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Abstract
TORCHTITAN is a PyTorch native open-source
platform designed for scalable and flexible train-
ing of generative AI models1. Integrated tightly
with PyTorch’s distributed stack while offering
efficient optimizations and modular configura-
tions, TORCHTITAN showcases elastic training of
LLMs with composable 4-D parallelism. More-
over, TORCHTITAN supports extensible abstrac-
tions to experiment with new model architectures
(e.g., diffusion models) or infrastructure tech-
niques (e.g., a compiler-first FSDP implemen-
tation), while biasing towards a clean, minimal
codebase. This paper presents the motivation,
system architecture, and demonstrated impact of
TORCHTITAN, underscoring its alignment with
the CODEML mission to advance open, sustain-
able machine learning development.

1. Introduction
Large Language Models (LLMs) (Devlin, 2018; Liu et al.,
2019; Radford et al., 2019; Chowdhery et al., 2023; Anil
et al., 2023; Achiam et al., 2023; Dubey et al., 2024; Jiang
et al., 2024; Abdin et al., 2024) power modern NLP ap-
plications — from translation and content generation to
education and research.

State-of-the-art models like Llama 3.1 (405B, 15T tokens,
16K H100s) (Dubey et al., 2024) and PaLM (540B, 6144
TPUv4s) (Chowdhery et al., 2023) require massive scale
and resources. Training them demands careful orchestration
of parallelism, memory, and compute budgets, while being
robust to GPU failures (Eisenman et al., 2022; Wang et al.,
2023; Gupta et al., 2024).

Achieving efficiency at large scale involves combining many
parallelisms, Data (Li et al., 2020; Zhao et al., 2023), Ten-
sor (Narayanan et al., 2021), Context (Liu et al., 2023), and
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Pipeline (Huang et al., 2019), with techniques like activation
recomputation (Chen et al., 2016), mixed precision (Micike-
vicius et al., 2018), and compiler optimizations (Ansel et al.,
2024).

However, current systems often fall short due to poor com-
posability of multi-dimensional parallelisms, lack of modu-
larity and extensibility hinder the application and innovation
of new technologies. In addition, existing solutions do not
come with robust checkpoint save/load solutions, failure
recovery mechanisms, or debugging tools for production
scale workflows.

TORCHTITAN addresses these limitations by unifying paral-
lelism and optimization into a PyTorch-native system built
on top of DTensor and DeviceMesh (Wanchao Liang, 2023).
It supports 4D parallelism strategies, composable training
techniques, and efficient distributed checkpoint save/load –
all with strong production and research usability. It provides
simple and extensible abstractions, allowing fast experi-
mentation with new model architecture and infrastructure
innovations. TORCHTITAN provides multiple performance
optimization techniques out of box, including Async Ten-
sor Parallelism, selective activation recomputation, Float8
mixed precision training, torch.compile integration, etc. It
also encapsulates communication debugging and failure re-
covery tools, training receipts and guidelines for real world
generative AI models training.

It is worth noting that TORCHTITAN has received strong
community adoptions with good momentum since it became
public (currently around 4k GitHub stars).

2. Composable LLM training
2.1. Composable N-D parallelism training

To overcome GPU memory constraints and training effi-
ciency problems, we want to parallelize the computation
and storage as much as possible. Modern LLM training
usually employs multi-dimensional parallelisms to tackle
this. TORCHTITAN offers simple and performant N-D paral-
lelism solutions that composes with each other, allow model
to train efficient on thousands of accelarators without Out
of Memory (OOM) issues.
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2.1.1. META DEVICE INITIALIZATION

At large scale, even initiating models that exceed CPU/GPU
memory becomes challenging. TORCHTITAN uses meta
device initialization to avoid this issue: models are first
created on a meta device that holds only metadata, enabling
ultra-fast setup. Parameters are then sharded into DTensors,
with local shards residing on the meta device, and initialized
via user-defined functions to ensure correct sharding and
RNG behavior.

2.1.2. FULLY SHARDED DATA PARALLEL (FSDP2)

Original PyTorch FSDP (FSDP1) has limited composability
due to its FlatParameter design. TORCHTITAN integrates
FSDP2, which uses per-parameter DTensor sharding, im-
proving memory efficiency (7% lower usage) and perfor-
mance (1.5% gain). FSDP2 is TORCHTITAN ’s default 1D
parallelism, with auto-sharding based on world size. To
scale further, TORCHTITAN includes Hybrid Sharded Data
Parallel (HSDP) via a 2D DeviceMesh.

2.1.3. TENSOR AND SEQUENCE PARALLEL (TP/SP)

Tensor Parallel (TP) (Narayanan et al., 2021) and Sequence
Parallel (SP) (Korthikanti et al., 2023) enable model paral-
lelism across Linear and normalization/dropout layers, re-
spectively. TORCHTITAN implements TP using PyTorch’s
RowwiseParallel and ColwiseParallel APIs on
DTensors, requiring no model code changes.

SP shards normalization and dropout layers over the se-
quence dimension, reducing memory footprint. TP and SP
are jointly controlled via the TP degree.

Loss Parallel Cross-entropy loss computation with TP/SP
typically incurs high memory and communication costs
due to output gathering. TORCHTITAN implements Loss
Parallel by default to compute loss in a sharded fashion,
reducing overhead and accelerating training.

2.1.4. PIPELINE PARALLEL (PP)

Pipeline Parallelism (PP) splits models into S stages across
device groups, each computing a subset of the model.
TORCHTITAN overlaps computation and communication
via microbatching and supports multiple pipeline sched-
ules (Narayanan et al., 2019; Huang et al., 2019; Narayanan
et al., 2021; Qi et al., 2023), including recent ones like Ze-
roBubble and Flexible-Interleaved-1F1B (PyTorch Team,
2024d) via pipeline IR.

TORCHTITAN simplifies PP integration by introducing a
shared loss_fn to coordinate gradient scaling, shard/un-
shard operations, and final reductions.

2.1.5. CONTEXT PARALLELISM (CP)

Context Parallelism (CP) (Liu et al., 2023; Liu & Abbeel,
2024; NVIDIA, 2023) splits the sequence dimension across
GPUs, enabling 4D parallelism. This allows training with
extremely long context lengths. For example, Llama 3.1
8B trained with CP on 8 H100s reached 262K token con-
texts with minimal MFU drop (PyTorch Team, 2025a). CP
integrates seamlessly with existing DP, TP, and PP.

2.2. Optimizing training efficiencies

2.2.1. ACTIVATION CHECKPOINTING

To reduce peak memory, TORCHTITAN supports ac-
tivation checkpointing (AC) (Chen et al., 2016; He
& Yu, 2023) and selective AC (SAC) (Korthikanti
et al., 2023) using torch.utils.checkpoint at the
TransformerBlock level. Options include full AC, op-
level SAC, and layer-level SAC (every x blocks), enabling
configurable memory-compute trade-offs.

2.2.2. REGIONAL TORCH.COMPILE

TORCHTITAN applies torch.compile (Ansel et al.,
2024) regionally to each TransformerBlock, improv-
ing performance through fusion and reuse while ensuring
compatibility with DTensor, FSDP2, and TP. This reduces
compile time and boosts throughput and memory efficiency.

2.2.3. ASYNCHRONOUS TENSOR PARALLELISM

AsyncTP (Wang et al., 2022) overlaps TP com-
munication with computation via chunked mat-
muls and micro-pipelining. Implemented with
SymmetricMemory buffers (PyTorch Team, 2024a),
it leverages torch.compile for speedups on modern
hardware (e.g., H100).

2.2.4. MIXED PRECISION AND FLOAT8

FSDP2 supports mixed precision (bfloat16 compute,
float32 reduce). TORCHTITAN extends this with Float8
for linear layers, supported by torchao.float8with dy-
namic scaling (Micikevicius et al., 2022; PyTorch Commu-
nity, 2023). It integrates cleanly with torch.compile,
FSDP2, and TP (PyTorch Team, 2024c).

2.3. Production ready training

To enable production-grade training, TORCHTITAN inte-
grates many features out of the box, including efficient
checkpoint save/load and robust debugging tools.
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2.3.1. SCALABLE DISTRIBUTED CHECKPOINTING

Checkpointing is critical for fault recovery and model pub-
lish. Traditional methods either save unsharded states (easy
to reuse but slow) or sharded local states (fast but inflexi-
ble). TORCHTITAN leverages PyTorch Distributed Check-
pointing (DCP), which uses DTensor to decouple tensor
data from parallelism. DCP stores internal metadata and
restores shards based on the DTensor layouts, enabling fast,
parallelism-agnostic loading.

DCP also supports asynchronous checkpointing, overlap-
ping save operations with training via background threads.
This reduces checkpointing overhead by 5–15× on models
like Llama 3.1 8B (PyTorch Team, 2024b).

2.3.2. FLIGHT RECORDER FOR DEBUGGING

Debugging collective timeouts at scale is difficult due to
asynchronous communications. In TORCHTITAN, we use
PyTorch’s Flight Recorder to log all collective operations
with timing and metadata (e.g., tensor sizes, ranks, stack
traces), which helps localize communication failures in
FSDP, TP, and PP.

2.3.3. FAULT TOLERANCE

In additional to efficient checkpoint save/load for failure
recovery, TORCHTITAN is experimenting many fault toler-
ant training strategies, including local SGD (Stich, 2018),
DiLoCo (Douillard et al., 2023)

2.4. Experimentation

To showcase the elasticity and scalability of TORCHTITAN,
we conducted training on Llama 3.1 family of models on a
wide range of scales (from 8 to 512 GPUs) on a custom built
NVIDIA H100 cluster. We gradually increase the model size
(8B, 70B, and 405B) with different parallelism strategies (up
to 4D). We demonstrate accelerations ranging from 65.08%
on Llama 3.1 8B at 128 GPU scale (1D), 12.59% on Llama
3.1 70B at 256 GPU scale (2D), to 30% on Llama 3.1 405B
at 512 GPU scale (3D) over optimized baselines, and stay
converging. For a full detailed experiment results, please
see Appendix A.

3. Extensions
As one of TORCHTITAN’s core design philosophy is to
make the codebase easy to understand, use, and extend
for different training purposes, it provides basic reusable /
swappable components while aiming to keep the codebase
as clean and minimal as possible.

In order to facilitate innovations in new modeling archi-
tectures and infrastructure techniques and support flexible
configurations of training components, while reusing the

core training script, TORCHTITAN introduces the concept
of TrainSpec (see the code snippet below) where each
instance of the class is a training specification at the coarse
level of model class and model parallelization functions,
and the functions to build optimizer, learning rate scheduler,
data loader, tokenizer, loss function, etc.

In this section, we will see how TrainSpec is used to
support new model architecture (FLUX, a diffusion model),
and innovations in infrastructure (SimpleFSDP, a compiler-
first FSDP implementation).

@dataclass
class TrainSpec:

name: str
cls: type[nn.Module]
config: Mapping[str, BaseModelArgs]
parallelize_fn
pipelining_fn
build_optimizers_fn
build_lr_schedulers_fn
build_dataloader_fn
build_tokenizer_fn
build_loss_fn
build_metrics_processor_fn

def register_train_spec(train_spec:
TrainSpec) -> None:
...

def get_train_spec(name: str) -> TrainSpec:
...

In addition, we also introduce ModelConvert as a gen-
eral interface for applying modification to a PyTorch model
(see the code snippet below). Typical use cases include

• applying quantization: using QAT, Float8, or other
specialized linear layers;

• swapping to fused optimized layers, such as FlashAt-
tention, various norm layers, etc.

class ModelConverter(Protocol):
def __init__(self, job_config:

JobConfig, parallel_dims:
ParallelDims):
...

def convert(self, model: nn.Module):
"""Inplace convertion of the

model."""
...

def post_optimizer_hook(self, model:
Union[nn.Module, List[nn.Module]]):
"""Post-optimizer (optional) hook

(e.g. compute weights
statistics)."""

...
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With these extension points, TORCHTITAN aims to sup-
port both in-repo experiments and out-of-repo usage as a
submodule.

3.1. Modeling architecture

In addition to language models, another important class
of generative AI models is diffusion models (Ho et al.,
2020; Rombach et al., 2022; Peebles & Xie, 2023; Podell
et al., 2024; Esser et al., 2024). In TORCHTITAN, we
present diffusion model training of the FLUX.1 model (Labs,
2024) which achieves state-of-the-art performance on text-
to-image tasks (PyTorch Team, 2025b).

All FLUX.1 models are based on a hybrid architecture of
multimodal and parallel diffusion transformer blocks and
scaled to 12B parameters. TORCHTITAN supports FLUX
model training via FSDP / HSDP and activation checkpoint-
ing. This is done by specifying a TrainSpec where we
reuse the functions for building optimizers and learning rate
schedulers, but create new model definitions and configura-
tions, and corresponding functions to parallelize model and
build data loader, tokenizers, and loss function.

Moreover, to show case TORCHTITAN’s capability of do-
ing end-to-end pretraining of diffusion models, we perform
real-scenario training of the FLUX.1 [schnell] model on
the Conceptual 12M dataset (Changpinyo et al., 2021). We
train the model for on 256 NVIDIA H100 GPUs for 60000
steps (about 5 epochs), global batch size 1024, with a linear
warmup learning rate schedule peaked at 1e− 4 and mixed
precision training (bfloat16 computation, float32 re-
duction). Interestingly, the training converges and output
meaningful pictures. See Figure 1.

For a concrete training recipe to reproduce the results, please
refer to the flux folder in TORCHTITAN.

3.2. Infrastructure technique

With the TrainSpec abstraction, TORCHTITAN can host
not only new models but also infrastructure innovations
applied to existing models.

SimpleFSDP (Zhang et al., 2024) is a compiler-based Fully
Sharded Data Parallel (FSDP) framework, which has a sim-
ple implementation for maintenance and composability, al-
lows full computation-communication graph tracing, and
brings performance enhancement via compiler back-end
optimizations.

TORCHTITAN includes the front-end implementation for
SimpleFSDP, which is compatible with other training tech-
niques such as TP, CP, PP, AC, and mixed precision. Com-
pared with the default TrainSpec of Llama 3.1 training,
the implementation only substitutes parallelize_fn
and reuses others.

Figure 1. Example image output of FLUX model training.

We believe that it provides an ideal playground for innova-
tions such as communication optimizations (e.g. reordering
and bucketing of FSDP communications covered in (Zhang
et al., 2024)) on the back-end of the compiler, given a fully
traced graph containing both computation nodes and com-
munication nodes.

4. Ongoing and future work
TORCHTITAN is still under active development of new mod-
els and features. We are hosting experimental folders on
MoE LLMs and multimodal models, and building necessary
training techniques such as Expert Parallel and parallelism-
compatible multimodal data loader, respectively.

In addition, as Reinforcement Learning becomes more im-
portant, there are requests to integrate TORCHTITAN with
post-training frameworks, so that it could be used as a post-
training capable trainer.

5. Conclusion
As a PyTorch native platform that is revolutionizing rapid
experimentation and large-scale training of generative AI
models, TORCHTITAN has achieved widespread adoption
across top research institutions and industry labs.

We hope TORCHTITAN’s cutting-edge training techniques,
lean implementation, and flexible extension points could
empower researchers and developers to push the boundaries
of what is possible in generative AI.
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A. Experiment results
The experiments are conducted on a cluster of NVIDIA H100 GPUs2 with 95 GiB memory, where each host is equipped
with 8 GPUs and NVSwitch. Two hosts form a rack connected to a TOR switch. A backend RDMA network connects the
TOR switches.

In TORCHTITAN we integrate a checkpointable data loader and provide built-in support for the C4 dataset (en variant),
a colossal, cleaned version of Common Crawl’s web crawl corpus (Raffel et al., 2020). We use the same dataset for all
experiments in this section. For the tokenizer, we use the official one (tiktoken) released together with Llama 3.1.

A.1. Performance

To showcase the elasticity and scalability of TORCHTITAN, we experiment on a wide range of GPU scales (from 8 to
512), as the underlying model size increases (8B, 70B, and 405B) with a varying number of parallelism dimensions (up
to 4D). To demonstrate the effectiveness of the optimization techniques introduced in the paper, we show how training
throughput improves when adding each individual technique on appropriate baselines. In particular, when training on a
higher dimensional parallelism with new features, the baseline is always updated to include all previous techniques.

Table 1. 1D parallelism (FSDP) on Llama 3.1 8B model, 8 GPUs. Mixed precision training. Selective activation checkpointing. Local
batch size 2, global batch size 16. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)

FSDP 6,258 100% 81.9
+ torch.compile 6,674 + 6.64% 77.0
+ torch.compile + Float8 9,409 + 50.35% 76.8

Table 2. 1D parallelism (FSDP) on Llama 3.1 8B model, 128 GPUs. Mixed precision training. Selective activation checkpointing. Local
batch size 2, global batch size 256. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)

FSDP 5,645 100% 67.0
+ torch.compile 6,482 + 14.82% 62.1
+ torch.compile + Float8 9,319 + 65.08% 61.8

Table 3. 2D parallelism (FSDP + TP) + torch.compile + Float8 on Llama 3.1 70B model, 256 GPUs. Mixed precision training. Full
activation checkpointing. FSDP degree 32, TP degree 8. Local batch size 16, global batch size 512. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)

2D 897 100% 70.3
+ AsyncTP 1,010 + 12.59% 67.7

Table 4. 3D parallelism (FSDP + TP + PP) + torch.compile + Float8 + AsyncTP on Llama 3.1 405B model, 512 GPUs. Mixed
precision training. Full activation checkpointing. FSDP degree 4, TP degree 8, PP degree 16. Local batch size 32, global batch size 128.
(Stats per GPU)

Schedule Throughput (Tok/Sec) Comparison Memory (GiB)

1F1B 100 100% 78.0
Interleaved 1F1B 130 + 30.00% 80.3

2The H100 GPUs used for the experiments are non-standard. They have HBM2e and are limited to a lower TDP. The actual peak
TFLOPs should be between SXM and NVL, and we don’t know the exact value.
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Table 5. FSDP + CP + torch.compile + Float8 on Llama 3.1 8B model, 8 GPUs. Mixed precision training. Full activation
checkpointing. Local batch size 1. (Stats per GPU)

Schedule Sequence Length Throughput (Tok/Sec) Memory (GiB)

FSDP 8, CP 1 32,768 3,890 83.9
FSDP 4, CP 2 65,536 2,540 84.2
FSDP 2, CP 4 131,072 1,071 84.0
FSDP 1, CP 8 262,144 548 84.5

Table 6. 4D parallelism (FSDP + TP + PP + CP) + torch.compile + Float8 + AsyncTP + 1F1B on Llama 3.1 405B model, 512 GPUs.
Mixed precision training. Full activation checkpointing. TP degree 8, PP degree 8. Local batch size 8. (Stats per GPU)

Schedule Sequence Length Throughput (Tok/Sec) Memory (GiB)

FSDP 8, CP 1 32,768 76 75.3
FSDP 4, CP 2 65,536 47 75.9
FSDP 2, CP 4 131,072 31 77.1
FSDP 1, CP 8 262,144 16 84.9

A.2. Loss converging

TORCHTITAN has ensured the loss converging of individual techniques as well as their various combinations of parallelisms
and optimizations.

For example, below is a series of loss-converging tests covering both parallelisms and training optimizations. We assume the
correctness of FSDP, which can be further verified by comparing it with DDP or even single-device jobs.

Table 7. Loss-converging tests setup.

Parallelism Techniques

FSDP 8 (ground truth) default
FSDP 8, TP 2, PP 2 torch.compile, Float8, async TP, Interleaved 1F1B
FSDP 8, TP 2, CP 2, PP 2 torch.compile, Float8, async TP, Interleaved 1F1B
FSDP 8, CP 8 default

Figure 2. Loss converging tests on Llama 3.1 8B. C4 dataset. Local batch size 4, global batch size 32. 3000 steps, 600 warmup steps.
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