
Keep-Alive Caching for the Hawkes process

Sushirdeep Narayana1 Ian A. Kash1

snaray25@uic.edu1 iankash@uic.edu1

1Department of Computer Science , University of Illinois at Chicago , Chicago, Illinois, USA

Abstract

We study the design of caching policies in applica-
tions such as serverless computing where there is
not a fixed size cache to be filled, but rather there is
a cost associated with the time an item stays in the
cache. We present a model for such caching poli-
cies which captures the trade-off between this cost
and the cost of cache misses. We characterize opti-
mal caching policies in general and apply this char-
acterization by deriving a closed form for Hawkes
processes. Since optimal policies for Hawkes pro-
cesses depend on the history of arrivals, we also de-
velop history-independent policies which achieve
near-optimal average performance. We evaluate
the performances of the optimal policy and approx-
imate polices using simulations and a data trace of
Azure Functions, Microsoft’s FaaS (Function as a
Service) platform for serverless computing

1 INTRODUCTION

Datacenters provide a variety of caching services in the in-
terest of reducing latency. While traditional caches have a
fixed size determined by the underlying hardware, datacen-
ter resources are fungible and could be used for a variety of
purposes. For example, in serverless computing (also known
as Function-as-a-Service) the cloud provider handles all the
provisioning and configuration of resources for each user,
while the user simply pays for the amount of time of the func-
tion execution. The cloud provider could, in principle, keep
a container in memory for every user to ensure that function
calls can be executed immediately. However, this would be
excessively expensive in terms of resources allocated but
unused. Instead, user application code which has not been
used recently may be kept in persistent storage [Shahrad
et al., 2020]. Another example involves Time-to-Live (TTL)
caches where the cache controller has a timer-based pa-

rameter for when to evict objects from the cache. Work on
TTL-based caches for Content Delivery Networks (CDNs)
has observed that hit rate guarantees can be provided by con-
trolling the cache space used by a customer and suggested
pricing based on this space consumption [Basu et al., 2018].

In contrast to traditional caches, in keep-alive caching the
decision is not about what object to evict from the cache
when space is needed. Rather the relevant question is when
is it worth keeping the object in the cache. Such a decision
trades off the opportunity cost of not putting those resources
to other uses (which may be caching other objects or some
entirely different purpose) against the cost of a cache miss.
While prior work has examined the trade-off between cache
misses and the overall cache size [Basu et al., 2018], we fo-
cus on precise answers regarding optimal and approximately
optimal caching decisions for a single object.

We model this problem as trading off between the expected
time an object is kept in the cache before it is next accessed
and the probability of a cache miss. Since a given object has
a fixed size, this lets us precisely quantify the two relevant
costs. We characterize the optimal cache policy and show
how this characterization yields simple policies for objects
whose arrivals have a monotone hazard rate. This includes
Poisson and Hawkes processes [Laub et al., 2021].

One downside of the optimal policy for Hawkes processes
is that it depends on the history of arrivals for the object.
So, it needs to be recalculated after every arrival. A natural
alternative is a simple TTL-style policy which keeps the
object in the cache for a fixed amount of time after each
arrival before evicting it. Such policies have been used in
practice in serverless systems such as AWS Lambda and
Azure Functions [Shahrad et al., 2020]. The classic ski rental
problem shows that, if the TTL is optimized solely based on
costs, the resulting policy is a worst-case 2-approximation.
We derive an approach to optimize the TTL based on the
parameters of the Hawkes process (but still independent of
the history of arrivals).

We simulate the average performance of all three policies

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

(optimal, optimized-TTL, and fixed-TTL) on arrival requests
that follow a Hawkes process. The simulations illustrate how
an optimized-TTL in general and our specific optimization
procedure in particular yield near-optimal performance.

We also evaluate these policies on Azure traces released
by Shahrad et al. [2020]. Here, Hawkes processes naturally
capture applications such as web servers where a recent
function invocation makes it more likely for additional in-
vocations to occur (perhaps because the same user makes
another request). We show that applying the optimal policy
to the 25% of applications best fit by a Hawkes process
yields meaningful improvements over the fixed-TTL policy
at the scale of a datacenter. Furthermore, our optimized-TTL
approach again yields near-optimal performance.

2 RELATED WORK

Our modeling decisions draw motivation from serverless
computing. Cloud providers that use Function as a Service
(FaaS) serverless models, such as AWS Lambda, Google
Cloud Functions, IBM Cloud Functions, and Azure Func-
tions, handle all the system administration and resource allo-
cations for customers. As Jonas et al. [2019] highlight, one
of the advantages of serverless computing is that the users
have to pay solely for the usage of resources of their applica-
tions. The customers do not pay for maintaining and starting
up the resources when their application is not running. On
the other hand, they point out the challenges for customers
in terms of the unpredictable latency of cold starts 1. Wang
et al. [2018] measure the cold start latency of popular FaaS
serverless platforms. They discuss the historical usage of
fixed caching policies by these platforms and quantify the
behavior assumed by our model: cloud providers regularly
shutting down instances providing FaaS services to reallo-
cate those resources to other uses. Lin et al. [2020] discuss
the desirability of approaches, such as ours, that could allow
customers to agree to pay a higher price in exchange for
personalized warm-start performance guarantees.

Closest to our work, Shahrad et al. [2020] propose a keep-
alive cache policy based on an approach to predict future
arrivals. They show a significant reduction in memory use
when compared with the standard fixed keep-alive policies.
In contrast, we take the predictions as given and optimize
decisions based on them. Other works that have considered
approaches to mitigating cold starts include having multi-
ple tiers of hardware [Roy et al., 2022], pre-warming just
the networking components [Mohan et al., 2019], caching
common Python libraries [Oakes et al., 2018], and over-
booking [Kesidis, 2019]. Fuerst and Sharma [2021] build a
system which allows the size of a FaaS cache to be scaled dy-
namically based on arrival rates, but they do not provide any

1Cold start refers to a cache miss in the context of serverless
computing

theoretical analysis. [Romero et al., 2021, Mvondo et al.,
2021] have looked at caching of other aspects pertaining to
function execution such as data access.

Most work on cache algorithms works to optimize their de-
cisions about which items to evict when the cache is full.
Closer to our work is work on TTL caches which evict ob-
jects after a fixed amount of time. These are studied both
for applications in settings like Content Delivery Networks
(CDNs) as well as their use as a more tractable way of ap-
proximately analyzing the performance of traditional caches
introduced by Che et al. [2002]. Berger et al. [2014] analyze
TTL cache networks. They consider the inter-request arrival
times of objects and TTL values to be two independent
renewal processes. They study three types of TTL cache
policies based on the TTL resets and eviction times (we
show what they term R policies are optimal in our setting).
Basu et al. [2018] design two TTL based caching algorithms
for CDNs like Akamai, but focus on working within a fixed
target cache size. Ferragut et al. [2016] study optimal TTL
cache policies. Like us they examine the consequences of
the monotonicity of the Hazard rate of the inter-arrival dis-
tributions. However, unlike us they focus on trading off
hit rate and overall cache size. They formulate the TTL
caching problem as a non-linear optimization problem with
non-linear constraint, and prove that the convexity of the op-
timization problem is related to monotonicity of the Hazard
rate. They provide explicit solutions when the inter-arrival
distribution follows the Zipf’s law. They evaluate the perfor-
mance of their optimal policies by comparing their policy
hit rate against the LRU (Least Recently Used) policy hit
rate. Ali et al. [2011], Balamash and Krunz [2004] give a
broader introduction to and survey of web page caches.

Closer to our work, Dehghan et al. [2019] share our notion
that users may have utilities which depend on the hit rate
and they include the possibility of increasing the cache size
at a cost. They assume the utility functions for each file
to be concave and the arrival requests to follow a Poisson
point process, while our model is more general. Babaie et al.
[2019] extend this to a cache hierarchy network. Panigrahy
et al. [2017] allow heterogeneity of user preferences for hit
rates, but focus on network of capacity-constrained caches
with requests modeled as simple Poisson arrivals.

There is substantial work in the AI literature on other
optimization problems that arise in the context of cloud
computing such as pricing Blocq et al. [2014], Friedman
et al. [2015], Babaioff et al. [2017], Kash et al. [2019],
Dierks and Seuken [2021], reservation scheduling Azar et al.
[2015], Wang et al. [2015], information elicitation Ceppi
and Kash [2015], Dierks et al. [2019], and fair division of
resources Parkes et al. [2015], Kash et al. [2014], Friedman
et al. [2014], Narayana and Kash [2021].

3 MODEL

We consider a cache system where there is a cost for an
object to stay in the cache. There is also a cost for a cache
miss. For concreteness we describe our model using terms
from one natural application (serverless computing), but it
is also relevant for other applications such as CDNs Fer-
ragut et al. [2016]. First, we describe a cache policy in this
setting. Next, we detail the parameters of the cache associ-
ated with the cloud provider. Then, we express the cost of
a cache policy. Since the time of arrival of future requests
is unknown, we assume that the cloud provider has access
to the distribution of the arrival requests, as they could be
estimated by the past arrival requests.

Cache Policy We assume the cache has infinite capacity
because the provider can always dedicate more resources to
its serverless offering, which differentiates our model from
those driven by capacity. Thus, for us a cache policy is not
about which object should be evicted when space is needed
but rather how long (or more generally when) we should
keep it in the cache.

Let Hm−1 = {t1, t2, · · · , tm−1} denote the history
of m − 1 previous requests for the application. Here,
t1, t2, · · · and, tm−1 denote the time of 1st, 2nd , · · · and,
(m-1)-st request respectively. Let xm = tm − tm−1 denote
the m-th inter-arrival time. Our analysis of policies is based
on these inter-arrival times.

A cache policy π of an application is a sequence of time
windows during which a possible requested application is
moved in and out of the cache. A keep-alive window is
the time interval during which the application is kept in
the cache. The policy is reset after each arrival request for
an application. More formally, a policy π(x|Hm−1) can be
expressed as an indicator function of a sequence of keep-
alive windows for the m-th inter-arrival as:

π(x|Hm−1) =

{
1 , x ∈ [L0, L1]

⋃
· · · [L2k−2, L2k−1]

0 , otherwise

Here, L2i denotes amount of time after tm−1 (the time of the
most recent request) where the i-th keep-alive window starts,
while L2i+1 denotes the point where the i-th keep-alive
window end for some k and all i ∈ {0, 1, 2, · · · , k − 1}.

A policy π(·) consisting of a single keep-alive window
across the m-th inter-arrival can be represented by the length
of pre-warming window and the length of keep-alive win-
dow. That is, if

π(x) =

{
1 , for x ∈ [τpw, τpw + τka]

0 , otherwise

then, the policy can be summarized by the parameters τpw,
and τka. The parameter τpw refers to the length of pre-
warming window which is the time interval during which

the policy waits before bringing in the possibly requested
application into the cache. The parameter τka denotes the
length of keep-alive window which is the time interval when
the application is kept in the cache. The pre-warming win-
dow is especially useful when the requests for an application
occur at regular intervals, such as requests governed by a
timer function.

Cost of a Cache Policy In the context of serverless com-
puting, an application encounters a warm start (cache hit) if
its invocation (arrival request) occurs when the keep-alive
window is active. An application has a cold start (cache
miss) when the keep-alive window is not active during its
invocation. Thus, we can describe the costs of a policy using:

• ccs denotes the cost associated with a cold start. This
is primarily the latency cost experienced by the user
when there is a cold start. It may also include the cost
for the cloud provider to load the application image
(requested object) into the cache.

• cp denotes the cost per unit time for the cloud provider
for keeping the application image (requested object)
active in the cache.

The cost of a policy with a single keep-alive window
(τpw, τka) when the inter-arrival time is xm is given by
cost(xm, (τpw,Hm−1

, τka,Hm−1
)) =

ccs, if xm < τpw,Hm−1

cpxm, if τpw,Hm−1
≤ xm ≤ τpw,Hm−1

+ τka,Hm−1

cpτka,Hm−1
+ ccs, if xm > τpw,Hm−1

+ τka,Hm−1

The three cases for the cost of a policy correspond to that
of a cold start if the invocation occurs during pre-warming,
a warm start if the invocation occurs when the keep-alive
window is active, and a cold start if the invocation is af-
ter the keep-alive window being active, respectively. In the
more general case of multiple keep-alive windows the cost
cp must be paid for all prior windows as well (see Equation
1 in the proof of Lemma 1 for the full formula). This for-
mula implicitly assumes that the time and costs associated
with a decision to load the application into the cache (e.g.
in the case of multiple windows where it may be moved
in and out repeatedly) are zero, and so is in that sense a
lower bound on the “true” cost. However, we show that for
Hawkes processes in particular a single window which starts
immediately (τpw = 0) is optimal. Such a policy never has
to pay such cost except of course during cold starts, but
those are already accounted for by ccs.

To compute the cost of a cache policy, xm must be known.
However, the cloud provider does not have access to such
information. Instead, they can estimate the distribution of
xm from past arrival requests Hm−1. We model the ap-
plication invocations as a point process. Let f(x|Hm−1)
and F (x|Hm−1) denote the conditional probability dis-
tribution and the conditional cumulative distribution of

an invocation at x units after the most recent invocation
given the history Hm−1 of previous invocations, respec-
tively. We assume that both are continuous. Let the haz-
ard rate of the based on the inter-arrival be expressed as

λ(x|Hm−1) =
f(x|Hm−1)

1− F (x|Hm−1)
. We use these probability

distributions to derive an expression for the expected cost
of a cache policy.

4 CHARACTERIZATION OF OPTIMAL
POLICIES

We start this section by deriving the expected cost of a
caching policy over an inter-arrival. Then in Theorem 2, we
characterize the optimal policy for application invocations
in terms of the behavior of the Hazard rate. We apply this
to derive optimal policies when the arrival of application
invocations follow a Poisson process or a Hawkes process,
which are specific cases of arrival requests that have a con-
stant Hazard rate and a monotone decreasing Hazard rate
respectively.

Proofs omitted from this and subsequent sections of the
paper can be found in the Appendix.

Lemma 1. The expected cost of a cache policy over an
inter-arrival is E[cost(π(·|Hm−1))] =

ccs +

∫ ∞

0

π(x|Hm−1) · g(x|Hm−1) dx,

where the instantaneous cost at x units after the most recent
arrival at tm−1 is

g(x|Hm−1) = cp ·
(
1− F (x|Hm−1)

)
− ccs · f(x|Hm−1).

Using the characterization of the cost of a policy from
Lemma 1, Theorem 2 observes that the sign of g (which
determines the optimal policy) is entirely determined by the
hazard rate and costs.

Theorem 2. The points Li of the sequence of keep-
alive windows over an inter-arrival for the optimal pol-
icy πopt(·|Hm−1) are at 0, ∞, or solutions to the equation
cp − (ccs · λ(x|Hm−1)) = 0 where the sign changes.

We now examine several special cases of Theorem 2 with
particularly natural structure. Our first, Corollary 2.1, de-
scribes the optimal policy when the hazard rate of the arrival
requests are (weakly) decreasing. This case includes Pois-
son and Hawkes processes and is the main case we evaluate
in our simulations.

Corollary 2.1. If the hazard rate is weakly decreasing, the
optimal policy πopt(x|Hm−1) is a single keep-alive window
starting at τpw = 0, and is given by

πopt(·|Hm−1) =

{
1 , ∀x ∈ [0, τopt,Hm−1

]

0 , otherwise
, where

1. τopt,Hm−1 = ∞, i.e., to have the keep-alive window

always be active when ∀x, cp
ccs

< λ(x|Hm−1),

2. τopt,Hm−1
= 0, i.e., not cache and always have a cold

start when
cp
ccs

> λ(x = 0|Hm−1)

3. a keep-alive window of length τopt,Hm−1 given by the
solution to the equation
cp
ccs

=
f(x = τopt,Hm−1

|Hm−1)

1− F (x = τopt,Hm−1 |Hm−1)
, otherwise.

Next, Corollary 2.2, states the optimal policy when the haz-
ard rate is instead (weakly) increasing.

Corollary 2.2. If the hazard rate is weakly increasing, the
optimal policy πopt(·|Hm−1) is a single keep-alive window
with τka = ∞ and a pre-warming window, and is given by

πopt(x|Hm−1) =

{
1, τpw,Hm−1

≤ x

0, otherwise
, where

1. τpw,Hm−1 = 0, i.e., to have the keep-alive window

always be active when ∀x, cp
ccs

< λ(x|Hm−1),

2. τpw,Hm−1
= ∞, i.e., to always have a cold start when

∀x, cp
ccs

> λ(x|Hm−1) .

3. τpw,Hm−1 satisfies the equation
cp
ccs

=
f(x = τpw,Hm−1 |Hm−1)

1− F (x = τpw,Hm−1
|Hm−1)

, i.e., an infinite

keep-alive window after a pre-warming window of
length τpw,Hm−1 when cp − ccsλ(x = 0|Hm−1) > 0
and changes sign.

More generally, we can combine these to understand the
optimal policy when the hazard rate has a single peak: it
is first increasing and then decreasing. In this case using
both τpw and τka is optimal (apart from degenerate cases).
This is the form used by Shahrad et al. [2020], and so our
results characterize the class of applications for which their
approach could be optimal if properly tuned as well as
determining how to optimally tune the parameters.2 One
notable example of this class of application is applications
triggered by a timer. We would expect λ to be 0 until the
timer is due to elapse, rapidly increase as we approach our
estimate of when the timer will trigger, and then eventually
decrease if we appear to be wrong in our estimate of when
the timer will next trigger.

We can also apply Theorem 2 to applications where the
hazard rate of the arrival requests for application invocation
has a single valley. This might be the case if the initial
invocation is likely to trigger several others (in the same

2They use a simple rule of pre-warming at the 5th percentile
and ending the keep-alive at the 99th percentile while our ap-
proach would optimize those based on the costs and distribution
characteristics.

Figure 1: Optimal policy with a single valley hazard rate

spirit as a Hawkes process) but then once the application
finishes there is a gap before it is invoked again, perhaps due
to a timer. As Figure 1 shows the optimal keep-alive policy
has at-most two keep-alive windows, whose lengths can be
computed using Theorem 2. Of course, we can apply this
approach to more complex situations resulting in even more
windows if the distributional information available supports
that (e.g. for a timer that only causes an arrival under certain
additional conditions).

4.1 POISSON PROCESS

Our first concrete application of Theorem 2 is when the
distribution of the arrival requests follows a Poisson process.
For the Poisson process, the relevant quantities are:

• f(t) = λ · e−λ·t for t ≥ 0, where λ > 0 is a constant
parameter.

• F (t) = 1− e−λ·t.

• λ(t) =
f(t)

1− F (t)
= λ.

From Corollary 2.1 we see that, barring degeneracy, the
optimal policy for a Poisson process is one of two possibil-
ities since the Hazard rate is constant. The optimal policy
when

cp
ccs

≤ λ is to have a keep-alive window active at

all times, while when
cp
ccs

> λ the optimal policy is to

always experience a cold start. The cost of the optimal pol-
icy when

cp
ccs

> λ is ccs. Since the expected inter-arrival

time is
1

λ
, the expected cost of the optimal policy when

cp − (ccs · λ) ≤ 0 is
cp
λ

.

4.2 HAWKES PROCESS

In this subsection, we explore the more interesting case of
optimal policies when the distribution of the application
invocations follow a Hawkes process. The Hawkes process
is a point process whose hazard rate, or conditional intensity,

is given by

λ(t|H) =
f(t|H)

1− F (t|H)
= λ0 +

∑
tj∈H

µ(t− tj)

for all t > ti−1, where H = {t1, t2, · · · , ti−1} denotes
the history of invocations of the function, λ0 refers to the
background intensity, and µ is the excitation function. We
limit our analysis to the exponential excitation function
because we need to pick a concrete instantiation to solve for
a closed form for optimal window length. The exponential
excitation function is expressed as, µ(t) = αe−β·t. The
constant α > 0 captures the increase in the intensity from
an arrival, while the constant β > 0 is the decay rate of
the arrival’s influence. The conditional intensity of the self-
exciting Hawkes process with an exponential excitation
function is thus,

λ(t|H) = λ0 +
∑
tj∈H

α · e−β·(t−tj) ,∀ t > ti−1.

Corollary 2.1 characterizes the optimal policy when the
distribution of arrival requests follows the Hawkes process
to be one of the following policies,

• The keep-alive window is to always be active with
τopt,Hm−1

= ∞ when, as in the Poisson case, the back-

ground intensity is sufficiently high:
cp
ccs

< λ0.

• Experience a cold start with τopt,Hm−1 = 0 when
cp
ccs

> λ(x|Hm−1)), after the most recent request.

• The keep-alive window is given by the expression

τopt,Hm−1
=
1

β

(
logα+ log

(m−1∑
j=1

eβ(tj−tm−1)
)

− log
(cp
ccs

− λ0

))
otherwise. This expression is obtained by substitut-
ing the conditional intensity of the Hawkes process in
Corollary 2.1 and solving for τopt,Hm−1

as detailed in
the Appendix.

4.3 OPTIMIZED-TTL KEEP-ALIVE WINDOWS
FOR HAWKES PROCESSES

Corollary 2.1 provides the optimal history-dependent policy
for Hawkes processes. We conclude this section by showing
how it also provides motivation for a history-independent
heuristic for Hawkes processes. In Section 5 we show this
heuristic has strong empirical performance.

Our proposal is to empirically determine a keep-alive win-
dow length that works well for “typical” windows. Intu-
itively, this can be done by sampling a number of histories,

computing the optimal policy for each history, and com-
puting a summary statistic. We find that the average of the
optimal policies works well. We discuss the simulation of a
Hawkes process from its parameters in Section 5

Corollary 2.3. When the parameters of the Hawkes process
are such that cp − (ccs · λ(x|H)) = 0 has a solution, the
optimal policy has a history independent lower bound, and
an upper bound expressed as follows

τopt,H ≥ 1

β
·
(
logα− log

(cp
ccs

− λ0

))
τopt,H ≤ 1

β
·
(
logα+ log δ + 1− log

(cp
ccs

− λ0

))
where δ satisfies

m−1∑
i=m−δ

eβ·(ti−tm−1) ≥ 1

2

m−1∑
i=1

eβ·(ti−tm−1)

That is, the most recent δ arrivals provide at least half the
total weight of the history dependent term. This can be
thought of as only having δ arrivals that are recent enough
to matter. Apart from rare scenarios where δ is much larger
or smaller than typical given the Hawkes process parameters,
this bound is relatively insensitive to the exact history due
to the log. In our simulations, particularly Section 5.2, and
Section 5.3, rather than estimate δ we directly estimate
a threshold by simulating sample points for the Hawkes
process with the estimated parameters.

We also considered other approaches to deriving history-
independent policies. The solution to the classic ski rental
problem shows that setting τka = ccs/cp always has a cost
within a factor of 2 of that of the optimal history-dependent
policy for Hawkes processes. This bound can be tightened
by setting τka in a way that depends on the parameters of
the Hawkes process. However, we found that in practice this
approach was overly conservative, so we defer its analysis
to the appendix.

5 SIMULATIONS

5.1 PERFORMANCES ON SIMULATED HAWKES
PROCESSES

Our theoretical results derived the optimal policy and argued
that optimized-TTL, which uses averaging, provided a good
heuristic which is independent of history. To better under-
stand its expected performance, we evaluate both policies
on simulated application invocations governed by a Hawkes
process. We use Ogata’s modified thinning algorithm Ogata
[1981] to generate the samples of the Hawkes process. We
generate 600 sample points of function invocations in a
single realization of the Hawkes process. We evaluate the
policies by taking the mean over 100 realizations.

Figure 2 shows the average cost of the policies for the three
possible cases of the optimal policy given in Corollary 2.1. It
does so by varying ccs while the value of cp is normalized to
1. The red curve shows the performance of the fixed policy
as the length of the fixed keep-alive window is varied, while
the blue horizontal line indicates the performance of the
optimal history dependent policy. The red dot indicates the
cost of the fixed policy evaluated at the length of the average
optimal keep-alive window (i.e optimized-TTL).

In Figure 2 (a), since cp/ccs is large compared to λ0, the
optimal keep-alive policy is to have a keep-alive window
length of 0. In other words, the optimal policy is to encounter
a cold start for every invocation. Here, the optimized-TTL
policy is the same as optimal since the optimized-TTL win-
dow is 0.

In Figure 2 (b), the red dot indicating the average window
length used by the optimal policy is also near the point where
the average cost of the fixed window keep-alive policy curve
changes from a decreasing function of window length to an
increasing function of window length. Intuitively, this point
on the red curve corresponds to the point τopt where the
averaged expected cost function g(x) = cp(1 − F (x)) −
ccsf(x), where the averages are taken over the different
histories and runs, changes from negative to positive. It is
suggestive of some of the underlying regularities of Hawkes
processes that the average of the optimal solutions and the
optimal solution to the average problem are close to each
other. Thus, optimized-TTL finds a near-optimal point in the
space of fixed policies and the performance there is close to
the true optimum.

In Figure 2 (c), we see that the optimal keep-alive policy
is to always be active. Here, there is no indication of a red
dot as it is out of bounds for the plot, where the red curve
asymptotes toward the blue.

In the appendix we provide results for additional parameter
settings showing the strong performance of optimized-TTL
across a wide range of parameter settings.

5.2 AZURE DATA TRACE EXPERIMENTAL
SETUP

We evaluate the performance of the optimal policy and the
optimized-TTL policy by comparing them with the fixed
keep-alive policy on a subset of Azure traces released by
Shahrad et al. [2020].3. The traces collect invocation counts
of functions binned in 1-minute intervals. In Azure Func-
tions, an application comprises of multiple functions where
each function performs a specific task for the application.
Since allocation of resources is based on applications (which
are the unit of caching), we aggregate the bin counts of the
function invocations belonging to the same application.

3These traces are available at https://github.com/
Azure/AzurePublicDatset

https://github.com/Azure/AzurePublicDatset
https://github.com/Azure/AzurePublicDatset

(a) cp = 1, ccs = 1 (b) cp = 1, ccs = 10 (c) cp = 1, ccs = 120

Figure 2: Comparisons between optimal and fixed policies with Hawkes process parameters λ0 = 0.01, α = 0.5, β = 1.0

We evaluate performance using two metrics. The first is
the amount of memory time that is wasted, normalized to
the amount wasted by the default policy of a 10 minute
keep-alive window. We accumulate the wasted memory time
across all applications for a given policy. We assume the
function execution times to be zero, to quantify the worst
case wasted memory time. For this calculation we assume
that all the applications use the same amount of memory.
The second is the number of cold starts. We evaluate the
cold start behavior by computing the average number of
cold starts per application. We assume the first invocation of
an application to be a cold start. These modeling decisions
are generally consistent with those of Shahrad et al. [2020].

The fixed keep-alive policy was implemented by adding
a fixed keep-alive window after an application invocation
of, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 45 min-
utes, 60 minutes, 90 minutes, or 120 minutes. The other
two policies required fitting a Hawkes Process to the invo-
cation pattern of an application. The Azure traces collect
the data of application invocations for 14 days from July
15th to July 28th 2019. To avoid horizon effects or assuming
unreasonable amounts of prior data about an application,
we estimated the Hawkes process parameters based on the
application invocations on day 8. We test for the appropriate-
ness of the estimated Hawkes process parameters by using
the corresponding application invocations on day 7 . We use
a separate day of application invocations to check for the
appropriateness of the Hawkes process parameters, since
the goodness of fit test is known to have some limitations
when the same data is used both to estimate the parame-
ters and to compute the KS- statistic. Reynaud-Bouret et al.
[2014] propose a solution associated with sub-sampling.
(Van Hasselt et al. [2016] show similar issues for training
and applying double Deep Q-learning Networks.) In the Ap-
pendix, we analyse this issue in detail. For simplicity, rather
than sub-sampling the data we take advantage of additional
data we are not currently using (e.g. day 7). We evaluate the
policies for the application invocations during day 9. In our
initial exploration we found that the results were largely the
same when the policies were tested on other days instead,
so to save on simulation time (since we are working with a
datacenter-scale trace) we limited the evaluation to a single

day.

We know that the data contains applications triggered by
timers and other patterns which are quite different from
Hawkes processes. Therefore, we applied our policies only
to those applications which were a good fit to a Hawkes pro-
cess. The estimates of the Hawkes process parameters were
computed as the minimum of the negative log-likelihood as
described by Laub et al. [2021]. The log-likelihood for the
estimation of Hawkes process parameters λ0, α, and β is

k∑
i=1

log(λ0 + αA(i))− λtk +
α

β

k∑
i=1

[
e−β(tk−ti) − 1

]
where t1, t2, · · · , tk are the k invocations of the appli-
cation, and A(i) =

∑i−1
j=1 e

−β(ti−tj). The appropriateness
of the application invocations being modeled by a Hawkes
process is then determined by applying the Random time
change theorem on the estimated parameters as detailed by
Laub et al. [2021]. The similarity measure of the distribu-
tion of the application invocations to a Hawkes process was
determined via the Kolmogorov–Smirnov (KS) test. After
testing various thresholds, we applied the optimal keep-alive
policy based on the estimated Hawkes process parameters
to the 25% of application processes which had the best
goodness of fit. The default fixed policy was used for the
remaining 75%.

From Section 4.2, we know that, apart from degen-
erate cases, the optimal policy is given by τopt,H =
1
β ·

(
logα+ log

(∑m−1
j=1 eβ(tj−tm−1)

)
− log

(
cp
ccs

− λ0

))
.

The second term of logarithmic sum of exponential ex-
pressed as log

(∑m−1
j=1 eβ(tj−tm−1)

)
represents the weight

of the previous arrivals. In order to compute the optimal
keep-alive window efficiently for applications with frequent
arrivals we consider no more than 200 previous arrivals.
We normalize cp = 1 and compute the optimal policy for
ccs = 5, 10, 20, 30, 45, 60, 90, and 120. These values of ccs
are chosen in order to match the lengths used by the fixed
policy.

After obtaining the applications that are a good fit for the
Hawkes process with its estimated parameters, we apply

the optimized-TTL policy described as the average opti-
mal keep-alive window policy over simulated arrivals. We
compute the optimized-TTL policy based on the simulated
arrivals instead of the arrivals available in the dataset be-
cause we eliminate any possible bias from using the same
data to both fit the distribution and optimize the window
lengths. Also, this shows that if the serverless provider has
a lack of data for a particular Hawkes process application, it
is still possible to get nearly equivalent performance to the
optimal policy. We generate a single simulation of arrivals
for each application based on the estimated Hawkes process
parameters for 24 hours (1440 minutes). The average of
the optimal keep-alive windows were computed for each
application as their optimized-TTL based on the simulated
arrivals for the various values of ccs.

5.3 AZURE DATATRACE PERFORMANCE
RESULTS

Overall, our results show that applying the optimal policy
to applications fit by a Hawkes process yields benefits that
are economically significant at the scale of a datacenter. Fur-
thermore, the optimized-TTL policy yields near-equivalent
results with no need to update based on history.

Figure 3 (a,b) plots the trade-off curve between the aver-
age number of cold starts per application and the normal-
ized wasted memory for optimal, optimized-TTL, and fixed
policies. Figure 3 (a) includes only the treated (Hawkes-
process-like) applications, while Figure 3 (b) includes all
applications. We observe from Figure 3, that the optimal
policy Pareto dominates the fixed keep-alive policy. We see
that for high values of ccs both metrics are almost the same
for all policies. This is because, the optimal policy for many
applications was selected to be the upper bound. Similarly,
for low values of ccs many applications use the lower bound.
For intermediate values of ccs we see that the optimal pol-
icy has almost the same number of normalized cold starts
but lower amount of wasted memory. Furthermore, the per-
formance of the optimized-TTL policy is very similar to
the optimal policy so we can get these benefits. Of course,
since we only treat 25% of applications, these benefits are
attenuated when considering all applications.

While the benefits are small in absolute terms we argue they
are still economically significant. We quantify them by com-
puting the area between the Pareto curve of the fixed and the
other two policies. By dividing the area between the Pareto
curves with the maximum number of average aggregate cold
starts encountered by an application (effective x-axis length)
or maximum normalized wasted memory (effective y-axis
length). This gives a sense of the average improvement
across the curve. We record the results in Table 1.

They show that the improvement of the optimized-TTL pol-
icy over the fixed policy is around 95% of that of the optimal

policy indicating that the optimized-TTL policy performs
effectively close to the history dependent policy. Given that
wasted memory in the existing system is normalized to 1,
average improvements of approximately 0.045 on treated ap-
plications and 0.0095 overall represent an overall decrease
in resource use for the cache on the order of 4.5% on treated
applications (0.95% overall).4 While small in absolute terms,
percentage improvements of this scale translate to tens or
hundreds of millions of dollars in cost savings for a major
cloud provider Dierks et al. [2019]. Alternatively, this same
improvement could be used to improve customer experience,
reducing the number of cold starts by an average of about
1.012 per day for treated customers.

To put these results in further context, recall that we are
comparing against the fixed policy tuned optimally per our
theory. In terms of average cost, simply using the default
choice of 10 minutes would be substantially worse in many
cases. Furthermore, our theory shows that this fixed policy
is not a weak baseline but has strong theoretical properties
in its own right. (See discussion at the end of Section 4.3.)

Finally, to give a bound on how much of the possible perfor-
mance improvement our approach achieves, we also evalu-
ate the performance of the offline optimal policy in Figure 3
for (c) only the applications that have a Hawkes process dis-
tribution (d) and all applications. Here, the offline optimal
policy chooses to have a cold start if cpxm ≥ ccs, other-
wise the keep-alive window is of length xm. Here, xm is
the inter-arrival time for the m-th arrival of the application
invocation. That is, this policy cheats in that it is tuned to the
actual realized pattern of arrivals rather than any prediction.
In this sense it provides a bound on how much we could
hope to achieve. The results from Figure 3 (c), and also
quantified in Table 1, show that the optimal Hawkes policy
achieves a meaningful fraction of it. Figure 3 (d) includes a
comparison to the improvements reported by Shahrad et al.
[2020]. They report a 1.5x improvement in wasted memory
at essentially no cost in cold starts, which is substantially
larger than what even the offline optimal can achieve (1.05x).
This highlights how much of their improvement comes from
pre-warming apps, for example timers, which our theoretical
results show is not necessary for Hawkes processes. They
combine sophisticated predictive modeling with a simple
rule for determining pre-warming and keep-alive decisions.
In contrast, our results provide a sophisticated rule for these
decisions, making them complementary.

6 CONCLUSION

Motivated by applications such as serverless computing,
we presented a model of caching policies which captures

4Because of the shape of the curves in Figure 3, the benefits
may be modestly larger in practice because current operating point
is toward the right end of the plots where the gap tends to be larger.

(a) Hawkes process applications (b) All applications

(c) Hawkes process applications (d) All applications

Figure 3: Trade-off curve of average number of cold starts vs normalized wasted memory for various policies

Policy Avg. Cold Start Savings (Hawkes) (All) Avg. Memory Savings (Hawkes) (All)
Optimal 1.012 0.1296 0.0457 0.0095

Optimized-TTL 0.965 0.1196 0.0436 0.0088
Offline-Optimal 4.038 1.29 0.269 0.0948

Table 1: Average performance improvement over fixed policy

the trade-off between the cost of keeping objects in the
cache and the cost of cache misses. We characterized op-
timal caching policies and examined the optimal policies
in detail for Hawkes processes. Since optimal policies for
Hawkes processes depend on the history of arrivals, we
also developed history-independent policies based on the
heuristic of averaging the optimal keep-alive window from
simulated predictions of arrivals. Evaluation on Hawkes
process simulations provided insights into the tuning and
expected performance of these approximations. Evaluation
on a data trace of Azure functions showed this approach can
yield small,yet economically meaningful improvements at
the scale of a datacenter. Our results point to several avenues
for future work. Since our approach allows us to character-
ize optimal policies on a per-item basis, it is naturally suited
for exploring customization based on individual customer
utilities rather than an overall system average as done in our

experiments and most prior work. Another direction would
be to use our model to examine optimal policies for more
complex scenarios, such as a hierarchy of caches.

References

Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad Ismail,
et al. A survey of web caching and prefetching. Int. J.
Advance. Soft Comput. Appl, 3(1):18–44, 2011.

Yossi Azar, Inna Kalp-Shaltiel, Brendan Lucier, Ishai Men-
ache, Joseph Naor, and Jonathan Yaniv. Truthful online
scheduling with commitments. In Proceedings of the Six-
teenth ACM Conference on Economics and Computation,
pages 715–732, 2015.

Pariya Babaie, Eman Ramadan, and Zhi-Li Zhang. Cache

network management using big cache abstraction. In
IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pages 226–234. IEEE, 2019.

Moshe Babaioff, Yishay Mansour, Noam Nisan, Gali Noti,
Carlo Curino, Nar Ganapathy, Ishai Menache, Omer Rein-
gold, Moshe Tennenholtz, and Erez Timnat. Era: A
framework for economic resource allocation for the cloud.
In Proceedings of the 26th International Conference on
World Wide Web Companion, pages 635–642, 2017.

Abdullah Balamash and Marwan Krunz. An overview of
web caching replacement algorithms. IEEE Commu-
nications Surveys & Tutorials, 6(2):44–56, 2004. doi:
10.1109/COMST.2004.5342239.

Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay
Shakkottai, and Ramesh Sitaraman. Adaptive ttl-based
caching for content delivery. IEEE/ACM transactions on
networking, 26(3):1063–1077, 2018.

Daniel S Berger, Philipp Gland, Sahil Singla, and Florin
Ciucu. Exact analysis of ttl cache networks. Performance
Evaluation, 79:2–23, 2014.

Gideon Blocq, Yoram Bachrach, and Peter B Key. The
shared assignment game and applications to pricing in
cloud computing. In AAMAS, pages 605–612. Citeseer,
2014.

Sofia Ceppi and Ian Kash. Personalized payments for
storage-as-a-service. ACM SIGMETRICS Performance
Evaluation Review, 43(3):83–86, 2015.

Hao Che, Ye Tung, and Zhijun Wang. Hierarchical web
caching systems: Modeling, design and experimental re-
sults. IEEE journal on Selected Areas in Communications,
20(7):1305–1314, 2002.

Mostafa Dehghan, Laurent Massoulie, Don Towsley,
Daniel Sadoc Menasche, and Yong Chiang Tay. A
utility optimization approach to network cache design.
IEEE/ACM Transactions on Networking, 27(3):1013–
1027, 2019.

Ludwig Dierks and Sven Seuken. The competitive effects
of variance-based pricing. In Proceedings of the Twenty-
Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pages 362–370,
2021.

Ludwig Dierks, Ian Kash, and Sven Seuken. On the cluster
admission problem for cloud computing. In Proceedings
of the 14th Workshop on the Economics of Networks,
Systems and Computation, pages 1–6, 2019.

Andrés Ferragut, Ismael Rodríguez, and Fernando Paganini.
Optimizing ttl caches under heavy-tailed demands. ACM
SIGMETRICS Performance Evaluation Review, 44(1):
101–112, 2016.

Eric Friedman, Ali Ghodsi, and Christos-Alexandros Pso-
mas. Strategyproof allocation of discrete jobs on multiple
machines. In Proceedings of the fifteenth ACM conference
on Economics and computation, pages 529–546, 2014.

Eric Friedman, Miklós Z Rácz, and Scott Shenker. Dynamic
budget-constrained pricing in the cloud. In Advances
in Artificial Intelligence: 28th Canadian Conference on
Artificial Intelligence, Canadian AI 2015, Halifax, Nova
Scotia, Canada, June 2-5, 2015, Proceedings 28, pages
114–121. Springer, 2015.

Alexander Fuerst and Prateek Sharma. Faascache: keeping
serverless computing alive with greedy-dual caching. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 386–400, 2021.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-
Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar,
et al. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383,
2019.

Ian Kash, Ariel D Procaccia, and Nisarg Shah. No agent
left behind: Dynamic fair division of multiple resources.
Journal of Artificial Intelligence Research, 51:579–603,
2014.

Ian A Kash, Peter Key, and Warut Suksompong. Simple
pricing schemes for the cloud. ACM Transactions on
Economics and Computation (TEAC), 7(2):1–27, 2019.

George Kesidis. Overbooking microservices in the cloud.
arXiv preprint arXiv:1901.09842, 2019.

Patrick J Laub, Young Lee, and Thomas Taimre. The ele-
ments of hawkes processes, 2021.

Xiayue Charles Lin, Joseph E Gonzalez, and Joseph M
Hellerstein. Serverless boom or bust? an analysis of
economic incentives. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20), 2020.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-
ile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lu-
cien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
et al. Ofc: an opportunistic caching system for faas plat-
forms. In Proceedings of the Sixteenth European Confer-
ence on Computer Systems, pages 228–244, 2021.

Sushirdeep Narayana and Ian A Kash. Fair and efficient
allocations with limited demands. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pages 5620–5627, 2021.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. {SOCK}: Rapid task provisioning with
{Serverless-Optimized} containers. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
57–70, 2018.

Yosihiko Ogata. On lewis’ simulation method for point
processes. IEEE transactions on information theory, 27
(1):23–31, 1981.

Nitish K Panigrahy, Jian Li, Faheem Zafari, Don Towsley,
and Paul Yu. What, when and where to cache: A unified
optimization approach. arXiv preprint arXiv:1711.03941,
2017.

David C Parkes, Ariel D Procaccia, and Nisarg Shah. Be-
yond dominant resource fairness: Extensions, limitations,
and indivisibilities. ACM Transactions on Economics and
Computation (TEAC), 3(1):1–22, 2015.

Patricia Reynaud-Bouret, Vincent Rivoirard, Franck Gram-
mont, and Christine Tuleau-Malot. Goodness-of-fit tests
and nonparametric adaptive estimation for spike train
analysis. The Journal of Mathematical Neuroscience, 4:
1–41, 2014.

Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri,
Pragna Gopa, Paul Batum, Neeraja J Yadwadkar, Rodrigo
Fonseca, Christos Kozyrakis, and Ricardo Bianchini. Faa
$ t: A transparent auto-scaling cache for serverless appli-
cations. In Proceedings of the ACM Symposium on Cloud
Computing, pages 122–137, 2021.

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
breaker: warming serverless functions better with hetero-
geneity. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 753–767, 2022.

Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar
Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano,
Colby Tresness, Mark Russinovich, and Ricardo Bian-
chini. Serverless in the wild: Characterizing and optimiz-
ing the serverless workload at a large cloud provider. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 205–218, 2020.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Changjun Wang, Weidong Ma, Tao Qin, Xujin Chen, Xi-
aodong Hu, and Tie-Yan Liu. Selling reserved instances
in cloud computing. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Risten-
part, and Michael Swift. Peeking behind the curtains of
serverless platforms. In 2018 {USENIX} Annual Techni-
cal Conference ({USENIX}{ATC} 18), pages 133–146,
2018.

	Introduction
	Related Work
	Model
	Characterization of Optimal Policies
	Poisson Process
	Hawkes Process
	Optimized-TTL Keep-Alive Windows for Hawkes Processes

	Simulations
	Performances on Simulated Hawkes Processes
	Azure Data trace Experimental Setup
	Azure Datatrace Performance Results

	Conclusion

