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ABSTRACT

Maximum Manifold Capacity Representations (MMCR) is a recent multi-view
self-supervised learning (MVSSL) method that matches or surpasses other leading
MVSSL methods. MMCR is interesting because it does not fit neatly into any of
the commonplace MVSSL families, instead originating from a statistical mechan-
ical perspective on the linear separability of data manifolds. We seek to better un-
derstand and then better utilize MMCR. To better understand MMCR, we leverage
tools from high dimensional probability to demonstrate that MMCR incentivizes
alignment and uniformity of learned embeddings. We then leverage tools from
information theory to show that such embeddings maximize a well-known lower
bound on mutual information between views, thereby connecting the geometric
perspective of MMCR to the information-theoretic perspective often discussed in
MVSSL. To better utilize MMCR, we mathematically predict and experimentally
confirm non-monotonic changes in the pretraining loss akin to double descent but
with respect to atypical hyperparameters. We also discover compute scaling laws
that enable predicting the pretraining loss as a function of gradients steps, batch
size, embedding dimension and number of views. We then show that MMCR,
originally applied to image data, is performant on multimodal image-text data.
Broadly, by more deeply understanding the theoretical and empirical behavior of
MMCR, our work reveals powerful insights on improving MVSSL methods.

1 INTRODUCTION

Yerxa et al. (2023) recently proposed a new MVSSL method named MMCR that achieves superior-
to-similar performance than leading MVSSL methods. For background on MVSSL, see App. A.
MMCR is interesting for at least two reasons. Firstly, MMCR does not fit neatly into any MVSSL
family: it is not contrastive, it performs no clustering, it leverages no distillation, and it does not
reduce redundancy. Secondly, unlike many MVSSL methods that originate in information theory,
MMCR’s foundation lies in the statistical mechanical characterization of the linear separability of
data manifolds. In this work, we seek to better understand MMCR and utilize this understanding to
drive implementation decisions. Our contributions are summarized in App. B.

2 PRELIMINARIES

Multi-View Self-Supervised Learning (MVSSL) Let fθ : X → Z denote a neural network with
parameters θ. Suppose we have a dataset of P points {xp}Pp=1 and a set of random transforma-
tions (augmentations) T . For each datum xp in a batch of inputs, we sample K transformations
t(1), t(2), ..., t(K) ∼ T yielding a set of augmented views: v(1)(xp), ..., v

(K)(xp). We feed these
transformed data into the network and obtain embeddings Z:

z(k)
p

def
= fθ(t

(k)(xp)) ∈ Z.

In practice, Z is commonly the D-dimensional hypersphere SD−1 def
= {z ∈ RD : zTz = 1} or

RD. Given that we will later touch on information theory, we need notation to refer to the random
variables; we use Z

(k)
p to denote the random variable for the embedding whose realization is z(k)

p .
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Figure 1: Schematic of Maximum Manifold Capacity Representations (MMCR). Left: K ≥ 2
views are generated of each datum, then embedded through a deep neural network on the surface of
the hypersphere. Center: For each datum, the centroid of the embeddings is computed. Right: The
MMCR pretraining loss minimizes negative nuclear norm of the centers is then minimized.

Maximum Manifold Capacity Representations Maximum Manifold Capacity Representations
(MMCR) (Yerxa et al., 2023) originates from classical results regarding performance of linear bi-
nary classifiers (Cover, 1965; Gardner, 1987; 1988; Chung et al., 2018). MMCR proceeds in the
following manner: MMCR takes the embeddings output by the network and normalizes them to lie
on the hypersphere: z

(1)
p , ...,z

(K)
p ∈ SD−1. Then, MMCR computes the center (average) of the

embeddings for each datum: cp
def
= 1

K

∑
k z

(k)
p . Next, MMCR forms a P ×D matrix C where the

n-th row of C is the center cp and defines the loss:

LMMCR
def
= −∥C∥∗

def
= −

rank(C)∑
r=1

σr(C),

where σr(C) is the r-th singular value of C and ∥ · ∥∗ is the nuclear (trace, Schatten 1) norm .

3 A HIGH-DIMENSIONAL PROBABILITY ANALYSIS OF MMCR

We consider MMCR’s regime of large number of patterns P and high embedding dimension D and
show that the MMCR loss LMMCR can be minimized by (a) making each center cp = 1

K

∑
k z

(k)
p

lie on the surface of the hypersphere, and (b) making the distribution of centers as close to uniform
on the hypersphere as possible. We begin by adopting two useful definitions from prior works
(Wang & Isola, 2020; Gálvez et al., 2023):

Definition 3.1 (Perfect Reconstruction). We say a network fθ achieves perfect reconstruction if
∀x ∈ X ,∀ t(1), t(2) ∈ T , z(1) = fθ(t

(1)(x)) = fθ(t
(2)(x)) = z(2).

Definition 3.2 (Perfect Uniformity). Let p(Z) be the distribution over the network representations
induced by the data sampling and transformation sampling distributions. We say a network fθ
achieves perfect uniformity if the distribution p(Z) is the uniform distribution on the hypersphere.

We will show that a network that achieves both perfect reconstruction and perfect uniformity obtains
the lowest possible MMCR loss by first showing that LMMCR has a lower bound and then showing
that such a network achieves this bound.

Proposition 3.3. Suppose that ∀p ∈ [P ], cTp cp ≤ 1. Then, 0 ≤ ||C||∗ ≤
√
P min(P,D).

Proof. App. C.

Proposition 3.4. Let fθ achieve perfect reconstruction. Then, ∥cp∥2 = 1 ∀n.
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Figure 2: Embeddings with perfect reconstruction and perfect uniformity achieve the lowest
possible MMCR loss. Away from the P = D threshold, uniform random vectors achieve the
theoretically derived upper bound on the nuclear norm of the mean matrix M i.e. the lower bound
on LMMCR. The gap between the network’s loss and the lowest possible LMMCR falls ∝ P−1

(left) or ∝ D−1 (right) away from the P = D threshold.

Proof. Because fθ achieves perfect reconstruction, ∀n, ∀t(1), t(2), z
(1)
p = z

(2)
p . Thus cp =

(1/K)
∑
k z

(k)
p = (1/K)

∑
k z

(1)
p = z

(1)
p , and since ∥z(1)

p ∥2 = 1, we have ∥cp∥2 = 1.

Theorem 3.5. Let fθ : X → SD be a network that achieves perfect reconstruction and perfect
uniformity. Then fθ achieves the lower bound of LMMCR with high probability. Specifically:

∥C∥∗ =

{
P (1−O(P/D)) if P ≤ D√
PD(1−O(D/P )) if P ≥ D

with high probability in min(P,D).

Proof. App. D.

4 AN INFORMATION-THEORETIC UNDERSTANDING OF MMCR

Many MVSSL methods originate in information theory or can be understood from an information
theoretic perspective (Oord et al., 2018; Bachman et al., 2019; Wang & Isola, 2020; Wu et al.,
2020; Gálvez et al., 2023; Shwartz-Ziv et al., 2023). Based on our newfound understanding of what
distributions of embeddings MMCR incentivizes, how can we connect MMCR’s statistical mechan-
ical geometric viewpoint to an information theoretic viewpoint? Consider the mutual information
between the embeddings of two different views Z(1) and Z(2) of some input datum. The mutual
information between the two views must be at least as great as the sum of two terms:

I[Z(1);Z(2)] ≥ Ep(Z(1),Z(2))[log q(Z
(1)|Z(2))]︸ ︷︷ ︸

Reconstruction

+H[Z(1)]︸ ︷︷ ︸
Entropy

,
(1)

where q(Z(1)|Z(2)) is a variational distribution because the true distribution p(Z(1)|Z(2)) is un-
known. This bound is well-known, e.g., (Cover, 1965; Wang & Isola, 2020; Gálvez et al., 2023), but
we repeat them to show how MMCR connects to an information-theoretic perspective.
Theorem 4.1. Let fθ : X → SD be a network, and let the number of views per datum be constant.
Let Q be the variational family of distributions on the hypersphere. Then fθ maximizes the mutual
information lower bound (Eqn. 1) iff fθ achieves perfect reconstruction and perfect uniformity.

Proof. Perfect reconstruction maximizes reconstruction. Perfect uniformity maximizes entropy.

Thus, a minimizer of MMCR is a maximizer of this mutual information lower bound.
Theorem 4.2. Let fθ∗ be a network that achieves perfect reconstruction and perfect uniformity, let
the number of views per datum be constant, and let Q be the variational family of distributions on
the hypersphere. Then fθ∗ is both a minimizer of LMMCR and a maximizer of the variational lower
bound of mutual information Eqn. 1.
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Figure 3: Double-Descent in Maximum Manifold Capacity Representations. As predicted math-
ematically, MMCR’s pretraining percent error def

= (
√
P min(P,D) − ||C||∗)/

√
P min(P,D) ex-

hibits non-monotonic double descent-like behavior, peaking when the number of data points P
equals the number of dimensions D. On either side of the P = D threshold, the pretraining percent
error falls. Networks are ResNet-18s pretrained on STL-10’s “unlabeled” split.

Proof. Theorem 3.5 and Theorem 4.1.

5 DOUBLE DESCENT IN MMCR PRETRAINING LOSS

An unexpected and interesting insight from our high-dimensional probability analysis (Theorem
3.5) is a prediction that the Maximum Manifold Capacity Representations (MMCR) pretraining loss
should also exhibit a non-monotonic double descent-like behavior in its pretraining loss. Double
descent is a well-known machine learning phenomenon where the test loss exhibits non-monotonic
changes as a function of the total number of data and the number of model parameters; see App.
F for citations. However, our analysis suggests that this double descent-like behavior should occur
with respect to atypical parameters: the number of manifolds P and the number of dimensions
D, rather than the number of data and the number of model parameters. Specifically, our theory
predicts suggests that the highest pretraining error should occur exactly at the threshold P = D,
with pretraining error falling on either side of the threshold.

Pretraining Percent Error(C)
def
=

√
P min(P,D)− ||C||∗√

P min(P,D)

We pretrained ResNet-18s (He et al., 2016) on STL-10 (Coates et al., 2011), a dataset similar to
CIFAR-10 but higher resolution (96x96x3) and containing an additional unlabeled split of 100000
images. We swept P ∈ {64, 128, 256, 512, 1024}×D ∈ {64, 128, 256, 512, 1024}×K ∈ {2, 4, 8},
where K is the number of views. For all combinations of number of points P , number of dimensions
D and number of views K, we found that the pretraining percent error peaked when P = D (Fig.
3) and declined on either side of the P = D threshold.

6 COMPUTE SCALING LAWS IN MMCR

In many MVSSL methods, changing hyperparameters often renders the pretraining losses incom-
mensurate, making comparisons between runs difficult if not impossible. However, because the
MMCR pretraining percent error yields a quantity bounded between 0 and 1, we can compare dif-
ferent training runs with different hyperparameter values for the number of data points P and data di-
mensionality D. Performing such a comparison yields a second interesting empirical phenomenon:
compute neural scaling laws in the MMCR pretraining percent error. See App. G.
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Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, jan 2020. doi: 10.1137/20m1336072.
URL https://doi.org/10.1137%2F20m1336072.

Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise. In International
Conference on Machine Learning, pp. 517–526. PMLR, 2017.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. In Proceedings of the European conference on computer
vision (ECCV), pp. 132–149, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. The Annals of Statistics, 50(2):949–986, 2022.

6



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Anders Krogh and John A Hertz. Generalization in a linear perceptron in the presence of noise.
Journal of Physics A: Mathematical and General, 25(5):1135, 1992.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can gener-
alize. The Annals of Statistics, 48(3):1329–1347, 2020.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
75(4):667–766, 2022.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Oren Neumann and Claudius Gros. Scaling laws for a multi-agent reinforcement learning model.
arXiv preprint arXiv:2210.00849, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Manfred Opper. Statistical mechanics of learning: Generalization. The handbook of brain theory
and neural networks, pp. 922–925, 1995.

Tomaso Poggio, Gil Kur, and Andrzej Banburski. Double descent in the condition number. arXiv
preprint arXiv:1912.06190, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

Jason W Rocks and Pankaj Mehta. The geometry of over-parameterized regression and adversarial
perturbations. arXiv preprint arXiv:2103.14108, 2021.

7



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Jason W Rocks and Pankaj Mehta. Bias-variance decomposition of overparameterized regression
with random linear features. Physical Review E, 106(2):025304, 2022a.

Jason W Rocks and Pankaj Mehta. Memorizing without overfitting: Bias, variance, and interpolation
in overparameterized models. Physical Review Research, 4(1):013201, 2022b.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. In International Conference on Learning Representa-
tions, 2019.

Rylan Schaeffer, Mikail Khona, Zachary Robertson, Akhilan Boopathy, Kateryna Pistunova, Ja-
son W. Rocks, Ila Rani Fiete, and Oluwasanmi Koyejo. Double descent demystified: Identifying,
interpreting and ablating the sources of a deep learning puzzle, 2023a.

Rylan Schaeffer, Zachary Robertson, Akhilan Boopathy, Mikail Khona, Ila Fiete, Andrey Gromov,
and Sanmi Koyejo. Divergence at the interpolation threshold: Identifying, interpreting & ablating
the sources of a deep learning puzzle. In NeurIPS 2023 Workshop on Mathematics of Modern
Machine Learning, 2023b.

Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim GJ Rudner, and Yann LeCun.
An information-theoretic perspective on variance-invariance-covariance regularization. arXiv
preprint arXiv:2303.00633, 2023.
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A BACKGROUND ON MULTI-VIEW SELF-SUPERVISED LEARNING

Multi-View Self-Supervised Learning (MVSSL; also known as Joint-Embedding Self-Supervised
Learning) is a powerful approach to unsupervised learning. The idea is to create multiple trans-
formations, or “views”, of unsupervised data, then use these views in a supervised-like manner to
learn generally useful representations. MVSSL methods are diverse but can be loosely grouped into
different families (Balestriero et al., 2023): (1) contrastive, e.g., CPC (Oord et al., 2018), MoCo 1
(He et al., 2020), SimCLR (Chen et al., 2020a), MoCo 2 (Chen et al., 2020b), CMC (Tian et al.,
2020), RPC (Tsai et al., 2021) and TiCo (Zhu et al., 2022); (2) clustering e.g., Noise-as-Targets
(Bojanowski & Joulin, 2017), DeepCluster (Caron et al., 2018), Self-Labeling (Asano et al., 2019),
Local Aggregation (Zhuang et al., 2019), SwAV (Caron et al., 2020); (3) distillation/momentum
e.g., BYOL (Grill et al., 2020), DINO (Caron et al., 2021), SimSiam (Chen & He, 2021); and (4)
redundancy reduction e.g., Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al., 2022), TiCo
(Zhu et al., 2022). Many MVSSL methods either explicitly originate from information theory (Oord
et al., 2018; Bachman et al., 2019) or can be understood from an information-theoretic perspective
(Wang & Isola, 2020; Wu et al., 2020; Gálvez et al., 2023; Shwartz-Ziv et al., 2023).

B CONTRIBUTIONS

Our contributions are:

1. We leverage tools from high dimensional probability to show that embeddings with perfect
invariance and perfect uniformity minimize the MMCR pretraining loss with high proba-
bility. This analysis involves bounding the MMCR pretraining loss, allowing us to define
a “pretraining percent error” for MMCR; this pretraining percent error then reveals two
interesting empirical phenomena (below).

2. We connect this distribution of embeddings to information theory by showing that such a
distribution maximizes a well-known variational lower bound on the mutual information
between embeddings of multiple views.

3. Our analysis of the MMCR pretraining loss predicts a double descent-like behavior in the
pretraining percent error as a function of two parameters: the number of manifolds N
and the embedding dimensionality D. We empirically test and confirm this prediction in
ResNet-18s He et al. (2016) pretrained on STL-10 Coates et al. (2011). This is notable
because (to the best of our knowledge) double descent has not been observed in MVSSL
and because these parameters differ from the typical double descent parameters (number of
data and number of model parameters).

4. Our pretraining percent error additionally enables comparing different hyperparameters on
the MMCR pretraining loss – an ability not commonly available in MVSSL methods –
which reveals the existence of compute scaling laws.

5. We demonstrate that MMCR, originally proposed purely for images, can be similarly per-
formant in the multi-modal image+text setting. We show that MMCR applied to image+text
pairs can match CLIP Radford et al. (2021) on DataComp Small containing 128M high
quality image+caption pairs Gadre et al. (2023).

C PROOF OF PROP 3.3

Proof. Let σ1, . . . , σmin(P,D) denote the singular values of C, so that ∥C∥∗ =
∑min(P,D)
i=1 σi. The

lower bound follows by the fact that singular values are nonnegative. For the upper bound, we have

min(P,D)∑
i=1

σ2
i = Tr

[
CCT

]
=

P∑
n=1

cTp cp ≤ P.

10
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Then, by Cauchy-Schwarz on the sequences (1, . . . , 1) and
(
σ1, . . . , σmin(P,D)

)
, we get

min(P,D)∑
i=1

σi ≤

√√√√√
min(P,D)∑

i=1

1

min(P,D)∑
i=1

σ2
i


≤
√
min(P,D)P .

D PROOF OF THEOREM 3.5

Recall that LMMCR = −∥C∥∗ is minimized when ∥C∥∗ is maximized and that ∥C∥∗ is upper
bounded by

√
ND if N > D and N if N < D (Proposition 3.3). We want to show a network

that achieves perfect reconstruction and perfect uniformity achieves this upper bound on the nuclear
norm (equivalently, lower bound on the MMCR loss).

Following the proof of Proposition 3.3, let σ1, . . . , σmin(N,D) denote the singular values of C, so
that ∥C∥∗ =

∑
i σi. By Proposition 3.4, we have∑

i

σ2
i = Tr

[
CCT

]
=

N∑
n=1

µTnµn = N.

Now, by the equality version of Cauchy–Schwarz on the sequences (1, . . . , 1) and(
σ1, . . . , σmin(N,D)

)
, we have

∑
i

σi =

√√√√min(N,D)

(∑
i

σ2
i −

∑
i

(
σi −

∑
j σj

min(N,D)

)2
)
. (2)

So if we can bound this “variance” of the singular values
∑
i

(
σi −

∑
j σj

min(N,D)

)2
, we can show that

∥C∥∗ closely matches the upper bound obtained in Proposition 3.3.

To do this, let us consider matrix
√
DC. The vectors µn are uniform over the D-dimensional hy-

persphere SD, so its rows
√
Dµn have mean zero, are isotropic, and (by Example 5.25 in Vershynin

et al. (2012)) are sub-gaussian with parameter ∥
√
Dµn∥ψ2

= O(1).1 Therefore,

• If N ≤ D, then (using the fact that ∥µn∥2 = 1 for all n ∈ [N ]) we can to apply The-
orem 5.58 in Vershynin et al. (2012) on the transpose of

√
DC, obtaining that for any

t ≥ 0, the singular values of
√
DC are within

√
D ± O(

√
N) + t with probability at

least 1 − 2 exp(−Ω(t2)). Setting t to a large enough multiple of
√
N , they are all within√

D ± O(
√
N) with probability at least 1 − 2 exp(−N). Consequently, with the same

probability, the singular values of C are all within ±O(
√

N/D) of each other, and we get∑
i

(
σi −

∑
j σj

min(N,D)

)2
≤ N · O

(√
N/D

)2
= O(N2/D). Plugging this into Eqn. 2, we

get ∥C∥∗ ≤
√
N(N −O(N2/D)) =

√
N(1−O(N/D)).

• If N ≥ D, then we can apply Theorem 5.39 in Vershynin et al. (2012) on
√
DC, obtain-

ing that for any t ≥ 0, the singular values of
√
DC are within

√
N ± O(

√
D) + t with

probability at least 1 − 2 exp(−Ω(t2)). Setting t to a large enough multiple of
√
D, they

are all within
√
N ±O(

√
D) with probability at least 1− 2 exp(−D). Consequently, with

the same probability, the singular values of C are all within ±O(1) of each other, and we

get
∑
i

(
σi −

∑
j σj

min(N,D)

)2
≤ D · O(1)2 = O(D). Plugging this into Eqn. 2, we get

∥C∥∗ ≤
√
D(N −O(D)) =

√
ND(1−O(D/N)).

1Here, ∥·∥ψ2 denotes the sub-gaussian norm (intuitively, the “effective standard deviation” of a sub-gaussian
random variable). For a scalar random variable X , it is defined as ∥X∥ψ2

:= supp≥1 p
−1/2(E[|X|p])1/p

(Definition 5.7 in Vershynin et al. (2012)), and for a random vector u ∈ RD , it is defined as ∥u∥ψ2
:=

supv∈SD ∥uTv∥ψ2 (Definition 5.22 in Vershynin et al. (2012)).
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E PYTHON CODE FOR PERFECT RECONSTRUCTION AND PERFECT
UNIFORMITY EMBEDDINGS

To test our claim that networks which achieve perfect reconstruction and perfect uniformity achieve
the nuclear norm upper bound, we sample a uniform distribution of centroids (thereby enforcing
reconstruction by construction) and measure the nuclear norm relative to our claimed upper bound.
Python code for our simulations is included below:

import pandas as pd
import numpy as np

N l i s t = np . l o g s p a c e ( s t a r t =1 , s t o p =4 , num = 1 1 ) . a s t y p e ( i n t )
D l i s t = np . l o g s p a c e ( s t a r t =1 , s t o p =4 , num = 1 1 ) . a s t y p e ( i n t )
r e p e a t s = np . a r a n g e ( 5 ) . a s t y p e ( i n t )
u n i f o r m d i s t r i b u t i o n n u c l e a r n o r m d a t a l i s t = [ ]

f o r N in N l i s t :
f o r D in D l i s t :

p r i n t ( f ”N: {N}\ tD : {D}” )
f o r r e p e a t in r e p e a t s :

embeddings = np . random . normal ( l o c =0 , s c a l e = 1 0 . 0 , s i z e =(N, D) )
embeddings /= np . l i n a l g . norm ( embeddings , a x i s =1 , keepdims=True )
row = {

” Spect rum ” : ” un i fo rm ” ,
”Number o f Data M a n i f o l d s (N) ” : N,
” Embedding D i m e n s i o n a l i t y (D) ” : D,
” Repea t ” : r e p e a t ,
” N u c l e a r Norm” : np . l i n a l g . norm ( embeddings , ord=” nuc ” ) ,

}
u n i f o r m d i s t r i b u t i o n n u c l e a r n o r m d a t a l i s t . append ( row )

u n i f o r m d i s t r i b u t i o n n u c l e a r n o r m d f = pd . DataFrame (
u n i f o r m d i s t r i b u t i o n n u c l e a r n o r m d a t a l i s t

)

F DOUBLE DESCENT

Double descent citations: Vallet (1989); Krogh & Hertz (1991); Geman et al. (1992); Krogh &
Hertz (1992); Opper (1995); Duin (2000); Spigler et al. (2018); Belkin et al. (2019); Bartlett et al.
(2020); Belkin et al. (2020); Nakkiran et al. (2021); Poggio et al. (2019); Advani et al. (2020); Liang
& Rakhlin (2020); Adlam & Pennington (2020); Rocks & Mehta (2022b; 2021; 2022a); Mei &
Montanari (2022); Hastie et al. (2022); Bach (2023); Schaeffer et al. (2023a); Curth et al. (2023);
Schaeffer et al. (2023b)

G COMPUTE SCALING LAWS IN MMCR

Scaling laws are another wide-spread phenomenon of interest in machine learning where the pre-
training loss follows a predictable power law-like trend with respect to specific quantities such as
number of parameters, total number of data or amount of compute (typically measured in floating
point operations) (Hestness et al., 2017; Rosenfeld et al., 2019; Henighan et al., 2020; Kaplan et al.,
2020; Gordon et al., 2021; Hernandez et al., 2021; Jones, 2021; Zhai et al., 2022; Hoffmann et al.,
2022; Clark et al., 2022; Neumann & Gros, 2022).

By plotting the ResNet-18 networks pretrained on STL-10, once can clearly see power law scaling in
the pretraining percent error with the amount of compute (floating point operations) for all number
of points P , embedding dimensions D, and number of views K (Fig. 4). A key detail is that
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Figure 4: Compute Scaling Laws. For all values of number of points P (equivalently, batch size),
embedding dimension D and number of views per datum K, the pretraining percent error falls
predictably as a power law with the amount of compute i.e. total floating point operations. Consis-
tent with the double descent-like findings in Fig. 3, the on-diagonal subfigures (corresponding to
P = D) exhibit higher initial pretraining percent errors and less steep slopes with compute than the
off-diagonal subfigures (corresponding to P ̸= D).

these neural scaling curves highlight the double descent-like behavior: the on-diagonal subfigures
(corresponding to runs where P = D) have both higher pretraining percent error and a less sleep
slope for the pretraining percent error, meaning that the pretraining percent error starts higher and
falls more slowly. The takeway is that practictioners would be well advised to not pretrain networks
where the number of points P (i.e. the batch size) equals the embedding dimension D.

H MULTI-MODALITY IN MMCR

We next demonstrate that MMCR can be high-performing in a decidedly more challenging setting:
multimodal self-supervised learning. Specifically, we consider the setting of OpenAI’s Contrastive
Language-Image Pretraining model (CLIP) Radford et al. (2021), in which two different networks
are pretrained on image-text caption pairs.

In this multimodal setting, two networks fθ and gθ′ embed data from two different data domains X
and Y . X and Y are paired, such that every example in X has a corresponding positive pair in Y
and vice versa. As such, from an MMCR perspective, X and Y can be understood as two ”views”
of the same underlying object. The optimal transformed embeddings fθ(X) and gθ′(Y ) therefore
should map to the same space, and we can use our improved understanding of MMCR to train these
optimal networks.

The notable difference between this setting and the commonplace MVSSL setting is first that X
and Y might represent extremely different distributions in practice, and second fθ and gθ are two
separate and different neural network architectures. CLIP is a prominent example of such a cross-
modal feature alignment task between a text encoder and an image encoder Radford et al. (2021). In
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Figure 5: Multimodal MMCR on Image-Text Caption Pairs. Left: Multimodal MMCR vs Con-
trastive Language-Image Pretraining (CLIP) performance on ImageNet measured in zero-shot top-1
accuracy. Multimodal MMCR outperforms CLIP for smaller batch sizes but underperforms CLIP
for larger batch sizes. Right: Imagenet top-1 accuracy sweep over batch sizes for MMCR. Un-
like CLIP, MMCR exhibits non-monotonic performance scaling with batch size, and best results
are found at intermediate batch sizes. To generate strong validation performance scaling behavior,
MMCR requires that both batch size and dimension increase simultaneously.

this paper, we investigate whether applying the MMCR objective to the CLIP setting can improve
the quality of learned representations.

In image-text alignment, we have access to image-text pairs, which are respectively fed through a
vision encoder (here, a ResNet-50) and a text encoder (a transformer Vaswani et al. (2017)). We
apply the MMCR objective between the embeddings produced by the two modalities.

We base our Multimodal MMCR experiments off of the open-source CLIP implementation Open-
CLIP Cherti et al. (2022). We apply Multimodal MMCR to DataComp-Small and compare zero-shot
Imagenet performance with the standard CLIP objective, which is equivalent to SimCLR with τ = 1.
DataComp-Small is the smallest version of the curated DataComp dataset family for training CLIP-
style models Gadre et al. (2023). This dataset consists of 128 million high-quality image and text
pairs that can be used in multimodal training.

We found that convergence of MMCR in the image-text mapping setting is highly dependent on
learning rate, and models will fail to converge for learning rates above ≈ 1e − 4. For all runs, we
set our Multimodal MMCR learning rate as 1e − 4 and our normal CLIP learning rate as 1e − 3.
With the standard CLIP embedding size of D = 1024, we swept performance of our models over
the critical hyperparameter of batch size (N ), finding the optimal batch size to be 128. We compare
the performance of the optimal batch size Multimodal MMCR to normal CLIP (Fig. 5). We find that
while Multimodal MMCR outperforms CLIP at small batch sizes (< 512) and remains competitive
with CLIP with a batch size of 512, it is underperforms CLIP at higher batch sizes. The CLIP loss is
a batch contrastive method, and thus benefits directly from increasing batch size. MMCR, however,
is simultaneously batch and dimension contrastive, and as a result to achieve similar scaling it is
likely Multimodal MMCR would need to increase the size of its latent embedding space beyond
1024 Garrido et al. (2023).

I RELATIONSHIP OF MMCR TO THE DUALITY OF SAMPLE-CONTRASTIVE
AND DIMENSION-CONTRASTIVE SELF-SUPERVISED LEARNING

In their ICLR 2023 paper “On the Duality Between Contrastive and Non-Contrastive Self-
Supervised Learning”, Garrido et al. (2023) noted that contrastive (also known as sample-
contrastive) and non-contrastive (also known as dimension-contrastive) SSL methods can be seen
as two sides of the same coin. Specifically, letting Z ∈ RPK×D denote the matrix of stacked
embeddings, then sample-contrastive methods (e.g., SimCLR) incentivize entropy via:

LSample-Contrastive
def
= ||ZZT − diag(ZZT )||2F ,
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Figure 6: Multimodal MMCR exhibits strong batch size dependence in ImageNet zero-shot vali-
dation performance. Intermediate batch sizes, such as 128 and 256, achieved the best validation
performance by a large margin. By contrast, the smallest batch sizes or batch sizes closest to the
embedding dimension size of 1024 fared the poorest.

Figure 7: To understand the perplexing batch size dependence, we analyze the complement of the
average centroid norm (1 − ∥µ∥22) and the pretaining percent error relative to the lower bound as
defined earlier(1 − ∥M∥∗

N ). The complement of the average centroid norm is an unbiased estimator
for perfect reconstruction in our network. We find that lower batch sizes converge closer to perfect
reconstruction and to lower percent error.
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whereas dimension-contrastive methods (e.g., BarlowTwins) incentivize entropy via:

LDimension-Contrastive
def
= ||ZTZ − diag(ZTZ)||2F .

Both families also include an invariant loss LInvariance as part of the total loss, typically the MSE
between the positive pairs. We observe that both families of loss aim to maximize on-diagonal
elements through their invariance loss and minimize off-diagonal elements through their contrastive
losses, on a batch-wise or dimension-wise correlation matrix respectively. In both cases, the loss
functions aim to maximize the spectra of their matrices (either ZZT or ZTZ), and given that these
matrices have related spectra, one might wonder why not maximize the spectrum of Z directly?
Maximizing the spectrum of Z is qualitatively what MMCR aims to do via its nuclear norm-based
loss.
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