is full-rank, the
conditions of Fact 1.1 are met and the parametrization behaves as needed. Thus, we identify non-
informativity - rank deficiency of ⌃12,K - as the fundamental notion of degeneracy corresponding
to challenge (1). Motivated by this observation, we introduce a novel “informativity regularizer”
Rinfo(·) which enforces that ⌃12,K is full rank. Our proposed algorithm, IR-PG alternates between
gradient updates on the regularized loss L�(·) := LOE(·) + �Rinfo(·), and “reconditioning” steps
to ensure well-conditioned realizations of the filters K, thereby addressing challenge (2) above. We
stress that our notion of informativity differs from the minimality criterion emphasized in Tang et al.
[2021], whose limitations we discuss in Section 3.1.

In order to achieve our quantitative converge guarantees, we establish numerous results which may
be of independent interest, including: (i) a quantitative analysis of the OE convex reformulation due
to Scherer [1995], (ii) novel bounds on the magnitude of solution to Lyapunov equations under the
closed-loop OE filter dynamics. Both arguments appeal to a (quantitative measure of) informativ-
ity. Finally, we develop a quantitative analogue of Fact 1.1 via a paradigm we call differentiable
convex liftings, which allows us to establish a form of gradient dominance that we term weak-PL in
reference to the well-known Polyak-Łojasiewicz inequality; cf. Section 4.1 for details.

2 Preliminaries

Before presenting our main results in Section 3, we first introduce some relevant definitions, and
provide the reader with some relevant background on prediction in partially-observed dynamical
systems. We adopt standard notation wherever possible, and for brevity, defer details to Appendix A.
As outlined in the introduction, we consider the problem of predicting the outputs of a partially
observed linear dynamical system. We refer to the dynamical system defined in Eq. (1.1) as the true

1Failure modes for the LQG problem were presented by Tang et al. [2021].
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system, with states x(t) 2 Rn, observations y(t) 2 Rm, and performance outputs z(t) 2 Rp. To
ensure the dynamical system has a well-defined steady-state, we assume that A is stable.
Assumption 2.1. The matrix A is Hurwitz stable. That is, the real components of all its eigenvalues
are strictly negative: <[�i(A)] < 0 for i 2 [n].

Because these policies only access the system outputs, and are only evaluated in relation to system
outputs, we assume that the true system state is observable. Further, we assume that dynamics are
subject to sufficiently rich noise excitations.
Assumption 2.2. The pair (A,C) in Eq. (1.1) is observable. That is, the observability Gramian
defined as Gobs :=

R
1

0 exp(sA)>C>C exp(sA)ds is strictly positive definite.

Assumption 2.3. We assume that the noise matrices W1 and W2 are strictly positive definite.2

As stated previously, we restrict our attention to finding the best dynamic filter within the parametric
family described in Eq. (1.2). Note that this family contains the Bayes optimal predictor for the LOE

objective, as we will later describe in more detail. We review a number of basic facts:

A. Steady state distributions. We define Kstab := {K : AK is Hurwitz-stable} to be the set of
filters such that AK is stable. Under Assumption 2.1, Appendix E.1 shows that this is equivalent to
the stability of the closed-loop matrix Acl,K:

Acl,K :=


A 0

BKC AK

�
, Kstab = {K : Acl,K is Hurwitz-stable} . (2.1)

Stability of Acl,K is a sufficient condition for LOE(K) to be finite, and for the following limiting

covariance to be well defined: ⌃K = limt!1 E
h

x(t)
x̂K(t)

i h
x(t)
x̂K(t)

i>
2 S2n+ . This steady-state covari-

ance is given by the solution to the continuous-time Lyapunov equation,

Acl,K⌃+⌃A>

cl,K +Wcl,K = 0, where Wcl,K :=
h
W1 0
0 BKW2B

>
K

i
. (2.2)

Notice that ⌃K depends only on (AK,BK), but not on CK, and that the first n⇥n block of ⌃K does
not depend on K at all. To highlight these distinctions, we partition

⌃ =


⌃11 ⌃12

⌃>
12 ⌃22

�
, ⌃K =


⌃11,sys ⌃12,K

⌃>

12,K ⌃22,K

�
, (2.3)

and define Kctrb := {K 2 Kstab : ⌃22,K � 0} as the set of filters whose internal state covariance is
full rank. We refer to these as the controllable policies, as these are precisely the policies for which
the pair (AK,BK) is controllable.

B. Equivalent realizations. There are many different ways of parametrizing a given dynamic
feedback policy, all of which have exactly the same input-output behavior. Let GL(n) denote the
set of invertible n⇥ n matrices. In particular, given an invertible matrix S 2 GL(n) the OE loss of
a filter K is invariant under the following class of similarity transforms:

SimS(K) : (AK,BK,CK) 7! (SAKS
�1,SBK,CKS

�1). (2.4)

Formally, for any K 2 Kstab and any S 2 GL(n), LOE(K) = LOE(SimS(K)). We say that K and K
0

are equivalent realizations if they are related by a similarity transformation SimS(K) = K
0 for some

S 2 GL(n). Note that the set Kctrb is also preserved under similarity transformation.

C. Optimal policies. The landmark result by Kalman shows that for the system defined by
(A,C,W1,W2) the Kalman filter K? = (A � L?C, L?, G) achieves minimal LOE loss. Here,
L? is the Kalman gain which is defined in terms of the solution of the following Riccati equation:

AP? +P?A
> �P?C

>W�1
2 CP? +W1 = 0, L? = P?C

>W�1
2 . (2.5)

We define the set of optimal filters Kopt to be those which are equivalent to the Kalman filter:

Kopt :=
[

S2GL(n)

�
SimS(A� L?C, L?, G)

 
. (2.6)

2We may relax this assumption to (A,W1) being controllable.
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D. Restricted problem setting. The problem description outlined above, including Assump-
tions 2.1 to 2.3, constitutes the standard OE problem, well-known in control theory, cf. [Doyle
et al., 1989, §IV.D]. In this paper, we will make the following additional assumption that restricts
the class of OE problems we consider. Further discussion on the utility and necessity of this as-
sumption (for our analysis) is provided in Section 3.2 and Appendix D; the latter also shows that
Assumption 2.4 holds for “generic” problem instances.
Assumption 2.4. The (cannonical) optimal policy (A � L?C,L?) is controllable, i.e.R
1

0 exp(s(A� L?C))L?L>
?
exp(s(A� L?C))>ds is strictly positive definite.

E. Interaction protocol. In the spirit of model-free methods, we introduce algorithms which
work only assuming access to cost and gradient evaluation oracles. We abstract away the particular
implementation of these oracles to simplify our presentation and assume that they are exact, in order
to focus on the overall optimization landscape of the OE problem. More formally, for any filter
K 2 Kstab, Eval(K,LOE) returns the OE cost, LOE(K) and Grad(K,LOE) return the gradient of the
OE cost, rLOE(K). Despite this simplification, we would like to again emphasize that these can be
efficiently approximated in finite samples, and purely on the basis of observations yt subsampled in
discrete intervals. For further discussion, please see Appendix C.

Lastly, in addition to standard cost and gradient evaluations of the LOE loss, as part of our algorithm,
we further require access to gradient and cost evaluations of smooth functions of the stationary-state
covariance. Specifically, if f : S2n+ ! R is a function of the covariance matrix K, we assume we
can compute Evalcov(K, f) which returns the f(⌃K) and Gradcov(K, f) which returns rKf(⌃K).
In Appendix C.2, we show that these oracles can be implemented without direct state access by
“subsampling” multiple observations at different time steps.

3 Main Results

In this section, we present the main contributions of our work. After demonstrating that the OE
cost function contains stationary points that are not globally optimal, we present informativity-
regularized policy gradient (IR-PG), a direct policy search algorithm based on a novel regular-
ization strategy to preserve informativity, introduced in Section 1.1. We state a formal convergence
result showing that IR-PG converges to a globally optimal filter at a O (1/T ) rate. The efficacy of
IR-PG is illustrated via numerical experiments in Appendix F.6, cf. Fig. 3 in particular to see how
informativity regularization dramatically improves the convergence of policy gradient methods.

3.1 Existence of suboptimal stationary points

Perhaps the simplest model-free approach to the OE problem is to run gradient descent on LOE(·).
Under mild assumptions on the loss function LOE, gradient descent will converge to a first-order
stationary point of LOE. Unfortunately, despite the existence of a convex reformulation [Scherer
et al., 1997] and Fact 1.1, the LOE loss function contains suboptimal stationary points:
Example 3.1. Consider the OE instance given by A = �I2, C = I2, W1 = 3 ⇥ I2, W2 = I2,
and the filter Kbad given by Abad = �" ⇥ I2, " > 0, Bbad = 02, Cbad = 02. Kbad constitutes a
suboptimal stationary point of LOE for this OE instance.

The example is similar in spirit to Tang et al. [2021, Theorem 4.1]; details are given in Appendix F.1.
Importantly, the cost is invariant under perturbations to any single parameter of the filter and Kbad,
being equivalent to the zero-filter, is suboptimal. The same is true for any OE instance: every filter
with Bbad = 0, Cbad = 0, and Abad being stable is a suboptimal stationary point of LOE. We
again emphasize that these suboptimal stationary points arise when the change of variables in the
convex reparametrization “breaks down”, i.e., these suboptimal filters are not in the image of the
reformulation map  (·) of Fact 1.1.

The perils of enforcing minimality. A filter K is minimal if (AK,BK) is controllable, and
(AK,CK) is observable. Example 3.1 is the extreme case of a non-minimal filter, since Bbad =
Cbad = 02. Conversely, as a special case of LQG, the OE problem inherits the property that all
stationary points corresponding to minimal filters are globally optimal [Tang et al., 2021, Theorem
4.3]. Therefore, it may be natural to ask: can a local search algorithm enforce minimality to avoid
suboptimal stationary points? A classical result due to Brockett [1976] suggests not: the set of
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minimal n-th order single-input-single-output transfer functions (e.g. filters) is the disjoint union of
n + 1 open sets. Thus it is impossible for a continuous path to pass from one of these open sets
to another without entering a region corresponding to a non-minimal filter, suggesting that a local
search algorithm regularized to ensure minimality at every iteration may never converge to the opti-
mal solution (unless a sufficiently large, and lucky, step allows the iterate to hop over the boundary
at non-minimality). See Appendix F.2 for further discussion and supporting numerical experiments.

Futher challenges. Given the drawbacks of enforcing minimality, one may wonder whether it is
sufficient to enforce controllability or observability alone. In Example 3.1 above - and indeed, for
all the examples in Tang et al. [2021] of suboptimal stationary points in the LQG landscape - there is
a loss of both observability (Cbad = 0) and controllability (Bbad = 0). Unfortunately, suboptimal
stationary points can occur at controllable policies and observable policies.

Example 3.2. Consider the OE instance given by

A =


�1 0
0 �1

�
, C = I2, W1 = 3⇥ I2, W2 = I2,

and the filter Kbad given by

Abad =


�2 0
� ��

�
, Bbad =


1 0
0 0

�
, Cbad =


1 0
0 0

�
, � > 0.

The filter Kbad is a controllable but strictly suboptimal first-order critical point of LOE(K).

A formal proof is provided in Proposition F.1, but the intuition is as follows: Kbad is suboptimal
because no information about the second state of the true system ever enters the filter (due to sparsity
of Bbad). However, Kbad is controllable as � > 0. Further discussion appears in Appendix F.3,
where it is also shown that one can similarly construct examples of filters that are observable (but
not controllable) that correspond to strictly suboptimal first-order critical points of LOE(K). There
we also demonstrate that, for the setup in Example 3.2, the minimum eigenvalue of the Hessian
r2LOE(Kbad) can be made arbitrarily close to zero by taking � in Abad to be arbitrarily large.
This casts doubt on whether approaches based on saddle-point escape with appropriate random
perturbations [Jin et al., 2017] or acceleration [Jin et al., 2018] should be expected to work.

3.2 A provably convergent algorithm

The previous discussion puts us in a bind: regularizing to preserve minimality may introduce prob-
lems related to path-disconnectedness; yet, neither controllability nor observability alone is suffi-
cient to rule out suboptimal stationary points. We identify a stronger condition called informativity
which is sufficient. We define the set of informative filters as

Kinfo := {K 2 Kstab : rank(⌃12,K) = n}.

First, we check that all optimal filters lie in this set, under Assumption 2.4 (proof in Appendix E.3).

Lemma 3.1. Under Assumptions 2.1 to 2.4, Kopt ⇢ Kinfo ⇢ Kctrb, and Kinfo is an open set.

Our key insight is that informativity is also sufficient to ensure optimality of stationary points, but
does not cause path-connectedness issues as it did for minimality (see Appendix G.3 for the proof).

Theorem 1. Let K 2 Kinfo; then (i) there is a continuous path lying in Kinfo connecting K to some
K? 2 Kopt and (ii) if rLOE(K) = 0, then K 2 Kopt.

Theorem 1 suggests that gradient descent with enforced informativity should converge to optimal
filters. It is not, however, implied by the landscape analysis of Tang et al. [2021], which focuses
solely on minimal stationary points. Still, numerous challenges remain: (1) How can one enforce
informativity in a smooth fashion? (2) What quantitative measure of informativity provides quanti-
tative suboptimality guarantees on approximate first-order stationary points? (3) Given that LOE(K)
need not have compact level sets (see Appendix F.3), how does one ensure that the iterates of policy
search do not escape to infinity, or reach regions where the loss of smoothness is arbitrarily poor?
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The explained covariance matrix. In light of Theorem 1, we design a policy search algorithm
which ensures that ⌃12,K remains full-rank throughout the search, but does so in a quantitative
fashion. Our central object is the explained covariance matrix, which measures how much of the
covariance of the steady-state system x(t) is explained by the internal filter state x̂K(t) in the large t
limit: ZK := limt!1 (Cov[x(t)]� E[Cov[x(t) | x̂K(t)]]). When K 2 Kctrb, ZK admits an elegant
closed-form expression, which provides an alternative definition of Kinfo:

ZK = ⌃12,K⌃
�1
22,K⌃

>

12,K, so that Kinfo = {K : K 2 Kctrb and ZK � 0}.

Since ZK is invariant under similarity transformations, ZK can be interpreted as a normalized ana-
logue of ⌃12,K. Informally, the quadratic form v>ZKv is a sufficient statistic for how much infor-
mation x̂(t) contains about the “v-direction” of x(t); see Appendix E.6 for a precise statement.

Explained-covariance regularization. We preserve informativity by ensuring our iterates satisfy
ZK � 0. To this end, we run gradient descent on the regularized objective for some � > 0:

L�(K) := LOE(K) + � · Rinfo(K), where Rinfo(K) :=

⇢
tr[Z�1

K ] K 2 Kinfo

1 otherwise.
(3.1)

The proposed regularizer has several important properties. First, though Rinfo is nonconvex in
K, both Rinfo and LOE can be made convex under the same change of variables, in the sense of
Fact 1.1, cf. Lemma I.2. In addition, Rinfo is non-negative, and tends to 1 as ZK approaches
singularity. Furthermore, Rinfo is invariant under similarity transformations. Next, many of the
essential quantities arising in our analysis can be bounded in terms of Z�1

K , justifying ZK is a natural
quantitative measure of informativity. Lastly, the set of global-minimizers of Rinfo(·) is precisely
the optimal filters for the OE problem, as per the following lemma (see Appendix E.4 for proof).
Lemma 3.2 (Existence of maximal ZK). Under Assumptions 2.1 to 2.3, there exists a unique Z? � 0
such that Z? = ZK if and only if K 2 Kopt, and Z? ⌫ ZK for all K 2 Kctrb \ Kopt. Consequently,
Kopt 2 argminK2Kctrb

Rinfo(K).

Lemma 3.2 directly implies that the suboptimality of L�(·) upper bounds the suboptimality in LOE(·),
so we can minimize L� as a proxy for minimizing LOE.
Corollary 3.1. For any K, we have LOE(K)�minK0 LOE(K0)  L�(K)�minK0 L�(K0).

Reconditioning. We introduce an additional normalization step between policy updates to ensure
the iterates produced by our algorithm have well-conditioned covariance matrices; this in turn en-
sures the iterates produced by our algorithm remain in a compact set, and that the smoothness of L�

is uniformly bounded. For any filter K 2 Kctrb such that ⌃22,K � 0, the reconditioning operator
recond(K) returns a filter K0 which is equivalent to K, but for which ⌃22,K0 = In. Formally3,

recond(K) := SimS(AK,BK,CK), where S = ⌃�1/2
22,K . (3.2)

Since K and K
0 = recond(K) are equivalent realizations, we have LOE(K) = LOE(K0), Rinfo(K) =

Rinfo(K0), and thus L�(K) = L�(K0).

Statement of IR-PG. We can now describe our algorithm IR-PG, whose pseudocode is displayed
in Algorithm 1. IR-PG applies gradient descent on the regularized LOE objective, with an additional
balancing step between gradient updates. Appendix B.1 provides a variant where the step size is
chosen by backtracking line-search, which enjoys the same rigorous convergence guarantees. To
guarantee convergence to an optimal filter (and finiteness of L�), we need to initialize at a filter such
that ZK0 � 0, i.e. K0 2 Kinfo. Fortunately, random initializations from a continuous distribution
satisfy this condition with probability 1 (see Appendix E.7 for a formal statement and proof). Con-
cerning the choice of �, the formal guarantees in Section 3.3 below hold for any � > 0. Nonetheless,
the choice of � can influence the numerical properties of the loss function, such as smoothness and
the size of the gradients; cf. Appendix F.6 for further discussion.

3Our proposed algorithm also works with an approximate balancing r̂econd(·), where r̂econd(K) returns a
K0 which is equivalent to K, and k⌃22,K0 � Ink  " for some tolerance " > 0 (e.g. " = 1/8).
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Algorithm 1 Informativity-regularized Policy Gradient (IR-PG)
1: Input: Initial K0 2 Kinfo, step size ⌘ > 0, regularization parameter � > 0

% Define L�(K) := LOE(·) + �tr[Z�1
K ]

2: for each iteration s = 0, 1, 2, . . . do
3: Recondition eKt = recond(Kt), where recond(·) is defined in Eq. (3.2).
4: Compute rt = rL�(eKt).
5: Update Kt+1  eKt � ⌘rt.

3.3 Formal guarantees

We conclude this section by stating the formal convergence guarantee for IR-PG. Our results depend
on natural problem quantities, among which is the minimum singular value of P? (as defined in
Eq. (2.5)), which we show is always strictly positive.
Lemma 3.3. Let P? be the solution to the Riccati equation in Eq. (2.5). Then under Assumptions 2.1
to 2.3, �? := �min(P?) is strictly positive. Moreover, P? = ⌃11,sys � Z?.

In other words, P? is the limiting conditional covariance of the true state x(t) given the policy-state
x̂K(t) under (any) optimal policy. Lemma 3.3 states that this covariance is nonsingular, i.e. not even
optimal policies contain perfect information about any mode of x(t). Given an initialization K0, our
convergence rate depends polynomially on the following problem parameters:

Csys := max
�
kAk, kCk, kGk, kW2k, kW�1

2 k, kW
�1
1 k, k⌃11,sysk, ��1

?

 
. (3.3)

Theorem 2. Fix � > 0, K0 2 Kinfo. There are terms C1, C2 � 1, which are at most polynomial in
n,m,Csys,�,��1 and L�(K0), such that the iterates of IR-PG with any stepsize ⌘  1

C1
satisfy

LOE(Ks)�min
K

LOE(K)  L�(Ks)�min
K

L�(K) 
C2
⌘

· 1
s
, 8s � 1.

The formal guarantee for back-tracking stepsizes is nearly analogous, and given in Appendix B.1.
The oracle complexity of IR-PG is described in Appendix B.2. We sketch the highlights of the
proof in the following section, after introducing our DCL framework. A rigorous proof overview is
deferred to Appendix G.2.

4 Analysis Framework

In this section, we sketch our analysis in two halves. In the first, we provide a framework for
analyzing gradient descent on objectives which admit convex reformulations. This takes place in two
parts: first, via our technique of differentiable convex liftings (DCLs) we establish a form of gradient
dominance we term weak-PL. Second, we show that weak-PL, together with smoothness (i.e. upper
bound on the magnitude of the Hessian) implies convergence of gradient descent at a O(1/t) rate.
The DCL formalizes the developments in the “our techniques” discussion of Section 1.1.

Next, we instantiate the analysis framework for regularized output estimation loss L� defined in the
previous section. It suffices to establish both (a) smoothness of L� and (b) weak-PL by exhibiting a
valid DCL. Interestingly, the upper bounds on both the Hessian magnitude and the weak-PL factor
depend on the magnitude of tr[Z�1

K ], which is precisely what is controlled by the informativity
regularizer in Eq. (3.1).

4.1 Differentiable convex liftings (DCLs)

This section introduces differentiable convex liftings (DCLs), a rigorous and flexible framework for
operationalizing convex reformulations of nonconvex objectives.

Preliminaries. To neatly accommodate optimization over constrained domains, we express func-
tions f : Rd ! R̄ as taking values in the extended reals R̄ := R [ {1}.4 Given such an f , we

4Because we solely consider minimizations, R̄ does not include �1
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denote its domain dom(f) : {x : f(x) 6= 1} as the set on which f is finite; we say f is proper if
dom(f) 6= ;; we define its minimal value inf(f) = infx2Rd f(x). We say f 2 C k(K) on a domain
K if f is k-times continuously differentiable (and finite) on some open set containing K ⇢ Rd.

DCLs. The DCL is a generic template for convex reformulation that significantly generalizes the
setup in Fact 1.1. Rather than relating f directly to a convex fcvx, we “lift” f to a function flft by
appending auxiliary variables. We then assume a reparametrization � mapping the domain of flft
to that of fcvx in this higher dimensional space; intuitively, � is the “inverse” of  in Fact 1.1.

Definition 4.1. A triplet of functions (fcvx, flft,�) is a DCL of a proper function f : Rd ! R̄ if
(1) fcvx : Rdz ! R̄ is a proper convex function whose minimum is attained by some z?.
(2) For some additional number of parameters d⇠ � 0, flft : Rd+d⇠ ! R̄ is related to f via partial
minimization: f(x) = min⇠2Rd⇠ flft(x, ⇠).
(3) There is an open set Y ◆ dom(flft) for which � : Y ! dom(fcvx) is C 1 and satisfies flft(·) =
fcvx(�(·)).

Above, dz and d⇠ are arbitrary dimensions representing the arguments of fcvx(·) and flft(x, ·),
respectively. The mere existence of a DCL implies that approximate stationary points of f are also
approximate minimizers, under conditions elaborated on below:

Theorem 3. Let f : Rd ! R̄ be a proper function with DCL (fcvx, flft,�). Then, for any x 2
dom(f) at which f is differentiable, f satisfies the weak-PL condition:

krf(x)k � ↵DCL(x) · (f(x)� inf(f)) , where ↵DCL(x) := max
z?

2argmin fcvx(·)
⇠2argmin flft(x,·)

�dz (r�(x, ⇠))
k�(x, ⇠)� z?k .

Theorem 3 strengthens Fact 1.1 in two respects. For one, it does not impose any smoothness re-
strictions on flft or fcvx; in particular fcvx can be highly non-smooth and, due to the extended-real
function formulation, can also include constraints. And second, the lifting flft adds considerable
flexibility, which we show is necessary to capture the convex reformulation of OE (Appendix I).

The factor ↵DCL(x) depends on two quantities. The numerator is the dz-th singular value of
r�(x, ⇠) for any ⇠ 2 argmin flft(x, ·). This captures how large perturbations of flft’s arguments
must be in order to achieve a desired perturbation of the arguments of fcvx, under the reparameteri-
zation �. The additional arguments in flft compared to f adds additional columns to r� thereby
making it easier to ensure �dz (r�(·)) > 0. On the other hand, the denominator measures the Eu-
clidean distance between any minimizer of the convex function fcvx(·) and image of (x, ⇠) under
the reparameterization �, and can be bounded under quite benign conditions.

Proof Sketch. The formal proof of Theorem 3 (given in Appendix H.2) takes special care to
handle cases where flft and fcvx are finite only on restricted domains, as well as possible non-
smoothness; still, the main ideas behind are intuitive. For fcvx being convex, fcvx(z)� inf(fcvx) =
O(krfcvx(z)k). Using the DCL definition and analyzing the inverse image of a point under �, we
can also establish a gradient dominance result for flft. Weak-PL for the original function f follows
since f is related to flft by partial minimization, so its gradients must be larger than those of flft.

Gradient descent with DCLs. We now describe how DCLs yield quantitative convergence guar-
antees for gradient descent. A more general guarantee accommodating the reconditioning step in
IR-PG is deferred to Appendix G.1, and encompasses the bound below as a special case. Given
↵ > 0, we say that proper f : Rd ! R̄ satisfies ↵-weak-PL (named after the stronger Polyak-
Łojasiewicz condition) on a domain K ⇢ Rd if f 2 C 1(K) and krf(x)k � ↵(f(x) � inf(f).
From Theorem 3, we see f satisfies ↵K-weak PL on K if f has a DCL and ↵K := infx2K ↵DCL(x) >
0. To analyze gradient descent, we also require smoothness: we say f is �-upper-smooth on K if
f 2 C 2(K) and for all x 2 K, r2f(x) � �I. The following follows from a standard descent
lemma for smooth (though possibly nonconvex) functions.

Proposition 4.1. Let x0 2 dom(f), and suppose that the level set K(x0) := {x : f(x)  f(x0)}
is compact, and f satisfies ↵x0 -weak PL with ↵x0 > 0, and �x0 -upper smoothness on K(x) with
�x0 > 0. Then, x0 lies in the same path-connected component of some minimizer of f , and for any
⌘  1/�x0 the updates xk+1 = xk � ⌘rf(xk) satisfy f(xk)� inf(f)  2/(k · ↵2

x0
⌘).
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4.2 Proof of Theorem 2.

In light of Proposition 4.1 (and its generalization to include reconditioning), it suffices to establish
both the weak-PL and smoothness of the loss L�(·) on the well-conditioned sublevel set K0 := {K :
L�(K)  L�(K0),

1
2In � ⌃22,K � 2In}. To establish the weak-PL property, we exhibit a DCL

for which ↵DCL(K) depends only on the operator norms of ⌃K,⌃
�1
K ,ZK: as well as other system-

quantities. Here, polyop(. . . ) denotes a quantity at most polynomial in the operator norms of its
arguments.
Proposition 4.2. For any � � 0 (non-strict), the objective L�(K) admits a DCL (fcvx, flft,�)
where the lifted parameter takes the form (K,⌃K) 2 Kinfo ⇥ S2n++, L�(K) = flft(K,⌃K) =
min⌃2S2n+ flft(K,⌃), and where

�dz (r�(K,⌃K)) � 1/polyop
�
A,C,W�1

2 ,⌃K,⌃
�1
K ,Z�1

K ,LOE(K)
�

k�(K,⌃K)k`2  (max{n,
p
mn}+

p
LOE(K)) · polyop

�
A,C,W�1

2 ,⌃K,⌃
�1
K ,Z�1

K

�
.

Furthermore, the norms of the parameters AK,BK,CK satisfy the following bounds:

max{kAKkop, kBKkop}  polyop
�
A,C,W�1

2 ,Z�1
K ,⌃K,⌃

�1
K

�
, kCKkF 

q
LOE(K)/k⌃�1

K k.
(4.1)

Smoothness is established in (Proposition G.5), which relies on a novel (and rather challenging)
bound on the solutions to Lyapunov equations involving Acl,K:
Proposition 4.3 (Stability of Acl,K). Suppose that K 2 Kinfo. Then, for any matrix Y 2 S2n, the
solution ⌃K,Y to the Lyapunov equation Acl,K⌃K,Y +⌃K,YA>

cl,K +Y = 0 satisfies

k⌃K,Yk�  Clyap(K) · kYk�, where Clyap(K) = polyop
�
⌃K,⌃

�1
K ,Z�1

K ,W�1
1 ,W�1

2 ,C
�
,

and where k · k� denotes either the operator, Frobenius, or nuclear norm.

The regularization Rinfo(K) ensures kZ�1
K k remains bounded on the sublevel K0; we further show

(Lemma G.7) that 1
2In � ⌃22,K � 3

2In implies ⌃K is invertible, and ensures k⌃Kk, k⌃�1
K k are

uniformly bounded. Thus, the weak-PL constant and smoothness parameters are uniformly bounded
on K0, concluding the proof. We stress that the proofs of Proposition 4.2 and Proposition 4.3 require
several novel technical arguments, which may be of independent interest. A full proof roadmap,
including formal statements of the aforementioned results, is given in Appendix G.2. The fact that
k⌃Kk, k⌃�1

K k, kZ
�1
K k appear throughout the analysis suggests that (a) informativity as measured by

Z�1
K , and (b) the conditioning of ⌃22,K may be fundamental to the OE landscape.

Proof of Theorem 1. The proof of Theorem 1 is simpler, as it relies mainly on the existence of a
DCL for which ↵DCL does not vanish. See Appendix G.3 for details.

5 Conclusion

In this work, we introduce the first direct policy search algorithm which converges to the globally
optimal dynamic policy for the output estimation problem. We hope that our analysis serves as a
valuable starting point to study direct policy search for reinforcement learning and control problems
with partial observations, in which the relevant classes of policies are dynamic ones that maintain an
internal state. We also hope that both our proposed principle of “informativity”, and our technical
contributions around convex reformulations, continue to prove useful in future work.
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