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Abstract

Knowledge distillation (KD) is a powerful strat-
egy for training deep neural networks (DNNs). Al-
though it was originally proposed to train a more
compact “student” model from a large “teacher”
model, many recent efforts have focused on adapt-
ing it to promote generalization of the model it-
self, such as online KD and self KD. Here, we
propose an accessible and compatible strategy
named Spaced KD to improve the effectiveness of
both online KD and self KD, in which the student
model distills knowledge from a teacher model
trained with a space interval ahead. This strategy
is inspired by a prominent theory named spacing
effect in biological learning and memory, posit-
ing that appropriate intervals between learning
trials can significantly enhance learning perfor-
mance. With both theoretical and empirical anal-
yses, we demonstrate that the benefits of the pro-
posed Spaced KD stem from convergence to a flat-
ter loss landscape during stochastic gradient de-
scent (SGD). We perform extensive experiments
to validate the effectiveness of Spaced KD in im-
proving the learning performance of DNNs (e.g.,
the performance gain is up to 2.31% and 3.34%
on Tiny-ImageNet over online KD and self KD,
respectively). Our codes have been released on
github https://github.com/SunGL001/
Spaced-KD.

1. Introduction
Knowledge distillation (KD) is a powerful technique
to transfer knowledge between deep neural networks
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Figure 1. Diagram of Spaced KD. In online KD, the teacher and
student are two individual networks. In self KD, we follow the
prior work (Zhang et al., 2019) that distills knowledge from the
deepest layer to the shallower layers of the same network. In
Spaced KD, we train the teacher with a controllable space interval
steps ahead and then distill its knowledge to the student network.

(DNNs) (Gou et al., 2021; Wang & Yoon, 2021). Despite
its extensive applications to construct a more compact “stu-
dent” model from a converged large “teacher” model (aka
offline KD), there have been many recent efforts using KD
to promote generalization of the model itself, such as on-
line KD (Zhang et al., 2018; Zhu et al., 2018; Chen et al.,
2020) and self KD (Zhang et al., 2019; Mobahi et al., 2020).
Specifically, online KD simplifies the KD process by train-
ing the teacher and the student simultaneously, while self
KD involves using the same network as both teacher and
student. However, as these paradigms can only moderately
improve learning performance, how to design a more de-
sirable KD paradigm in terms of generalization remains an
open question.

Compared to DNNs, biological neural networks (BNNs) are
advantageous in learning and generalization with specialized
adaptation mechanisms and effective learning procedures.
In particular, it is commonly recognized that extending the
interval between individual learning events can considerably
enhance the learning performance, known as the spacing
effect (Ebbinghaus, 2013; Smolen et al., 2016). This high-
lights the benefits of spaced study sessions for improving the
efficiency of learning compared to continuous sessions, and
has been described across a wide range of species from in-
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vertebrates to humans (Beck et al., 2000; Pagani et al., 2009;
Menzel et al., 2001; Anderson et al., 2008; Bello-Medina
et al., 2013; Medin, 1974; Robbins & Bush, 1973).Taking
human learning as an example, the spacing effect could
enhance skill and motor learning (Donovan & Radosevich,
1999; Shea et al., 2000), classroom education (Gluckman
et al., 2014; Roediger & Byrne, 2008; Sobel et al., 2011),
and the generalization of conceptual knowledge in chil-
dren (Vlach, 2014).

Inspired by biological learning, we propose to incorporate
such spacing effect into KD (referred to as Spaced KD, see
Fig. 1) as a general strategy to promote the generalization
of DNNs (see Fig. 2). We first provide an in-depth the-
oretical analysis of the potential benefits of Spaced KD.
Compared to regular KD strategies, the proposed Spaced
KD helps DNNs find a flat minima during stochastic gra-
dient descent (SGD) (Sutskever et al., 2013), which has
proven to be closely related to generalization. We then
perform extensive experiments to demonstrate the effective-
ness of Spaced KD, across various benchmark datasets and
network architectures. The proposed Spaced KD achieves
strong performance gains (e.g., up to 2.31% and 3.34% on
Tiny-ImageNet over regular KD methods of online KD and
self KD, respectively) without additional training costs. We
further demonstrate the robustness of the space interval, the
critical period of the spacing effect, and its plug-in nature to
a broad range of advanced KD methods.

Our contributions can be summarized as follows: (1) We
draw inspirations from the paradigm of biological learning
and propose to incorporate its spacing effect to improve
online KD and self KD; (2) We theoretically analyze the
potential benefits of the proposed spacing effect in terms
of generalization, connecting it with the flatness of loss
landscape; and (3) We conduct extensive experiments to
demonstrate the effectiveness and generality of the proposed
spacing effect across a variety of benchmark datasets, net-
work architectures, and baseline methods.

2. Related Work
Knowledge Distillation (KD). Representative avenues of
KD can be generally classified into offline KD, online KD,
and self KD, based on whether the teacher model is pre-
trained and remains unchanged during the training process.
Offline KD involves a one-way knowledge transfer in a two-
phase training procedure. It primarily focuses on optimizing
various aspects of knowledge transfer, such as designing the
knowledge itself (Hinton et al., 2015; Adriana et al., 2015),
and refining loss functions for feature matching or distri-
bution alignment (Huang & Wang, 2017; Asif et al., 2019;
Mirzadeh et al., 2020b). In contrast, online KD simplifies
the KD process by training both teacher and student simul-
taneously and often outperforms offline KD. For instance,

DML (Zhang et al., 2018) implements bidirectional distilla-
tion between peer networks. For self KD, the same network
is used as both teacher and student (Zhang et al., 2019; Das
& Sanghavi, 2023; Mobahi et al., 2020; Zhang & Sabuncu,
2020; Yang et al., 2019; Lee et al., 2019). In this paper,
the self KD we refer to is the distillation between different
layers within the same network (Zhang et al., 2019; Yan
et al., 2024; Zhai et al., 2019). However, existing methods
for online KD and self KD often fail to effectively utilize
high-capacity teachers over time, making it an intriguing
topic to further explore the relationships between teacher
and student models in these environments.

Adaptive Distillation. Recent studies have found that the
difference in model capacity between a much larger teacher
network and a much smaller student network can limit dis-
tillation gains (Liu et al., 2020a; Cho & Hariharan, 2019;
Liu et al., 2020b). Current efforts to address this gap fall
into two main categories: training paradigms (Gao et al.,
2018) and architectural adaptation (Kang et al., 2020; Gu &
Tresp, 2020). For instance, ESKD (Cho & Hariharan, 2019)
suggests stopping the training of the teacher early, while
ATKD (Mirzadeh et al., 2020a) employs a medium-sized
teacher assistant for sequential distillation. SHAKE (Li &
Jin, 2022) introduces a shadow head as a proxy teacher for
bidirectional distillation with students. However, existing
methods usually implement adaptive distillation by adjust-
ing teacher-student architecture from a spatial level. In con-
trast, Spaced KD provides an architecture- and algorithm-
agnostic way to improve KD from a temporal level.

Flatness of Loss Landscape. The loss landscape around
a parameterized solution has attracted great research atten-
tion (Keskar et al., 2016; Hochreiter & Schmidhuber, 1994;
Izmailov et al., 2018; Dinh et al., 2017; He et al., 2019).
A prevailing hypothesis posits that the flatness of minima
following network convergence significantly influences its
generalization capabilities (Keskar et al., 2016). In general,
a flatter minima is associated with a lower generalization
error, which provides greater resilience against perturba-
tions along the loss landscape. This hypothesis has been
empirically validated by studies such as (He et al., 2019).
Advanced advancements have leveraged KD techniques to
boost model generalization (Zhang et al., 2018; Zhao et al.,
2023; Zhang et al., 2019). Despite these remarkable ad-
vances, it remains a challenging endeavor to fully under-
stand the impact of KD on generalization, especially in
assessing the quality of knowledge transfer and the efficacy
of teacher-student architectures.

3. Preliminaries
In this section, we first present the problem setup and some
necessary preliminaries of KD. Then we describe the spac-
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ing effect in biological learning and discuss how it may
inspire the design of KD.

3.1. Problem Setup

We describe the problem setup with supervised learning of
classification tasks as an example. Given N training samples
Dtrain = {(xi, yi)}Ni=1 where xi ∈ Rd and yi ∈ Rc, the
neural network model fθ(·) : Rd 7→ Rc with parameters θ ∈
Rp is optimized by minimizing the empirical risk overDtrain
and evaluated over the test dataset Dtest. Using the SGD
optimizer (Sutskever et al., 2013), fθ(·) is updated for each
mini-batch of training data Bt = {(xi, yi) ∈ Dtrain}i∈It

,
It ⊆ {1, 2, · · ·N}:

θt+1 = θt −
η

B

∑
i∈It

∇θLi(θt), (1)

where Li(θ) = ltask(fθ(xi), yi) is a task-specific supervi-
sion loss. η and B = |It| denote the learning rate and batch
size, respectively. KD supports various kinds of interac-
tion between multiple neural networks. The teacher-student
framework we refer to here consists by default of a teacher
network gϕ(·) and a student network fθ(·), where the flow
of knowledge transfer is often one-direction: the learning of
f is guided by the output of g, but not vice versa. The loss of
student network f in KD is bi-component as a weighted sum
of task-specific and distillation loss (ltask and lKD), where a
hyperparameter α controls the impact of teacher guidance:

L(KD)
i (θ, ϕ) = (1− α)ltask(fθ(xi), yi) + αlKD(fθ(xi), gϕ(xi)).

(2)
In many applications, the teacher network g is often differ-

ent from and much larger than the student network to obtain
a more compact model. Meanwhile, there is an increasing
number of efforts to implement KD to improve generaliza-
tion for one particular architecture, where the teacher and
student may share a common framework but differ in the
random seeds for initialization. Some KD methods even
treat different parts within one single network as teacher and
student. Below we describe two representative methods:

Online KD. Though traditional KD assumes the teacher
network g as a pre-trained and powerful model, there ex-
ist scenarios where obtaining such a teacher is costly or
impractical. Online KD is proposed to learn from an on-
the-fly teacher network, allowing for dynamic adaptation
during student training. In online KD, the updating of g is
aligned with f for every mini-batch Bt with It (see Alg. 1
in Appendix A.10) 1:

ϕt+1 = ϕt −
η

B

∑
i∈It

∇ϕL
(teacher)
i (ϕt)

= ϕt −
η

B

∑
i∈It

∇ϕltask(gϕt(xi), yi).
(3)

The design of an online teacher is quite demand-oriented,
it could be simply a copy of the student network (Li et al.,

1For clarity, we use the same notation η, B and ltask to describe
the training of g and f , although they may select different training
algorithms and hyperparameter values in practice.

2022c; Wu & Gong, 2021). But to maintain a valid knowl-
edge gap between student and teacher, they are often ini-
tialized using different random seeds in practice. Besides,
the training process of teacher network could also be in-
tervened by auxiliary loss from students through reverse
distillation (Li & Jin, 2022; Qian et al., 2022; Shi et al.,
2021).

Self KD. As an alternate approach to a pre-trained teacher,
self KD utilizes the hidden information within the student
network to guide its learning process. Instead of relying on a
large external model, self KD achieves multiple knowledge
alignments by introducing auxiliary blocks or creating dif-
ferent representations of the same encoded data. For a block-
wise network, fθ = fθ1 ◦fθ2 ◦ · · · ◦fθm that is composed of
m consecutive modules, the whole network fθ is regarded
as teacher while shallower blocks fθ1∼k

= fθ1 ◦ · · · ◦ fθk
(1 ≤ k < m) are students. Following the common set-
ting (Zhang et al., 2019), θ is updated with multiple task
supervision and cross-layer distillation, which in fact can be
formulated in terms of L(teacher) in Eq. 3 and L(KD) in Eq. 2
(see Alg. 3 in Appendix A.10):

θt+1 = θt −
η

B

∑
i∈It

∇θ

[
L(teacher)

i (θ) +

m−1∑
k=1

L(KD)
i (θ1∼k, θ)

]
.

(4)

3.2. Spacing Effect in Biological Learning

Originally discovered by (Ebbinghaus, 2013), the biological
spacing effect highlights that the distribution of study ses-
sions across time is critical for memory formation. Then, its
functions have been widely demonstrated in various animals
and even humans (see Sec. 1). Many cognitive computing
models have proposed the concept of spaced learning and
described its dynamics, positing an optimal inter-trial inter-
val during memory formation (Landauer, 1969; Peterson,
1966; Wickelgren, 1972). These studies motivate us to fur-
ther investigate if a proper space interval could benefit KD
of possible data variability across training batches. Here we
provide more detailed explanations of the interdisciplinary
connections:

In machine learning, KD aims to optimize the parameters
of a student network with the help of a teacher network by
regularizing their outputs to be consistent in response to
similar inputs. As shown in a pioneering theoretical analy-
sis (Allen-Zhu & Li, 2020), KD shares a similar mechanism
with ensemble learning (EL) in improving generalization
from the training set to the test set. In particular, online KD
performs this mechanism at temporal scales, and self KD
can be seen as a special case of online KD. In comparison,
the biological spacing effect can also be generalized to a
kind of EL at temporal scales, as the brain network processes
similar inputs with a certain time interval and updates its
synaptic weights based on previous synaptic weights, which
allows for stronger learning performance at test time (Pagani
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et al., 2009; Smolen et al., 2016).

The proposed Spaced KD draws inspirations from the bi-
ological spacing effect and capitalizes on the underlying
connections between KD and EL. It incorporates a space
interval between teacher and student to improve generaliza-
tion. In particular, we hypothesize that an optimal interval
may exist between the learning paces of teacher and student
in DNNs, as in BNNs.

4. Spaced KD
In this section, we describe how Spaced KD is implemented
into online KD and self KD, and include a pseudo code
for each in Appendix A.10. We then theoretically analyze
the benefit of the proposed spacing effect in improving
generalization.

4.1. Incorporating Spacing Effect into KD

By applying spaced learning in the pipeline of KD, more
precisely in the context of online KD, we implement a pro-
cess of alternate learning between teacher and student. The
teacher network updates itself several steps in advance, and
then it helps the student network train on the same set of
batches. Formally, we define a hyperparameter Space Inter-
val denoted as s to represent the gap between the teacher’s
and student’s learning pace. Spaced KD is described as
follows (see Fig. 1):

1. First, we train the teacher gϕt(·) for s steps (from Bt
to Bt+s−1) according to the learning rule in Eq. 3,
obtaining an advanced teacher gϕt+s

(·) identical to
that of online KD.

2. Then, we freeze the parameters ϕt+s of our teacher g,
and start to transfer knowledge from it to the student
fθt(·) that lags behind over the same batches of training
data Bt∼t+s−1:

θt+s = θt −
η

B

t+s−1∑
j=t

∑
i∈Ij

∇θL
(KD)
i (θj , ϕt+s), (5)

where L(KD)
i is the same as Eq. 2 but using fixed teacher

parameters ϕt+s.

Intrinsically, Spaced KD is a special case of online KD. The
main difference that sets Spaced KD apart from online KD
is the less frequent updates of the teacher network, which
provides a relatively stable learning standard for the student
network and potentially contributes to its better generaliza-
tion ability than the online setting. In practice, we initialize
the teacher in Spaced KD using the same random seed as
the student. To take a closer look, we theoretically illus-
trate the impact of the proposed spacing effect on KD with
step-by-step mathematical derivations in the next section.

4.2. Theoretical Analysis

To understand why Spaced KD might provide better gener-
alization than online KD2, we analyze the Hessian matrix of
the loss function for the student network in both scenarios.
The Hessian matrix plays a crucial role in understanding
the curvature of the loss landscape. In literature, various
metrics related to the Hessian matrix have been adopted to
evaluate the flatness of a loss minimum after training con-
vergence, reflecting the generalization ability of the trained
model (Krizhevsky et al., 2009; Blanc et al., 2020; Damian
et al., 2021; Zhou et al., 2020). Here we choose the Hes-
sian trace as a representative for convenience. A smaller
Hessian trace indicates a flatter loss landscape, which has
also been proved to be related to the upper bound of test set
generalization error.
Setup. For simplicity we set the dimension of class space
as c = 1, and the extension of c > 1 is straightforward. Let
the mean square error (MSE) be the task-specific loss. The
KD loss characterizes the distance between two distributions
ŷ and y: ltask(ŷ, y) = lKD(ŷ, y) =

1
2 (ŷ − y)2.

Hessian Matrix. For KD loss at the i-th data sample that
follows Eq. 2, the Hessian matrix at a point θ of student
fθ(·) with respect to its teacher gϕ(·) can be calculated as
the second-derivative of the empirical risk L(KD)(θ, ϕ) =
1
N

∑N
i=1 L

(KD)
i (θ, ϕ). It could be easily verified that:

Hϕ(θ) = ∇2
θL

(KD)(θ, ϕ)

=
1

N

N∑
i=1

[
∇θfθ(xi)∇θfθ(xi)

⊤ + β(i, θ, ϕ)∇2
θfθ(xi)

]
,

(6)

where β(i, θ, ϕ) = (1 − α)(fθ(xi) − yi) + α(fθ(xi) −
gϕ(xi)), and in fact ∇θL

(KD)
i (θ, ϕ) = β(i, θ, ϕ)∇θfθ(xi).

At arbitrary time stamp t during the supervised training
process, the teacher model’s parameters for student θt in
online KD is ϕt. In Spaced KD it should be ϕk(t) with
k(t) = (⌈t/s⌉)s where ⌈·⌉ denotes ceiling operation. No-
tice that for online KD, the loss function constantly changes
due to the update of the teacher, but when we focus on the
loss curve for a particular ϕ, the differentiability of L(KD)

i

are preserved, allowing us to continue the discussion.

Definition 4.1 (Local linearization.). Let θ∗ be a local mini-
mizer of loss function w.r.t fθ(·), we call the local lineariza-
tion of fθ(·) at θ around θ∗ as: fθ(x) = fθ∗(x) + ⟨θ −
θ∗,∇θfθ∗(x)⟩.
For both teacher and student networks, this linearized model
in Def. 4.1 provides an applicable approximation of the local
dynamic behavior around a converged point. We denote
ϕ∗ and θ∗ as the local minimizer of teacher and student,
respectively. Without loss of generality, we assume that

2For all theoretical analysis and conclusions in this section, we
treat self KD as a special case of online KD since they share the
same teacher-student relations. In the later Sec. 5, our experiments
empirically support this argument as they behave similarly.
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Figure 2. Alignment of spaced learning in BNNs and DNNs. (a) Computational cognitive model of spaced learning, modified from (Lan-
dauer, 1969). (b) Overall performance of Spaced KD from different networks and benchmarks. R18: ResNet-18; R50: ResNet-50; R101:
ResNet-101; C100: CIFAR-100; T200: Tiny-ImageNet. (c) Quadratic polynomial fitting of all performance from (b).

after enough learning steps, ∀xi, gϕ∗(xi) = fθ∗(xi) = yi
which means both models follow the over-parameterized
setting so that their training set accuracy eventually become
100%. Therefore, when the student network fθ(·) converges
to a local minimizer θ∗ in both online KD and Spaced KD,
its corresponding teacher network gϕ(·) should also be close
to ϕ∗ :

β(i, θ∗, ϕ) = (1− α)(fθ∗(xi)− yi) + α(fθ∗(xi)− gϕ(xi))

= α⟨ϕ− ϕ∗,∇ϕgϕ∗(xi)⟩ = α∆ϕ⊤∇ϕgϕ∗(xi),
(7)

where ∆ϕ = ϕ−ϕ∗. β directly reflects the difference in the
teacher model updating between online KD and Spaced KD.
We then demonstrate how the combination of mini-batch
training and space interval affects the role of the teacher
model under the KD framework.
Definition 4.2 (Teacher model gap). For a teacher model
gϕ(·) trained with SGD using the updating rule in Eq. 3, we
define current prediction error over training dataset as the
performance gap between ϕ and loss minima ϕ∗: u(ϕ) =
1
N

∑N
i=1 |∆ϕ⊤∇ϕgϕ∗(xi)|.

At a training step t close to convergence (a global time
stamp) of the student model, considering the randomness
brought by mini-batch sampling, we denote ut = E[u(ϕt)]
for online KD, and uk(t) = E

[
u
(
ϕk(t)

)]
for Spaced KD

(with space interval s) as the parameter gap of their corre-
sponding teacher models, respectively.
Lemma 4.3 (Lower risk of spaced teacher). uk(t) ≤ ut.

Proof. It is straightforward that the teacher with ϕk(t) in
Spaced KD is an advanced model which has undergone
several updating iterations ahead of the student at step t.
Namely, by definition t ≤ k(t) = (⌈t/s⌉)s ≤ t+ s. Thus,
given the fact that SGD eventually selects a loss minima
with linear stability (Wu et al.), i.e., E[L(teacher)(ϕt+1)] ≤
E[L(teacher)(ϕt)] around ϕ∗, we have uk(t) ≤ ut.

Theorem 4.4. If the student model fθ(·) converges to a local
minimizer θ∗ at step t of SGD, let H (O)

ϕt
(θ∗) and H (S)

ϕk
(θ∗)

be the Hessian of online KD and Spaced KD, then

E[Tr(H(S)
ϕk

(θ∗))] ≤ E[Tr(H(O)
ϕt

(θ∗))].

The comparison between the Hessian trace for Spaced KD
and online KD finally settles in the difference between
a spaced but advanced teacher and a frequently updated
teacher. Detailed proof of Theorem 4.4 are provided in
Appendix A.1 with the help of Lemma 4.3, indicating a flat-
ter loss landscape and thus potentially better generalization
ability for the student network of Spaced KD.

Discussion. The above analysis reveals key distinctions
between Spaced KD, offline KD, and online KD. Spaced
KD guides the student f with a well-defined trajectory estab-
lished by the teacher g that is slightly ahead in training (Shi
et al., 2021; Rezagholizadeh et al., 2021), thereby ensur-
ing low errors along such informative direction to improve
generalization. With an ideal condition where g and f con-
verge to the same local minima, offline KD and Spaced KD
should perform identically best. However, this ideal condi-
tion hardly exists in practice, especially given the nature of
over-parameterization in advanced DNNs and the complex-
ity of real-world data distributions. These two challenges
result in a highly non-convex loss landscape of both g and
f with a large number of local minima. Therefore, using a
well-trained teacher in offline KD tends to be sub-optimal
since g and f can easily converge to different local minima
with SGD. In comparison, the limitation of online KD lies
in its narrow, constant interval between g and f , restricting
the exploration of informative directions. By maintaining an
appropriate spaced interval, Spaced KD allows for broader
explorations and encourages convergence to a more desir-
able region of the loss landscape, empirically validated in
the following section.

5. Experiment
In this section, we first describe experimental setups and
then present experimental results.

5.1. Experimental Setups

Benchmark. We evaluate the proposed spacing effect on
both ResNet-based architectures (He et al., 2016) such as
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ResNet-18, ResNet-50 and ResNet-101, and transformer-
based architectures (Dosovitskiy et al., 2020) such as DeiT-
Tiny (Touvron et al., 2021) and PiT-Tiny (Heo et al.,
2021). We consider four commonly used image classifi-
cation datasets: CIFAR-100 (Krizhevsky et al., 2009), Tiny-
ImageNet, ImageNet-100, and ImageNet-1K (Russakovsky
et al., 2015). CIFAR-100 is a well-known image classifica-
tion dataset of 100 classes and the image size is 32 × 32.
Tiny-ImageNet consists of 200 classes and the image size is
64× 64. ImageNet-100 and ImageNet-1K contain 100 and
1000 classes of images, respectively, and the image size is
224× 224.

Implementation. For ResNet-based architectures, we use
an SGD optimizer (Sutskever et al., 2013) with 0.9 momen-
tum, 128 batch size, 80 epochs, and a constant learning
rate of 0.01. For KD-related hyperparameters (Zhang et al.,
2019), we use a distillation temperature of 3.0, a feature
loss coefficient of 0.03, and a KL-Divergence loss weight of
0.3. For transformer-based architectures, we use an AdamW
optimizer (Loshchilov & Hutter, 2017a) of batch size 128
and epoch number 300 (warm-up for 20 epochs). Besides,
a cosine learning rate decay policy (Loshchilov & Hutter,
2017b) is utilized with initial learning rate 5e− 4 and final
5e−6, following the training pipeline of previous works (Liu
et al., 2021; Li et al., 2022b; Sun et al., 2024).

For Spaced KD, we manually control a sparse interval s
in terms of epochs, which is proportional to the total num-
ber of samples in the training set (e.g., s = 0.5 denotes
half of the training set). To avoid potential bias, the train-
ing set is shuffled and both teacher and student receive
the same data flow. In online KD, the teacher employs
the same network architecture as the student if not spec-
ified, distilling both response-based (Hinton et al., 2015)
and feature-based (Adriana et al., 2015) knowledge. In
self KD, the teacher is the deepest layer of the network
and the students are the shallow layers along with auxiliary
classifiers (Zhang et al., 2019). Specifically, ResNet-based
architectures consist of 4 blocks so 3 students correspond to
the three shallower blocks. The number of students for trans-
formers depends on the network depth, namely, 11 in our
setup. Auxiliary alignment layers and classifier heads are
utilized to unify the dimensions of feature and logit vectors
produced by students from different depths for distillation.
Unless otherwise specified, all results are averaged over
three repeats.

5.2. Effectiveness and Generality of Spacing Effect

Overall Performance. Our proposed Spaced KD outper-
forms traditional online KD (see Tab. 1) and self KD (see
Tab. 2) across different datasets and networks. The per-
formance of different intervals can be seen in Fig. 2 and
Tab. 6. Compared to vanilla online KD and self KD, the

Table 1. Overall performance of online KD (%). Here are the
results for online KD with an interval of 1.5 epochs. The perfor-
mance of different intervals can be seen in Fig. 2 and Tab. 6. ∆
indicates Spaced KD’s performance gain w.r.t online KD.

Dataset Network w/o KD w/o Ours w/ Ours ∆

CIFAR-100

ResNet-18 68.12 71.05 72.43 +1.38
ResNet-50 69.62 71.85 73.77 +1.92
ResNet-101 70.04 72.03 73.22 +1.19
DeiT-Tiny 64.77 65.67 67.30 +1.63
PiT-Tiny 73.45 74.14 75.55 +1.41

Tiny-ImageNet

ResNet-18 53.08 59.19 60.75 +1.56
ResNet-50 56.41 60.99 63.30 +2.31
ResNet-101 56.99 61.29 63.76 +2.47
DeiT-Tiny 50.23 51.82 54.20 +2.38
PiT-Tiny 57.89 58.25 60.25 +2.00

ImageNet-100

ResNet-18 77.82 78.73 80.39 +1.66
ResNet-50 77.95 79.78 82.43 +2.65
DeiT-Tiny 70.52 70.72 73.34 +2.62
PiT-Tiny 76.10 76.60 78.34 +1.74

Table 2. Overall performance of self KD (%). Here are the results
for self KD with an interval of 4.0 epochs. ∆ indicates Spaced
KD’s performance gain w.r.t self KD.

Dataset Network w/o KD w/o Ours w/ Ours ∆

CIFAR-100
ResNet-18 68.12 73.29 75.73 +2.44
ResNet-50 69.62 75.73 78.73 +3.00
ResNet-101 70.04 76.16 79.24 +3.08
Deit-Tiny 64.77 65.24 68.26 +3.02

Tiny-ImageNet

ResNet-18 53.08 61.08 62.83 +1.75
ResNet-50 56.41 63.58 65.80 +2.22
ResNet-101 56.99 63.35 66.79 +3.44
Deit-Tiny 50.17 49.73 53.59 +3.86

ImageNet-100
ResNet-18 77.82 76.21 79.27 +3.06
Deit-Tiny 69.52 70.50 73.46 +2.96

enhancement of accuracy is 2.14% on average, with moder-
ate variations from a minimum of 1.19% on ResNet-101 /
CIFAR-100 to a maximum of 3.44% on ResNet-101 / Tiny-
ImageNet. For the larger dataset ImageNet-1K, our Spaced
KD improves the performance for ResNet-18 and ViT net-
works by up to 5.08% (see Tab. 7, Tab. 8 of Appendix A.4).

Teacher-Student Gap. Considering that capacity gaps
between teacher and student for their different architec-
tures or training progress would affect distillation gains
(see Sec. 2), we further evaluate various teacher-student
pairs across model sizes and architectures, and Spaced KD
remains effective in all cases (see Tab. 9 and Tab. 10 in
Appendix A.5). Interestingly, if we train the teacher ahead
of the student by s steps at the beginning and then distill
its knowledge to the student maintaining a constant training
gap, there is no significant improvement over the online
KD (see Tab. 11). This indicates the particular strength of
Spaced KD, which applies in the later stage rather than the
early stage.
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Table 3. Performance of Spaced KD on ResNet-18 / CIFAR-100
using different loss functions.

Loss Function w/o w/ s = 1.5 ∆

L1 69.54 69.30 -0.24
Smooth L1 68.96 69.45 +0.49

MSE (Mean) 69.34 69.45 +0.11
MSE (Sum) 71.05 72.43 +1.38

Cross-Entropy 70.38 72.04 +1.66

Table 4. Performance of Spaced KD on ResNet-18 / CIFAR-100
using more recent KD methods.

Dataset/Model Method TSB CTKD LSKD

CIFAR-100/ResNet-18
w/o KD 67.65 67.86 67.94
w/ KD 71.70 69.41 70.74
w/ Ours 72.82 71.12 71.76

CIFAR-100/DeiT-Tiny
w/o KD 51.90 53.31 52.31
w/ KD 52.63 54.20 52.93
w/ Ours 55.47 54.72 53.83

Tiny-ImageNet/ResNet-18
w/o KD 55.21 53.03 54.05
w/ KD 59.92 58.78 59.30
w/ Ours 61.65 60.32 60.28

Tiny-ImageNet/DeiT-Tiny
w/o KD 40.29 40.82 39.65
w/ KD 40.13 41.22 41.14
w/ Ours 43.36 41.60 41.48

Different KD Losses. To evaluate generality, we imple-
ment Spaced KD with representative loss functions, such
as L1, smooth L1, MSE (reduction=mean), MSE (reduc-
tion=sum), and cross-entropy. As shown in Tab. 3, Spaced
KD applies to different loss functions with consistent im-
provements.

Different KD Methods. We combine our Spaced KD with
other more advanced KD methods, including (1) TSB (Li
et al., 2022a) constructs superior ”teachers” with temporal
accumulator and spatial integrator; (2) CTKD (Li et al.,
2023) controls the task difficulty level during the student’s
learning career through a dynamic and learnable tempera-
ture; (3) LSKD (Sun et al., 2024) employs a plug-and-play
Z-score pre-process of logit standardization before applying
softmax and KL divergence. As shown in Tab. 4, Spaced
KD brings significant improvements to a wide range of KD
methods. The above results suggest that the benefits of
Spaced KD arise from the fundamental properties of pa-
rameter optimization in deep learning, consistent with our
theoretical analysis in Sec. 4.4.

5.3. Extended Analysis of Spacing Effect

Sensitivity of Space Interval. Through extensive inves-
tigation (see Fig. 2 and Tab. 6 in Appendix A.2), the space
interval s is relatively insensitive and s = 1.5 results in con-
sistently strong improvements. Therefore, we selected it as
the default choice to obtain the performance of our Spaced

KD in all comparisons. This property also largely avoids the
computational cost and complexity of model optimization
imposed by the new hyperparameter.

Critical Period of Spaced KD. In order to better under-
stand the underlying mechanisms of Spaced KD, we em-
pirically investigate the critical period of implementing the
proposed spacing effect. As shown in Fig. 3, we control
the start time of spaced distillation throughout the training
process, and discover that initiating Spaced KD in the later
stage of training is more beneficial than the early stage for
performance improvements of the student network. This
suggests that in KD, not only the interval between learning
sessions but also the timing of spaced learning are impor-
tant. Unlike previous understandings that attribute the KD
efficacy to the knowledge capacity gap between the teacher
and the student (where Spaced KD should be more effective
in the early stage of training, see Sec. 2), our results point
out a novel direction for KD research from a temporal per-
spective. Specifically, the “right time to learn” is critical for
the student, and the teacher could influence the student’s
convergence to a better solution by intervening during the
later training stage.
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Figure 3. Impact of different initiating times of Spaced KD (s =
1.5), which is introduced (a) for constant 10 training epochs or (b)
till the end of training.

Learning Rate and Batch Size. As described in previ-
ous works, the learning rate and batch size influence the
endpoint curvature and the whole trajectory (Frankle et al.;
Lewkowycz et al., 2020; Xie et al., 2020). The learning
rate corresponds to the parameters’ updating step length,
and batch size would affect the total number of updating
iterations which directly relates to the choice of space inter-
val s. Therefore, we further validate the impact of learning
rate and batch size. As shown in Fig. 5 of Appendix A.7,
we summarize the results: (i) Spaced KD proves effective
w.r.t naive online KD and self KD across different learning
rates; (ii) Spaced KD exhibits its advantages when training
with a relatively large batch size (greater than 64). These
observations also align with previous research (Jastrzebski
et al., 2019; Wu et al.) regarding a small batch size limiting
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the maximum spectral norm along the convergence path
found by SGD from the beginning of training.

5.4. Generalization of Spaced KD

Flat Minima. To verify whether Spaced KD could con-
verge to a flat minima, we conduct experiments to ob-
serve the model robustness that reflects the flatness of
loss landscape around convergence, following previous
works (Zhang et al., 2018; 2019). We first train ResNet-
18/50/101 networks on CIFAR-100 with traditional online
KD (w/o) and our Spaced KD (w/1.5, the interval is 1.5
epochs). Then Gaussian noise is added to the parameters
of those models to evaluate their training loss and accuracy
over the training set at various perturbation levels, which
are plotted in Fig. 4. The results show that the model trained
with Spaced KD maintains a higher accuracy and lower loss
deviations than naive KD under gradient noise level. Fur-
thermore, after applying this interference, the training loss
of the independent model significantly increases, whereas
the loss of the Spaced KD model rises much less. These
results suggest that the model with Spaced KD has found
a much wider minima, which is likely to result in better
generalization performance.
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Figure 4. Impact of Gaussian noise on performance.

Noise Robustness. In addition to manipulating network
parameters, we conduct an extra experiment to evaluate the

model’s generalization ability to multiple transformations
that create out-of-distribution images. Specifically, we apply
6 representative operations of image corruption (Michaelis
et al., 2019) to the images of the CIFAR-100 test set. The
test accuracy at noise intensity 1.0 is recorded in Tab. 5 and
results of other intensity levels can be found in Tab. 12 of
Appendix A.8. It is clear that in most cases with different
corruption types and network architectures, our proposed
Spaced KD helps the student network resist noise attacks,
which reflects its superior robustness to unseen inference
situations. Besides, we test robust accuracy using a represen-
tative adversarial attack method called BIM (Kurakin et al.,
2017), and our Spaced KD is more robust across different ar-
chitectures (see Tab. 13 in Appendix A.9). The above results
empirically offer evidence for the generalization promotion
brought by the spacing effect.

6. Conclusion
In this paper, we present Spaced Knowledge Distillation
(Spaced KD), a bio-inspired strategy that is simple yet ef-
fective for improving online KD and self KD. We theoreti-
cally demonstrate that the spaced teacher helps the student
model converge to flatter local minima via SGD, resulting in
better generalization. With extensive experiments, Spaced
KD achieves significant performance gains across a variety
of benchmark datasets, network architectures and baseline
methods, providing innovative insights into the learning
paradigm of KD from a temporal perspective. Since we also
reveal a possible critical period of spacing effect and provide
its potential theoretical implications in DNNs, our findings
may offer computational inspirations for neuroscience. By
exploring more effective spaced learning paradigms and
investigating detailed neural mechanisms, our work is ex-
pected to facilitate a deeper understanding of both biological
learning and machine learning.

Although our approach has achieved remarkable improve-
ments, it also has potential limitations: Our results suggest a
relatively insensitive optimal interval (s = 1.5) for Spaced
KD, yet remain under-explored its theoretical foundation
and an adaptive strategy for determining it. Additionally, our
results indicate that the timing of Spaced KD is important.
The effectiveness of adaptive adjusting the space interval
and the timing of distillation remains to be validated and
analyzed in subsequent research. In future work, we would
actively explore the application of such spacing effect for
a broader range of scenarios, such as curriculum learning,
continual learning, and reinforcement learning.

Acknowledgements
This work was supported by the STI2030-Major
Projects (2022ZD0204900 to Y.Z.), the NSFC Projects

8



Brain-inspired spacing effect that improves knowledge distillation.

Table 5. Comparison of accuracy under image corruption attack (%). ∆ indicates Spaced KD’s performance gain w.r.t online KD. The
intensity of noise is 1.0 and the results of other intensities (i.e., 3.0, 5.0) can be seen in Tab. 12 of Appendix. A.8.
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A. Appendix
A.1. Proof of Theorem 4.4

Proof. For a general KD loss, we have the trace of its Hessian matrix at global minimizer θ∗:

Tr (Hϕ(θ
∗)) =

1

N

N∑
i=1

[
∥∇θfθ∗(xi)∥2 + β(i, θ∗, ϕ)Tr

(
∇2

θfθ∗(xi)
)]

=
1

N

N∑
i=1

[
∥∇θfθ∗(xi)∥2 + α∆ϕ⊤∇ϕgϕ∗(xi)Tr

(
∇2

θfθ∗(xi)
)]

.

(8)

For online KD and Spaced KD, the expectation of their Hessian trace should be:

E[Tr(H(O)
ϕt

(θ∗))] = Ei[∥∇θfθ∗(xi)∥2] +
α

N

N∑
i=1

E
[
∆ϕ⊤

t ∇ϕgϕ∗(xi)Tr
(
∇2

θfθ∗(xi)
)]

, (9)

E[Tr(H(S)
ϕk

(θ∗))] = Ei[∥∇θfθ∗(xi)∥2] +
α

N

N∑
i=1

E
[
∆ϕ⊤

k∇ϕgϕ∗(xi)Tr
(
∇2

θfθ∗(xi)
)]

. (10)

By Lemma 4.3, 1
N

∑
i E[|∆ϕ⊤

k∇ϕgϕ∗(xi)|] ≤ 1
N

∑
i E[|∆ϕ⊤

t ∇ϕgϕ∗(xi)|],

α

N

N∑
i=1

E
[
∆ϕ⊤

k∇ϕgϕ∗(xi)Tr
(
∇2

θfθ∗(xi)
)]
≤ α

N

N∑
i=1

E
[
∆ϕ⊤

t ∇ϕgϕ∗(xi)Tr
(
∇2

θfθ∗(xi)
)]

.

Substituting the above inequality into Eq. 9 and Eq. 10 completes the proof.

A.2. Performance of Different Intervals for Online KD

Table 6. Overall performance of different intervals for Fig. 2 and Tab. 1.

Dataset Network Baseline w/o w/0.5 w/1.0 w/1.5 w/2.0 w/max

CIFAR-100

ResNet-18 68.12 71.05 72.02 72.03 72.43 72.18 72.22
ResNet-50 69.62 71.85 73.39 73.25 73.77 73.28 73.35
ResNet-101 70.04 72.03 73.11 73.22 72.91 73.22 74.01
DeiT-Tiny 64.77 65.67 66.03 66.22 67.30 66.45 65.69
PiT-Tiny 73.45 74.14 75.55 75.50 75.27 75.12 74.07

Tiny-ImageNet

ResNet-18 53.08 59.19 59.62 59.68 60.75 59.52 59.34
ResNet-50 56.41 60.99 62.13 62.27 63.30 62.55 62.47
ResNet-101 56.99 61.29 62.70 62.64 63.76 62.80 63.10
DeiT-Tiny 50.23 51.82 54.20 53.55 52.92 53.48 52.21
PiT-Tiny 57.89 58.25 59.45 59.77 60.25 59.75 58.23

A.3. Implementation of SOTA methods with Spaced KD

For traditional KD methods (BAN (Furlanello et al., 2018), TAKD (Mirzadeh et al., 2020a)) and online KD methods
(DML (Zhang et al., 2018) and SHAKE (Li & Jin, 2022)), we preserve their basic training frameworks for reproducing
results in w/o KD (raw ResNet-18 training) and KD (ResNet-18 with the corresponding method) columns and delay
the students’ supervised learning and distillation by a space interval of 1.5 epochs for w/ Ours. For self KD methods
(DLB (Shen et al., 2022) and PSKD (Kim et al., 2021)), we initiate a student network identical to the teacher. We train the
teacher model utilizing PSKD or DLB, and the student model is trained either online or in a spaced style with an interval of

13



Brain-inspired spacing effect that improves knowledge distillation.

1.5 epochs. Specifically, the results w/o KD of PSKD and DLB in Tab. 4 are the performance of the teacher model, w/ KD
is the performance of online students, and w/ Ours corresponds to spaced students. Because we follow the exact training
pipeline (including learning rate scheduler, optimizer, and dataset transformation, etc) of those works when reproducing
their results, which is different from that of Tab. 1 and Tab. 2, the baselines without KD may be different.

A.4. Performance of Spaced KD on ImageNet-1k

Table 7. Performance of ResNet-18 on ImageNet-1k Dataset (space interval 1.5 epochs).

Epoch (epoch) 20 40 60 80
online KD 44.35 45.94 46.62 48.59

online KD w/ Ours 49.28 51.35 52.36 53.67
self KD 44.87 46.78 47.78 47.99

self KD w/ Ours 47.03 49.94 50.22 51.57

Table 8. Performance of Deit-Tiny on ImageNet-1k Dataset (space interval 1.5 epochs).

Epoch (epoch) 100 200 300
online KD 58.18 65.93 72.04

online KD w/ Ours 58.47 66.54 72.34
self KD 58.81 66.37 72.39

self KD w/ Ours 60.82 67.27 73.69

A.5. Performance of Spaced KD on Different Teacher-Student Architectures

Table 9. Overall performance of student networks distilled from different teachers on CIFAR-100. We use ResNet-18 as the student.

Teacher Baseline Online KD Spaced KD

Width
ResNet-18×2 69.40 71.77 72.77
ResNet-18×4 70.75 72.17 73.11
ResNet-18×8 70.77 72.03 73.52

Depth
ResNet-50 69.21 72.18 73.49
ResNet-101 69.54 71.61 73.04

Architecture
DeiT-Tiny 64.65 78.61 79.38
PiT-Tiny 73.78 77.13 78.77

Table 10. Comparison of Spaced KD and offline KD from different teacher-student pairs on CIFAR-100. We use ResNet-18 as the
student.

Teacher Offline KD Spaced KD

Size
ResNet-18×2 72.53 72.77
ResNet-18×4 72.83 73.11
ResNet-18×8 73.04 73.52

Architecture
DeiT-Tiny 78.80 79.38
Pit-Tiny 78.50 78.77
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A.6. Performance of Student Distilled from a Constant Ahead Teacher

Table 11. Performance of ResNet-18 on CIFAR-100 distilled from trained teacher with a constant s step ahead. There are no significant
improvements over the online KD.

Interval (epoch) 0 0.5 1 1.5 2 2.5
CIFAR-100 71.05 70.67 70.85 70.69 71.04 70.78

Here we consider a naive baseline of implementing the proposed spacing effect. Specifically, we first train the teacher model
for s steps and then transfers knowledge to the student model at each step during the following training time. In other
words, the teacher model keeps constant s steps ahead of the student model. However, such a naive baseline exhibits no
significant improvement over online KD (see Table 11), consistent with our empirical analysis (see Fig. 3) and theoretical
analysis (see Sec. 4.2): The teacher model of Spaced KD can provide a stable informative direction for optimizing the
student model after each s steps, whereas the teacher model of the naive baseline fails in this purpose due to its ongoing
changes when optimizing the student model. Such different effects also suggest that the implementation of spacing effect is
highly non-trivial and requires specialized design as in our Spaced KD.

A.7. Performance of Spaced KD using different learning rate and batch size
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Figure 5. Hyperparameter validation for Spaced KD. Accuracy of different learning rate (a) and batch size (b) of gradient intervals.

A.8. Performance of Spaced KD on Different Image Corruption Attacks

Here we visualize 6 representative image corruption operations (Michaelis et al., 2019) applied to the images from the
CIFAR-100 dataset (Krizhevsky et al., 2009) to assess our models’ robustness and generalization ability in Fig. 6. The
accuracy under adversarial attacks with more noise intensity levels is listed in Tab. 12.
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impulse_noise zoom_blur snow frost jpeg_compression brightness

original

intensity

1.0

intensity

3.0

intensity
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Figure 6. Image corruption operation. We choose 6 representative image corruption operations with different severity (1.0, 3.0, 5.0) and
visualized images come from the CIFAR-100 test set.

A.9. Performance of Spaced KD after Adversarial Attack

A.10. Pseudo Code of Online KD, Self KD and Spaced KD

Algorithm 1 Training Algorithm of Online KD
Require: student fθ, teacher gϕ, dataset Dtrain, KD loss weight α, epoch number E
Ensure: train both teacher and student using online knowledge distillation

1: for 1 ≤ e ≤ E do
2: for (xi, yi) ∈ Dtrain do
3: Update teacher ϕ← ϕ−∇ϕltask(gϕ(xi), yi)
4: Update student θ ← θ −∇θ [αlKD(fθ(xi), gϕ(xi)) + (1− α)ltask(fθ(xi), yi)]
5: end for
6: end for
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Algorithm 2 Training Algorithm of Online KD with Spaced KD
Require: student fθ, teacher gϕ, dataset Dtrain, KD loss weight α, epoch number E, space interval s
Ensure: train both teacher and student using spaced knowledge distillation

1: Initialize data index set: R ← ∅
2: for 1 ≤ e ≤ E do
3: for (xi, yi) ∈ Dtrain do
4: R ← R∪ {i}
5: Update teacher ϕ← ϕ−∇ϕltask(gϕ(xi), yi)
6: if |R| == s then
7: for j ∈ R do
8: Retrieve (xj , yj) from Dtrain
9: Update student θ ← θ −∇θ [αlKD(fθ(xj), gϕ(xj)) + (1− α)ltask(fθ(xj), yj)]

10: end for
11: end if
12: Clear index set: R ← ∅
13: end for
14: end for

Algorithm 3 Training Algorithm of Self KD
Require: network fθ = fθ1 ◦ · · · ◦ fθm consisting of m blocks, dataset Dtrain, KD loss weight α, epoch number E
Ensure: train fθ by distilling logits from the last block to the shallower blocks

1: for 1 ≤ e ≤ E do
2: for (xi, yi) ∈ Dtrain do
3: Calculate loss L = ltask(fθ(xi), yi)
4: for 1 ≤ k < m do
5: L← L+ αlKD(fθ1 ◦ · · · ◦ fθk(xi), fθ(xi)) + (1− α)ltask(fθ1 ◦ · · · ◦ fθk(xi), yi)
6: end for
7: Update network θ ← θ −∇θL
8: end for
9: end for

Table 12. Comparison of accuracy under image corruption attack (%). ∆ indicates Spaced KD’s increased performance based on online
KD. The results of 1.0 intensity can be seen in Tab. 5.

Attack Noise Intensity
ResNet-18 ResNet-50 ResNet-101

w/o Ours w/ Ours ∆ w/o Ours w/ Ours ∆ w/o Ours w/ Ours ∆

impulse noise
3.0 34.19 35.33 1.14 35.41 36.53 1.12 37.56 38.16 0.60
5.0 12.54 12.04 -0.50 10.49 10.57 0.08 12.08 11.39 -0.69

zoom blur
3.0 64.73 65.29 0.56 65.04 66.45 1.41 64.5 64.98 0.48
5.0 61.02 61.53 0.51 61.36 62.67 1.31 61.32 62.18 0.86

snow
3.0 44.48 45.42 0.94 46.91 47.17 0.26 44.5 45.87 1.37
5.0 28.60 29.48 0.88 30.09 29.71 -0.38 30.09 30.75 0.66

frost
3.0 42.40 43.10 0.70 44.87 44.69 -0.18 45.10 45.28 0.18
5.0 37.80 39.47 1.67 39.26 39.97 0.71 41.24 40.59 -0.65

jpeg compression
3.0 33.23 32.32 -0.91 33.05 33.99 0.94 34.80 35.63 0.83
5.0 20.75 21.32 0.57 20.29 20.86 0.57 21.55 22.29 0.74

brightness
3.0 62.77 64.68 1.91 64.48 64.63 0.15 62.90 64.01 1.11
5.0 54.11 54.56 0.45 55.34 55.46 0.12 54.47 55.71 1.24
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Table 13. Performance of Spaced KD on CIFAR-100 after an adversarial attack called BIM (Kurakin et al., 2017). Spaced KD is more
robust than online KD.

Network ResNet-18 ResNet-50 ResNet-101
w/o 31.33 31.32 31.70

w/1.5 31.44 31.70 33.69
∆ +0.11 +0.38 +1.99

Algorithm 4 Training Algorithm of Self KD with Spaced KD
Require: network fθ = fθ1 ◦ · · · ◦ fθm consisting of m blocks, dataset Dtrain, KD loss weight α, epoch number E, space
interval s
Ensure: train fθ by distilling logits from the last block to shallower blocks in a spaced manner

1: Initialize data index set: R ← ∅
2: for 1 ≤ e ≤ E do
3: for (xi, yi) ∈ Dtrain do
4: R ← R∪ {i}
5: Calculate loss L = ltask(fθ(xi), yi)
6: Update network θ ← θ −∇θL
7: if |R| == s then
8: for j ∈ R do
9: Retrieve (xj , yj) from Dtrain

10: Calculate loss L′ = ltask(fθ(xj), yj)
11: for 1 ≤ k < m do
12: L′ ← L′ + αlKD(fθ1 ◦ · · · ◦ fθk(xj), fθ(xj)) + (1− α)ltask(fθ1 ◦ · · · ◦ fθk(xj), yj)
13: end for
14: Update network θ ← θ −∇θL

′

15: end for
16: end if
17: Clear index set: R ← ∅
18: end for
19: end for
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