
When Lower-Order Terms Dominate: Adaptive
Expert Algorithms for Heavy-Tailed Losses

Antoine Moulin∗

Universitat Pompeu Fabra
antoine.moulin@upf.edu

Emmanuel Esposito∗
Università degli Studi di Milano
emmanuel.espo@gmail.com

Dirk van der Hoeven
Leiden University

dirk@dirkvanderhoeven.com

Abstract

We consider the problem setting of prediction with expert advice with possibly
heavy-tailed losses, i.e. the only assumption on the losses is an upper bound on their
second moments, denoted by θ. We develop adaptive algorithms that do not require
any prior knowledge about the range or the second moment of the losses. Existing
adaptive algorithms have what is typically considered a lower-order term in their
regret guarantees. We show that this lower-order term, which is often the maximum
of the losses, can actually dominate the regret bound in our setting. Specifically,
we show that even with small constant θ, this lower-order term can scale as

√
KT ,

where K is the number of experts and T is the time horizon. We propose adaptive
algorithms with improved regret bounds that avoid the dependence on such a
lower-order term and guarantee O(

√
θT log(K)) regret in the worst case, and

O(θ log(KT)/∆min) regret when the losses are sampled i.i.d. from some fixed
distribution, where ∆min is the difference between the mean losses of the second
best expert and the best expert. Additionally, when the loss function is the squared
loss, our algorithm also guarantees improved regret bounds over prior results.

1 Introduction

We study the problem of prediction with expert advice [Vovk, 1990, Littlestone and Warmuth, 1994],
a sequential decision-making setting over T rounds where each round t goes as follows. The learner
selects a probability distribution pt ∈ P =

{
p ∈ RK : p(i) ≥ 0, ⟨pt,1⟩ = 1

}
over K experts, suffers

some loss ft(pt) ∈ R, and subsequently observes the loss function ft : P → R. The goal in this
problem, also known more briefly as the experts setting, is to control the (pseudo-)regret

RT = max
i∈[K]

RT (ei) = max
i∈[K]

E

[
T∑
t=1

(ft (pt)− ft (ei))

]
,

where the expectation is with respect to the randomness in (ft)t∈[T], and ei ∈ P is the i-th standard
basis vector. The pseudo-regret measures the expected difference between the learner’s cumulative
loss and that of the best expert in hindsight. Throughout the paper, we assume that either the
losses or the outcomes are heavy tailed, and provide a concrete answer to the concluding remarks
of Mhammedi et al. [2019] that highlight the challenge of dealing with infrequent large values in
the full-information setting. Such conditions arise in various practical settings involving noisy data,
outliers, or mechanisms like those in local differential privacy [Van der Hoeven, 2019].

∗Equal contribution.

18th European Workshop on Reinforcement Learning (EWRL 2025).

A primary goal of this paper is to develop algorithms that achieve sub-linear regret without prior
knowledge of a bound on the second moment of the losses, outcomes, or range of the losses
maxt∈[T],p∈P |ft (p)|. We will refer to such algorithms as loss-range adaptive algorithms. Crucially,
unlike the related multi-armed bandit problem, where adaptivity to an unknown second moment
is generally impossible without further assumptions [Genalti et al., 2024], we demonstrate this
is achievable in the experts setting. Our second goal is to aim for algorithms that exhibit strong
guarantees both in worst-case scenarios and in more benign stochastic environments, often referred
to as best-of-both-world guarantees.

While several loss-range adaptive algorithms exist for linear losses, ft (p) = ⟨p, ℓt⟩ =
∑K
i=1 p(i)ℓt(i)

for some ℓt ∈ RK , they are not designed to handle heavy-tailed losses [Blackwell, 1956, Cesa-
Bianchi et al., 2007, De Rooij et al., 2014, Orabona and Pál, 2015, Mhammedi et al., 2019]. Standard
algorithms achieve O

(
M
√
T logK

)
regret for losses bounded as maxt,i |ℓt(i)| ≤ M . However,

if the losses are drawn from some distribution supported on R and such that maxt,i E
[
ℓt(i)

2
]
≤ θ

for some θ > 0, the regret guarantees of existing algorithms can degrade to O
(√
KT

)
, which is

exponentially worse in K. The issue lies in what prior work consider a lower-order term, namely
maxt,i |ℓt(i)|. Indeed, while this term is innocuous for bounded losses, we demonstrate that for
heavy-tailed losses with second moment θ = O(1), it can be as large as Ω

(√
KT

)
, thereby becoming

the dominant factor in the regret bound.

This paper introduces adaptive algorithms that overcome this limitation. Specifically:

1. For linear losses, under Assumption 2.1, Algorithm 1 achieves O(
√
θT log(K)) worst-case

regret, effectively removing the detrimental
√
K dependency.

2. Under Assumption 2.1, Algorithm 2 achieves O(
√
θT log(KT)) worst-case regret, while also

providing aO(θ log(KT)/∆min) regret in self-bounded environments (Assumption 2.3), where
∆min is the gap in expected loss between the two best experts. This contrasts with prior
algorithms whose guarantees would still be hampered by the O

(√
KT

)
term.

3. For the squared loss, ft (p) = (⟨p, zt⟩ − yt)2, where expert predictions zt,i are bounded by Y
and the second moment of the outcomes yt is bounded by σ, Algorithm 3 achieves a regret of
O
((
Y 2 + σ

)
log (K)

)
, avoiding a O (T) regret that can arise for heavy-tailed outcomes.

The remainder of the paper is structured as follows: Section 2 presents the problem settings and
our main results. Section 3 discusses related work in more detail. In Section 4, we establish why
terms previously considered “lower-order” become dominant under heavy-tailed losses for existing
algorithms. Section 5 presents our algorithms and sketches their regret analyses, highlighting the
techniques used to circumvent the challenges posed by the lack of control over the range of losses.
We conclude with a discussion of future work in Section 6.

2 Preliminaries and Results

We consider two settings. The first, sometimes referred to as the “Hedge setting” [Littlestone and
Warmuth, 1994], can be seen as a special case of the experts setting [Vovk, 1990] with linear losses.
In the second, we consider quadratic losses. Throughout the paper, we assume K,T ≥ 2.

2.1 Hedge Setting

In this section, each round t = 1, . . . , T , goes as follows: the learner issues pt ∈ P , suffers loss
⟨pt, ℓt⟩, and then observes ℓt ∈ RK . Let Et [·] = E [· |Ft], where Ft is the sigma-field generated by
the history (ℓ1, . . . , ℓt−1) up to round t. We will use the following assumption in the Hedge setting.

Assumption 2.1 (finite second moments). There exists a scalar θ ∈ R such that Et
[
ℓt (i)

2] ≤ θ for
any t ∈ [T] and any i ∈ [K].

This assumption is more general than the standard bounded losses assumption: if |ℓt(i)| ≤M for all
i ∈ [K], t ∈ [T], then Assumption 2.1 is satisfied with θ =M2. We do not assume to know θ, which
is the central algorithmic challenge in the Hedge setting. One of our main results is the following.
Theorem 2.2. Consider the Hedge setting and suppose Assumption 2.1 holds. Then, there exists an
algorithm that, without prior information on the losses, guarantees that RT = O

(√
θT log(K)

)
.

2

Assumption 2.1 Assumptions 2.1 and 2.3 with C = 0

Cesa-Bianchi et al. [2007];
De Rooij et al. [2014]

√
θT log(K) +MT θ log(K)∆−1

min +MT

Mhammedi et al. [2019]
√
θT log(K) +MT θ log(K)∆−1

min +MT

Algorithm 1 (Ours)
√
θT log(KT) θ log(KT)∆−1

min

Algorithm 2 (Ours)
√
θT log(K)

√
θT log(K)

Table 1: An overview of the most relevant loss-range adaptive algorithms in the literature, ignoring
constants. Some of the results in the middle column follow from an application of Jensen’s inequality.

This is achieved by Algorithm 2, which we discuss later in Section 5.2. The proof can be found in
Appendix C. While such a result seems expected, we found that loss-range adaptive algorithms in the
literature can only guarantee O

(√
θT log(K) +

√
KT

)
regret. We detail prior results in Section 3

and their issues in Section 4.

The following assumption allows us to obtain better regret bounds.

Assumption 2.3. There exist ∆min, C > 0 and a unique i⋆ = argmini∈[K] E
[∑T

t=1 ℓt(i)
]

such

that RT ≥ E
[∑T

t=1

(
1− pt (i⋆)

)
∆min

]
− C.

This is known as a self-bounded environment [Zimmert and Seldin, 2021] and has been studied in the
Hedge setting by Amir et al. [2020]. We have the following result under this assumption.
Theorem 2.4. Consider the Hedge setting and suppose Assumption 2.1 holds. Then, there exists
an algorithm that, without prior information on the losses, guarantees RT = O

(√
θT log(KT)

)
.

Furthermore, if Assumption 2.3 also holds, then the same algorithm simultaneously guarantees

RT = O
(
θ log(KT)

∆min
+
√

Cθ log(KT)
∆min

)
.

This is achieved by Algorithm 1, which we discuss in Section 5.1 together with a sketch of the proof.
We provide a full proof in Appendix B.

2.2 Quadratic Losses

Here we introduce a second setting we consider. In each round t ∈ [T], the learner observes the
expert predictions (zt,i)i∈[K], issues a prediction zt = ⟨pt, zt⟩, suffers the quadratic loss ft (pt) =

(zt − yt)2, and then observes yt. We have the following result.

Theorem 2.5. Consider quadratic losses and suppose that maxt,i |zt,i| ≤ Y and maxt Et
[
y2t
]
≤ σ.

Then there exists an algorithm such that RT = O
((
Y 2 + σ

)
log (KT)

)
.

We prove this result in Appendix D. A sketch of the proof is provided in Section 5.3. Our analysis
could also be extended to strongly convex losses. We leave this extension for future work.

Notation. For any t ∈ [T], i ∈ [K], let rt (i) = ⟨pt, ℓt⟩ − ℓt (i) be the instantaneous re-
gret, vt(i) = rt(i)

2, and v̄t =
∑K
i=1 pt(i)vt(i) be the variance of ℓt (It) with It ∼ pt. Fur-

thermore, let V̄T =
∑T
t=1 v̄t, VT (i) =

∑T
t=1 vt(i), MT = E

[
maxt∈[T],i∈[K] |rt (i)|

]
, and

LT = E
[
maxt∈[T],i∈[K] |ℓt (i)|

]
. Finally, we denote by i⋆ ∈ argmini∈[K] E

[∑T
t=1 ℓt (i)

]
the

best expert in hindsight.

3 Related Work

There are several loss-range adaptive algorithms in the Hedge setting. A summary can be found
in Table 1. Perhaps the most well-known loss-range adaptive algorithm is the exponential weights
algorithm [Vovk, 1990, Littlestone and Warmuth, 1994] combined with the doubling trick [Auer et al.,
1995]. This combination leads to a O

(
LT
√
T log (K)

)
regret bound. Cesa-Bianchi et al. [2007]

3

provide a refined version of the exponential weights algorithm combined with a refined doubling
trick to obtain a O

(
E
[√

V̄T log (K)
]
+MT log (K)

)
regret bound. De Rooij et al. [2014] also

prove the same regret bound for an algorithm based on the exponential weights algorithm, with the
added benefit that their algorithm does not use restarts to achieve this result. Orabona and Pál [2015]
provide a generic analysis of follow the regularized leader and online mirror descent that, under mild
assumptions on the regularizer, leads to loss-range adaptive algorithms which guarantee that the regret
is at most O

(
E
[√∑

tmaxi ℓt(i)2
])

, but this can be trivially seen to be at least MT . Mhammedi
et al. [2019] provide a loss-range adaptive version of Squint [Koolen and Van Erven, 2015], which
guarantees a regret bound scaling as O

(
E
[√

VT (i⋆) log (K)
]
+ MT log (K)

)
. Flaspohler et al.

[2021] show that regret matching [Blackwell, 1956, Hart and Mas-Colell, 2000] and regret matching+
[Tammelin et al., 2015] are both loss-range adaptive algorithm, but unfortunately with unsatisfactory
regret bounds. Under Assumption 2.1, Wintenberger [2024] provides a loss-range adaptive algorithm
with O

(
log (K)

√
θT + E

[∑K
i=1 log

(
1 + maxt|rt(i)|

mt,i

)])
regret, where mt,i is the first non-null

observation of |rt (i)|. Unfortunately, it is not clear how to control maxt|rt(i)|
mt,i

as mt,i can be made
arbitrarily close to 0 by an adversary.

Orseau and Hutter [2021], Cutkosky [2019] provide generic templates to make most Hedge algorithms
loss-range adaptive, at the cost of a MT term in the regret bound. Orseau and Hutter [2021] make use
of the following observation: if the algorithm makes too extreme of an update it might never recover.
Therefore, it is sometimes better to ignore certain losses. Cutkosky [2019] observed that one can
always guarantee that the algorithm does not make such an extreme update by feeding the algorithm
slightly shrunken losses, a technique also employed by Mhammedi et al. [2019], Mhammedi [2022].
Specifically, they feed the algorithm the losses

ℓ̃t (i) = ℓt (i)min

{
1,

maxs∈[t−1],j∈[K] |ℓs (j)|
maxj∈[K] |ℓt (j)|

}
= ℓt (i) ·

maxs∈[t−1],j∈[K] |ℓs (j)|
maxs∈[t],j∈[K] |ℓs (j)|

.

This ensures the range of the losses we feed to the algorithm is known before choosing pt. The cost
for using ℓ̃t rather than ℓt in the algorithm is minor at first sight:

T∑
t=1

K∑
i=1

pt(i)
(
ℓt(i)− ℓ̃t(i)

)
=

T∑
t=1

K∑
i=1

pt(i)ℓt(i)

(
1−

maxs∈[t−1],j∈[K] |ℓs(j)|
maxs∈[t],j∈[K] |ℓs(j)|

)

≤
T∑
t=1

max
s′∈[t],i∈[K]

|ℓs′(i)|
(
1−

maxs∈[t−1],j∈[K] |ℓs(j)|
maxs∈[t],j∈[K] |ℓs(j)|

)
= max
t∈[T],i∈[K]

|ℓt(i)| .

However, this term can be prohibitively large as we will show in Section 4. Instead, we adapt and
combine the ideas of Cutkosky [2019], Orseau and Hutter [2021]. We develop a coordinate-wise
version of the clipping technique of Cutkosky [2019]. Unfortunately, this is not sufficient for our
needs and we need to combine it with a coordinate-wise version of the null-updates of Orseau
and Hutter [2021] and the multi-scale entropic regularizer of Bubeck et al. [2019] to guarantee a
satisfactory regret bound. Gökcesu and Kozat [2022] also claim to provide loss-range adaptive
algorithms, but two of their results seem to contain mistakes. We provide details in Appendix E.

Scale-free algorithms. A related but different objective is obtaining scale-free or equivalently
scale-invariant algorithms. An algorithm is said to be scale-free if the predictions of the algorithm do
not change if the sequence of losses is multiplied by a positive constant. While scale-free algorithms
are loss-range adaptive the converse is not necessarily true. Mhammedi [2022] provide a generic
wrapper to make any algorithm scale-free, under some mild assumptions on the algorithm. However,
this comes at the cost of an additive MT . The algorithms of De Rooij et al. [2014], Orabona and
Pál [2015] are known to be scale-free. Unfortunately, it is not clear whether our algorithms are also
scale-free.

Adaptive algorithms for bounded losses. If we assume that losses are bounded, e.g., ℓt(i) ∈ [0, 1],
then there are several works that provide best-of-both-worlds results. Gaillard et al. [2014], Koolen
et al. [2016] show that so-called second-order bounds simultaneously guarantee O

(√
T log(K)

)
regret without further assumptions on the loss and O(log(K)/∆min) regret under Assumption 2.3
with C = 0. This also implies that the results of Cesa-Bianchi et al. [2007], De Rooij et al. [2014],

4

Koolen and Van Erven [2015], Chen et al. [2021] all lead to small regret under Assumption 2.3 with
C = 0 while also being robust to more difficult environments. Mourtada and Gaïffas [2019] show
that the exponential weights algorithm with a decreasing learning rate guarantees O(log(K)/∆min)

regret under Assumption 2.3 with C = 1 while simultaneously guaranteeing O
(√

T log(K)
)

regret
in the worst case. The only work that we are aware of that treats Assumption 2.3 with C > 0 is by
Amir et al. [2020], who show that the exponential weights algorithm with a decreasing learning rate
guarantees O(log(K)/∆min + C) regret.

Online learning with heavy-tailed losses. To the best of our knowledge, we are the first to consider
heavy tailed losses in the expert setting. A related setting is studied by Bubeck et al. [2013], who
introduce the multi-armed bandits with heavy tails setting. The main difference with our setting is
that the learner only gets to see the loss for the chosen action each round, which significantly reduces
the amount of available feedback to the learner. Remarkably, without further assumptions, one cannot
adapt to θ, as shown by Genalti et al. [2024]. However, under some additional assumptions on the
loss, it is possible to adapt to θ, as shown by Lee et al. [2020], Ashutosh et al. [2021], Huang et al.
[2022], Genalti et al. [2024], Chen et al. [2024].

4 Lower-Order Terms with Unbounded Losses

In this section, we show that what have been considered lower-order terms in the literature may
actually dominate regret bounds.

4.1 Lower-Order Terms in the Hedge Setting

We provide three results that imply that if a regret bound contains MT or LT , then this “lower-order
term” can dominate the regret bound. We rely on the following observation, proved in Appendix A.
Lemma 4.1. Fix any n ∈ N \ {0}. Let X1, . . . , Xn be non-negative i.i.d. random variables such that

Xj =

{
0 w.p. 1− 1

n√
n w.p. 1

n

.

for each j ∈ [n]. Then, E[X2
j] = 1 for any j ∈ [n] and 1

2

√
n ≤ E[max{X1, . . . , Xn}] ≤

√
n.

While the distribution in Lemma 4.1 might appear unnatural, the Fréchet distribution, which is often
used in economics, satisfies similar properties as the distribution of Lemma 4.1; see Lemma A.1 in
Appendix A. Lemma 4.1 immediately leads to the following result.
Proposition 4.2. There exists a distribution for ℓ1, . . . , ℓT that satisfies Assumption 2.1 with θ = 4
such that LT ≥ 1

2

√
KT .

Proof. Simply choose ℓt(i) = µt,i + ξt,iεt,i where µt,i ∈ [0, 1] is chosen arbitrarily, ξt,i is a
Rademacher random variable, and εt,i follow the distribution specified in Lemma 4.1 with n = KT .
Then, Lemma 4.1 provides the result after using Et[ℓt(i)2] ≤ 2µ2

t,i + 2Et[ε2t,i] ≤ 4.

In the worst case, Proposition 4.2 implies that any algorithm with a regret bound of the form
RT ≤

√
θT log(K) + LT will be dominated by LT for large enough K. Existing algorithms

sometimes have a MT ≤ 2LT term in the regret instead. It is natural to question whether MT can be
small enough. The following proposition shows that MT , like LT , can be prohibitively large.
Proposition 4.3. Suppose one can guarantee a bound RT ≤ B⋆T +MT , with B⋆T ≥ 0. There exists
a distribution with θ = 4 such that B⋆T +MT ≥ 1

2B
⋆
T + 1

8

√
KT − 1.

The proof of Proposition 4.3 can be found in Appendix A. While Proposition 4.3 shows that any
regret bound with a term MT is O

(√
KT

)
, Theorem 2.2 guarantees that Algorithm 2 achieves

RT = O
(√

θT log(K)
)
. For loss sequences that satisfy Assumption 2.3, the situation is even more

dire, as one then hopes to guarantee O(θ log(K)/∆min) regret. Proposition 4.3 shows that if one
has a regret bound of the form θ log(K)/∆min +MT , in the worst case this bound is O

(√
KT

)
. In

contrast, in Theorem 2.4 we provide a O(θ log(KT)/∆min) regret bound, which is exponentially

5

better in K and T . Since these results only affect upper bounds on the regret, one can ask whether
existing algorithms could benefit from a more careful analysis. We do not think this is possible
for existing algorithms and sketch an argument in Appendix A. Furthermore, to illustrate their
failure modes, we compare empirically those algorithms with the ones we introduce in Section 5 in
Appendix F.

4.2 Lower-Order Terms for the Squared Loss

Since the squared loss is exp-concave (or mixable), an appealing approach is to use exponential
weights with a suitable learning rate to obtain a regret bound that is seemingly independent of T .
Indeed, a simple calculation shows that the function gt(·) = (yt − ·)2 is (2maxt,i(zt,i − yt)2)−1-
exp-concave. If one knows maxt,i(zt,i − yt)2, this would lead to the following bound [Vovk, 1990]:

RT ≤ 2 log(K) · E
[
max
t,i

(zt,i − yt)2
]

(1)

However, the maxt,i (zt,i − yt)2 factor might lead to a poor guarantee. Suppose that |zt,i| ≤ Y and
that E

[
y2t
]
≤ θ <∞. If yt = µt + ξtεt, where |µt| ≤ 1, ξt is a Rademacher random variable, and

εt follows the distribution specified in Lemma 4.1 with n = T , then

E
[
max
t,i

(zt,i − yt)2
]
≥ E

[
max
t
y2t − 2Y |yt|

]
≥ E

[
max
t
|yt|
]2
− 2Y E

[
max
t
|yt|
]

≥ E
[
max
t
|εt|
]2
− 2(Y + 1)

(
1 + E

[
max
t
|εt|
])
≥ 1

2
T − 2(Y + 1)

√
T ,

which can be excessively large. Even more so, one would need to know maxt,i(zt,i − yt)2 to obtain
the regret bound in Equation (1). The results of Wintenberger [2017] (see also Van der Hoeven et al.
[2022]) imply that the algorithm of Mhammedi et al. [2019], designed for the Hedge setting, applied
to the losses ℓt(i) = 2zt,i(zt − yt) would lead to a bound of order

RT = O
((
Y 2 + θ + E

[
max
t
|zt − yt|

])
log(K)

)
.

The E[maxt |zt − yt|] term can also be problematic. Indeed, if yt = µt + ξtεt, where µt ∈ [−1, 1],
ξt is a Rademacher random variable, and εt follows the distribution specified by in Lemma 4.1
with n = KT , then E

[
maxt |zt − yt|

]
≥ E

[
maxt |zt|

]
− Y = 1

2

√
T − Y . Thus, if Y ≥ 2 then

Y 2 + θ + E
[
maxt |zt − yt|

]
≥ 1

2

(
Y 2 +

√
T
)
. On the other hand, for the same yt, Theorem 2.5

implies that Algorithm 3 guarantees a regret bound of order (4 + Y 2) log(KT).

5 Algorithms

In this section, we present two types of algorithms and provide a sketch for their regret analysis.
The first algorithm, called LoOT-Free OMD (Lower-Order Term Free), is an instance of Online
Mirror Descent (OMD), whereas the second, called LoOT-Free FTRL, is an instance of Follow The
Regularized Leader (FTRL). Both algorithms are run on clipped versions of the instantaneous regrets,
but one could obtain similar worst-case guarantees by running the algorithms on clipped versions of
the losses.

Before we describe the algorithms in more detail, we first need some definitions. For any t ∈ [T], let
ηt ∈ RK>0 be a vector of learning rates and ψt : x ∈ RK≥0 7→

〈
Diag

(
η−1
t

)
x, log x

〉
be the regularizer,

where y−1 is the coordinate-wise inverse, log y is the coordinate-wise logarithm, and Diag(y) is the
diagonal matrix with diagonal entries y1, . . . , yK for any y ∈ RK . Note that, for any x ∈ RK≥0, the
gradient of ψt is given by∇ψt (x) = Diag

(
η−1
t

)
log x+η−1

t . Consider also its Bregman divergence,
defined for any x ∈ RK≥0 and y ∈ RK>0 as Dt (x∥y) = ψt (x) − ψt (y) − ⟨∇ψt (y) , x− y⟩ =∑K
i=1

1
ηt,i

[
xi log

(
xi

yi

)
− xi + yi

]
. Finally, denote by Pα = {p ∈ P : mini pi ≥ α/K} the

probability simplex truncated by α/K, for any α ∈ [0, 1].

6

Algorithm 1 LoOT-Free OMD
Inputs: Number of experts K ≥ 2, truncation parameter α ∈ (0, 1], learning rate β > 0.
Initialize: p1 (i)← 1/K for all i ∈ [K].
for t = 1, . . . , T do

Predict pt, incur loss ⟨pt, ℓt⟩ and observe ℓt.
Set rt (i)← ⟨pt, ℓt⟩ − ℓt (i) for all i ∈ [K].
Set vt (i)← rt (i)

2 for all i ∈ [K], and v̄t ←
∑K
i=1 pt(i)vt(i).

if
∑
s≤t v̄s > 0 then

Set ηt,i ← βmax
{∑

s≤t v̄s,
∑
s≤t vs (i)

}−1/2
for all i ∈ [K].

Set ℓ̃t (i)← −rt (i)1 (|rt (i)| ≤ 1/ηt,i) for all i ∈ [K].
Set pt+1 ← argminp∈Pα

〈
p, ℓ̃t

〉
+Dt (p∥pt).

end if
end for

5.1 OMD-based Algorithm

The main challenge in designing an algorithm for losses for which you do not know the range comes
from proving the stability of the algorithm, which is to say that pt(i) ≈ pt+1(i). An analysis based on
strong convexity circumvents this challenge. Orabona and Pál [2015] show that if the regularizer ϕ is

strongly convex with respect to some norm ∥ · ∥, the regret can be O
(√

maxp∈P ϕ(p)
∑T
t=1 ∥ℓt∥2⋆

)
,

where ∥ · ∥⋆ is the dual norm. However, if one uses the (shifted) negative Shannon entropy as ϕ,

this will lead to a O
(√

log(K)
∑T
t=1 ∥ℓt∥2∞

)
bound, which is O(

√
KT) in the worst case. A more

careful analysis that avoids strong convexity arguments can be found in De Rooij et al. [2014], but
unfortunately this analysis does not avoid a problematic lower-order term. To avoid such issues, we
make use of the multi-scale entropic regularizer of Bubeck et al. [2019]. If the range of the losses is
known a-priori, Bubeck et al. [2019] show that for bounded losses and known maxt |ℓt(i)| the regret
against expert i then scales as E[maxt |ℓt(i)|]

√
T log(K). However, this alone is not sufficient, as

it is not clear how to prove that the algorithm is stable without an a-priori uniform bound on the
losses, nor is such a regret bound sufficiently small. Instead, we carefully clip the losses when they
are excessively large. Combining these ideas leads to the following guarantee for Algorithm 1 with
α = 1

T and β =
√
log(KT):

T∑
t=1

rt(i
⋆) = O

(√
log(KT)

(
V̄T + VT (i⋆)

))
. (2)

Notice that the above upper bound holds with probability one for any sequence of losses and, in turn,
leads to the guarantees of Theorem 2.4. A full proof of the above result can be found in Appendix B.
Here we provide some intuition.

Proof sketch of Theorem 2.4. First, observe that Algorithm 1 is an instance of OMD adopting the
time-varying regularizer ψt with some additional tricks. We only update pt if

∑
s≤t v̄s > 0. The only

case where this is not true is if in all rounds up to and including round t, rt(i) = 0 for all i ∈ [K], in
which case we can simply ignore these rounds in the analysis. From standard OMD analysis (see for
example Orabona [2023]), we know that if we run OMD on losses ℓ̃t, for any fixed j ∈ [K],

T∑
t=1

(
⟨pt, ℓ̃t⟩ − ℓ̃t(j)

)
= O

(
log(K/α)

ηT,j
+

T∑
t=1

K∑
i=1

ηt,ip̃t(i)ℓ̃t(i)
2

)
,

where p̃t(i) = pt(i) exp
(
−ηt,iℓ̃t(i)

)
. At this point, we face our main challenge. We would like to

show that p̃t(i) ≈ pt(i). To do so, we would need to show that |ηt,iℓ̃t(i)| ≤ 1. We force this to be
true by simply setting ℓ̃t(i) = 0 if |rt(i)| > 1

ηt,i
and ℓ̃t(i) = −rt(i) otherwise. Of course, there is a

price to pay for clipping the losses, but this price is negligible:∣∣ℓ̃t(i)− (−rt(i))
∣∣ = |rt(i)|1(|rt(i)| > 1

ηt,i

)
=
rt(i)

2

|rt(i)|
1

(
|rt(i)| >

1

ηt,i

)
≤ ηt,ivt(i) . (3)

7

Thus, after noting that ℓt and −rt only differ from a constant, we have that the regret against expert j
is
∑T
t=1

(
⟨pt, ℓt⟩− ℓt(j)

)
=
∑T
t=1

(
⟨pt,−rt⟩− (−rt(j))

)
, and we can replace −rt by the truncated

losses ℓ̃t by paying the cost shown in Equation (3) and use the guarantee from OMD

T∑
t=1

(
⟨pt, ℓt⟩ − ℓt(j)

)
= O

(
T∑
t=1

(
⟨pt, ℓ̃t⟩ − ℓ̃t(j)

)
+

T∑
t=1

(
ηt,jvt(j) +

K∑
i=1

pt(i)ηt,ivt(i)
))

= O

(
log(K/α)

ηT,j
+

T∑
t=1

(
ηt,jvt(j) +

K∑
i=1

pt(i)ηt,ivt(i)
))

.

After controlling the sum by using the definition of ηt,i, the bound in Equation (2) follows as

T∑
t=1

(
ηt,jvt(j) +

K∑
i=1

pt(i)ηt,ivt(i)
)
≤ β

T∑
t=1

(
vt(j)√
Vt(j)

+
v̄t√
V̄t

)
≤ 4β

√
V̄T + VT (j) ,

where the first inequality follows from the definition of ηt,i and the second follows from, for example,
Lemma 4.13 in Orabona [2023].

Note the optimization problem defining pt+1 is done a truncated simplex. While this precludes a
closed-form solution, it can be computed efficiently with a line-search as done by Chen et al. [2021].

5.2 FTRL-based Algorithm

Taking some ideas from the previous OMD-based algorithm, we derive an instantiation of FTRL
described by Algorithm 2 in Appendix C. For FTRL we also use the multi-scale entropic regularizer
ψt and a similar clipping of the losses to resolve the same issues that follow from the lack of any
prior knowledge of the loss range. However, the FTRL framework has some fundamental differences
compared to OMD, which in turn require further care. To understand these differences, we will sketch
the proof of Theorem 2.2 below, whose result is obtained by Algorithm 2 with β =

√
log(K). The

detailed proof of Theorem 2.2 can be found in Appendix C. Here we provide the main ideas. We
actually prove a stronger regret guarantee than provided in Theorem 2.2:

T∑
t=1

rt(i
⋆) = O

(√
log(K)

(
V̄T + VT (i⋆)

)
+

1

K

K∑
i=1

√
VT (i)

)
, (4)

which then implies the statement of Theorem 2.2.

To prove this regret bound we make use of the standard FTRL analysis (e.g., see Orabona [2023]) with
some additional tricks. Note that, differently from Algorithm 1, we replace the multi-scale entropic
regularizer ψt with its Bregman divergence. This is to ensure the monotonicity of the regularizer,
i.e., φt+1(x) ≥ φt(x) for all x ∈ P . This monotonicity is necessary for the proof of the FTRL
regret bound. The fact that we use the Bregman divergence generated by ψt rather than ψt directly
as the regularizer also allows us to avoid the log(T) term of the OMD regret bound, at the cost of a
1
K

∑K
i=1

√∑T
t=1 vt(i) term in the regret. While this term is prohibitively big when we try to obtain

improved regret bounds under Assumption 2.3, in expectation this term scales as O
(√
θT
)

under
Assumption 2.1, thus preserving the desired final bound.

Proof sketch of Theorem 2.2. Since the pt in Algorithm 2 comes from an instance of FTRL over the
losses ℓ̃t, we can apply a standard FTRL bound (for example, Lemma 7.14 of Orabona [2023]) to see
that, for any fixed j ∈ [K],

T∑
t=1

(
⟨pt, ℓ̃t⟩ − ℓ̃t(j)

)
= O

(
logK

ηT,j
+

1

K

K∑
i=1

1

ηt,i
+

T∑
t=1

K∑
i=1

ηt−1,ip̃t(i)ℓ̃t(i)
2

)
, (5)

where p̃t(i) = pt(i) exp
(
−ηt−1,iℓ̃t(i)

)
. Here we reach the main challenge of adapting FTRL to our

setting. The third term illustrates crucial differences compared to OMD: the learning rate ηt−1,i

instead of ηt,i appears as a multiplicative factor and in the definition of p̃t. We resolve this issue by

8

rescaling the loss −rt(i) by a factor bt−1(i)/bt(i) in the definition of ℓ̃t(i). Still, this rescaled loss
can be too big, which is why we also clip the loss when necessary. Specifically, the clipping with a
rescaling factor ensures, by the definitions of bt(i) and ηt,i, that ηt−1,iℓ̃t(i)

2 ≤ bt−1(i)
bt(i)

ηt−1,irt(i)
2 =

ηt,ivt(i) and, similarly, that |ηt−1,iℓ̃t(i)| ≤ 1. Thus, we can bound the third term on the right hand

side of Equation (5) by O
(∑T

t=1

∑K
i=1 ηt,ipt(i)vt(i)

)
, which we already know how to control from

the analysis of Algorithm 1.

Another consequence of the new definition of ℓ̃t is that it increases the cost of clipping the losses. In
comparison to Equation (3), it now additionally presents terms

|rt(i)|
(
1− bt−1(i)

bt(i)

)
1

(
|rt(i)| ≤

1

ηt,i

)
≤ 1

ηt,i
− 1

ηt−1,i

but the sums involving them are also nicely behaved. Combining all these observations leads to
Equation (4).

While the update suggests pt is given by a softmax function, the coordinate-dependent learning rate
prevents us from computing the normalization constant in closed-form (see Appendix C.1). However,
it can be computed efficiently with a line-search as in Algorithm 1 from Bubeck et al. [2019].

5.3 Algorithm for the Squared Loss

The algorithm we use for the squared loss, Algorithm 3 can be found in Appendix D. It is exactly the
same as Algorithm 1, but then run on the losses

ℓt (i) = zt,i (zt − yt) +
1

2
(zt,i − yt)2 ,

where zt = ⟨pt, z⟩. The inspiration from this surrogate loss comes from two inequalities for the
squared loss:

(a− y)2 − (b− y)2 = 2(y − a)(b− a)− (a− b)2 ,(a+ b

2
− y
)2
≤ (a− y)2

2
+

(b− y)2

2
− (a− b)2

8
.

By carefully applying these inequalities we find that, for any fixed j ∈ [K],
T∑
t=1

(
(z̄t − yt)2 − (zt,j − yt)2

)
≤

T∑
t=1

(K∑
i=1

pt(i)ℓt(i)− ℓt(j)−
K∑
i=1

pt(i)
(zt,i − z̄t)

2

8
− (zt,j − z̄t)

2

2

)
.

The negative quadratics on the right-hand-side of the equation above allow us prove the regret bound
of Theorem 2.5. We show that, for any fixed j ∈ [K],

RT (ej) = O

(
E
[√

log(KT)(V̄T + VT (j))

]
− E

[
T∑
t=1

(
K∑
i=1

pt(i)(zt,i − z̄t)
2

8
+

(zt,j − z̄t)
2

2

)])
= O

(
(Y 2 + σ) log(KT)

)
.

A detailed proof can be found in Appendix D.

6 Future Work

One direction to explore is whether the log(T) factor in Theorem 2.4 is necessary to obtain best-of-
both-worlds guarantees. Potentially, an improved analysis of the FTRL algorithm will do the trick, as
we know that OMD can be inferior to FTRL [Amir et al., 2020]. While we understand how to obtain
best-of-both-worlds guarantees for FTRL with bounded losses [Mourtada and Gaïffas, 2019, Amir
et al., 2020], it is unclear how to adapt these analyses to our setting. Another interesting direction is
to see whether the ideas in Section 5.3 can be extended to strongly convex and exp-concave losses.
We believe that the former is relatively straightforward, but the latter might be highly challenging.
Another relatively straightforward extension could be to adapt to any moment of the loss, i.e., adapt
to Et[|ℓt(i)|α] for some α > 1, without the prior knowledge of α or an upper bound for Et[|ℓt(i)|α].

9

Acknowledgments

EE acknowledges the financial support from the FAIR (Future Artificial Intelligence Research) project,
funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, investment 1.3,
line on Artificial Intelligence), the EU Horizon CL4-2022-HUMAN-02 research and innovation action
under grant agreement 101120237, project ELIAS (European Lighthouse of AI for Sustainability),
and the One Health Action Hub, University Task Force for the resilience of territorial ecosystems,
funded by Università degli Studi di Milano (PSR 2021-GSA-Linea 6). AM has received funding
from the European Research Council (ERC), under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No. 950180).

References
Idan Amir, Idan Attias, Tomer Koren, Yishay Mansour, and Roi Livni. Prediction with corrupted

expert advice. Advances in Neural Information Processing Systems, 33:14315–14325, 2020.

Kumar Ashutosh, Jayakrishnan Nair, Anmol Kagrecha, and Krishna Jagannathan. Bandit algorithms:
Letting go of logarithmic regret for statistical robustness. In International Conference on Artificial
Intelligence and Statistics, pages 622–630. PMLR, 2021.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th Annual Goundations of
Computer Science, pages 322–331. IEEE, 1995.

D Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics,
6(1):1–8, 1956.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tail. IEEE Transac-
tions on Information Theory, 59(11):7711–7717, 2013.

Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Multi-scale online learning:
Theory and applications to online auctions and pricing. Journal of Machine Learning Research, 20
(62):1–37, 2019.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for predic-
tion with expert advice. Machine Learning, 66:321–352, 2007.

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm
using bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A new expert
algorithm and its applications. In Conference on Learning Theory, pages 1216–1259, 2021.

Yu Chen, Jiatai Huang, Yan Dai, and Longbo Huang. uniINF: Best-of-both-worlds algorithm for
parameter-free heavy-tailed MABs. arXiv preprint arXiv:2410.03284, 2024.

Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In Proceedings of
the Thirty-Second Conference on Learning Theory, volume 99, pages 874–894, 25–28 Jun 2019.

Genevieve E Flaspohler, Francesco Orabona, Judah Cohen, Soukayna Mouatadid, Miruna Oprescu,
Paulo Orenstein, and Lester Mackey. Online learning with optimism and delay. In International
Conference on Machine Learning, pages 3363–3373. PMLR, 2021.

Maurice Fréchet. Sur la loi de probabilité de l’écart maximum. Ann. de la Soc. Polonaise de Math.,
1927.

Pierre Gaillard, Gilles Stoltz, and Tim van Erven. A second-order bound with excess losses. In
Conference on Learning Theory, pages 176–196, 2014.

Gianmarco Genalti, Lupo Marsigli, Nicola Gatti, and Alberto Maria Metelli. (ε, u)-adaptive regret
minimization in heavy-tailed bandits. In Conference on Learning Theory, volume 247, pages
1882–1915, 2024.

10

Hakan Gökcesu and Suleyman Serdar Kozat. Optimal tracking in prediction with expert advice.
arXiv preprint arXiv:2208.03708, 2022.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68(5):1127–1150, 2000.

Dirk van der Hoeven. User-specified local differential privacy in unconstrained adaptive online
learning. Advances in Neural Information Processing Systems, 32, 2019.

Dirk van der Hoeven, Nikita Zhivotovskiy, and Nicolò Cesa-Bianchi. A regret-variance trade-off
in online learning. In Advances in Neural Information Processing Systems, volume 35, pages
35188–35200, 2022.

Jiatai Huang, Yan Dai, and Longbo Huang. Adaptive best-of-both-worlds algorithm for heavy-tailed
multi-armed bandits. In International Conference on Machine Learning, pages 9173–9200. PMLR,
2022.

Wouter M. Koolen and Tim van Erven. Second-order quantile methods for experts and combinatorial
games. In Conference on Learning Theory, pages 1155–1175, 2015.

Wouter M Koolen, Peter Grünwald, and Tim van Erven. Combining adversarial guarantees and
stochastic fast rates in online learning. Advances in Neural Information Processing Systems, 29,
2016.

Kyungjae Lee, Hongjun Yang, Sungbin Lim, and Songhwai Oh. Optimal algorithms for stochastic
multi-armed bandits with heavy tailed rewards. Advances in Neural Information Processing
Systems, 33:8452–8462, 2020.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

Zakaria Mhammedi. Efficient projection-free online convex optimization with membership oracle. In
Conference on Learning Theory, pages 5314–5390. PMLR, 2022.

Zakaria Mhammedi, Wouter M Koolen, and Tim van Erven. Lipschitz adaptivity with multiple
learning rates in online learning. In Conference on Learning Theory, pages 2490–2511, 2019.

Jaouad Mourtada and Stéphane Gaïffas. On the optimality of the Hedge algorithm in the stochastic
regime. Journal of Machine Learning Research, 20:1–28, 2019.

G Muraleedharan, C Guedes Soares, and Claudia Lucas. Characteristic and moment generating
functions of generalised extreme value distribution (gev). Sea level rise, coastal engineering,
shorelines and tides, pages 269–276, 2011.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2023.

Francesco Orabona and Dávid Pál. Scale-free algorithms for online linear optimization. In Interna-
tional Conference on Algorithmic Learning Theory, pages 287–301. Springer, 2015.

Laurent Orseau and Marcus Hutter. Isotuning with applications to scale-free online learning. arXiv
preprint arXiv:2112.14586, 2021.

Steven de Rooij, Tim van Erven, Peter D. Grünwald, and Wouter M. Koolen. Follow the Leader if
you can, Hedge if you must. Journal of Machine Learning Research, 15:1281–1316, 2014.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Volodimir G Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop on Computa-
tional Learning Theory, 1990.

Olivier Wintenberger. Optimal learning with Bernstein online aggregation. Machine Learning, 106
(1):119–141, 2017.

11

Olivier Wintenberger. Stochastic online convex optimization. application to probabilistic time series
forecasting. Electronic Journal of Statistics, 18(1):429–464, 2024.

Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic and adversarial
bandits. Journal of Machine Learning Research, 22(28):1–49, 2021.

12

Contents of Appendix
A Technical Results for Section 4 13

A.1 Proof of Lemma 4.1 and Fréchet Distributions . 13

A.2 Proof of Proposition 4.3 . 14

A.3 Discussion on analyses of existing algorithms . 15

B Regret Analysis for Online Mirror Descent 16
B.1 Adversarial Environments . 16

B.2 Self-Bounded Environments . 22

C Regret Analysis for Follow The Regularized Leader 24
C.1 Computing the Update in Algorithm 2 . 29

D Technical Results for Section 5.3 29
D.1 Proof of Theorem 2.5 . 29

E Comparison with Gökcesu and Kozat [2022] 33

F Details on the Experiments 33

A Technical Results for Section 4

In Section 4, we discussed lower bounds for the lower-order terms. These lower bounds are achieved
by adopting specific binary random variables in the construction of the losses. This is shown in
Lemma 4.1 and its proof is provided in what follows.

A.1 Proof of Lemma 4.1 and Fréchet Distributions

Proof of Lemma 4.1. The fact that E[X2
j] = 1 follows by an immediate calculation after observing

that each Xj is a binary random variable. By independence, we also have that E[maxj∈[n]Xj] =√
n
(
1− (1− 1

n)
n
)
. The result now follows from observing that 1/2 < 1− (1− 1

n)
n ≤ 1, where we

used the inequality 1− x ≤ exp(−x).

Here, we now discuss another family of random variables that guarantee similar properties. This
family is that of Fréchet distributions [Fréchet, 1927]—see also Muraleedharan et al. [2011] for
reference.

We denote by Fréchet(α, s,m) the Fréchet distribution whose parameters are the shape parameter
α > 0, the scale parameter s > 0, and the location (of the minimum) parameter m ∈ R. Its
cumulative distribution function (CDF) is

P(X ≤ x) = exp

(
−
(
x−m
s

)−α
)

for x > m, where X ∼ Fréchet(α, s,m). If α > 1, its expected value corresponds to E[X] =
m+ sΓ(1− 1/α), where Γ(z) =

∫∞
0
tz−1 exp(−t)dt for z > 0 is the Gamma function.

Lemma A.1. Fix any n ∈ N \ {0}. Let X1, . . . , Xn ∼ Fréchet(α, s, 0) be i.i.d. random variables
with α > 1 and s > 0. Then, for any 1 ≤ β < α and any j ∈ [n],

E[Xβ
j] = sβΓ

(
1− β

α

)
.

Furthermore,

E[max{X1, . . . , Xn}] = n1/αsΓ

(
1− 1

α

)
.

13

Proof. All results are standard. Here we provide explicit calculations for completeness. First, observe
that for any X ∼ Fréchet(α, s, 0) we have that

P
(
Xβ ≤ x

)
= P

(
X ≤ x1/β

)
= exp

(
−
(
x1/β

s

)−α)
= exp

(
−
(x
sβ

)−α/β)
,

showing thatXβ ∼ Fréchet(α/β, sβ , 0). As a consequence, E[Xβ] = sβΓ(1−β/α) since α/β > 1.

Second, let Y = max{X1, . . . , Xn} and y > 0. By independence, one has

P (Y ≤ y) = P

 ⋂
j∈[n]

{Xj ≤ y}

 =
∏
j∈[n]

P (Xj ≤ y)

=
∏
j∈[n]

exp
(
− (y/s)

−α
)
= exp

(
−
(y

n1/αs

)−α)
,

which means that Y ∼ Fréchet(α, n1/αs, 0). Since α > 1, its expectation is thus E[Y] =
n1/αsΓ (1− 1/α).

Keeping the results from the lemma above in mind, we can consider a more specific case where
the Fréchet random variables have scale s = 1 and α > 2. Then, for n = KT and β = 2, we
clearly have that their second moment equals Γ(1− 2/α), whereas the expectation of their maximum
corresponds to (KT)1/αΓ(1− 1/α). This shows that the i.i.d. Fréchet random variables as described
above behave somewhat similarly to the random variables of Lemma 4.1 we employed in our lower
bounds.

Moving back to the original construction from Lemma 4.1, we can adopt it to prove the main lower
bound on any regret guarantee containing the MT term (or a constant fraction of it). This result from
Section 4 is stated in Proposition 4.3 and here we provide its proof.

A.2 Proof of Proposition 4.3

Proof. Let ℓt(i) = µt,i + ξt,iεt,i, where µt,i ∈ [−1, 1], ξt,i is sampled from a Rademacher dis-
tribution, and εt,i is sampled from the distribution specified in Lemma 4.1 with n = KT . Let∑T
t=1 µt,K = 0 and let

∑T
t=1 µt,i > 0 for i ̸= K. By assumption, we have that

RT = E

[
T∑
t=1

(K∑
i=1

pt(i)ℓt(i)− ℓt(K)
)]

= E

[
T∑
t=1

K∑
i=1

pt(i)ℓt(i)

]
≤ B⋆T + E

[
max

t∈[T],i∈[K]
|rt(i)|

]
.

Suppose that 1
2 E
[
maxt∈[T],i∈[K] |ℓt(i)|

]
≥ E

[
maxt∈[T],i∈[K] |rt(i)|

]
. Then,

E
[

max
t∈[T],i∈[K]

|rt(i)|
]
= E

 max
t∈[T],i∈[K]

∣∣∣∣ℓt(i)− K∑
j=1

pt(j)ℓt(j)

∣∣∣∣


≥ E

 max
t∈[T],i∈[K]

ℓt(i)−max
t∈[T]

K∑
j=1

pt(j)ℓt(j)


≥ E

 max
t∈[T],i∈[K]

|ℓt(i)| −
T∑
t=1

K∑
j=1

pt(j)ℓt(j)


= E

[
max

t∈[T],i∈[K]
|ℓt(i)|

]
−RT

≥ E
[

max
t∈[T],i∈[K]

|ℓt(i)|
]
−B⋆T − E

[
max

t∈[T],i∈[K]
|rt(i)|

]
≥ E

[
max

t∈[T],i∈[K]
|ℓt(i)|

]
−B⋆T −

1

2
E
[

max
t∈[T],i∈[K]

|ℓt(i)|
]

14

and thus

B⋆T + E
[

max
t∈[T],i∈[K]

|rt(i)|
]
≥ B⋆T +

1

2
E
[

max
t∈[T],i∈[K]

|rt(i)|
]

≥ 1

2
B⋆T +

1

4
E
[

max
t∈[T],i∈[K]

|ℓt(i)|
]

≥ 1

2
B⋆T +

1

4
E
[

max
t∈[T],i∈[K]

|εt,i|
]
− 1

≥ 1

2
B⋆T +

1

8

√
KT − 1 ,

where the last inequality follows from Lemma 4.1.

Otherwise, in the case where 1
2 E
[
maxt∈[T],i∈[K] |ℓt(i)|

]
< E

[
maxt∈[T],i∈[K] |rt(i)|

]
we have

B⋆T + E
[

max
t∈[T],i∈[K]

|rt(i)|
]
≥ B⋆T +

1

2
E
[

max
t∈[T],i∈[K]

|ℓt(i)|
]
≥ B⋆T +

1

4

√
KT .

Finally, we have Et[ℓt(i)2] ≤ 2µ2
t,i + 2Et[ε2t,i] ≤ 4.

A.3 Discussion on analyses of existing algorithms

Our results from Section 4 show that the lower-order terms are a problematic component of the regret
bounds of existing algorithms. In particular, we have shown that the lower-order terms can be larger
than the ideal

√
θT logK in the case of heavy-tailed losses with bounded second moments. It is

important to note that our general argument does not depend on the specific algorithm we consider,
but rather on regret bounds involving terms such as LT or MT . Hence, generally speaking, one may
believe that the presence of LT or MT in the regret guarantees could be an artefact of a loose analysis.
However, here we show that this is not the case for most existing algorithms.

To illustrate, let us consider a simplified view that captures the essential mechanism. The algorithms
in Table 1 are effectively sophisticated modifications of the exponential weights (EW) algorithm
designed to adapt to HT = maxt,i |ℓt(i)|. Their sampling distributions are of the form pt(i) ∝
exp(−ηtℓt(i)), where we assume a fixed learning η > 0 for simplicity. A crucial aspect of these
adaptive algorithms is choosing a learning rate related to HT , often resembling η = min

{
α, 1

HT

}
,

where α > 0 represents some cap and where we assume that HT is known. Their choice ensures
the control of terms like log

(
Ei∼pt [exp(−ηℓt(i))]

)
, which is an essential component in any regret

analysis of EW-based algorithms.

Now, we construct a sequence of losses for which the regret of such an algorithm is always at least
E[log(4/3)/η]. Suppose K ≥ 5 and let ℓt(i) = 1 + εt,i for each i ∈ [K − 1], where εt,i follows
the same distribution as in Lemma 4.1; for action K, we instead choose ℓt(K) = 0. By Jensen’s
inequality and the definition of pt, we have that

RT = E

[
T∑
t=1

⟨pt, ℓT ⟩

]

≥ E

[
−1

η

T∑
t=1

log
(
Ei∼pt [exp(−ηℓt(i))]

)]

= E

[
1

η
log(K)− 1

η
log

(
K∑
i=1

exp

(
−η

T∑
t=1

ℓt(i)

))]

≥ E
[
1

η
log(K)− 1

η
log
(
1 + (K − 1) exp (−ηT)

)]
,

15

where the last inequality is due to the definition of ℓt(i). It is safe to assume that ηT < 1, as otherwise
we would obtain a vacuous upper bound from the standard EW analysis. Therefore, we have that

RT ≥ E
[
1

η
log(K)− 1

η
log (1 + (K − 1)/2)

]
≥ E

[
1

η
log(K)− 1

η
log (3(K − 1)/4)

]
≥ E

[
1

η

]
log(4/3)

≥ LT log(4/3) ,

where the last inequality follows from the definitions of η and LT = E[HT]. This suggests the regret
is lower bounded by a term proportional to the maximum loss range. For algorithms like Squint that
run EW on the surrogate losses like ℓt(i)− ηℓt(i)2, a similar but slightly more involved argument
can be made. Consequently, the LT (or MT) term appears to be unavoidable in the regret of these
algorithms.

Similarly, regarding Section 4.2, the existing algorithms for the squared loss setting are also fundamen-
tally related to EW, adapted to quadratic losses. Their learning rates are typically dependent on the
range maxt |zt−yt| in a manner analogous to the dependence onHT described above. Therefore, we
believe a similar limitation applies, making it unlikely that a different analysis of previous algorithms
could circumvent the dependence on lower-order terms in their regret.

B Regret Analysis for Online Mirror Descent

In Algorithm 1 we only update pt if
∑
s≤t v̄t > 0. The only case where this is not true is if in all

rounds up to and including round t, rt(i) = 0 for all i ∈ [K], in which case we can simply ignore
these rounds in the analysis, which is what we do: throughout this section we assume that v̄1 > 0
without loss of generality.

B.1 Adversarial Environments

We now analyze the regret incurred by Algorithm 1 for adversarial and self-bounded environments.
We start by reminding a standard lemma.

Lemma B.1 (3-point identity, Chen and Teboulle, 1993). Let X ⊆ Rd be a non-empty convex set,
ψ : X → R be strictly convex and differentiable on int (X) ̸= ∅, and Bψ be the associated Bregman
divergence. Then for any x ∈ X and any y, z ∈ int (X), the following holds

Bψ (x, y) = Bψ (x, z) +Bψ (z, y) + ⟨x− z,∇ψ (z)−∇ψ (y)⟩ .

We then have the following result about the regret of Algorithm 1.

Theorem B.2. Consider Algorithm 1 run with parameters α ∈ (0, 1] and β > 0. Then, with
probability one, for any i⋆ ∈ [K] we have

T∑
t=1

⟨pt − ei⋆ , ℓt⟩

≤
(√

αT + 5β +
4 + log (K/α)

β

)√√√√ T∑
t=1

v̄t +

(√
αT +

log (K/α)

β
+ 2β

)√√√√ T∑
t=1

vt (i⋆) .

Furthermore, setting α = 1
T and β =

√
log (KT) gives

T∑
t=1

⟨pt − ei⋆ , ℓt⟩ = O


√√√√log (KT)

(
T∑
t=1

v̄t +

T∑
t=1

vt (i⋆)

) .

16

Proof. Let i⋆ ∈ [K] be our point-mass comparator, let ℓ̄t = −rt for any t ∈ [T], and recall that
Pα =

{
p ∈ P : p ≥ α

K1
}

is the truncated probability simplex, for any α > 0. Define truncT (x) =∑T
t=1

〈
x, ℓ̄t − ℓ̃t

〉
to denote the cost of truncating the losses for any x ∈ RK and, by convention,

let truncT (p1:T) =
∑T
t=1

〈
pt, ℓ̄t − ℓ̃t

〉
where p1:T = (p1, . . . , pT). Moreover, define R̃T (q) =∑T

t=1

〈
pt − q, ℓ̃t

〉
for any q ∈ P . We consider the following regret decomposition:

T∑
t=1

⟨pt − ei⋆ , ℓt⟩ =
T∑
t=1

〈
pt − ei⋆ , ℓt − ℓ̃t

〉
+

T∑
t=1

〈
pt − ei⋆ , ℓ̃t

〉
=

T∑
t=1

〈
pt − ei⋆ , ℓ̄t − ℓ̃t

〉
︸ ︷︷ ︸

=truncT (p1:T)+truncT (−ei⋆)

+

T∑
t=1

〈
pt − ei⋆ , ℓ̃t

〉
︸ ︷︷ ︸

=R̃T (ei⋆)

,

where we added a constant vector ⟨pt, ℓt⟩1 = ℓt − ℓ̄t to ℓt at each term of the first sum in the second
equality because, for any t, both pt and ei⋆ are probability distributions and thus ⟨pt − ei⋆ , c · 1⟩ =
c− c = 0 for any c ∈ R. The first term is just the cost of truncating the losses, and the second is just
the regret of OMD on the truncated losses. We start with the latter.

Step 1: control the regret of OMD. Fix any t ∈ [T]. Note that by the first-order optimality
condition of pt+1 we have, for any u ∈ Pα,〈

ℓ̃t +∇ψt (pt+1)−∇ψt (pt) , u− pt+1

〉
≥ 0.

Following a simple sequence of derivations also referred to as the 3-point identity (see Lemma B.1),
the inequality above can be rewritten as〈

ℓ̃t, u− pt+1

〉
− (Dt (u∥pt+1) +Dt (pt+1∥pt)−Dt (u∥pt)) ≥ 0. (6)

This inequality cannot be applied to R̃T (ei⋆) since ei⋆ does not belong to Pα. Instead, we use a
mixture of ei⋆ and the uniform distribution, ui⋆ = (1− α) ei⋆ + α

K1 ∈ Pα, and notice that by
definition of ui⋆ and a triangle inequality

R̃T (ei⋆)− R̃T (ui⋆) =

T∑
t=1

〈
ui⋆ − ei⋆ , ℓ̃t

〉
= α

〈
1

K
1− ei⋆ ,

T∑
t=1

ℓ̃t

〉
(definition of ui⋆)

≤ α
K∑
i=1

1

K

T∑
t=1

∣∣∣ℓ̃t (i)∣∣∣+ α

T∑
t=1

∣∣∣ℓ̃t (i⋆)∣∣∣ .
Next, following up with Cauchy-Schwarz inequality,

R̃T (ei⋆)− R̃T (ui⋆) ≤ α
K∑
i=1

1

K

√√√√T

T∑
t=1

ℓ̃t (i)
2
+ α

√√√√T

T∑
t=1

ℓ̃t (i⋆)
2

≤ α

√√√√T

T∑
t=1

K∑
i=1

1

K
ℓ̃t (i)

2
+ α

√√√√T

T∑
t=1

ℓ̃t (i⋆)
2 (Jensen’s inequality)

≤

√√√√αT

T∑
t=1

K∑
i=1

pt (i) ℓ̃t (i)
2
+ α

√√√√T

T∑
t=1

ℓ̃t (i⋆)
2 (pt ∈ Pα)

≤
√
αT


√√√√ T∑

t=1

v̄t +

√√√√ T∑
t=1

vt (i⋆)

 . (Cauchy-Schwarz, ℓ̃2t ≤ ℓ̄2t)

17

Therefore, we can focus on bounding R̃T (ui⋆). From Equation (6), we have

R̃T (ui⋆) ≤
T∑
t=1

(〈
pt − pt+1, ℓ̃t

〉
−Dt (pt+1∥pt) +Dt (ui⋆∥pt)−Dt (ui⋆∥pt+1)

)
.

The first difference within the sum can be analyzed with local norms arguments [Orabona, 2023,
Section 6.5]. However, we do not have control over the range of the losses, thus we cannot use the
standard arguments and instead resort to specific learning rates to account for this. On the other
hand, the second difference is almost a telescoping sum and requires a more careful analysis for
the same reason. We start with the first. Denote p̃t+1 = argminp∈RK

≥0

{〈
p, ℓ̃t

〉
+Dt (p∥pt)

}
the

minimizer of the unconstrained optimization problem, and note that for any i ∈ [K], p̃t+1 (i) =

pt (i) exp
(
−ηt,iℓ̃t (i)

)
≤ 3pt (i), where the inequality holds by definition of the losses which satisfy∣∣∣ℓ̃t (i)∣∣∣ ≤ 1

ηt,i
. Since the function ψt is twice differentiable on RK>0, by Taylor’s theorem there exists

zt ∈ [pt, p̃t+1] such that Dt (p̃t+1∥pt) = 1
2 ∥p̃t+1 − pt∥2∇2ψt(zt)

. Therefore, the first difference in
the inequality above becomes, for any t ∈ [T],

〈
pt − pt+1, ℓ̃t

〉
−Dt (pt+1∥pt) ≤

〈
pt − p̃t+1, ℓ̃t

〉
−Dt (p̃t+1∥pt) (optimality of p̃t+1)

=
〈
pt − p̃t+1, ℓ̃t

〉
− 1

2
∥p̃t+1 − pt∥2∇2ψt(zt)

(Taylor’s theorem)

≤ max
x∈RK

{〈
x, ℓ̃t

〉
− 1

2
∥x∥∇2ψt(zt)

}
=

1

2

∥∥∥ℓ̃t∥∥∥2
(∇2ψt(zt))

−1
,

where the last step follows from the Fenchel-Young inequality applied to the convex function
1
2 ∥·∥∇2ψt(zt)

. Noting that∇2ψt (zt) = Diag (ηt ⊙ zt)−1, we further have

〈
pt − pt+1, ℓ̃t

〉
−Dt (pt+1∥pt) ≤

1

2

K∑
i=1

ηt,izt (i) ℓ̃t (i)
2

≤ 3

2

K∑
i=1

ηt,ipt (i) ℓ̃t (i)
2

(zt ≤ 3pt)

=
3β

2

K∑
i=1

pt (i) ℓ̃t (i)
2√

max
{∑t

s=1 v̄s,
∑t
s=1 vs (i)

} (definition of ηt)

≤ 3β

2
· v̄t√∑t

s=1 v̄s

(ℓ̃2t ≤ ℓ̄2t).

Summing up for all t ∈ [T], we obtain

T∑
t=1

〈
pt − pt+1, ℓ̃t

〉
−Dt (pt+1∥pt) ≤

3β

2

T∑
t=1

v̄t√∑t
s=1 v̄s

≤ 3β

√√√√ T∑
t=1

v̄t,

18

where the inequality follows from, e.g., Orabona [2023, Lemma 4.13]. Moving on to the second
difference, we have

T∑
t=1

(Dt (ui⋆∥pt)−Dt (ui⋆∥pt+1))

= DT (ui⋆∥pT)−DT (ui⋆∥pT+1) +

T−1∑
t=1

(Dt (ui⋆∥pt)−Dt (ui⋆∥pt+1))

= D1 (ui⋆∥p1)−DT (ui⋆∥pT+1) +

T∑
t=2

(Dt (ui⋆∥pt)−Dt−1 (ui⋆∥pt))

≤ D1 (ui⋆∥p1) +
T∑
t=2

(Dt (ui⋆∥pt)−Dt−1 (ui⋆∥pt)) ,

where the second equality is due to a telescopic sum, and the last inequality is because
DT (ui⋆∥pT+1) ≥ 0. The sum above is given by

T∑
t=2

(Dt (ui⋆∥pt)−Dt−1 (ui⋆∥pt))

=

T∑
t=2

K∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)(
ui⋆ (i) log

(
ui⋆ (i)

pt (i)

)
− ui⋆ (i) + pt (i)

)

≤
T∑
t=2

K∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)(
ui⋆ (i) log

(
ui⋆ (i)

pt (i)

)
+ pt (i)

)
,

where the inequality is due to having ηt,i ≤ ηt−1,i and ui⋆ (i) ≥ 0 for any i and any t. Since pt ∈ Pα,

we have for any i ̸= i⋆ that ui⋆ (i)
pt(i)

≤ 1, i.e., log
(
ui⋆ (i)
pt(i)

)
≤ 0. Thus,

T∑
t=2

(Dt (ui⋆∥pt)−Dt−1 (ui⋆∥pt))

≤
T∑
t=2

(
1

ηt,i⋆
− 1

ηt−1,i⋆

)
ui⋆ (i

⋆) log

(
ui⋆ (i

⋆)

pt (i⋆)

)
+

T∑
t=2

K∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
pt (i)

≤ log (K/α)

ηT,i⋆
+

T∑
t=1

K∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
pt (i) ,

where we used ui⋆ (i⋆) ≤ 1, pt (i⋆) ≥ α
K , and η1,i⋆ > 0 for the first sum and added the non-

negative term for t = 1 in the second sum. For the remaining sum, notice that for any t, i, we
have 1

ηt,i
− 1

ηt−1,i
= ηt,i

(
1
η2t,i
− 1

ηt,i ηt−1,i

)
≤ ηt,i

(
1
η2t,i
− 1

η2t−1,i

)
due to ηt,i ≤ ηt−1,i. Using the

definition of the learning rates, we get

1

ηt,i
− 1

ηt−1,i
≤ ηt,i

(
1

η2t,i
− 1

η2t−1,i

)
(7)

=
max

{∑
s≤t v̄s,

∑
s≤t vs (i)

}
−max

{∑
s<t v̄s,

∑
s<t vs (i)

}
β

√
max

{∑
s≤t v̄s,

∑
s≤t vs (i)

}
≤ max {v̄t, vt (i)}

β

√
max

{∑
s≤t v̄s,

∑
s≤t vs (i)

}
≤ v̄t + vt (i)

β
√∑

s≤t v̄s
. (8)

19

Therefore, adding everything up
T∑
t=1

K∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
pt (i) ≤

T∑
t=1

K∑
i=1

v̄t + vt (i)

β
√∑

s≤t v̄s
pt (i)

=
2

β

T∑
t=1

v̄t√∑
s≤t v̄s

(pt ∈ P , definition v̄t)

≤ 4

β

√√√√ T∑
t=1

v̄t ,

where the last inequality follows again from Orabona [2023, Lemma 4.13]. Putting it back into the
previous inequality, we get

T∑
t=2

(Dt (ui⋆∥pt)−Dt−1 (ui⋆∥pt)) ≤
log (K/α)

ηT,i⋆
+

4

β

√√√√ T∑
t=1

v̄t

≤ log (K/α)

β


√√√√ T∑

t=1

vt (i⋆) +

√√√√ T∑
t=1

v̄t

+
4

β

√√√√ T∑
t=1

v̄t .

Finally, the regret incurred by OMD on the truncated losses is bounded by

R̃T (ei⋆) ≤
(√

αT + 3β +
4 + log (K/α)

β

)√√√√ T∑
t=1

v̄t +

(√
αT +

log (K/α)

β

)√√√√ T∑
t=1

vt (i⋆) .

Step 2: control the cost of truncation. We have

truncT (p1:T) =

T∑
t=1

K∑
i=1

pt (i)
(
ℓ̄t (i)− ℓ̃t (i)

)
=

T∑
t=1

K∑
i=1

pt (i) ℓ̄t (i)1
(∣∣ℓ̄t (i)∣∣ > η−1

t,i

)
(definition of ℓ̃t)

≤
T∑
t=1

K∑
i=1

pt (i)
ℓ̄t (i)

2∣∣ℓ̄t (i)∣∣1 (∣∣ℓ̄t (i)∣∣ > η−1
t,i

)
(pt ≥ 0)

≤
T∑
t=1

K∑
i=1

pt (i) ηt,iℓ̄t (i)
2
.

Plugging the definition of the learning rates ηt, we obtain

truncT (p1:T) ≤ β
T∑
t=1

K∑
i=1

pt (i)
ℓ̄t (i)

2√
max

{∑t
s=1 v̄s,

∑t
s=1 vs (i)

} (definition of ηt)

≤ β
T∑
t=1

K∑
i=1

pt (i) ℓ̄t (i)
2√∑t

s=1 v̄s

= β

T∑
t=1

v̄t√∑t
s=1 v̄s

≤ 2β

√√√√ T∑
t=1

v̄t ,

20

where the last inequality follows from Orabona [2023, Lemma 4.13]. Likewise,

truncT (−ei⋆) ≤ 2β

√√√√ T∑
t=1

vt (i⋆) .

Overall, our regret is bounded by

T∑
t=1

⟨pt − ei⋆ , ℓt⟩

≤
(√

αT + 5β +
4 + log (K/α)

β

)√√√√ T∑
t=1

v̄t +

(√
αT +

log (K/α)

β
+ 2β

)√√√√ T∑
t=1

vt (i⋆) .

Theorem B.2 is a more general result and it is indeed stronger than what we originally stated in
Theorem 2.4. In particular, we are able to show that the former result implies the latter under
Assumption 2.1. This is illustrated by the following corollary.

Corollary B.3. Suppose Assumption 2.1 holds. Then, Algorithm 1 with α = 1
T and β =

√
log(KT)

guarantees

RT = O
(√

θT log(KT)
)
.

Proof. Recall that, by Theorem B.2, Algorithm 1 with α = 1
T and β =

√
log(K) already guarantees

T∑
t=1

⟨pt − ei⋆ , ℓt⟩ = O


√√√√log(KT)

(
T∑
t=1

v̄t +

T∑
t=1

vt(i⋆)

) (9)

for any sequence of losses. Now, focus on the v̄t and vt(i) terms. First, for any i ∈ [K], we can
observe that vt(i) satisfies

Et[vt(i)] = Et


ℓt(i)− K∑

j=1

pt(j)ℓt(j)

2
 (definition of vt(i))

= Et


 K∑
j=1

pt(j) (ℓt(i)− ℓt(j))

2


≤ Et

 K∑
j=1

pt(j)(ℓt(i)− ℓt(j))2
 (Jensen’s inequality)

≤ 2Et[ℓt(i)2] + 2Et

 K∑
j=1

pt(j)ℓt(j)
2

 (using (a− b)2 ≤ 2a2 + 2b2 and pt ∈ P)

= 2Et[ℓt(i)2] + 2

K∑
j=1

pt(j)Et
[
ℓt(j)

2
]

≤ 4θ ,

21

where the last inequality follows by Assumption 2.1 and the fact that pt ∈ P . Then, we can move to
v̄t and notice that, by its definition, it satisfies

Et[v̄t] = Et

[
K∑
i=1

pt(i)vt(i)

]

= Et

 K∑
i=1

pt(i)

ℓt(i)− K∑
j=1

pt(j)ℓt(j)

2
 (definition of vt(i))

≤ Et

[
K∑
i=1

pt(i)ℓt(i)
2

]
(using V[X] ≤ E[X2])

=

K∑
i=1

pt(i)Et
[
ℓt(i)

2
]

≤ θ ,
where the last inequality holds by both Assumption 2.1 and the fact that pt ∈ P .

At this point, we can observe that RT = maxi⋆∈[K] E[⟨pt − ei⋆ , ℓt⟩], i.e., it corresponds to the
expected value of the left-hand side of Equation (9). We can then focus on the expected value of its
right-hand side (ignoring constant factors) and, by applying Jensen’s inequality with respect to the
square root and the tower rule of expectation, we infer that

E


√√√√log(KT)

T∑
t=1

(v̄t + vt(i⋆))

 ≤
√√√√log(KT)E

[
T∑
t=1

(
Et [v̄t] + Et [vt(i⋆)]

)]
≤
√
5θT log(KT) .

This concludes the proof.

B.2 Self-Bounded Environments

In this section, we provide a regret bound for self-bounded environments defined in Zimmert and
Seldin [2021].
Theorem B.4. Let Assumption 2.1, 2.3 hold, and consider Algorithm 1 run with parameters α ∈ (0, 1],
β > 0. We denote C3 (K,T) = 2

√
αT + 7β + 4+2 log(K/α)

β . Then, we have

E [RT] ≤


16C3(K,T)2θ

∆min
+ 8C3(K,T)

√
θC√

∆min
if C ≤ 16C3(K,T)2θ

∆min

8C3(K,T)
√
θC√

∆min
otherwise

.

Furthermore, setting α = 1
T and β =

√
log (KT) gives C3 (K,T) = O

(√
log (KT)

)
and

E [RT] ≤


3600 log(KT)θ

∆min
+ 120

√
log(KT)θC

∆min
if C ≤ 16C3(K,T)2θ

∆min

120
√

log(KT)θC
∆min

otherwise
.

Proof. From Jensen’s inequality applied to the regret bound proven for adversarial environments in
Theorem B.2, we have

E [RT (ei⋆)] ≤ C1 (K,T)

√√√√√√ T∑
t=1

K∑
i=1

E

pt (i)
ℓt (i)− K∑

j=1

pt (j) ℓt (j)

2


+ C2 (K,T)

√√√√√√ T∑
t=1

E


ℓt (i⋆)− K∑

j=1

pt (j) ℓt (j)

2
 ,

22

where C1 (K,T) =
√
αT + 5β + 4+log(K/α)

β , and C2 (K,T) =
√
αT + log(K/α)

β + 2β. Observe
that for any t ∈ [T], the expectation in the first term is a variance that can be bounded by the second
moment (V [X] ≤ E

[
X2
]

for any random variable X)

Et

 K∑
i=1

pt (i)

ℓt (i)− K∑
j=1

pt (j) ℓt (j)

2


= Et

 K∑
i=1

pt (i)

(ℓt (i)− ℓt (i⋆))−
K∑
j=1

pt (j) (ℓt (j)− ℓt (i⋆))

2


≤ Et

∑
i ̸=i⋆

pt (i) (ℓt (i)− ℓt (i⋆))2
 .

Further, using the inequality (a+ b)
2 ≤ 2

(
a2 + b2

)
for any a, b ∈ R,

Et

 K∑
i=1

pt (i)

ℓt (i)− K∑
j=1

pt (j) ℓt (j)

2
 ≤ 2Et

∑
i̸=i⋆

pt (i)
(
ℓt (i)

2
+ ℓt (i

⋆)
2
)

≤ 4θ (1− pt (i⋆)) ,
where the last inequality is by Assumption 2.1 and ⟨pt,1⟩ = 1. Likewise, for the second term we
have by Jensen’s inequality

Et


ℓt (i⋆)− K∑

j=1

pt (j) ℓt (j)

2
 ≤ Et

∑
j ̸=i⋆

pt (j) (ℓt (i
⋆)− ℓt (j))2


≤ 2Et

∑
j ̸=i⋆

pt (j)
(
ℓt (i

⋆)
2
+ ℓt (j)

2
)

≤ 4θ (1− pt (i⋆)) ,
where the last inequality is again by Assumption 2.1 and ⟨pt,1⟩ = 1. Denote ∆min = mini ̸=i⋆ ∆i,
and C3 (K,T) = C1 (K,T) + C2 (K,T). Combining the above and Assumption 2.3, we find that
for any λ ∈ (0, 1],
E [RT] = (1 + λ)E [RT]− λE [RT]

≤ (1 + λ)C3 (K,T)

√√√√4θE

[
T∑
t=1

(1− pt (i⋆))

]
− λ∆minE

[
T∑
t=1

(1− pt (i⋆))

]
+ λC

=

√√√√4 (1 + λ)
2
C3 (K,T)

2
θE

[
T∑
t=1

(1− pt (i⋆))

]
− λ∆minE

[
T∑
t=1

(1− pt (i⋆))

]
+ λC .

Using the inequality of arithmetic and geometric means, i.e. |ab| = infγ>0
a2

2γ + γb2

2 ,

E [RT] = inf
γ>0

{
4 (1 + λ)

2
C3 (K,T)

2
θ

γ
+ γE

[
T∑
t=1

(1− pt (i⋆))

]}

− λ∆minE

[
T∑
t=1

(1− pt (i⋆))

]
+ λC

≤ 4 (1 + λ)
2
C3 (K,T)

2
θ

λ∆min
+ λC

≤ 16C3 (K,T)
2
θ

λ∆min
+ λC ,

23

Algorithm 2 LoOT-Free FTRL
Inputs: Number of experts K ≥ 2, learning rate coefficient β > 0.
Initialize: p1(i)← 1/K and b0(i)← 0 for all i ∈ [K].
for t = 1, . . . , T do

Predict pt, incur loss ⟨pt, ℓt⟩ and observe ℓt.
Set rt(i)← ⟨pt, ℓt⟩ − ℓt(i) for all i ∈ [K].
Set vt(i)← rt(i)

2 for all i ∈ [K].
Set v̄t ←

∑K
i=1 pt(i)vt(i).

if
∑
s≤t v̄s > 0 then

Set bt(i)← max
{∑

s≤t v̄s,
∑
s≤t vs(i)

}1/2

for all i ∈ [K].
Set ηt,i ← β/bt(i) for all i ∈ [K].
Set ℓ̃t(i)← −rt(i) bt−1(i)

bt(i)
1
(
|rt(i)| ≤ 1/ηt,i

)
for all i ∈ [K].

Set pt+1 ← argminp∈P
∑
s≤t
〈
p, ℓ̃s

〉
+Dt(p∥p1).

end if
end for

where the first inequality is by taking γ = λ∆min, and the second is by 1 + λ ≤ 2. In particular,
setting λ = min

{
1, 4C3(K,T)

√
θ√

∆minC

}
gives

E [RT] ≤
16C3 (K,T)

2
θ

∆min
max

{
1,

√
∆minC

4C3 (K,T)
√
θ

}
+min

{
1,

4C3 (K,T)
√
θ√

∆minC

}
C

≤ 16C3 (K,T)
2
θ

∆min
+

8C3 (K,T)
√
θC√

∆min

.

If C > 16C3(K,T)2θ
∆min

, then λ = 4C3(K,T)
√
θ√

∆minC
and the previous inequality can be improved to

E [RT] ≤
8C3 (K,T)

√
θC√

∆min

.

Recall that C3 (K,T) = 2
√
αT + 7β + 4+2 log(K/α)

β . Setting α = 1
T and β =

√
log(KT) gives

C3 (K,T) ≤ 6 + 9
√
log (KT) ≤ 15

√
log (KT) since log (KT) ≥ 1. Finally, we obtain

E [RT] ≤


3600 log(KT)θ

∆min
+ 120

√
log(KT)θC

∆min
if C ≤ 16C3(K,T)2θ

∆min

120
√

log(KT)θC
∆min

otherwise
.

In the special case of a stochastic environment, C = 0 thus we set λ = 1 and obtain E [RT] =

O
(
θ log(KT)

∆min

)
.

C Regret Analysis for Follow The Regularized Leader

In Algorithm 2 we only update the prediction pt if
∑
s≤t vs > 0. The only case where this is not true

is if in all rounds up to and including round t, rt(i) = 0 for all i ∈ [K], meaning that the cumulative
regret up to round t is null. In this case, we can simply ignore these rounds in the regret analysis,
which is what we do: throughout this section we assume that v1 > 0 without loss of generality.
Theorem C.1. Consider Algorithm 2 with parameter β > 0, providing predictions p1, . . . , pT ∈ P
over a sequence of losses ℓ1, . . . , ℓT . Then, with probability one, for any i⋆ ∈ [K] we have

T∑
t=1

⟨pt − ei⋆ , ℓt⟩

≤
(
log(K)

β
+ 2β

)√√√√ T∑
t=1

vt(i⋆) +

(
5 + log(K)

β
+ 5β

)√√√√ T∑
t=1

v̄t +
1

β

K∑
i=1

1

K

√√√√ T∑
t=1

vt(i) .

24

Furthermore, setting β =
√
log(K) gives

T∑
t=1

⟨pt − ei⋆ , ℓt⟩ = O


√√√√log(K)

(
T∑
t=1

v̄t +

T∑
t=1

vt(i⋆)

)
+

1

K

K∑
i=1

√√√√ T∑
t=1

vt(i)

 .

Proof. Let i⋆ ∈ [K] be our point-mass comparator and let ℓ̄t = −rt for any t ∈ [T]. First, observe
that the regret can be equivalently rewritten as

T∑
t=1

⟨pt − ei⋆ , ℓt⟩ =
T∑
t=1

〈
pt − ei⋆ , ℓ̄t

〉
;

this follows from the fact that replacing ℓt with ℓ̄t only leads to a difference
〈
pt − ei⋆ , ℓt − ℓ̄t

〉
=

⟨pt − ei⋆ , c · 1⟩ = ⟨pt, c · 1⟩ − ⟨ei⋆ , c · 1⟩ = c− c = 0 for the constant c = ⟨pt, ℓt⟩, by definition of
ℓ̄t. As in the proof of Theorem B.2, we take the same definitions of truncT and R̃T , and consider
the following regret decomposition:

T∑
t=1

〈
pt − ei⋆ , ℓt

〉
=

T∑
t=1

〈
pt − ei⋆ , ℓ̄t − ℓ̃t

〉
︸ ︷︷ ︸

=truncT (p1:T)+truncT (−ei⋆)

+

T∑
t=1

〈
pt − ei⋆ , ℓ̃t

〉
︸ ︷︷ ︸

=R̃T (ei⋆)

,

where the first term is the cost of truncating the losses, and the second is the regret of FTRL on the
truncated losses ℓ̃1, . . . , ℓ̃T . Let us first focus on the former term.

Before we proceed, one final remark is in order. Recall that Algorithm 2 performs predictions defined
such that

pt = argmin
p∈P

t−1∑
s=1

〈
p, ℓ̃s

〉
+Dt−1(p∥p0)

for any t > 1, where p0 = 1
K1 ∈ P is the uniform distribution, while p1 = p0. Observe that we

can define η0,i = β/
√
v̄1 (never used nor set by Algorithm 2) for any i ∈ [K] and, thus, we can

equivalently denote p1 as

p1 ∈ argmin
p∈P

D0(p∥p0)

becauseD0(p∥p0) =
√
v̄1
β

∑K
i=1

(
p(i) log(p(i)/p0(i))−p(i)+p0(i)

)
is minimized at p0. We remark

that, while this step appears to require knowledge of v̄1 before computing the prediction p1, it is only
part of the analysis and not algorithmically performed.

Step 1: control the cost of truncation. We can begin by focusing on truncT (p1:T). Observe that

truncT (p1:T) =

T∑
t=1

〈
pt, ℓ̄t − ℓ̃t

〉
≤

T∑
t=1

K∑
i=1

pt(i)
∣∣ℓ̄t(i)− ℓ̃t(i)∣∣

=

T∑
t=1

K∑
i=1

pt(i)

(∣∣ℓ̄t(i)∣∣ (1− bt−1(i)

bt(i)

)
1
(∣∣ℓ̄t(i)∣∣ ≤ 1

ηt,i

)
+
∣∣ℓ̄t(i)∣∣1(∣∣ℓ̄t(i)∣∣ > 1

ηt,i

))
,

25

where the last equality follows by definition of ℓ̃t(i), after observing that bt−1(i) ≤ bt(i). Now, by
using the definitions of bt(i) and ηt,i, observe that

K∑
i=1

pt(i)
∣∣ℓ̄t(i)∣∣ (1− bt−1(i)

bt(i)

)
1
(∣∣ℓ̄t(i)∣∣ ≤ 1

ηt,i

)
=

K∑
i=1

pt(i)

∣∣ℓ̄t(i)∣∣
bt(i)

(
bt(i)− bt−1(i)

)
1
(∣∣ℓ̄t(i)∣∣ ≤ 1

ηt,i

)
=

K∑
i=1

pt(i)ηt,i
∣∣ℓ̄t(i)∣∣ (1

ηt,i
− 1

ηt−1,i

)
1
(∣∣ℓ̄t(i)∣∣ ≤ 1

ηt,i

)
≤

K∑
i=1

pt(i)

(
1

ηt,i
− 1

ηt−1,i

)
≤ 2v̄t

β
√∑

s≤t v̄s
,

for t > 1, where the last inequality holds by Equation (8) given that the learning rates ηt,i have the
same definition; the same bound holds similarly for t = 1 by observing that b0(i) = 0 and, hence, we
have

K∑
i=1

p1(i)|ℓ̄1(i)|1
(
|ℓ̄1(i)| ≤

1

η1,i

)
≤ 1

β

K∑
i=1

p1(i)
√

max{v̄1, v1(i)}

≤ 1

β

√√√√ K∑
i=1

p1(i)max{v̄1, v1(i)} ≤
√
2v̄1
β
≤ 2v̄1
β
√
v̄1

,

where the second step follows by Jensen’s inequality. At the same time, we have that

K∑
i=1

pt(i)
∣∣ℓ̄t(i)∣∣1(∣∣ℓ̄t(i)∣∣ > 1

ηt,i

)
=

K∑
i=1

pt(i)
ℓ̄t(i)

2∣∣ℓ̄t(i)∣∣1
(∣∣ℓ̄t(i)∣∣ > 1

ηt,i

)
≤

K∑
i=1

ηt,ipt(i)ℓ̄t(i)
2

≤ βv̄t√∑
s≤t v̄s

.

We can therefore combine the above inequalities and, together with Orabona [2023, Lemma 4.13],
obtain that

truncT (p1:T) ≤
(
β +

2

β

) T∑
t=1

v̄t√∑
s≤t v̄s

≤ 2

(
β +

2

β

)√√√√ T∑
t=1

v̄t .

Similarly, we can see that truncT (−ei⋆) similarly satisfies

truncT (−ei⋆) =
T∑
t=1

〈
−ei⋆ , ℓ̄t − ℓ̃t

〉
≤

T∑
t=1

∣∣ℓ̄t(i⋆)− ℓ̃t(i⋆)∣∣
=

T∑
t=1

(∣∣ℓ̄t(i⋆)∣∣ (1− bt−1(i
⋆)

bt(i⋆)

)
1
(∣∣ℓ̄t(i⋆)∣∣ ≤ 1

ηt,i⋆

)
+
∣∣ℓ̄t(i⋆)∣∣1(∣∣ℓ̄t(i⋆)∣∣ > 1

ηt,i⋆

))
.

26

Using similar calculations as before, it follows that

T∑
t=1

∣∣ℓ̄t(i⋆)∣∣ (1− bt−1(i
⋆)

bt(i⋆)

)
1
(∣∣ℓ̄t(i⋆)∣∣ ≤ 1

ηt,i⋆

)
≤ 1

β

T∑
t=1

(
bt(i

⋆)− bt−1(i
⋆)
)
=

1

ηT,i⋆

≤ 1

β

√√√√ T∑
t=1

v̄t +
1

β

√√√√ T∑
t=1

vt(i⋆) ,

where we used the subadditivity of the square root in the last inequality, and also that

T∑
t=1

∣∣ℓ̄t(i⋆)∣∣1(∣∣ℓ̄t(i⋆)∣∣ > 1

ηt,i⋆

)
≤

T∑
t=1

ηt,i⋆ ℓ̄t(i
⋆)2 ≤ β

T∑
t=1

vt(i
⋆)√∑

s≤t vs(i
⋆)
≤ 2β

√√√√ T∑
t=1

vt(i⋆) ,

where the last inequality follows again by Orabona [2023, Lemma 4.13]. Hence, we similarly
conclude that

truncT (−ei⋆) ≤
1

β

√√√√ T∑
t=1

vt +

(
2β +

1

β

)√√√√ T∑
t=1

vt(i⋆) ,

which implies that the total cost for truncating the losses is bounded from above as

truncT (p1:T) + truncT (−ei⋆) ≤
(
2β +

5

β

)√√√√ T∑
t=1

v̄t +

(
2β +

1

β

)√√√√ T∑
t=1

vt(i⋆) .

Step 2: control the regret of FTRL. Let us now focus on the latter term in the regret decomposition,
that is, the regret of FTRL on the losses ℓ̃1, . . . , ℓ̃T . Consider any t ∈ [T] and define

p̃t+1 = argmin
p∈RK

{〈
p, ℓ̃t

〉
+Dt−1 (p∥pt)

}
.

Note that for any i ∈ [K], p̃t+1(i) = pt(i) exp
(
−ηt−1,iℓ̃t(i)

)
≤ 3pt(i) by construction of ℓ̃t, which

is such that∣∣∣ηt−1,iℓ̃t (i)
∣∣∣ = ηt−1,i

∣∣ℓ̄t(i)∣∣ bt−1(i)

bt(i)
1
(∣∣ℓ̄t(i)∣∣ ≤ 1

ηt,i

)
= ηt,i

∣∣ℓ̄t(i)∣∣1(∣∣ℓ̄t(i)∣∣ ≤ 1

ηt,i

)
≤ 1

for any i ∈ [K] and t > 1, while it immediately holds for t = 1 since b0(i) = 0 for any i.

Let φt = Dt−1(·∥p0) be the regularizer used in the FTRL update. Observe that φt is twice-
differentiable with Hessian having inverse

(
∇2φt(x)

)−1
= Diag(ηt−1 ⊙ x), and that φt+1(x) ≥

φt(x) for all x ∈ RK≥0. Then, by standard results on FTRL with time-varying regularizers
φ1, . . . , φT+1 (e.g., see Orabona [2023, Lemma 7.14]), we obtain

R̃T (ei⋆) ≤ φT+1(ei⋆) +
1

2

T∑
t=1

∥∥∥ℓ̃t∥∥∥2
(∇2φt(zt))

−1
(10)

for some point zt on the line segment between pt and p̃t+1. The point zt is such that zt(i) ≤
max{pt(i), p̃t+1(i)} ≤ 3pt(i) for any i ∈ [K]. Therefore, given the definition of the local norm, the

27

second term of Equation (10) satisfies

1

2

T∑
t=1

∥∥∥ℓ̃t∥∥∥2
(∇2φt(zt))

−1
=

1

2

T∑
t=1

K∑
i=1

ηt−1,izt(i)ℓ̃t(i)
2

≤ 3

2

T∑
t=1

K∑
i=1

ηt−1,ipt(i)ℓ̃t(i)
2 (using zt(i) ≤ 3pt(i))

≤ 3

2

T∑
t=1

K∑
i=1

ηt−1,ipt(i)ℓ̄t(i)
2 · bt−1(i)

2

bt(i)2
(using |ℓ̃t(i)| ≤ bt−1(i)

bt(i)
|ℓ̄t(i)|)

=
3β

2

T∑
t=1

K∑
i=1

pt(i)ℓ̄t(i)
2 · bt−1(i)

bt(i)2
(definition of ηt−1,i)

≤ 3β

2

T∑
t=1

K∑
i=1

pt(i)ℓ̄t(i)
2

bt(i)
(using bt−1(i) ≤ bt(i))

≤ 3β

2

T∑
t=1

v̄t√∑
s≤t v̄s

(definition of bt(i) and v̄t)

≤ 3β

√√√√ T∑
t=1

v̄t ,

where the last inequality follows again by Orabona [2023, Lemma 4.13]. On the other hand, the first
term of Equation (10) is such that

φT+1(ei⋆) =
log(K)− 1

ηT,i⋆
+

1

K

K∑
i=1

1

ηT,i

≤ log(K)− 1

β


√√√√ T∑

t=1

vt(i⋆) +

√√√√ T∑
t=1

v̄t

+
1

β

√√√√ T∑
t=1

v̄t +
1

β

K∑
i=1

1

K

√√√√ T∑
t=1

vt(i)

≤ log(K)− 1

β

√√√√ T∑
t=1

vt(i⋆) +
log(K)

β

√√√√ T∑
t=1

v̄t +
1

β

K∑
i=1

1

K

√√√√ T∑
t=1

vt(i) .

Combining all the above results together leads to
T∑
t=1

⟨pt − ei⋆ , ℓt⟩

≤
(
log(K)

β
+ 2β

)√√√√ T∑
t=1

vt(i⋆) +

(
5 + log(K)

β
+ 5β

)√√√√ T∑
t=1

v̄t +
1

β

K∑
i=1

1

K

√√√√ T∑
t=1

vt(i) .

We can now show that Theorem C.1 suffices to prove one of our main claims from Theorem 2.2. This
is demonstrated by the following result.

Corollary C.2. Suppose Assumption 2.1 holds. Then, Algorithm 2 with β =
√
log(K) guarantees

RT = O
(√

θT log(K)
)
.

Proof. Recall that, by Theorem C.1, Algorithm 2 with β =
√

log(K) guarantees

T∑
t=1

⟨pt − ei⋆ , ℓt⟩ = O


√√√√log(K)

(
T∑
t=1

v̄t +

T∑
t=1

vt(i⋆)

)
+

1

K

K∑
i=1

√√√√ T∑
t=1

vt(i)

 (11)

28

for any sequence of losses. Additionally, in a similar way as in the proof of Corollary B.3, we have
that Et[v̄t] ≤ θ and that Et[vt(i)] ≤ 4θ for any i ∈ [K], under Assumption 2.1.

We can analogously observe that RT = maxi⋆∈[K] E[⟨pt − ei⋆ , ℓt⟩] or, in other words, that RT
essentially corresponds to the expectation of the left-hand side of Equation (11). Then, we consider
the expectation of its right-hand side and, by applying Jensen’s inequality with respect to the square
root and the tower rule of expectation, we can finally show that

E


√√√√log(K)

T∑
t=1

(v̄t + vt(i⋆)) +
1

K

K∑
i=1

√√√√ T∑
t=1

vt(i)


≤

√√√√log(K)E

[
T∑
t=1

(
Et [v̄t] + Et [vt(i⋆)]

)]
+

1

K

K∑
i=1

√√√√E

[
T∑
t=1

Et[vt(i)]

]
≤ C

√
θT log(K)

for some constant C > 0. This concludes the proof.

C.1 Computing the Update in Algorithm 2

We briefly discuss the update defining pt+1 in Algorithm 2. For any η ∈ RK>0, consider an
optimization problem of the form infp∈P ⟨p, L⟩ + D (p∥q), where L ∈ RK , q ∈ P , and

D (p∥q) =
∑K
i=1

1
ηi

[
p(i) log

(
p(i)
q(i)

)
+ p (i)− q (i)

]
. As the probability simplex is compact and

the mapping p 7→ ⟨p, L⟩ + D (p∥q) is continuous, the infimum is attained at some p⋆ ∈ P . The
Lagrangian L (p, λ) of the optimization problem is defined for p ∈ RK≥0 and λ ∈ R as

L (p, λ) = ⟨p, L⟩+
K∑
i=1

1

ηi

[
p (i) log

(
p (i)

q (i)

)
− p (i) + q (i)

]
+ λ (⟨p,1⟩ − 1) .

For any j ∈ [K], differentiate with respect to p (j) to get

∂p(j)L (p, λ) = L (j) +
1

ηj

[
log

(
p (j)

q (j)

)
+ 1− 1

]
+ λ .

Setting it to zero, we get
p⋆ (j) = q (j) exp (−ηj [L (j) + λ]) .

One then wants to find the value of λ by enforcing the constraint on p⋆, namely ⟨p⋆,1⟩ = 1, which
gives

K∑
i=1

q (i) exp (−ηi [L (i) + λ]) = 1 .

If the learning rate did not depend on the coordinate, we could take the term that depends on λ out of
the sum to get a closed-form solution. Plugging it back into p⋆ would give a softmax distribution, but
this is not possible here. Instead, one can efficiently compute the normalization constant λ with a
line-search.

D Technical Results for Section 5.3

D.1 Proof of Theorem 2.5

Proof. We start with some useful inequalities. Let a, b, yt ∈ R and let ℓ̄t = −rt for any t ∈ [T]. By
the 2-strong convexity of the function x 7→ (x− yt)2, we have(

a+ b

2
− yt

)2

≤ 1

2
(a− yt)2 +

1

2
(b− yt)2 −

(a− b)2

8
. (12)

29

Algorithm 3 LoOT-Free OMD for the Squared Loss
Inputs: Number of experts K ≥ 2, minimum mass coefficient α ∈ (0, 1], learning rate coefficient
β > 0.
Initialize: p1 (i)← 1/K for all i ∈ [K].
for t = 1, . . . , T do

Receive zt,i for all i ∈ [K].
Set zt ←

∑K
i=1 pt(i)zt,i.

Observe yt.
Set ℓt(i)←

(
zt,i(zt − yt) + 1

2 (zt,i − yt)
2
)
.

Set rt (i)← ⟨ℓt, pt⟩ − ℓt (i) for all i ∈ [K].
Set vt(i)← rt(i)

2 for all i ∈ [K].
Set v̄t ←

∑K
i=1 pt(i)vt(i).

Set ηt,i ← βmax
{∑

s≤t v̄s,
∑
s≤t vs(i)

}−1/2

for all i ∈ [K].

Set ℓ̃t (i)← −rt (i)1
(
|rt (i)| ≤ 1/ηt,i

)
for all i ∈ [K].

Set pt+1 ← argminp∈Pα

〈
p, ℓ̃t

〉
+Dt (p∥pt).

end for

Furthermore, we also have that (a− yt)2 − (b− yt)2 = 2 (yt − a) (b− a)− (a− b)2, sometimes
referred to as a polarization identity (here, for the Euclidean norm on R). Moving to the regret
analysis, let us denote i⋆ = argmini∈[K] E

[∑T
t=1 (yt − zt,i)

2
]
. Splitting the sum in halves and

rearranging the terms using that pt is a probability distribution over [K], the loss of the learner at
time t can be bounded from above as

(zt − yt)2 =

(〈
pt,

1

2
zt

〉
+

1

2
zt − yt

)2

=

(
K∑
i=1

pt (i)

[
1

2
zt,i +

1

2
zt − yt

])2

≤
K∑
i=1

pt (i)

[
1

2
zt,i +

1

2
zt − yt

]2
,

where the inequality follows from Jensen’s inequality. Applying Equation (12) for any i ∈ [K] with
a = zt,i and b = zt, and again using ⟨pt,1⟩ = 1, we further get

(zt − yt)2 ≤
1

2

K∑
i=1

pt (i) (zt,i − yt)2 +
1

2
(zt − yt)2 −

1

8

K∑
i=1

pt (i) (zt,i − zt)
2

=
1

2

K∑
i=1

pt (i) (zt,i − yt)2 +
1

2
(zt − yt)2 −

1

2
(zt,i⋆ − yt)2︸ ︷︷ ︸

(♢)

− 1

8

K∑
i=1

pt (i) (zt,i − zt)
2
+ (zt,i⋆ − yt)2 −

1

2
(zt,i⋆ − yt)2 .

Using the polarization identity on (♢) with a = zt and b = zt,i⋆ leads to

(zt − yt)2 ≤
1

2

K∑
i=1

pt (i) (zt,i − yt)2 + (yt − zt) (zt,i⋆ − zt)−
1

2
(zt − zt,i⋆)

2

− 1

8

K∑
i=1

pt (i) (zt,i − zt)
2
+ (zt,i⋆ − yt)2 −

1

2
(zt,i⋆ − yt)2 .

30

We recall that Algorithm 3 uses the loss ℓt (i) = 1
2 (zt,i − yt)

2
+ zt,i (zt − yt) for any i ∈ [K].

Rearranging the first two terms in the upper bound, we have

(zt − yt)2 ≤ ⟨pt, ℓt⟩ − zt,i⋆ (zt − yt)︸ ︷︷ ︸
(♣)

−1

2
(zt − zt,i⋆)

2

− 1

8

K∑
i=1

pt (i) (zt,i − zt)
2
+ (zt,i⋆ − yt)2 −

1

2
(zt,i⋆ − yt)2︸ ︷︷ ︸

(♠)

= ⟨pt, ℓt⟩ − ℓt(i⋆)−
1

2
(zt − zt,i⋆)

2 (using (♣) + (♠) = ℓt(i
⋆))

− 1

8

K∑
i=1

pt (i) (zt,i − zt)
2
+ (zt,i⋆ − yt)2 .

At this point, we can move the last term in the right-hand side to the left-hand side to obtain

(zt − yt)2− (zt,i⋆ − yt)2 ≤
(
⟨pt, ℓt⟩− ℓt(i⋆)

)
− 1

2
(zt − zt,i⋆)

2− 1

8

K∑
i=1

pt (i) (zt,i − zt)
2
. (13)

Now, from Theorem B.2 with α = 1
T and β =

√
log (KT) we have

T∑
t=1

(⟨pt, ℓt⟩ − ℓt (i⋆)) ≤ 11
√
log (KT)


√√√√ T∑

t=1

v̄t +

√√√√ T∑
t=1

vt (i⋆)

 . (14)

We continue by bounding v̄t =
∑K
i=1 pt (i) (ℓt (i)− ⟨pt, ℓt⟩)

2 from above. By definition of the loss
ℓt, the square inside the sum can be bounded, for any i ∈ [K], by

(ℓt (i)− ⟨pt, ℓt⟩)2 =

(
1

2

[
(zt,i − yt)2 −

〈
pt, (zt − yt · 1)2

〉]
+ (zt,i − zt) (zt − yt)

)2

≤ 2 [(zt,i − zt) (zt − yt)]2 +
1

2

[
(zt,i − yt)2 −

〈
pt, (zt − yt · 1)2

〉]2
, (15)

where we used the inequality (a+ b)
2 ≤ 2a2 + 2b2 for any a, b ∈ R. Plugging it into the definition

of v̄t, this gives

v̄t ≤ 2 (zt − yt)2
K∑
i=1

pt (i) [zt,i − zt]
2
+

1

2

K∑
i=1

pt (i)

(zt,i − yt)2 −
K∑
j=1

pt (j) (zt,j − yt)2
2

.

We continue by bounding from above the second term on the right-hand side. The difference inside
the square can be equivalently rewritten as

(zt,i − yt)2 −
K∑
j=1

pt (j) (zt,j − yt)2

= [(zt,i − zt)− (yt − zt)]
2 −

K∑
j=1

pt (j) [(zt,j − zt)− (yt − zt)]
2

= (zt,i − zt)
2 − 2 (yt − zt) (zt,i − zt) + (yt − zt)

2 −
K∑
j=1

pt (j) (zt,j − zt)
2

+ 2 (yt − zt)

K∑
j=1

pt (j) (zt,j − zt)− (yt − zt)
2

(⟨pt,1⟩ = 1)

= (zt,i − zt)
2 − 2 (yt − zt) (zt,i − zt)−

K∑
j=1

pt (j) (zt,j − zt)
2
, (16)

31

where the last equality is by definition of zt. We plug it back in the sum above, and using again the
inequality (a+ b)

2 ≤ 2a2 + 2b2, we get

K∑
i=1

pt (i)

(zt,i − yt)2 −
K∑
j=1

pt (j) (zt,j − yt)2
2

≤ 2

K∑
i=1

pt (i) (zt,i − zt)
4
+ 2

K∑
i=1

pt (i)

2 (yt − zt) (zt,i − zt) +

K∑
j=1

pt (j) (zt,j − zt)
2

2

.

Expanding the square in the second term, we get that the cross-product is equal to zero by definition
of zt, thus

K∑
i=1

pt (i)

(zt,i − yt)2 −
K∑
j=1

pt (j) (zt,j − yt)2
2

≤ 2

K∑
i=1

pt (i) (zt,i − zt)
4
+ 8 (yt − zt)

2
K∑
i=1

pt (i) (zt,i − zt)
2
+ 2

 K∑
j=1

pt (j) (zt,j − zt)
2

2

,

where we used ⟨pt,1⟩ = 1. Using Jensen’s inequality,

K∑
i=1

pt (i)

(zt,i − yt)2 −
K∑
j=1

pt (j) (zt,j − yt)2
2

≤ 4

K∑
i=1

pt (i) (zt,i − zt)
4
+ 8 (yt − zt)

2
K∑
i=1

pt (i) (zt,i − zt)
2
.

Plugging it back into the upper-bound on v̄t, we obtain

v̄t ≤ 6 (zt − yt)2
K∑
i=1

pt (i) [zt,i − zt]
2
+ 2

K∑
i=1

pt (i) (zt,i − zt)
4
.

Using Et
[
y2t
]
≤ σ and |zt,i| ≤ Y , we find that

Et [v̄t] ≤
(
20Y 2 + 12σ

) K∑
i=1

pt (i) (zt,i − zt)
2
.

We now bound vt (i) for any given i ∈ [K]. As with v̄t, Equation (15) gives

(ℓt (i)− ⟨pt, ℓt⟩)2 ≤ 2 (zt − yt)2 (zt,i − zt)
2
+

1

2

(zt,i − yt)2 − K∑
j=1

pt (j) (zt,j − yt)2
2

.

Reusing Equation (16), we can write the second term on the right-hand-side as(zt,i − yt)2 −
K∑
j=1

pt (j) (zt,j − yt)2
2

=

(zt,i − zt)
2 − 2 (yt − zt) (zt,i − zt)−

K∑
j=1

pt (j) (zt,j − zt)
2

2

≤
[
3 (zt,i − zt)

2
+ 6 (yt − zt)

2
]
(zt,i − zt)

2
+ 3

 K∑
j=1

pt (j) (zt,j − zt)
2

2

≤
[
3 (zt,i − zt)

2
+ 6 (yt − zt)

2
]
(zt,i − zt)

2
+ 3

(
max
k∈[K]

(zt,k − zt)
2

) K∑
j=1

pt (j) (zt,j − zt)
2
,

32

where the first inequality follows from (a+ b+ c)
2 ≤ 3a2 + 3b2 + 3c2 valid for any a, b, c ∈ R and

the second inequality follows from Jensen’s inequality. Thus, using Et
[
y2t
]
≤ σ and |zt,i| ≤ Y , we

find that

Et [vt (i)] ≤
(
16Y 2 + 10σ

)
(zt,i − zt)

2
+ 6Y 2

K∑
i=1

pt (i) (zt,i − zt)
2
.

By using the bounds on Et [vt (i)] and Et [v̄t], together with Equations (13) and (14), we finally find
that

E

[
T∑
t=1

(
(zt − yt)2 − (zt,i⋆ − yt)2

)]

≤ E

11√log (KT)


√√√√ T∑

t=1

v̄t +

√√√√ T∑
t=1

vt (i⋆)

− E

 T∑
t=1

1

2
(zt,i⋆ − zt)

2
+

1

8

K∑
j=1

pt (j) (zt,j − zt)
2



≤ E

11√2 log (KT)


√√√√ T∑

t=1

v̄t +

T∑
t=1

vt (i⋆)

− E

 T∑
t=1

1

2
(zt,i⋆ − zt)

2
+

1

8

K∑
j=1

pt (j) (zt,j − zt)
2


≤ E

[
112 log (KT)

γ
+
γ

2

((
16Y 2 + 10σ

) T∑
t=1

(zt,i⋆ − zt)
2
+
(
26Y 2 + 12σ

) T∑
t=1

K∑
i=1

pt (i) (zt,i − zt)
2

)]

− E

 T∑
t=1

1

2
(zt,i⋆ − zt)

2
+

1

8

K∑
j=1

pt (j) (zt,j − zt)
2


(
√
ab = infγ>0

1
2γ a+

γ
2 b for a, b ≥ 0, take γ =

(
104Y 2 + 48σ

)−1
)

= C
(
Y 2 + σ

)
log (KT)

for a sufficiently large constant C > 0, which completes the proof.

E Comparison with Gökcesu and Kozat [2022]

In this section, we provide further details about the comparison with Gökcesu and Kozat [2022]. The
first regret guarantees we compare against are those provided by their Theorem IV.7 and Theorem V.2.
One may immediately observe that those regret bounds present an additive term ET (multiplied by a
logarithmic factor) equivalent to our MT = maxt,i |rt(i)|, for which we already prove that the

√
KT

lower bound holds even with i.i.d. losses.

Hence, the main comparison is mainly with respect to Corollary IV.8 and Corollary V.3 in Gökcesu
and Kozat [2022]. The proof of Corollary IV.8 and Corollary V.3 rely on their Lemma IV.1, which
requires that, in the notation of Gökcesu and Kozat [2022], ηt|lt,m − µt| ≤ 1 for all t and all m
for Equation (b) in the proof of Lemma IV.1 to be true. However, with the learning rates given in
Corollary IV.8 and Corollary V.3, ηt|lt,m − µt| ≤ 1 does not hold. In Corollary IV.8 they choose
ηt ≥

√
1∑t

s=1 Eps [(ls,m−µs)2]
, which with µs = minm ls,m for t = 1 with l1,m = 0 if m ̸= K and

l1,K = 1, can be seen to lead to ηt|lt,m − µt| ≥
√
K > 1. With Corollary V.3, we run into a similar

issue. We do not see a way to fix these issues.

F Details on the Experiments

In this section we provide details on the experiments. We ran the experiments for K ∈
{15, 25, . . . , 135}. For each instance we set T = 20K. We ran two sets of experiments. In
the first set of experiments the losses mimic the construction we used in Section 4. The expert losses
were equal to ℓt(i) = 1[i ̸= 1] + εt,i, where εt,i = ζt,iXt,i with ζt,i a Rademacher random variable

33

Figure 1: Results of experiments with heavy-tailed losses.

500 1000 1500 2000 2500

−
50

0
0

50
0

10
00

20
00

T

m
ea

n
lo

ss
 o

ve
r

40
 r

ep
et

iti
on

s

lootOMD
lootFTRL
AdaHedge
EW
Squint

Figure 2: Results of experiments with heavy-tailed losses. Dotted lines represent mean + or - one
standard deviation.

500 1000 1500 2000 2500

−
50

0
0

50
0

10
00

20
00

T

m
ea

n
lo

ss
 (

+
−

 s
td

)
ov

er
 4

0
re

pe
tit

io
ns

lootOMD
lootFTRL
AdaHedge
EW
Squint

and

Xt,i =

{
0 w.p. 1− 1/T√
KT w.p. 1/T

.

In the second set of experiments we use a similar construction, where the losses were equal to
ℓt(i) = 1[i ̸= 1] + εt,i, where εt,i = ζt,iX̃t,i with ζt,i a Rademacher random variable and

X̃t,i =

{
0 w.p. 1− 1/T

2 w.p. 1/T
.

The algorithms we implemented were Squint with the improper prior [Koolen and Van Erven, 2015],
AdaHedge [De Rooij et al., 2014], and an instance of Exponential Weights (EW) algorithm akin to
the algorithm of [Cesa-Bianchi et al., 2007]. Specifically, we ran the FTRL version of exponential
weights on the instantaneous regrets with learning rate ηt = min

{
1

maxt,i |ℓt(i)| ,
√

log(K)∑
s≤t v̄t

}
. We

gave this instance of EW the maximum loss, otherwise it would not provide any guarantees. We
could have also opted for a doubling trick, but this is known to deteriorate performance. Likewise, we

34

Figure 3: Results of experiments with non-heavy-tailed losses.

500 1000 1500 2000 2500

0
20

40
60

T

m
ea

n
lo

ss
 o

ve
r

40
 r

ep
et

iti
on

s

lootOMD
lootFTRL
AdaHedge
EW
Squint

Figure 4: Results of experiments with non-heavy-tailed losses. Dotted lines represent mean + or -
one standard deviation.

500 1000 1500 2000 2500

0
20

40
60

T

m
ea

n
lo

ss
 (

+
−

 s
td

)
ov

er
 4

0
re

pe
tit

io
ns

lootOMD
lootFTRL
AdaHedge
EW
Squint

gave Squint the value of maxt,i |ℓt(i)|, as this is a required parameter for Squint. The algorithm of
[Mhammedi et al., 2019] could have instead been used to learn maxt,i |ℓt(i)| online, but seeing that a
similar idea as the doubling trick is part of their algorithm, we suspect this would only deteriorate
performance.

In the first set of experiments we expect Squint, AdaHedge, and EW to perform poorly due to the
issues described in Section 4. In the second set of experiments we expect similar behaviour from all
algorithms.

As can be seen from the results in Figure 1, algorithms not tailored to adapt to θ fare considerably
worse in the heavy-tailed loss setting we consider. We therefore conclude that the lower-order terms
in the regret bounds of these algorithms are not an artefact of the analysis, but rather represent the
problematic behaviour of these algorithms in the face of heavy-tailed losses.

The results for the second set of experiments is similarly as expected with one exception: the
performance of Squint. Squint fares considerably worse than the other algorithms. However, upon
inspection, it seems that the performance of Squint is still below what is predicted by theory. The

35

regret bound of Squint contains a 15 log(1+K(2+ log(T +1))) term, which for the smallest values
of K,T is slightly larger than 71.

All experiments were run on a Macbook Air with 8GB of RAM and an Apple M2 processor.

36

	Introduction
	Preliminaries and Results
	Hedge Setting
	Quadratic Losses

	Related Work
	Lower-Order Terms with Unbounded Losses
	Lower-Order Terms in the Hedge Setting
	Lower-Order Terms for the Squared Loss

	Algorithms
	OMD-based Algorithm
	FTRL-based Algorithm
	Algorithm for the Squared Loss

	Future Work
	Technical Results for Section 4
	Proof of Lemma 4.1 and Fréchet Distributions
	Proof of Proposition 4.3
	Discussion on analyses of existing algorithms

	Regret Analysis for Online Mirror Descent
	Adversarial Environments
	Self-Bounded Environments

	Regret Analysis for Follow The Regularized Leader
	Computing the Update in Algorithm 2

	Technical Results for Section 5.3
	Proof of Theorem 2.5

	Comparison with gokcesu2022optimal
	Details on the Experiments

