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Abstract

Deep neural networks have enabled remarkable progress in reinforcement learning
across a variety of domains, yet advancements in model architecture, especially
involving sparse training, remain under-explored. Sparse architectures hold
potential for reducing computational overhead in deep reinforcement learning
(DRL), where prior studies suggest that parameter under-utilization may create
opportunities for efficiency gains. This work investigates adaptation of sparse
training methods from supervised learning to DRL, specifically examining pruning
and the RigL algorithm in value-based agents like DQN. In our experiments across
multiple Atari games, we study factors neglected in supervised sparse training which
are of relevance to DRL, such as the impact of the bias parameter in high-sparsity
regimes and the dynamics of dormant neurons under sparse conditions. The results
reveal that RigL, despite its adaptability in supervised contexts, under-performs
relative to pruning in DRL. Strikingly, removing bias parameters enhances RigL’s
performance, reduces dormant neurons and improves stability in high sparsity,
while pruning suffers the opposite effect. These empirical observations underscore
the imperative to re-evaluate sparse training methodologies, particularly within
the context of DRL paradigms. The results elucidate the necessity for further
investigation into the applicability of sparse training techniques across more
expansive architectural frameworks and diverse environments.

1 Introduction

Deep neural networks are now fundamental to scalable reinforcement learning (RL), driving
achievements across domains such as Atari gameplay [Mnih et al., 2015a], strategic games like
Go [Silver et al., 2016], complex simulations in Dota 2 [Berner et al., 2019], and real-time control
in applications like stratospheric balloons and plasma systems [Bellemare et al., 2020, Degrave et al.,
2022]. Despite these successes, the field has primarily concentrated on algorithmic advancements
in deep reinforcement learning (DRL), leaving architectural refinements, including sparse training
under-explored. However, recent findings indicate that DRL agents often operate with underutilized
parameters during training [Kumar et al., 2021, Sokar et al., 2022], suggesting that sparsity could offer
significant benefits by reducing training costs and enhancing performance in latency-sensitive settings.
Obando-Ceron et al. [2024] demonstrate that a pruned model obtained from gradual magnitude pruning
is better for most online DRL settings.

Recent work has taken initial steps towards incorporating sparse architectures within DRL by
applying sparse training algorithms originally developed for supervised learning [Graesser et al.,
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2022, Obando-Ceron et al., 2024]. However, in some aspects these approaches implicitly assume
supervised training dynamics can directly transfer to DRL. Unlike supervised learning, DRL training
involves a stochastic, reward-driven feedback loop that can be delayed and unstable, affecting model
expressivity and training stability. Notably, the observation of Graesser et al. [2022] that the RigL [Evci
et al., 2021] algorithm underperforms compared to pruning [Zhu and Gupta, 2017], are surprising and
counter-intuitive given that dynamic sparse training (DST) methods like RigL are dynamic in nature
and should intuitively benefit the distribution shift characteristic of DRL training [Sokar et al., 2022].

In this paper, we posit that directly transferring supervised sparse training methods to DRL is subop-
timal, highlighting the need to re-evaluate strategies that accommodate the dynamic and stochastic
characteristics of DRL. We systematically investigate Sparse Training methods for DRL, focusing on
value-based agents (DQN [Mnih et al., 2013]) in the online setting and examining two primary ap-
proaches: pruning [Zhu and Gupta, 2017] and RigL [Evci et al., 2021]. Our experiments reveal several
DRL-specific observations, such as the impact of model bias-parameter in high sparsity regimes, and
the variation of dormant neurons in different sparse training algorithms. We observe that simply archi-
tectural decisions that are implicitly made by common architectures (e.g. ResNets) used in supervised
learning algorithms, like disabling the bias terms for some layers, can actually enable DST (RigL) algo-
rithms to outperform pruning in DRL. This underscores the importance of approaching sparse training
through the lens of DRL, rather than carrying over assumptions from supervised learning paradigms.

2 Related Work

Deep neural networks have been instrumental in enabling RL to achieve remarkable results, however,
scaling these networks in RL has proven challenging due to inherent training instabilities [van
Hasselt et al., 2015, Zha et al., 2019]. Researchers have proposed a variety of methods to mitigate
these instabilities and enable larger architectures, including transitioning from traditional CNNs to
ResNet-based [He et al., 2015] architectures [Mnih et al., 2015b, Espeholt et al., 2018, Cobbe et al.,
2020, Schwarzer et al., 2021] and applying normalization techniques [Bjorck et al., 2022].

Sparse neural networks have recently emerged as a promising approach to reducing training costs
and enhancing scalability in DRL. Traditional dense-to-sparse approaches, such as gradual pruning,
have demonstrated success in deep learning by systematically removing parameters over time [Han
et al., 2015, Zhu and Gupta, 2017]. DST methods like SET [Mocanu et al., 2018] and RigL [Evci
et al., 2021] improve upon static sparse methods by allowing the network’s sparse topology to
evolve, the latter leveraging gradient signals to optimize connectivity. It has been observed that DRL
networks often contain dormant neurons, leading to under-utilization of network capacity [Sokar
et al., 2023]. Dynamic sparse training approaches that periodically reinitialize and update network
connections [Sokar et al., 2022, Graesser et al., 2022, Obando-Ceron et al., 2024] have been shown
to maintain network plasticity, sometimes outperforming their dense counterparts.

In this paper, we build upon these insights by examining sparse training techniques, focusing on factors
which influence their performance in DRL. We employ pruning [Zhu and Gupta, 2017, Obando-Ceron
et al., 2024] and RigL [Evci et al., 2021] as primary methods for dynamic sparse training in value-based
DRL agents.

3 Empirical Evaluation

3.1 Experimental Setup

Our work centers on value-based algorithms, focusing specifically on DQN [Mnih et al., 2015b] to
explore sparse training approaches within DRL. The ALE Atari suite [Bellemare et al., 2013] provides
the test environments, with five games (Pong, Qbert, Breakout, MSPacman, SpaceInvaders) selected
to capture varying levels of difficulty. Each experiment was conducted over 40 million frames and
repeated five times to account for variance, reporting the average reward over the final 10% of evalua-
tions, supplemented by 95% confidence intervals in all plots. This comparison includes dense-to-sparse
(Pruning [Zhu and Gupta, 2017]) and sparse training (RigL [Evci et al., 2021]) approaches. Prior
work [Obando-Ceron et al., 2024] suggests that pruning represents the State-Of-The-Art (SOTA) in
sparse training for DRL settings, whereas RigL has shown promise in supervised learning contexts. Un-
like the sparse training schedule outlined by Graesser et al. [2022], we commenced sparse training after
20% of training progress both for RigL and pruning to establish a more equitable basis for comparison.
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Figure 1: Comparison of final reward as a function of sparsity (i.e., the percentage of network weights
set to zero) for RigL and pruning techniques across various games. Dashed lines indicate experiments
where bias parameters were excluded. Sparse training methods were evaluated at sparsity levels from
80% to 98%. The dense baseline rewards are represented by horizontal lines. Shaded regions denote
95% confidence intervals, capturing variability across multiple runs.
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Figure 2: Dormant neurons evolution in Pong and Breakout, bias enabled in the left column and
disabled in the right column. Dashed lines represent high sparsity(98%), and solid lines indicate low
sparsity(80%).
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The training is concluded at 80%, after which the sparse network remained fixed for the duration of train-
ing. We employed the JAX [Bradbury et al., 2018] implementations of the Dopamine library [Castro
et al., 2018] for DQN agent. Sparse training was facilitated via the JaxPruner library [Lee et al., 2023].

3.2 Early Training

A critical observation pertains to the starting point of sparse training. Pruning in [Graesser et al., 2022]
typically initiate sparse training at 20% of the full training timeline, whereas RigL commences from
the first step. RigL training was adjusted to begin at the same 20% mark. This adjustment (see A.1)
closed the performance gap in low-sparsity scenarios between RigL and pruning, underscoring the
influence of early training on sparse training outcomes.

3.3 Effect of Bias on DST

In deep learning, each neuron’s output is computed as a weighted sum of its inputs, followed by the
application of an activation function. Mathematically, for a neuron i in layer l, the output (activation)
a
(l)
i can be expressed as:

a
(l)
i =ϕ

 n∑
j=1

w
(l)
ij a

(l−1)
j +b

(l)
i

,

where ϕ is the activation function, w(l)
ij is the weight for input activation a

(l−1)
j , and b

(l)
i is the bias

term for the neuron. Our work explores the impact of the bias term b
(l)
i on sparse training methods

RigL and pruning when applied to DRL. To understand this impact, we conducted experiments with
the bias term disabled.

Adjusting the training start point for RigL yielded improved performance at lower sparsity levels;
however, RigL continued to under-perform compared to pruning in high-sparsity regimes (i.e., above
90%). Previous studies [Konda et al., 2015] suggest that the presence of biases may impede the
formation of effective sparse representations, particularly in context of auto-encoders. We examined the
impact of disabling bias in both pruning and RigL methods. Notably, RigL exhibited better performance
across all five games at high sparsity when bias was removed, as depicted in Figure 1, where dashed
lines indicate the experiments conducted without bias. When bias was disabled, RigL performed
comparably to pruning with bias enabled. In contrast, pruning showed a decline in performance without
bias, suggesting the impact of bias being more pronounced in improving DST methods.

3.4 Dormant Neuron Analysis

The dormant neuron phenomenon, previously observed in both supervised and DRL settings [Sokar
et al., 2023], results in diminished network expressivity and plasticity. Obando-Ceron et al. [2024]
observed a reduction in dormant neurons with pruning compared to dense training; however, they
did not include comparisons with other sparse training methods.

The methodology for defining and quantifying dormant neurons in our study follows the approach
established by [Sokar et al., 2023]. Figure 2 illustrates the progression of dormant neurons throughout
the training process. Our analysis focuses on two Atari games, Pong and Breakout, under varying
sparsity conditions. The emergence of dormant neurons, particularly at high sparsity levels for RigL,
is well depicted in the (left column) Figure 2. This observation provides insight into the performance
decline between these approaches, specifically elucidating RigL’s diminished performance at higher
sparsities relative to pruning. As illustrated in Figure 2, the deactivation of bias (right column) in
RigL resulted in a notable reduction of dormant neurons. This finding aligns with the performance
enhancements we observed under these conditions. Conversely, pruning methods exhibited an increase
in dormant neurons upon bias deactivation.

4 Conclusion

Our work examines the adaptation of sparse training techniques from supervised learning, specifically
pruning and RigL, to DRL. While RigL’s dynamic adaptability falters at high sparsity levels, pruning
consistently demonstrates strong performance across various games. A key finding is that disabling
the bias terms in the common neural network architectures used in the context of previous work
significantly enhances RigL’s performance at high sparsity, aligning it more closely with pruning.
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Additionally, we show that high sparsity can lead to dormant neurons, but bias removal mitigates this
effect for RigL. These insights prompt a re-evaluation of sparse training algorithms tailored specifically
for DRL. Future work will explore larger architectures like Impala [Espeholt et al., 2018] and diverse
environments to further assess the potential of sparse training in DRL.
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Figure 3: Impact of early training on RigL. RigL starting at 20% matches pruning performance in
low-sparsity scenarios.

A Additional Results

A.1 Early Training
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