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Efficient Techniques for Spiking Neural Networks

Abstract— Recent advancements in Spiking Neural
Networks (SNNs) for machine learning have established
them as an energy-efficient alternative to conventional
Artificial Neural Networks (ANNs). However, training
and deploying a deep SNN comes with complications
related to propagation of various errors including van-
ishing gradients, ANN-to-SNN activation mismatch, and
loss of transmitted information in the spiking patterns.
This work surveys techniques to mitigate those errors
and to increase the expressive capacity of the networks
on the ground of spiking and neuronal dynamics. La-
tency vs accuracy results for the reviewed methods are
reported on standard benchmarks such as ImageNet
and CIFAR. Additionally, the temporal metric T and
its relationship to model efficiency is discussed.

I. INTRODUCTION

Efficiency improvement in SNNs owes to the spar-
sity of firing activity in spiking neurons. However,
training SNNs introduces two major challenges. First,
the non-differentiability of spike events requires sur-
rogate gradients results in approximation bias during
backpropagation due to the discrepancy between the
surrogate function and the spike dynamics [1]. Second,
extensive computation and latency costs are associated
with basic implementations of SNNs due to Back-
propagation Through Time (BPTT) over multiple time
steps [2]. By default, a large window of simulated time
steps is needed to compensate for approximation error
and to increase the learning capacity of SNN models.
Recent work has shown that strategies for encoding
and processing temporal information can substantially
reduce the number of required time steps [3–7]. Ad-
ditionally, by improving the biological plausibility
of spiking neuronal models, their learning capacity
and performance are improved [8–13]. In this work,
recent methods in both spiking and neuronal dynamics
are surveyed. The performance is reported against
ImageNet, CIFAR-10, and CIFAR-100 datasets given
their popularity as image classification benchmarks for
SNNs.

II. BACKGROUND

SNNs leverage both temporal and spatial dynamics
to process information through discrete action poten-
tial (spike) events. An SNN’s behavior relies on the
choice of neuron models, synaptic connectivity pat-
terns, and the interactions between them. These com-
ponents determine the network expressive capacity a
constant temporal window. Neuron models are based
on the electric circuit analogy of a biological neuron’s

membrane potential. A common neuronal model is the
Leaky Integrate-and-Fire (LIF) which represents the
dynamics of membrane cell gates by a capacitor and
resistor [14]. The differential equation representing the
membrane potential u is shown in (1) where IR is sim-
ply u(t)/R. Therefore, the equation can be re-arranged
to (2) with a time constant τm = RC, where RC is the
leak resistance and membrane capacitance respectively
[14], which represents a critical hyperparameter in the
modeling techniques to come in section IV.

C
du(t)

dt
= −IR + I(t) (1)

τm
du(t)

dt
= −u(t) +RI(t) (2)

A. Preliminary

The LIF model have been widely adopted in SNN
research due to its simplicity while still capturing the
core spiking phenomenon. The discrete version of (2),
via forward-Euler approximation, used in digital sim-
ulation, can be expressed by (3) for α = e−∆t/τm ≈
1 − ∆t/τm as the decay factor of the membrane
potential, and wk is the weights for dendrite k given
a spike Sk[n] ∈ {0, 1} [15]. This enables recursive
updates of the membrane potential given a current and
a previous time step until a spike event is triggered.

u[n] = αu[n− 1] +
∑
k

wkSk[n] (3)

Since u(t) resets after emitting a spike, the general
dynamics representation of a spiking neuron is shown
in (4) where for dendrite input Xt and previous
potential Vt−1, the pre-spike potential Ht is calculated,
using (3), in the case of the LIF model. Then, St

denotes the output to the heaviside step function Θ[n]
in (5), and the output potential Vt updates the potential
in the next time-step in case of no spike, or resets to
Vreset, typically zero, in case of a spike.

Ht = f(Vt−1, Xt)
St = Θ(Ht − Vth)
Vt = Ht(1− St) + VresetSt

(4)

Θ[n] =

{
1, n ≥ 0

0, otherwise
(5)



III. SPIKING DYNAMICS

ANN-SNN conversion methods are favored for
high-performance deep neural networks. The learned
weights of common ReLU-activated models can be
transferred as-is from an ANN to a rate-encoded SNN.
In deep networks, the propagation of approximation
errors significantly degrades converted SNN perfor-
mance [16]. Conversion-Aware Training (CAT) in [3]
pre-conditions the network to learn the temporal and
fire-rate behaviors of the SNN during ANN training,
requiring minimal post-conversion correction. Error-
Aware Conversion in [4] avoids re-training by ap-
plying post-conversion layer-wise calibration to close
the gap between continuous ANN activations and
their discrete spiking counterparts. The discrepancy
between the ANN activation and SNN patterns also
leads to information loss when small T values are
used. The work in [5] identifies this error as out-
of-bound spikes within a time window T because
the spike train tend to be randomly clustered. An
example is a spike train of {0, 0, 0, 1, 1} for rate 2/5
that loses spikes when T < 5, and accumulation
of this loss over layers severely degrades accuracy.
Averaging Integrate-and-Fire Spike Generation is used
to produce an evenly distributed spike train, e.g.,
converting {0, 0, 0, 1, 1} to {0, 1, 0, 1, 0}, making it
more robust to reduced T values.

Fig. 1: The CPT topology between two spiking events

In direct training, the capacity of a typical SNN
to carry spike signals temporally is limited because
a spike depends only on the previous changes in the
membrane potential, and not on past spike patterns [7].
To utilize the temporal relationship between spikes, a
method called Combine the Previous Timestep (CPT)
is used. Fig. 1 shows how temporal correlation is
established using the previous spike as a projected
inhibitory current to the next spiking event. The mem-
brane update for the spiking neuron in (3) is modified
to (6) where I

(l)
ihb is a ReLU-activated MLP projection

within the same neuron but at consecutive timesteps.

u(l)[n] = (1− 1

τ
)u(l)[n− 1] + I

(l)
in [n]− I

(l)
ihb[n] (6)

Another way to reduce the temporal window is to
have T itself adaptive per layer. The work in [6]
showed that different layers within the network exhibit
variable vulnerability to reduction in T depending on
their activity. Measurement of layer activity through
fired spikes per T indicates that layers with high activ-
ity need richer temporal resolution, therefore higher T

value. The adaptive temporal window works with both
rate and temporal encoding, and for directly trained
SNNs, a regularization term (7) is used to encourage
lowered layer-wise time steps.

λr =

L∑
l=1

∑L
l=1 Activity(l)×#Param(l)

Activity(l)
(7)

IV. NEURONAL DYNAMICS

A basic extension to LIF is the Parametric LIF
(PLIF) model. PLIF allows the time constant τ of
the membrane to be learnable. To avoid instabilities
during training, τ is not optimized directly but instead
through a function k(a) defined in (8). In this case,
a is the learnable parameter where τ = 1/k(a) ∈
(1,+∞). The pre-spike potential Ht in (4) is defined
in (9) [15].

k(a) =
1

1 + e−a
(8)

Ht = ut−1 + k(a)(−(ut−1 − Vreset) +Xt) (9)

Other learnable parameters introduced in [9] include
the firing threshold, which is made adaptive in both
time and space by modifying the spike function St in
(4) into (10) for all neurons I in a given layer, and
temporal and spatial factors Ft and Fs respectively.

SI [t] = Θ(uI [t]− Vth · Ft(ϕ[t])⊙ Fs(t, I)) (10)

Another form of implementing adaptive threshold
is presented in [10] that employs two types of tempo-
ral varying thresholds inspired by existing properties
of the nervous system. First, a Dynamic Tracking
Threshold (DTT) that increases as the membrane
potential increases, acting as a high-pass filter to
prevent small-voltage fluctuations from contributing to
the output spike. A Dynamic Evoked Threshold (DET)
that depends rather on the input’s rate of change,
making the neuron more responsive to rapid input
updates. Both techniques allow faster information
transmission between neurons by eliminating spike
redundancy. Additionally, a dynamic firing threshold
is presented in [12] for near-lossless ANN-SNN con-
version frameworks for very low temporal window
T . The technique, named Group Integrate-and-Fire
(GIF) introduces multiple thresholds, as multipliers of
a base threshold Vth, for a shared membrane potential
per neuron. Only one threshold fires at a time at the
maximum value below the shared membrane potential.
The potential update is modified as in (11) where k is
the firing threshold index.

Vt = Vt−1 − k · Vth (11)

In [13], value-dependent threshold is used through
a Multi-Level Firing (MLF) technique that targets
the problem of vanishing gradients in direct training
frameworks. The authors discussed that the gradient



of the spike function ∂O/∂H for equation (4) is near
zero except for Ht values near the constant threshold
Vth when surrogate gradient functions are used. This
effect is demonstrated in Fig. 2 which MLF mitigates
by replacing a single threshold per neuron with mul-
tiple parallel thresholds and membrane potentials.

Fig. 2: Surrogate gradient of single vs multiple Vth

The output at a given time step is the union of spikes
at the thresholds of which the independent membrane
potentials had reached. This widens the active range
of membrane potentials where the gradient value is
not saturated, preventing excessive gradient vanishing
during backpropagation. Another approach in [11]
works on reshaping the distribution of the input to
the heaviside step function Si, as in (12), to be closer
to either zero or the firing threshold.

St = Θ(Ĥt − Vth) for Ĥt = ϕ(Ht) (12)

The process is called Membrane Potential Recti-
fication in which the original membrane potential is
not affected, but only fed to a non-linear function ϕ
before being processed through the step function Θt.
This approach also uses a soft-reset mechanism where
Vt = Ht − Ot instead of resetting to zero after a
spike event. The soft reset retains residual potential
information from previous spiking activity, enriching
the model’s expressive capacity, and the rectification
process reducing quantization error of the membrane
potential by minimizing its distance from {0, 1}.

V. META ANALYSIS

Table I summarizes accuracy vs temporal window
T for the methods surveyed, revealing several trends
including latency-accuracy trade-offs, superior perfor-
mance of parameter calibration approaches, and re-
duced T requirements for adaptive neurons compared
to pure spike encoding.

Notably, accuracy gains saturate beyond a specific
increase in T depending on the method used, indi-
cating an optimal T ∗ value after which diminishing
performance returns occur for T > T ∗. This behavior
is explained in [17] which shows that quantization
error maps to a logarithmic signal-to-error ratio. This
relationship is described in (13) between the input
signal x and its quantized version x̂.

SNR = 10log(
E[x2]

E[(x− x̂)2]
) ≈ 20log(T + C) (13)

So, each doubling of T yields only a fixed im-
provement. It is also notable that for the same method
and network architecture, the T ∗ value is lower for
easier tasks (CIFAR10) and greater for harder tasks
(ImageNet). For example, in the GIF method, T
increase becomes insignificant after values 2, 8, and 16
for CIFAR10, CIFAR100, and ImageNet benchmarks
respectively.

For converted SNNs, post-conversion calibration
through Fine-Tuning (FT) or Two-stage calibration
shows 69-70 % ImageNet accuracy at T = 32 whereas
512-1024 timesteps needed for CAT-SNN to get sim-
ilar results without calibration. Neuronal adaptation
seems to be superior at much lower latency across
all tested benchmarks. For example, the GIF model
can achieve the same ImageNet performance at just 2
timesteps.

A. Energy Efficiency Calculation

1) Theoretical Analysis: The effective temporal
window needed for low-latency energy-efficient SNN
inference depends on an optimum firing threshold,
membrane leak, and network weights as optimizable
parameters [18]. A common approach to quantify
inference energy reduction is to assign energy cost per
32-bit Multiplication-Accumulation (MAC) or Accu-
mulation (AC) operations within the network. Typi-
cally, a standard 45nm [6, 10, 18] CMOS reference
process is used with 4.6 pJ and 0.9 pJ energy cost
for MAC and AC operations respectively [19]. SNN
operations are purely addition (AC) except for the
first layer where the input is encoded [10]. Energy
reduction ratio Eratio of SNN to ANN is obtained
through (14) for a number of operations OP l per layer
l.

Eratio =
OPSNN

OPANN
=

4.6OP 1
ANN +

∑L
l=2 0.9OP l

SNN∑L
l=1 4.6OP l

ANN
(14)

The number of operations OP l
SNN is the sum of

spike rate per layer l times OP l
ANN . The spike rate is

the total number of spike events Θ in a layer divided
by the number of neurons M l in that layer [10, 18,
20] as defined in (15).

OPSNN = Spike Rate ×OPANN

Spike Ratel =
1

M l

∑
M l

∑
T Θm,t

(15)

2) Empirical Refinement: Memory access opera-
tions are a crucial factor in energy consumption calcu-
lation that is typically discarded in many studies [21].
The energy consumption of a LIF model is not limited
to the AC operations but also include reading synaptic
weights ERweight

and membrane state ERstate
from

memory and updating them (EWstate ). The previous
factors have to be calculated for the total number of
synapsis Nsyn given an average spikes per synapse
Nspikes/syn through the first term in (16) [21].



TABLE I: Summary of spiking and neuronal dynamics methods and their performance in terms of accuracy
against different temporal windows T .

Group Method / Detail T ImageNet (%) CIFAR10 (%) CIFAR100 (%)

Spiking Dynamics CAT-SNN: Temporal Encoding [3] 20 – 92.21 69.58
Conversion, w/out FT 40 – 93.03 71.40

80 – 93.36 72.14
CAT-SNN: Rate Encoding [3] 512 68.98 86.40 54.62
[VGG16] 1024 71.68 94.50 66.06

2048 72.43 95.08 71.09
2500 72.47 95.13 71.75

ANN counterpart – 70.69 94.81 71.37

Error-Aware Conversion [4] 4 – 94.75 73.60
[VGG16] 8 – 95.39 76.11
One-/Two-stage 32 69.04 95.53 77.83

128 74.11 95.60 77.93
256 74.75 – –

2048 75.32 – –
ANN counterpart – 75.36 95.60 77.93

Low-Latency Conversion [5] 8 – 91.55 64.79
w/ FT [VGG16] 16 – 92.33 66.72

32 70.43 – –

TEAS [6]
(w/ FT) [VGG16]

2500/45.5
2500/71.3
2500/76.9

-
-

73.46/73.41

92.48/91.43
-
-

-
70.97/70.95

-
ANN counterpart – 73.49 – 71.22

CPT [7] Conversion/Direct [VGG16] 8 – 94.57 76.35

Neuronal Dynamics Spatio-Temporal Threshold Adaptation [9] 1 - 96.18 79.23
[ResNet-19] 2 - 96.66 80.35

4 63.67 96.84 81.20

MSAT: Adaptive Threshold [10] 16 – 73.42 –
32 – 93.87 –
64 – 95.20 –
256 – – 78.50

2045 74.93 – –
ANN counterpart – 75.16 95.45 78.49

SRIF [11] 2 - 94.44 75.56
Membrane Modification [ResNet18/19] 4 64.78 96.27 78.42

6 – 96.49 79.51
ANN counterpart – – 96.29 78.61

GIF: Sub-neurons [12] 1 64.85 94.96 72.67
[VGG16] 2 69.89 95.51 74.11

4 72.96 95.58 75.14
8 74.41 95.71 75.50

16 74.86 95.77 75.64
32 74.99 95.79 75.76
64 74.95 95.77 75.78

ANN counterpart – 74.94 95.76 75.82

MLF: Sub-neurons [13] 4 – 94.25 –

ELIF = synaptic_events + neurons_updates
= Nsyn ×Nspikes/syn

×(ERweight
+ ERstate

+ EWstate
+ EAC)

+Nneur × T × (ERstate + EWstate + EMAC)
(16)

In the second term, MAC operations are used to
account for current integration to the membrane po-
tential per neuron. Another framework in [22] had
used synaptic events to define a device-agnostic metric
by introducing the Synaptic Activity Ratio (SAR),
where SAR = Nspikes/Nsyn, and the adjusted ratio
is SAR/Eratio.

VI. LIMITATIONS AND FUTURE WORK

Recent efforts to accelerate SNN inference through
temporal window reduction have followed notably
independent paths. Future work is needed to integrate
these orthogonally developed techniques. Moreover,
most recent methodologies follow simplified theoreti-
cal analysis for energy-gain calculations that is purely
based on the number of operations. Existing work that

addresses the cost of memory access lacks hardware-
agnostic formulation. To address these shortcomings, a
unified benchmarking framework is needed including
the use of standardized datasets and accounting for
hardware variations. Realizing this goal will likely
require reproducible replications of the experimental
setup across reviewed methodologies.

VII. CONCLUSION

In this work, techniques towards efficient imple-
mentation of Spiking Neural Networks are explored.
Five recent methodologies of each spiking and neu-
ronal dynamics are compared for latency vs accu-
racy. As an important efficiency metric, the temporal
window T reflects a greater capacity of the modeled
dynamics to transfer information while omitting re-
dundancies in spiking patterns. The results have shown
a great overall reduction in latency compared to basic
rate encoding technique while delivering a competitive
performance relative to their ANN counterparts.



REFERENCES

[1] Z. Wang, R. Jiang, S. Lian, R. Yan, and
H. Tang, “Adaptive smoothing gradient learn-
ing for spiking neural networks,” in Pro-
ceedings of the 40th International Confer-
ence on Machine Learning, A. Krause, E.
Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 202, PMLR, Jul.
2023, pp. 35 798–35 816. [Online]. Available:
https://proceedings.mlr.press/
v202/wang23j.html.

[2] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z.
Lin, and Z.-Q. Luo, “Towards memory- and
time-efficient backpropagation for training spik-
ing neural networks,” in 2023 IEEE/CVF In-
ternational Conference on Computer Vision
(ICCV), 2023, pp. 6143–6153. DOI: 10.1109/
ICCV51070.2023.00567.

[3] D. Lew and J. Park, “Cat snn: Conversion
aware training for high accuracy and hard-
ware friendly spiking neural networks,” IEEE
Transactions on Emerging Topics in Computing,
vol. 13, no. 2, pp. 512–524, 2025. DOI: 10.
1109/TETC.2024.3435135.

[4] Y. Li, S. Deng, X. Dong, and S. Gu, “Error-
Aware Conversion from ANN to SNN via Post-
training Parameter Calibration,” International
Journal of Computer Vision, vol. 132, no. 9,
pp. 3586–3609, Sep. 2024, ISSN: 1573-1405.
DOI: 10.1007/s11263-024-02046-2.
[Online]. Available: https://doi.org/
10.1007/s11263-024-02046-2.

[5] Z. Yan, K. Tang, J. Zhou, and W.-F. Wong,
“Low latency conversion of artificial neural
network models to rate-encoded spiking neural
networks,” IEEE Transactions on Neural Net-
works and Learning Systems, pp. 1–12, 2025.
DOI: 10.1109/TNNLS.2025.3526374.

[6] F. Liu, H. Li, N. Yang, Z. Wang, T. Yang,
and L. Jiang, “Teas: Exploiting spiking activ-
ity for temporal-wise adaptive spiking neural
networks,” in Proceedings of the 29th Asia
and South Pacific Design Automation Con-
ference, ser. ASPDAC ’24, Incheon, Repub-
lic of Korea: IEEE Press, 2024, pp. 842–847,
ISBN: 9798350393545. DOI: 10.1109/ASP-
DAC58780.2024.10473984.

[7] Q. Xia, Y. Yu, Z. Chang, B. Hui, and
H. Luo, “Cpt-snn: A spiking neural net-
work that can combine the previous timestep,”
Neurocomputing, vol. 640, p. 130 253, 2025,
ISSN: 0925-2312. DOI: https : / / doi .
org / 10 . 1016 / j . neucom . 2025 .
130253. [Online]. Available: https : / /
www.sciencedirect.com/science/
article/pii/S0925231225009257.

[8] S. Lian, J. Shen, Q. Liu, Z. Wang, R. Yan,
and H. Tang, “Learnable surrogate gradient
for direct training spiking neural networks,”
in Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelli-
gence, IJCAI-23, E. Elkind, Ed., Main Track,
International Joint Conferences on Artificial In-
telligence Organization, Aug. 2023, pp. 3002–
3010. DOI: 10.24963/ijcai.2023/335.
[Online]. Available: https://doi.org/
10.24963/ijcai.2023/335.

[9] J. Fu et al., “Adaptation and learning of spatio-
temporal thresholds in spiking neural net-
works,” Neurocomputing, vol. 644, p. 130 423,
2025, ISSN: 0925-2312. DOI: https : / /
doi.org/10.1016/j.neucom.2025.
130423. [Online]. Available: https : / /
www.sciencedirect.com/science/
article/pii/S0925231225010951.

[10] X. He, Y. Li, D. Zhao, Q. Kong, and Y. Zeng,
“MSAT: Biologically inspired multistage adap-
tive threshold for conversion of spiking neural
networks,” Neural Computing and Applications,
vol. 36, no. 15, pp. 8531–8547, May 1, 2024,
ISSN: 1433-3058. DOI: 10.1007/s00521-
024-09529-w. [Online]. Available: https:
//doi.org/10.1007/s00521- 024-
09529-w.

[11] Y. Guo et al., “Reducing information loss for
spiking neural networks,” in Computer Vision –
ECCV 2022, S. Avidan, G. Brostow, M. Cissé,
G. M. Farinella, and T. Hassner, Eds., Cham:
Springer Nature Switzerland, 2022, pp. 36–52,
ISBN: 978-3-031-20083-0.

[12] Z. Ye, W. Zeng, Y. Chen, L. Zhang, J. Xiao,
and I. King, “Group if units with membrane
potential sharing for high-accuracy low-latency
spiking neural networks,” in 2024 Interna-
tional Joint Conference on Neural Networks
(IJCNN), 2024, pp. 1–8. DOI: 10 . 1109 /
IJCNN60899.2024.10650174.

[13] L. Feng, Q. Liu, H. Tang, D. Ma, and G. Pan,
“Multi-level firing with spiking ds-resnet: En-
abling better and deeper directly-trained spiking
neural networks,” in Proceedings of the Thirty-
First International Joint Conference on Artifi-
cial Intelligence, IJCAI-22, L. D. Raedt, Ed.,
Main Track, International Joint Conferences on
Artificial Intelligence Organization, Jul. 2022,
pp. 2471–2477. DOI: 10.24963/ijcai.
2022/343. [Online]. Available: https://
doi.org/10.24963/ijcai.2022/343.

[14] W. Gerstner and W. M. Kistler, Spiking Neuron
Models : Single Neurons, Populations, Plas-
ticity - Record details - EBSCOhost Research
Databases, 2002. (visited on 07/09/2025).

[15] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T.
Huang, and Y. Tian, “Incorporating Learnable

https://proceedings.mlr.press/v202/wang23j.html
https://proceedings.mlr.press/v202/wang23j.html
https://doi.org/10.1109/ICCV51070.2023.00567
https://doi.org/10.1109/ICCV51070.2023.00567
https://doi.org/10.1109/TETC.2024.3435135
https://doi.org/10.1109/TETC.2024.3435135
https://doi.org/10.1007/s11263-024-02046-2
https://doi.org/10.1007/s11263-024-02046-2
https://doi.org/10.1007/s11263-024-02046-2
https://doi.org/10.1109/TNNLS.2025.3526374
https://doi.org/10.1109/ASP-DAC58780.2024.10473984
https://doi.org/10.1109/ASP-DAC58780.2024.10473984
https://doi.org/https://doi.org/10.1016/j.neucom.2025.130253
https://doi.org/https://doi.org/10.1016/j.neucom.2025.130253
https://doi.org/https://doi.org/10.1016/j.neucom.2025.130253
https://www.sciencedirect.com/science/article/pii/S0925231225009257
https://www.sciencedirect.com/science/article/pii/S0925231225009257
https://www.sciencedirect.com/science/article/pii/S0925231225009257
https://doi.org/10.24963/ijcai.2023/335
https://doi.org/10.24963/ijcai.2023/335
https://doi.org/10.24963/ijcai.2023/335
https://doi.org/https://doi.org/10.1016/j.neucom.2025.130423
https://doi.org/https://doi.org/10.1016/j.neucom.2025.130423
https://doi.org/https://doi.org/10.1016/j.neucom.2025.130423
https://www.sciencedirect.com/science/article/pii/S0925231225010951
https://www.sciencedirect.com/science/article/pii/S0925231225010951
https://www.sciencedirect.com/science/article/pii/S0925231225010951
https://doi.org/10.1007/s00521-024-09529-w
https://doi.org/10.1007/s00521-024-09529-w
https://doi.org/10.1007/s00521-024-09529-w
https://doi.org/10.1007/s00521-024-09529-w
https://doi.org/10.1007/s00521-024-09529-w
https://doi.org/10.1109/IJCNN60899.2024.10650174
https://doi.org/10.1109/IJCNN60899.2024.10650174
https://doi.org/10.24963/ijcai.2022/343
https://doi.org/10.24963/ijcai.2022/343
https://doi.org/10.24963/ijcai.2022/343
https://doi.org/10.24963/ijcai.2022/343


Membrane Time Constant to Enhance Learn-
ing of Spiking Neural Networks,” en, in 2021
IEEE/CVF International Conference on Com-
puter Vision (ICCV), Montreal, QC, Canada:
IEEE, Oct. 2021, pp. 2641–2651, ISBN: 978-1-
6654-2812-5. DOI: 10.1109/ICCV48922.
2021.00266. [Online]. Available: https:
//ieeexplore.ieee.org/document/
9711070/ (visited on 07/30/2025).

[16] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeif-
fer, and S.-C. Liu, “Conversion of continuous-
valued deep networks to efficient event-driven
networks for image classification,” Frontiers in
Neuroscience, vol. Volume 11 - 2017, 2017,
ISSN: 1662-453X. DOI: 10.3389/fnins.
2017.00682. [Online]. Available: https:
//www.frontiersin.org/journals/
neuroscience/articles/10.3389/
fnins.2017.00682.

[17] A. Castagnetti, A. Pegatoquet, and B. Mi-
ramond, “Trainable quantization for speedy
spiking neural networks,” Frontiers in Neuro-
science, vol. Volume 17 - 2023, 2023, ISSN:
1662-453X. DOI: 10.3389/fnins.2023.
1154241. [Online]. Available: https : / /
www . frontiersin . org / journals /
neuroscience/articles/10.3389/
fnins.2023.1154241.

[18] N. Rathi and K. Roy, “Diet-snn: A low-latency
spiking neural network with direct input encod-
ing and leakage and threshold optimization,”
IEEE Transactions on Neural Networks and
Learning Systems, vol. 34, no. 6, pp. 3174–
3182, 2023. DOI: 10.1109/TNNLS.2021.
3111897.

[19] M. Horowitz, “1.1 computing’s energy prob-
lem (and what we can do about it),” in 2014
IEEE International Solid-State Circuits Confer-
ence Digest of Technical Papers (ISSCC), 2014,
pp. 10–14. DOI: 10.1109/ISSCC.2014.
6757323.

[20] S. Hwang and J. Kung, “One-spike snn: Single-
spike phase coding with base manipulation for
ann-to-snn conversion loss minimization,” IEEE
Transactions on Emerging Topics in Computing,
vol. 13, no. 1, pp. 162–172, 2025. DOI: 10.
1109/TETC.2024.3386893.

[21] M. Dampfhoffer, T. Mesquida, A. Valentian,
and L. Anghel, “Are snns really more energy-
efficient than anns? an in-depth hardware-aware
study,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 7, no. 3,
pp. 731–741, 2023. DOI: 10.1109/TETCI.
2022.3214509.

[22] E. Lemaire, B. Miramond, S. Bilavarn, H.
Saoud, and N. Abderrahmane, “Synaptic activ-
ity and hardware footprint of spiking neural net-
works in digital neuromorphic systems,” ACM

Trans. Embed. Comput. Syst., vol. 21, no. 6,
Dec. 2022, ISSN: 1539-9087. DOI: 10.1145/
3520133. [Online]. Available: https : / /
doi-org.khalifa.idm.oclc.org/10.
1145/3520133.

https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/ICCV48922.2021.00266
https://ieeexplore.ieee.org/document/9711070/
https://ieeexplore.ieee.org/document/9711070/
https://ieeexplore.ieee.org/document/9711070/
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2023.1154241
https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1154241
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/TETC.2024.3386893
https://doi.org/10.1109/TETC.2024.3386893
https://doi.org/10.1109/TETCI.2022.3214509
https://doi.org/10.1109/TETCI.2022.3214509
https://doi.org/10.1145/3520133
https://doi.org/10.1145/3520133
https://doi-org.khalifa.idm.oclc.org/10.1145/3520133
https://doi-org.khalifa.idm.oclc.org/10.1145/3520133
https://doi-org.khalifa.idm.oclc.org/10.1145/3520133

	Introduction
	Background
	Preliminary

	Spiking Dynamics
	Neuronal Dynamics
	Meta Analysis
	Energy Efficiency Calculation
	Theoretical Analysis
	Empirical Refinement


	Limitations and Future Work
	Conclusion

