
Stabilized Proximal-Point Methods for Federated
Optimization

Xiaowen Jiang
Saarland University and CISPA∗

xiaowen.jiang@cispa.de

Anton Rodomanov
CISPA∗

anton.rodomanov@cispa.de

Sebastian U. Stich
CISPA∗

stich@cispa.de

Abstract

In developing efficient optimization algorithms, it is crucial to account for com-
munication constraints—a significant challenge in modern Federated Learning.
The best-known communication complexity among non-accelerated algorithms
is achieved by DANE, a distributed proximal-point algorithm that solves local
subproblems at each iteration and that can exploit second-order similarity among
individual functions. However, to achieve such communication efficiency, the
algorithm requires solving local subproblems sufficiently accurately resulting in
slightly sub-optimal local complexity. Inspired by the hybrid-projection proximal-
point method, in this work, we propose a novel distributed algorithm S-DANE.
Compared to DANE, this method uses an auxiliary sequence of prox-centers while
maintaining the same deterministic communication complexity. Moreover, the
accuracy condition for solving the subproblem is milder, leading to enhanced local
computation efficiency. Furthermore, S-DANE supports partial client participation
and arbitrary stochastic local solvers, making it attractive in practice. We further
accelerate S-DANE and show that the resulting algorithm achieves the best-known
communication complexity among all existing methods for distributed convex
optimization while still enjoying good local computation efficiency as S-DANE.
Finally, we propose adaptive variants of both methods using line search, obtaining
the first provably efficient adaptive algorithms that could exploit local second-order
similarity without the prior knowledge of any parameters.

1 Introduction

Federated learning is a rapidly emerging large-scale machine learning framework that allows training
from decentralized data sources (e.g. mobile phones or hospitals) while preserving basic privacy and
security [43, 24, 31]. Developing efficient federated optimization algorithms becomes one of the
central focuses due to its direct impact on the effectiveness of global machine learning models.

One of the key challenges in modern federated optimization is to tackle communication bottle-
necks [32]. The large-scale model parameters, coupled with relatively limited network capacity
and unstable client participation, often make communication highly expensive. Therefore, the pri-
mary efficiency metric of a federated optimization algorithm is the total number of communication
rounds required to reach a desired accuracy level. If two algorithms share equivalent communication
complexity, their local computation efficiency becomes the second important metric.

The seminal algorithm DANE [57] is an outstanding distributed optimization method. It achieves the
best-known deterministic communication complexity among existing non-accelerated algorithms (on
the server side) [22]. This efficiency primarily hinges upon a mild precondition regarding the Second-
order Dissimilarity δ. In numerous scenarios, like statistical learning for generalized model [19] and

∗CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

semi-supervised learning [7], δ tends to be relatively small. However, to ensure such fast convergence,
DANE requires each iteration subproblem to be solved with sufficiently high accuracy. This leads to
sub-optimal local computation effort across the communication rounds, which is inefficient in practice.
FEDRED [22] improves this weakness by using double regularization. However, this technique is only
effective when using gradient descent as the local solver but cannot easily be combined with other
optimization methods. For instance, applying local accelerated gradient or second-order methods
cannot improve its local computation efficiency. Moreover, it is also unclear how to extend this
method to the partial client participation setting relevant to federated learning.

On the other hand, the communication complexities achieved by the current accelerated methods
typically cannot be directly compared with those attained by DANE, as they either depend on
sub-optimal constants or additional quantities such as the number of clients n. The most relevant
and state-of-the-art algorithm ACC-EXTRAGRADIENT [33] achieves a better complexity in terms
of the accuracy ε but with dependency on the maximum Second-order Dissimilarity δmax which
can in principle be much larger than δ (see Remark 2). Unlike most federated learning algorithms,
such as FEDAVG [43], this method requires communication with all the devices at each round to
compute the full gradient and then assigns one device for local computation. In contrast, FEDAVG
and similar algorithms perform local computations on parallel and utilize the standard averaging to
compute the global model. The follow-up work AccSVRS [40] applies variance reduction to ACC-
EXTRAGRADIENT which results in less frequent full gradient updates. However, the communication
complexity incurs a dependency on n which is prohibitive for cross-device setting [24] where the
number of clients can be potentially very large. Thus, there exists no accelerated federated algorithm
that is uniformly better than DANE in terms of communication complexity.

Contributions. In this work, we aim to develop federated optimization algorithms that can achieve
the best communication complexity while retaining efficient local computation. To this end, we
first revisit the simple proximal-point method on a single machine. The accuracy requirement for
solving the subproblem defined in this algorithm is slightly sub-optimal. Drawing inspiration from
hybrid projection-proximal point method for finding zeroes of a maximal monotone operator [59],
we observe that using a more stabilized prox-center improves the accuracy requirement. We make the
following contributions:

• We develop a novel federated optimization algorithm S-DANE that achieves the best-known
communication complexity (for non-accelerated methods) while also enjoying improved local
computation efficiency over DANE [57].

• We develop an accelerated version of S-DANE based on the Monteiro-Svaiter acceleration [46].
The resulting algorithm ACC-S-DANE achieves the best-known communication complexity
among all existing methods for distributed convex optimization.

• Both algorithms support partial client participation and arbitrary stochastic local solvers, making
them attractive in practice for federated optimization.

• We provide a simple analysis for both algorithms. We derive convergence estimates that are
continuous in the strong convexity parameter µ.

• We propose adaptive variants of both algorithms using line-search in the full client participation
setting. The resulting methods achieve the same communication complexity (up to a logrithmic
factor) as non-adaptive ones without requiring knowledge of the similarity constant.

• We illustrate strong practical performance of our proposed methods in experiments.

See also Table 1 for a summary of the main complexity results in the full-participation setting.

Related Work. Moreau first proposed the notion of the proximal approximation of a function [47].
Based on this operation, Martinet developed the first proximal-point method [42]. This method was
first accelerated by Güller [17], drawing the inspiration from Nesterov’s Fast gradient method [49].
Later, Lin et al. [41] introduced the celebrated CATALYST framework that builds upon Güller’s
acceleration. Using CATALYST acceleration, a large class of optimization algorithms can directly
achieve faster convergence. In a similar spirit, Doikov and Nesterov [12] propose contracting
proximal methods that can accelerate higher-order tensor methods. While Güller’s acceleration
has been successfully applied to many settings, its local computation is sub-optimal. Specifically,
when minimizing smooth convex functions, a logarithmic dependence on the final accuracy is

2

Algorithm # Vectors comm General convex µ-strongly convex Guarantee
per round # comm rounds # local gradient queries # comm rounds # local gradient queries

Scaffnew [44] a n LD2

ε
b 1 b

√
L
µ log

D2+H2
0/(µL)
ε

√
L
µ in expectation

SONATA [60] c n unknown unknown δmax

µ log D2

ε −d deterministic

DANE [57] n δD2

ε

√
L
δ log LD2

ε
δ
µ log D2

ε

√
L
δ log

(
L
µ log D2

ε

)
deterministic

FedRed [22] n δD2

ε
L
δ

δ
µ log D2

ε
L
δ in expectation

S-DANE (this work, Alg. 1) n δD2

ε

√
L
δ

δ
µ log D2

ε

√
L
δ deterministic

Inexact Acc-SONATA [61] c n unknown unknown
√

δmax

µ log δmax

µ log D2

ε

√
L
µ log D2

ε deterministic

Acc-Extragradient [33] c n
√

δmaxD2

ε

√
L

δmax

√
δmax

µ log D2

ε

√
L

δmax
deterministic

Catalyzed SVRP [28] e {
1 w.p. 1− 1

n ,

n w.p. 1
n

unknown unknown
(
n+ n

3
4

√
δ
µ

)
log L

µ log D2

ε −f in expectation

AccSVRS [40] e c
(
n+ n

3
4

√
δ
µ

)
log D2

ε
1

n1/4

√
L
δ in expectation

Acc-S-DANE (this work, Alg. 2) n
√

δD2

ε

√
L
δ

√
δ
µ log D2

ε

√
L
δ deterministic

aFor SCAFFNEW and FEDRED, the column ‘# comm rounds’ represents the expected number of total communications required to reach ε accuracy. The column ‘# local gradient queries’ is replaced with
the expected number of local steps between two communications.

bThe general convex result of SCAFFNEW is established in Theorem 11 in the RANDPROX paper [8]. We assume that hi,0 = ∇fi(x
0) and estimate H2

0 := 1
n

∑n
i=1∥hi,0 −∇fi(x

⋆)∥ ≤ L2D2. Then the
best p is of order 1.

cSONATA, INEXACT ACC-SONATA, ACC-EXTRAGRADIENT and ACCSVRS only need to assume strong convexity of f .
dExact proximal local steps are used in SONATA
eCATALYZED SVRP and ACCSVRS aim at minimizing a different measure which is the total amount of information transmitted between the server and the clients. Their iteration complexity is equivalent

to the communication rounds in our notations. We refer to Remark 7 for details.
fKhaled and Jin [28] assume exact evaluations of the proximal operator for the convenience of analysis.

Table 1: Summary of the worst-case convergence behaviors of the considered distributed optimization methods
(in the BigO-notation) assuming each fi is L-smooth and µ-convex with µ ≤ Θ(δ), where δ, δmax, ζ2 are
defined in (2), Remark 2 and (3), and D := ∥x0 − x⋆∥. The ’# local gradient queries’ column represents the
number of gradient oracle queries required between two communication rounds to achieve the corresponding
complexity, assuming the most efficient local first-order algorithms are used. The column ’Guarantee’ means
whether the convergence guarantee holds in expectation or deterministically. The suboptimality ε is defined via
∥x̂R − x⋆∥2 and f(x̂R)− f⋆ for strongly-convex and general convex functions where x̂R is a certain output
produced by the algorithm after R number of communications.

0 100 200 300 400
Communication rounds

10 1

100

101

102

103

104

f(x
)-f

0 20000 40000 60000
Total number of gradient oracle calls

10 1

100

101

102

103

104

f(x
)-f

0 10 20 30
Communication rounds

10 3

10 2

10 1

100

101

102

va
lu

e

local smoothness
local dissimilarity
 (Adaptive S-DANE)

Adaptive Acc-S-DANE-GD (ours) Adaptive S-DANE-GD (ours) Acc-S-DANE-GD (ours) S-DANE-GD (ours) DANE-GD

Figure 1: Comparison of S-DANE and ACC-S-DANE with DANE for solving a convex quadratic minimization
problem. All three methods use GD as the local solver. S-DANE has improved local computation efficiency
than DANE while ACC-S-DANE further improves the communication complexity. Finally, the adaptive
variants can leverage local dissimilarities to achieve better performance. (The definitions of local smoothness
and dissimilarity can be found in Section 6.)

incurred in its local computation complexity [12]. Solodov and Svaiter [59] proposed a HYBRID
PROJECTION-PROXIMAL POINT method that allows significant relaxation of the accuracy condition
for the proximal-point subproblems. More recent works such as ADAPTIVE CATALYST [21] and
RECAPP [5] successfully get rid of the additional logarithmic factor for accelerated proximal-point
methods as well.

Another type of acceleration based on the proximal extra-gradient method was introduced by Monteiro
and Svaiter [46]. This method is more general in the sense that it allows arbitrary local solvers and the
convergence rates depend on the these solvers. For instance, under convexity and Lipschitz second-
order derivative, the rate can be accelerated to O(1/k3.5) by using Newton-type method. Moreover,
when the gradient method is used, Monteiro-Svaiter Acceleration recovers the rate of Güller’s
acceleration and its accuracy requirement for the inexact solution is weaker. For minimizing smooth
convex functions, one gradient step is enough for approximately solving the local subproblem [48].
This technique has been applied to centralized composite optimization, known as gradient sliding [35,
36, 33]. A comprehensive study of acceleration can be found in [14].

3

We defer the literature review on distributed and federated optimization algorithms to Appendix A.

2 Problem Setup and Background

We consider the following distributed minimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
, (1)

where each function fi : Rd → R is µ-strongly convex2 for some µ ≥ 0. We focus on the standard
federated setting where the functions {fi} are distributed among n devices. The server coordinates
the global optimization procedure among the devices. In each communication round, the server
broadcasts certain information to the clients. The clients, in turn, perform local computation in
parallel based on their own data and transmit the resulting local models back to the server to update
the global model.

Main objective: Given the high cost of establishing connections between the server and the clients,
our paramount objective is to minimize the number of required communication rounds to achieve the
desired accuracy level. This represents a central metric in federated contexts, as outlined in references
such as [43, 27]. Secondary objective: Efficiency in local computation represents another pivotal
metric for optimization algorithms. For instance, if two algorithms share equivalent communication
complexity, the algorithm with less local computational complexity is the more favorable choice.

Notation: We abbreviate [n] := {1, 2, . . . , n}. For a set A and an integer 1 ≤ s ≤ |A|, we use(
A
s

)
to denote the power set comprised of all s-element subsets of A. Everywhere in this paper, ∥·∥

denotes the standard Euclidean norm (or the corresponding spectral norm for matrices). We assume
problem (1) has a solution which we denote by x⋆; the corresponding optimal value is denoted by f⋆.
For a set S ∈

(
[n]
s

)
, we use fS := 1

s

∑
i∈S fi to denote the average function over this set. We use r to

denote the index of the communication round and k to denote the index of the local step. Finally, we
use the superscript and subscript to denote the global and local models, respectively; for instance, xr

represents the global model at round r while xi,r is the local model computed by device i at round r.

2.1 Proximal-Point Methods on Single Machine

In this section, we provide a brief background on proximal-point methods [47, 42, 54, 51], which are
the foundation for many distributed optimization algorithms.

Proximal-Point Method. Given an iterate xk, the method defines xk+1 to be an (approximate)
minimizer of the proximal-point subproblem:

xk+1 ≈ argmin
x∈Rd

{
Fk(x) := f(x) +

λ

2
∥x− xk∥2

}
, (2)

for an appropriately chosen parameter λ ≥ 0. This parameter allows for a trade-off between
the complexity of each iteration and the rate of convergence. If λ = 0, the subproblem in each
iteration is as difficult as solving the original problem because no regularization is applied. However,
as λ increases, more regularization is added, simplifying the subproblem. For example, for a
convex function f , the proximal-point method guarantees f(x̄K)− f⋆ ≤ O

(
λ
K ∥x0 − x⋆∥2

)
, where

x̄K := 1
K

∑K
k=1 xk [51, 5]. However, to achieve such a convergence rate, the subproblem (2) has to

be solved to a fairly high accuracy [54, 5]. For instance, the accuracy condition should either depend
on the target accuracy ε, or increase with k: ∥∇Fk(xk+1)∥ = O(λk ∥xk+1 − xk∥) [58]. Indeed,
when f is Lipschitz-smooth and the standard gradient descent is used as a local solver, the number
of gradient steps required to solve the subproblem has a logarithmic dependence on the iteration
counter k. The same issue also arises when considering accelerated proximal-point methods [12, 17].

Stabilized Proximal-Point Method. One of the key insights that we use in this work is the
observation that using a different prox-center makes the accuracy condition of the subproblem weaker.

2If µ = 0, then fi is assumed to be simply convex.

4

Algorithm 1 S-DANE: Stabilized DANE
1: Input: λ > 0, µ ≥ 0, s ∈ [n], x0 = v0 ∈ Rd.
2: for r = 0, 1, 2 . . . do
3: Sample Sr ∈

(
[n]
s

)
uniformly at random without replacement.

4: for each device i ∈ Sr in parallel do
5: xi,r+1 ≈ argminx∈Rd

{
Fi,r(x) := fi(x) + ⟨∇fSr (v

r)−∇fi(v
r),x⟩+ λ

2
∥x− vr∥2

}
.

6: xr+1 = 1
s

∑
i∈Sr

xi,r+1.

7: vr+1 := argminx∈Rd

{
1
s

∑
i∈Sr

[⟨∇fi(xi,r+1),x⟩+ µ
2
∥x− xi,r+1∥2] + λ

2
∥x− vr∥2

}
.

The stabilized proximal-point method defines

xk+1 ≈ argmin
x

{
Fk(x) := f(x) +

λ

2
∥x− vk∥2

}
,

vk+1 = argmin
x

{
⟨∇f(xk+1),x⟩+

µ

2
∥x− xk+1∥2 +

λ

2
∥x− vk∥2

}
,

(3)

where λ ≥ 0 is a parameter of the method and µ ≥ 0 is the strong-convexity constant of f . This
algorithm updates the prox-center vk by performing an additional gradient step in each iteration. For
instance, when µ = 0, the prox-center is updated as vk+1 = vk− 1

λ∇f(xk+1), which is often referred
to as an extra-gradient update. The stabilized proximal-point method has the same convergence
rate as the original method (2) but requires only that ∥∇Fk(xk+1)∥ ≤ O(λ∥xk+1 − vk∥). As a
result, there is no extra logarithmic factor of k in the oracle complexity estimate when f is L-smooth.
Specifically, by setting λ = Θ(L), the previous condition can be satisfied by choosing xk+1 as
the result of one gradient step from vk [48]. This shows that the stabilized proximal-point method
has a better overall oracle complexity than the standard proximal-point method (c.f. Theorem 1 for
the special case n = 1). It is worth noting that the former algorithm originates from the hybrid
projection-proximal point algorithm [59] designed for solving the more general problem of finding
zeroes of a monotone operator. In this work, we apply this algorithm in the distributed setting (n ≥ 2).

2.2 Distributed Proximal-Point Methods

The proximal-point method can be adapted to solve the distributed optimization problem (1). This is
the idea behind FEDPROX [39]. It replaces the global proximal step (2) by n subproblems defined
as xi,r+1 := argminx{fi(x) + λ

2 ∥x− xr∥2}, which can be solved independently on each device,
followed by the averaging step xr+1 = 1

n

∑n
i=1xi,r+1. Here we switch the notation from k to r to

highlight that one iteration of the proximal-point method corresponds to a communication round in
this setting. To ensure convergence, FEDPROX has to use a large λ that depends on the target accuracy
as well as the heterogeneity among {fi}, which slows down the communication efficiency [39].
DANE [57] improves this by incorporating a drift correction term into the subproblem:

xi,r+1 := argmin
x

{
F̃i,r(x) := fi(x) + ⟨∇f(xr)−∇fi(x

r),x⟩+ λ

2
∥x− xr∥2

}
. (4)

Consequently, DANE allows to choose a much smaller λ in the algorithm. Moreover, it can
exploit second-order similarity and achieve the best-known communication complexity among non-
accelerated methods [22]. However, as in the original proximal-point method, the subproblem needs
to be solved sufficiently accurately leading to an extra logarithmic factor in the oracle complexity
estimate. To overcome this problem, we propose new algorithms described in the following section.

3 Stabilized DANE

We now describe S-DANE (Alg. 1), our proposed federated proximal-point method that employs
stabilized prox-centers in its subproblems. During each communication round r, the server samples a
subset of clients uniformly at random and sends vr to these clients. Then the server collects ∇fi(v

r)
from these clients, computes ∇fSr (v

r) and sends ∇fSr (v
r) back to them. Each device in the set

then calls an arbitrary local solver (which can be different on each device) to approximately solve its
local subproblem. Finally, each device transmits ∇fi(xi,r+1) and xi,r+1 back to the server which
then aggregates these points and computes the new global model.

5

As DANE, S-DANE can also achieve communication speed-up if the functions among devices are
similar to each other. This is formally captured by the following assumption.
Definition 1 (Second-order Dissimilarity). Let f1, . . . , fn : Rd → R be functions, and let s ∈ [n],
δs ≥ 0. Then, {fi}ni=1 are said to have δs-SOD (of size s) if for any x,y ∈ Rd and any S ∈

(
[n]
s

)
, it

holds that
1

s

∑
i∈S

∥∇hS
i (x)−∇hS

i (y)∥2 ≤ δ2s∥x− y∥2, (5)

where hS
i := fS − fi and fS := 1

s

∑
i∈S fi.

Definition 1 quantifies the dissimilarity between any s functions and their average, i.e., the “internal”
variation between any s functions. Clearly, δ1 = 0, and, when s = n, we recover the standard notion
of second-order dissimilarity introduced in prior works:
Definition 2 (δ-SOD [28, 40, 22]). δ-SOD := δn-SOD of size n.

When each function fi is twice continuously differentiable, a simple sufficient condition for (5) is
that 1

s

∑
i∈S∥∇2hS

i (x)∥2 ≤ δ2s for any x ∈ Rd. However, this is not a necessary condition (see [22]
for more details).

The quantity V (x,y) in the left-hand side of (5) can be interpreted as the variance of the gradient
difference estimator ∇fî(x) −∇fî(y), where î is chosen uniformly at random from S. In partic-
ular, it can be rewritten as V (x,y) = 1

s

∑
i∈S∥∇fi(x) − ∇fi(y)∥2 − ∥∇fS(x) − ∇fS(y)∥2. If

each function fi is Li-smooth, then δs ≤ (1s
∑

i∈S L2
i)

1/2 for any s ∈ [n]. However, in general,
condition (5) is weaker than assuming that each fi is Lipschitz-smooth.

Full Client Participation. We first consider the cross-silo setting where all the clients are highly
reliable (s = n). This is typically the case with organizations and institutions having strong computing
resources and stable network connection [24].
Theorem 1. Consider Algorithm 1 with s = n. Let fi : Rd → R be µ-convex with µ ≥ 0 for any
i ∈ [n]. Assume that {fi}ni=1 have δ-SOD. Let λ = 2δ and suppose that, for any r ≥ 0, we have

n∑
i=1

∥∇Fi,r(xi,r+1)∥2 ≤ λ2

4

n∑
i=1

∥xi,r+1 − vr∥2. (6)

Then, for any R ≥ 1, it holds that3

f(x̄R)− f⋆ ≤ µD2

2[(1 + µ
2δ)

R − 1]
≤ δD2

R
,

where x̄R := 1∑R
r=1 pr

∑R
r=1 p

rxr for p := 1 + µ
λ , and D := ∥x0 − x⋆∥. To obtain f(x̄R)− f⋆ ≤ ε

for a given ε > 0, it thus suffices to perform R = O
(
δ+µ
µ log(1 + µD2

ε)
)

communication rounds.

Theorem 1 provides the convergence guarantee for S-DANE in terms of the number of communica-
tion rounds. Note that the rate is continuous in µ.
Remark 2. Some previous works express complexity estimates in terms of another constant, δmax,
defined by the inequality ∥∇hi(x)−∇hi(y)∥ ≤ δmax∥x− y∥ holding for any x,y ∈ Rd and any
i ∈ [n], where hi = f − fi. (See for instance the second line in Table 1). Note that our δ is always
not larger than δmax, and can in principle be much smaller (up to

√
n times).

The proven communication complexity is the same as that of DANE [22]. However, the
accuracy condition is milder. Specifically, to achieve the same guarantee, DANE requires∑n

i=1∥∇F̃i,r(xi,r+1)∥2 ≤ O(δ
2

r2

∑n
i=1∥xi,r+1 − xr∥2), where F̃i,r is defined as in (4), which

incurs an r2 overhead in the denominator, as in the general discussion on proximal-point methods in
Section 2.1. The next corollary shows that local computations in S-DANE could be computationally
very efficient.

3Here, for µ = 0, the expression after the first inequality should be understood as the corresponding limit
when µ → 0;µ > 0, which is exactly the expression after the final inequality. The same remark applies to all
other similar results.

6

Corollary 3. Consider the same setting as in Theorem 1. Further, assume that each fi is L-smooth.

To ensure (6) with a certain first-order algorithm, each device i needs to perform at most O(
√

L
δ)

computations of ∇fi at each round r.
Remark 4. Particular examples of algorithms that could be used to achieve the result from Corollary 3
are OGM-OG by Kim and Fessler [30] and the accumulative regularization method by Lan et al.
[37], both designed for the fast minimization of the gradient norm. For the standard Gradient
Method (GM), the required number of oracle calls is O(Lδ). The standard Fast Gradient Method

(FGM) [49] can further decrease the complexity to O(
√

L
µ+δ log

L
δ) (see Remark 18 for details).

Thus, each device can run a constant number of standard local (F)GM steps to approximately solve
their subproblems in S-DANE.

Partial Client Participation. Next, we turn our attention to the cross-device setting where a
large number of clients (typically mobile phones) have either unstable network connection or weak
computational power [24]. In such scenarios, the server typically cannot expect all the clients to be
able to participate in the communication at each round. Furthermore, the clients may typically be
asked to communicate only once during the whole training and are stateless [27]. Therefore, we now
consider S-DANE with partial client participation and without storing any states on devices.

To prove convergence, it is necessary to assume a certain level of dissimilarity among clients. Here,
we use the same assumption as in [27] to measure the gradient variance.
Definition 3 (Bounded Gradient Variance [27]). Let f1, . . . , fn : Rd → R be functions, and let ζ ≥ 0.
We say that {fi}ni=1 have ζ-BGV if, for any x ∈ Rd and f := 1

n

∑n
i=1fi, it holds that

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2. (7)

Definition 3 is similar to the classical notion of uniformly bounded variance used in the context of
classical stochastic gradient methods [3].

We also need the following assumption which complements Definition 1.
Definition 4 (External Dissimilarity). Let f1, . . . , fn : Rd → R be functions, and let s ∈ [n], ∆s ≥ 0.
Then, {fi}ni=1 are said to have ∆s-ED (of size s) if, for any x,y ∈ Rd and any S ∈

(
[n]
s

)
, we have

∥∇mS(x)−∇mS(y)∥ ≤ ∆s∥x− y∥, (8)

where mS := f − fS and fS := 1
s

∑
i∈S fi.

Compared to Definition 1, the new Definition 4 quantifies the “external” variation of any s functions
w.r.t. the original function f . When each fi is twice continuously differentiable, (8) is equivalent to
∥∇2mS(x)∥ ≤ ∆s for any x ∈ Rd. If each fi is L-smooth, then ∆s ≤ L for any s ∈ [n]. Therefore,
using both Assumptions 1 and 4 is still weaker than assuming that each fi is L-smooth.

In what follows, we work with a new second-order dissimilarity measure defined as the sum δs +∆s.
Note that δ1 +∆1 = δmax and δn +∆n = δ.
Theorem 5. Consider Algorithm 1. Let fi : Rd → R be µ-convex with µ ≥ 0 for any i ∈ [n] and
let n ≥ 2. Assume that {fi}ni=1 have δs-SOD, ∆s-ED and ζ-BGV. Let λ = 4(n−s)

s(n−1)
ζ2

ε + 2(δs +∆s),
and suppose that, for any r ≥ 0, we have

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2 ≤ λ2

4

1

s

∑
i∈Sr

∥xi,r+1 − vr∥2. (9)

Then, to ensure that E[f(x̄R)] − f(x⋆) ≤ ε for a given ε > 0, it suffices to perform at most the
following number of communication rounds:

R = Θ

([
δs +∆s + µ

µ
+

n− s

n− 1

ζ2

sεµ

]
log

(
1 +

µD2

ε

))
≤ Θ

(
(δs +∆s)D

2

ε
+

n− s

n− 1

ζ2D2

sε2

)
,

where x̄R := 1∑R
r=1 pr

∑R
r=1 p

rxr with p := 1 + µ
λ , and D := ∥x0 − x⋆∥.

7

Algorithm 2 ACC-S-DANE
1: Input: λ > 0, µ ≥ 0, x0 = v0 ∈ Rd, s ∈ [n].
2: Set A0 = 0, B0 = 1.
3: for r = 0, 1, 2, . . . do
4: Find ar+1 > 0 from the equation λ =

(Ar+ar+1)Br

a2
r+1

.

5: Ar+1 = Ar + ar+1, Br+1 = Br + µar+1.
6: yr = Ar

Ar+1
xr +

ar+1

Ar+1
vr .

7: Sample Sr ∈
(
[n]
s

)
uniformly at random without replacement.

8: for each device i ∈ Sr in parallel do
9: xi,r+1 ≈ argminx∈Rd

{
Fi,r(x) := fi(x) + ⟨∇fSr (y

r)−∇fi(y
r),x⟩+ λ

2
∥x− yr∥2

}
.

10: xr+1 = 1
s

∑
i∈Sr

xi,r+1.

11: vr+1 = argminx∈Rd

{ar+1

s

∑
i∈Sr

[⟨∇fi(xi,r+1),x⟩+ µ
2
∥x− xi,r+1∥2] + Br

2
∥x− vr∥2

}
.

Theorem 5 provides the communication complexity of S-DANE with client sampling and arbitrary
(deterministic) local solvers. The rate is again continuous in µ. Compared with the previous case of
s = n, the efficiency now depends on the gradient variance ζ. Note that this error term gets reduced
when s increases. Specifically, to achieve the O(log 1

ε) and O(1ε) rates, it suffices to ensure that

s = Θ(nζ2

ζ2+nε(δs+∆s)
). Notably, the algorithm can reach any target accuracy even when n → ∞.

Observe that the accuracy requirement (9) is the same as (6). Therefore, the discussions therein are
valid in the partial-participation setting as well. In particular, if each fi is L-smooth, then the number

of oracle calls to ∇fi required at each round could be as small as O(
√

L
λ) (see Corollary 3). At the

same time, it is also possible to use a stochastic optimization algorithm as a local solver (for more
details, see Section C.3.1).

4 Accelerated S-DANE

In this section, we present the accelerated version of S-DANE, ACC-S-DANE (Alg. 2), that achieves
a better communication complexity compared to the basic method. For simplicity, we only consider
the full-participation setting and defer the partial participation to Appendix D.3.

Theorem 6. Consider Algorithm 2 with s = n. Let fi : Rd → R be µ-convex with µ ≥ 0 for any
i ∈ [n]. Assume that {fi}ni=1 have δ-SOD (δ > 0). Let λ = 2δ and suppose that, for any r ≥ 0, we
have

∑n
i=1∥∇Fi,r(xi,r+1)∥2 ≤ δ2

∑n
i=1∥xi,r+1 − yr∥2. If µ ≤ 8δ, then, for any R ≥ 1,

f(xR)− f⋆ ≤ 2µD2[(
1 +

√
µ
8δ

)R −
(
1−

√
µ
8δ

)R]2 ≤ 4δD2

R2
,

where D := ∥x0 − x⋆∥. Otherwise, f(xR) − f⋆ ≤ 4δD2

(1+
√

µ
8δ)

2(R−1)
for any R ≥ 1. To ensure that

f(xR)−f⋆ ≤ ε for a given ε > 0, it thus suffices to perform R = O
(√

δ+µ
µ log(1+

√
min{µ,δ}D2

ε)
)

communication rounds.

Let us consider the most interesting regime when µ ≤ 8δ. Comparing Theorems 1 and 6, we see that
ACC-S-DANE essentially extracts the square root of the corresponding communication complexity

of S-DANE by improving it from Õ(δµ) to Õ(
√

δ
µ) when µ > 0, and from O

(
δD2

ε

)
to O(

√
δD2

ε)

when µ = 0, while maintaining the same accuracy condition for solving the subproblem. Compared
with ACC-EXTRAGRADIENT, the complexity depends on a better constant δ instead of δmax.

Note that we can satisfy the accuracy condition in Theorem 6 in exactly the same way as in Corollary 3.

In particular, if each fi is L-smooth, each device i needs at most O(
√

L
δ) computations of ∇fi at

each round r when using a fast algorithm for the gradient norm minimization.

Finally, let us highlight that Algorithm 2 gives a distributed framework for a generic acceleration
scheme, that applies to a large class of local optimization methods—in the same spirit as in the

8

famous CATALYST [41] framework that applies to the case where n = 1. However, in contrast to
CATALYST, this stabilized version removes the logarithmic overhead present in the original method.
Specifically, when applying Theorem 6 with n = 1 and λ = L for a smooth convex function f , we
recover the same rate as CATALYST. The accuracy condition ∥∇Fr(x

r+1)∥ ≤ L∥xr+1 − yr∥, or
equivalently ⟨∇f(xr+1),yr − xr+1⟩ ≥ 1

2L∥∇f(xr+1)∥2 can be achieved with one gradient step
xr+1 := yr − 1

L∇f(yr) (see Lemma 5 in [48]).

5 Dynamic Estimation of Similarity Constant by Line Search

One drawback of Algorithms 1 and 2 is that they require the knowledge of the similarity constant δ
to choose an appropriate value for λ. This similarity constant is typically unknown in practice and
might be difficult to estimate. One effective solution to this problem is to dynamically adjust the
coefficient λ inside the algorithms by using the classical technique of line search.

The basic idea is as follows. The server first picks an arbitrary sufficiently small constant λ̃ as an initial
approximation to the unknown “correct” value of λ = 2δ. Then, at every round, the server sends
the current estimate of λ to each client asking them to approximately solve their local subproblem.
After receiving the corresponding local solutions, the server checks a certain inequality based on
the obtained information. If this inequality is satisfied, the server accepts the resulting aggregated
solution and goes to the next round while decreasing λ in two times (so as to be more optimistic in
the future). Otherwise, it increases λ in two times, asks the clients to solve their subproblems with
the new value of λ, and checks the inequality again.

The precise versions of Algorithms 1 and 2 with line search for the full-participation setting are
presented in Algorithms 3 and 4. Importantly, our adaptive schemes are not just some heuristics
but are probably efficient. Specifically, their complexity estimates (in terms of the total number of
communication rounds) are exactly the same as those given by Theorems 1 and 6, respectively, up to
an extra additive logarithmic term of log 2δ

λ̃
(see Theorems 27 and 28).

Another significant advantage of our adaptive algorithms is their ability to exploit local similarity,
resulting in much stronger practical performance compared to the methods with fixed λ. We will
demonstrate this in the next section.

6 Numerical Experiments
In this section, we illustrate the performance of our methods in numerical experiments. The imple-
mentation can be found at https://github.com/mlolab/S-DANE.

Convex quadratic minimization. We first illustrate the properties of our algorithms as applied to
minimizing a simple quadratic function: f(x) := 1

n

∑n
i=1fi(x) where fi(x) := 1

m

∑m
j=1

1
2 ⟨Ai,j(x−

bi,j),x − bi,j⟩ where bi,j ∈ Rd and Ai,j ∈ Rd×d. The experimental details can be found in
Appendix F.1. From Figure 1, we see that S-DANE converges as fast as DANE in terms of
communication rounds, but with much fewer local gradient oracle calls. ACC-S-DANE achieves
the best performance among the three methods. We also test S-DANE and DANE with the same
fixed number of local steps. The result can be seen in Figure E.1 where S-DANE is again more
efficient. Finally, we report the strong performances of two adaptive variants (Algorithms 3 and 4 with
initial λ = 10−3). We see from Figure 1 that the method can automatically change λ to adapt to the

local second-order dissimilarity. (We use ∥∇f(vr+1)−∇f(vr)∥
∥vr+1−vr∥ and

√
1
n

∑n
i=1∥∇hi(vr+1)−∇hi(vr)∥2

∥vr+1−vr∥2 to
approximate the local smoothness and dissimilarity.)

Strongly-convex polyhedron feasibility problem. We now consider the problem of finding a feasible
point x⋆ inside a polyhedron: P = ∩n

i=1Pi, where Pi = {x : ⟨ai,j ,x⟩ ≤ bi,j ,∀j = 1, . . . ,mi}
and ai,j ,bi,j ∈ Rd. Each individual function is defined as fi := n

m

∑mi

j=1[⟨ai,j ,x⟩ − bi,j]
2
+

where
∑n

i=1 mi = m. We use m = 105 and d = 103. We first generate x⋆ randomly from
a sphere with radius 106. We then follow [55] to generate (ai,j ,bi,j) such that x⋆ is a feasible
point of P and the initial point of all optimizers is outside the polyhedron. We choose the best λ
from {10i}3i=−3. We first consider the full client participation setting and use n = s = 10. We
compare our proposed methods with GD, DANE with GD [57], SCAFFOLD with control variate
of option I [26], SCAFFNEW [44], FEDPROX with GD [39] and ACC-EXTRAGRADIENT [33]. The

9

https://github.com/mlolab/S-DANE

0 25 50 75 100
Communication rounds

10 7

10 3

101

105

109

f(x
)-f

n=10, s=10

0 50 100 150 200
Communication rounds

10 4

10 1

102

105

108

1011

f(x
)-f

n=100, s=80

0 50 100 150 200
Communication rounds

10 2

101

104

107

1010

f(x
)-f

n=100, s=40

0 100 200 300 400
Communication rounds

100

102

104

106

108

1010

f(x
)-f

n=100, s=10

S-DANE-GD (ours) GD DANE-GD Scaffold Scaffnew FedProx-GD Acc-S-DANE-GD (ours) AccGradSliding

Figure 2: Comparisons of different algorithms for solving the polyhedron feasibility problem.

0 20 40
Communication rounds

10 11

10 8

10 5

10 2

||
f(x

)||

ijcnn with non-iid splitting

0 20 40
Communication rounds

10 4

10 3

10 2
va

lu
e

local smoothness
local dissimilarity
 (Adaptive S-DANE)

0 20 40
Communication rounds

10 12

10 9

10 6

10 3

||
f(x

)||

ijcnn with iid splitting

5 10
Communication rounds

10 5

10 4

10 3

10 2

va
lu

e

local smoothness
local dissimilarity
 (Adaptive S-DANE)

Adaptive S-DANE-GD (ours) Adaptive Acc-S-DANE-GD (ours) GD DANE-GD Scaffold Scaffnew FedProx-GD

Figure 4: Illustration of the impact of adaptive λ used in (ACC-)S-DANE on the convergence of a regularized
logistic regression problem on the ijcnn dataset [6].

result is shown in the first plot of Figure 2 where our proposed methods are consistently the best
among all these algorithms. We next experiment with client sampling and use n = 100. We decrease
the number of sampled clients from s = 80 to s = 10. In addition to our methods, we also report the
performances of SCAFFOLD and FEDPROX with client sampling. From the same figure, we see that
the improvement of ACC-S-DANE over S-DANE gradually disappears as s decreases.

Adaptive choice of λ. We consider the standard regularized logistic regression: f(x) = 1
n

∑n
i=1fi(x)

with fi(x) := n
M

∑mi

j=1 log(1 + exp(−yi,j⟨ai,j ,x⟩)) + 1
2M ∥x∥2 where (ai,j , yi,j) ∈ Rd+1 are

features and labels and M :=
∑n

i=1 mi is the total number of data points in the training dataset. We
use the ijcnn dataset from LIBSVM [6]. We split the dataset into 10 subsets according to the Dirichlet
distribution with α = 2 (i.i.d) and α = 0.2 (non-i.i.d). From Figure 4, Adaptive (ACC-)S-DANE
(Algorithm 3 and 4) converge much faster than the other best-tuned algorithms for both cases. (We
set the initial λ = 10−4 for non-i.i.d and λ = 10−5 for i.i.d respectively.)

Deep learning task. Finally, we consider
the multi-class classification tasks with CI-
FAR10 [34] using ResNet-18 [18]. The details
can be found in Appendix F.2. From Figure 3,
we see that S-DANE (DL) 5 reaches 90% ac-
curacy within 50 communication rounds while
all the other methods are still below 90% after
80 epochs. The effectiveness of S-DANE on the
training of other deep learning models such as
Transformer requires further exploration.

0 20 40 60 80
Communication rounds

10 1

100

Tr
ai

n
lo

ss

0 20 40 60 80
Communication rounds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ua
ry

CIFAR10-ResNet18

0 20 40 60 80

10 2

10 1

100

va
lu

e local smoothness
local dissimilarity

S-DANE (DL)-SGD (ours)
DANE-SGD

Scaffold
Scaffnew

FedProx-SGD
FedAvg

Figure 3: Comparison of S-DANE without control vari-
ate against other popular optimizers on multi-class clas-
sification tasks with CIFAR10 datasets using ResNet18.

7 Conclusion
We have proposed new federated optimization methods (both basic and accelerated) that simultane-
ously achieve the best-known communication and local computation complexities. The new methods
allow partial participation and arbitrary stochastic local solvers, making them attractive in practice.
We further equip both algorithms with line search and the resulting schemes can adapt to the local
dissimilarity without knowing the corresponding similarity constant. However, we assume that each
function fi is µ-strongly convex in all the theorems. This is stronger than assuming only µ-strongly
convexity of f , which is used in some prior works. Possible directions for future research include
consideration of weaker assumptions as well as empirical and theoretical analyses for non-convex
problems.

10

Acknowledgments

The authors are grateful to Adrien Taylor and Thomas Pethick for the reference to [59].

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh

Saligrama. Federated learning based on dynamic regularization. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=B7v4QMR6Z9w.

[2] Aleksandr Beznosikov, Martin Takáč, and Alexander Gasnikov. Similarity, compression and local steps:
Three pillars of efficient communications for distributed variational inequalities. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
Rvk1wdwz1L.

[3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM review, 60(2):223–311, 2018.

[4] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

[5] Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Recapp: Crafting a more efficient catalyst
for convex optimization. In International Conference on Machine Learning, pages 2658–2685. PMLR,
2022.

[6] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

[7] El Mahdi Chayti and Sai Praneeth Karimireddy. Optimization with access to auxiliary information. arXiv
preprint arXiv:2206.00395, 2022.

[8] Laurent Condat and Peter Richtárik. Randprox: Primal-dual optimization algorithms with randomized
proximal updates. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=cB4N3G5udUS.

[9] Laurent Condat, Grigory Malinovsky, and Peter Richtárik. Tamuna: Accelerated federated learning with
local training and partial participation. arXiv preprint arXiv:2302.09832, 2023.

[10] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in neural information processing systems,
27, 2014.

[11] Olivier Devolder. Stochastic first order methods in smooth convex optimization. CORE Discussion Papers,
2011/70, 2011.

[12] Nikita Doikov and Yurii Nesterov. Contracting proximal methods for smooth convex optimization. SIAM
Journal on Optimization, 30(4):3146–3169, 2020.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL http:
//jmlr.org/papers/v12/duchi11a.html.

[14] Alexandre d’Aspremont, Damien Scieur, Adrien Taylor, et al. Acceleration methods. Foundations and
Trends® in Optimization, 5(1-2):1–245, 2021.

[15] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Federated learning
with non-iid data via local drift decoupling and correction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10112–10121, 2022.

[16] Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Can 5th generation local training methods
support client sampling? yes! In International Conference on Artificial Intelligence and Statistics, pages
1055–1092. PMLR, 2023.

[17] Osman Güler. New proximal point algorithms for convex minimization. SIAM Journal on Optimization, 2
(4):649–664, 1992. doi: 10.1137/0802032. URL https://doi.org/10.1137/0802032.

11

https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=Rvk1wdwz1L
https://openreview.net/forum?id=Rvk1wdwz1L
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://openreview.net/forum?id=cB4N3G5udUS
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1137/0802032

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
doi: 10.1109/CVPR.2016.90.

[19] Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statistically
preconditioned accelerated gradient method for distributed optimization. In International conference on
machine learning, pages 4203–4227. PMLR, 2020.

[20] Zhengmian Hu and Heng Huang. Tighter analysis for ProxSkip. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 13469–13496. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
hu23a.html.

[21] Anastasiya Ivanova, Dmitry Pasechnyuk, Dmitry Grishchenko, Egor Shulgin, Alexander Gasnikov, and
Vladislav Matyukhin. Adaptive catalyst for smooth convex optimization. In International Conference on
Optimization and Applications, pages 20–37. Springer, 2021.

[22] Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Federated optimization with doubly regularized
drift correction. arXiv preprint arXiv:2404.08447, 2024.

[23] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume
1, NIPS’13, page 315–323. Curran Associates Inc., 2013.

[24] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons,
Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu,
Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz
Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao.
Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14
(1–2):1–210, 2021. URL https://arxiv.org/pdf/1912.04977.pdf.

[25] Avetik Karagulyan, Egor Shulgin, Abdurakhmon Sadiev, and Peter Richtárik. Spam: Stochastic proximal
point method with momentum variance reduction for non-convex cross-device federated learning. arXiv
preprint arXiv:2405.20127, 2024.

[26] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national conference on machine learning, pages 5132–5143. PMLR, 2020.

[27] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated learning. In
Advances in Neural Information Processing Systems, 2021.

[28] Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=ElC6LYO4MfD.

[29] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd on heterogeneous
data. arXiv preprint arXiv:1909.04715, 2019.

[30] Donghwan Kim and Jeffrey A Fessler. Generalizing the optimized gradient method for smooth convex
minimization. SIAM Journal on Optimization, 28(2):1920–1950, 2018.

[31] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[32] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[33] Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo Scutari.
Optimal gradient sliding and its application to optimal distributed optimization under similarity. Advances
in Neural Information Processing Systems, 35:33494–33507, 2022.

12

https://proceedings.mlr.press/v202/hu23a.html
https://proceedings.mlr.press/v202/hu23a.html
https://arxiv.org/pdf/1912.04977.pdf
https://openreview.net/forum?id=ElC6LYO4MfD
https://openreview.net/forum?id=ElC6LYO4MfD

[34] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/~kriz/cifar.html.

[35] Guanghui Lan. Gradient sliding for composite optimization. Mathematical Programming, 159:201–235,
2016.

[36] Guanghui Lan and Yuyuan Ouyang. Accelerated gradient sliding for structured convex optimization. arXiv
preprint arXiv:1609.04905, 2016.

[37] Guanghui Lan, Yuyuan Ouyang, and Zhe Zhang. Optimal and parameter-free gradient minimization
methods for smooth optimization. arXiv preprint arXiv:2310.12139, 2023.

[38] Bo Li, Mikkel N Schmidt, Tommy S Alstrøm, and Sebastian U Stich. On the effectiveness of partial
variance reduction in federated learning with heterogeneous data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3964–3973, 2023.

[39] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

[40] Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic distributed optimization under average
second-order similarity: Algorithms and analysis. Advances in Neural Information Processing Systems, 36,
2024.

[41] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
Advances in neural information processing systems, 28, 2015.

[42] B. Martinet. Perturbation des méthodes d’optimisation. Applications. RAIRO. Analyse numérique, 12(2):
153–171, 1978. URL http://www.numdam.org/item/M2AN_1978__12_2_153_0/.

[43] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[44] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes! local
gradient steps provably lead to communication acceleration! finally! In International Conference on
Machine Learning, pages 15750–15769. PMLR, 2022.

[45] Konstantin Mishchenko, Rui Li, Hongxiang Fan, and Stylianos Venieris. Federated learning under
second-order data heterogeneity, 2024. URL https://openreview.net/forum?id=jkhVrIllKg.

[46] Renato D. C. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method for
convex optimization and its implications to second-order methods. SIAM Journal on Optimization, 23(2):
1092–1125, 2013. doi: 10.1137/110833786. URL https://doi.org/10.1137/110833786.

[47] J.J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France,
93:273–299, 1965. doi: 10.24033/bsmf.1625. URL http://www.numdam.org/articles/10.24033/
bsmf.1625/.

[48] Yu. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140
(1):125–161, 2013. doi: 10.1007/s10107-012-0629-5. URL https://doi.org/10.1007/s10107-012-
0629-5.

[49] Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd edition,
2018. ISBN 3319915770.

[50] Yurii Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent method on structured
optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017. doi: 10.1137/16M1060182.
URL https://doi.org/10.1137/16M1060182.

[51] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends® in Optimization, 1(3):
127–239, 2014. ISSN 2167-3888. doi: 10.1561/2400000003. URL http://dx.doi.org/10.1561/
2400000003.

[52] Kumar Kshitij Patel, Lingxiao Wang, Blake E Woodworth, Brian Bullins, and Nati Sre-
bro. Towards optimal communication complexity in distributed non-convex optimization. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 13316–13328. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
56bd21259e28ebdc4d7e1503733bf421-Paper-Conference.pdf.

13

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.numdam.org/item/M2AN_1978__12_2_153_0/
https://openreview.net/forum?id=jkhVrIllKg
https://doi.org/10.1137/110833786
http://www.numdam.org/articles/10.24033/bsmf.1625/
http://www.numdam.org/articles/10.24033/bsmf.1625/
https://doi.org/10.1007/s10107-012-0629-5
https://doi.org/10.1007/s10107-012-0629-5
https://doi.org/10.1137/16M1060182
http://dx.doi.org/10.1561/2400000003
http://dx.doi.org/10.1561/2400000003
https://proceedings.neurips.cc/paper_files/paper/2022/file/56bd21259e28ebdc4d7e1503733bf421-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/56bd21259e28ebdc4d7e1503733bf421-Paper-Conference.pdf

[53] Sashank J Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola. Aide: Fast and
communication efficient distributed optimization. arXiv preprint arXiv:1608.06879, 2016.

[54] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and
optimization, 14(5):877–898, 1976.

[55] Anton Rodomanov, Xiaowen Jiang, and Sebastian Stich. Universality of adagrad stepsizes for stochastic
optimization: Inexact oracle, acceleration and variance reduction. arXiv preprint arXiv:2406.06398, 2024.

[56] Abdurakhmon Sadiev, Dmitry Kovalev, and Peter Richtárik. Communication acceleration of local gradient
methods via an accelerated primal-dual algorithm with an inexact prox. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=W72rB0wwLVu.

[57] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using an
approximate newton-type method. In International conference on machine learning, pages 1000–1008.
PMLR, 2014.

[58] M.V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal point algorithms*. Nu-
merical Functional Analysis and Optimization, 22(7-8):1013–1035, 2001. doi: 10.1081/NFA-100108320.
URL https://doi.org/10.1081/NFA-100108320.

[59] M.V. Solodov and B.F. Svaiter. A hybrid projection-proximal point algorithm. Journal of Convex Analysis,
6(1):59–70, 1999. URL http://eudml.org/doc/120958.

[60] Ying Sun, Gesualdo Scutari, and Amir Daneshmand. Distributed optimization based on gradient tracking
revisited: Enhancing convergence rate via surrogation. SIAM Journal on Optimization, 32(2):354–385,
2022.

[61] Ye Tian, Gesualdo Scutari, Tianyu Cao, and Alexander Gasnikov. Acceleration in distributed optimization
under similarity. In International Conference on Artificial Intelligence and Statistics, pages 5721–5756.
PMLR, 2022.

[62] Farshid Varno, Marzie Saghayi, Laya Rafiee Sevyeri, Sharut Gupta, Stan Matwin, and Mohammad Havaei.
Adabest: Minimizing client drift in federated learning via adaptive bias estimation. In European Conference
on Computer Vision, pages 710–726. Springer, 2022.

[63] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

[64] Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances in Neural
Information Processing Systems, 33:5332–5344, 2020.

14

https://openreview.net/forum?id=W72rB0wwLVu
https://doi.org/10.1081/NFA-100108320
http://eudml.org/doc/120958

Appendix

Contents

1 Introduction 1

2 Problem Setup and Background 4

2.1 Proximal-Point Methods on Single Machine . 4

2.2 Distributed Proximal-Point Methods . 5

3 Stabilized DANE 5

4 Accelerated S-DANE 8

5 Dynamic Estimation of Similarity Constant by Line Search 9

6 Numerical Experiments 9

7 Conclusion 10

A More Related Work 16

B Technical Preliminaries 16

B.1 Basic Definitions . 16

B.2 Useful Lemmas . 17

C Proofs for S-DANE (Algorithm 1) 20

C.1 One-Step Recurrence . 20

C.2 Full Client Participation (Proof of Theorem 1) . 21

C.3 Partial Client Participation (Proof of Theorem 5) . 22

C.3.1 Stochastic Local Solver . 23

D Proofs for Accelerated S-DANE (Algorithm 2) 25

D.1 One-Step Recurrence . 25

D.2 Full Client Participation (Proof of Theorem 6) . 26

D.3 Partial Client Participation . 27

D.3.1 Stochastic Local Solver . 28

E Dynamic Estimation of Similarity Constant by Line Search 28

F Additional Details on Experiments 31

F.1 Convex Quadratics . 31

F.2 Deep Learning Tasks . 31

F.3 Implementation . 31

G Impact Statement 32

15

A More Related Work

In the first several years of the development for federated learning algorithms, the convergence guarantees are
focused on the smoothness parameter L. The de facto standard algorithm for federated learning is FEDAVG. It
reduces the communication frequency by doing multiple SGD steps on available clients before communication,
which works well in practice [43]. However, in theory, if the heterogeneity among clients is large, then it suffers
from the so-called client drift phenomenon [26] and might be worse than centralized mini-batch SGD [63, 29].
Numerous efforts have been made to mitigate this drift impact. FEDPROX adds an additional regularizer to
the subproblem of each client based on the idea of centralized proximal point method to limit the drift of each
client. However, the communication complexity still depends on the heterogeneity. The celebrated algorithm
SCAFFOLD applies drift correction (similar to variance-reduction) to the update of FEDAVG and it successfully
removes the impact of the heterogeneity. Afterwards, the idea of drift correction is employed in many other
works [15, 62, 38, 1]. SCAFFNEW uses a special choice of control variate[44] and first illustrates the usefulness
of taking standard local gradient steps under strongy-convexity, followed with more advanced methods with
refined analysis and features such as client sampling and compression [20, 9, 8]. 5gCS [16] uses an approximate
proximal-point step at each iteration and derives the convergence rate that is as good as SCAFFNEW, and it
also supports client sampling. Later, Sadiev et al. [56] proposed APDA WITH INEXACT PROX that retains the
same communication complexity as SCAFFNEW, but further provably reduces the local computation complexity.
FedAC [64] applies nesterov’s acceleration in the local steps and shows provably better convergence than
FEDAVG under certain assumptions.

More recent works try to develop algorithms with guarantees that rely on a potentially smaller constant than L.
SCAFFOLD first illustrates the usefulness of taking local steps for quadratics under Bounded Hessian Dissimilarity
δmax [26]. SONATA [60] and its accelerated version [61] prove explicit communication reduction in terms
of δmax under strong convexity. MIME [27] and CE-LGD [52] work on non-convex settings and show the
communication improvement on δmax and the latter achieves the min-max optimal rates. ACCELERATED
EXTRAGRADIENT SLIDING [33] applies gradient sliding [33] technique and shows communication reduction in
terms of δmax for strongly-convex and convex functions, the local computation of which is also efficient without
logarithmic dependence on the target accuracy, DANE with inexact local solvers [57, 22, 53] has been shown
recently to achieve the communication dependency on δ under convexity and δmax under non-convexity. For
solving convex problems, the local computation efficiency depends on the target accuracy ε. Otherwise, the
accuracy condition for the subproblem should increase across the communication rounds. Hendrikx et al. [19]
proposed SPAG, an accelerated method, and prove a better uniform concentration bound of the conditioning
number when solving strongly-convex problems. SVRP and CATALYZED SVRP [28] transfer the idea of using
the centralized proximal point method to the distributed setting and they achieve communication complexity
(with a different notion) w.r.t δ. Lin et al. [40] further improves these two methods either with a better rate or
with weaker assumptions based on the ACCELERATED EXTRAGRADIENT SLIDING method. Beznosikov et al.
[2] uses compression to reduce the bits required to communicate and the more general problem of Variational
Inequalities is considered. Under the same settings but for non-convex optimization, SABER [45] achieves
communication complexity reduction with better dependency on δmax and n. Karagulyan et al. [25] proposed
SPAM that allows partial client particiption.

Remark 7. Khaled and Jin [28] and Lin et al. [40] consider the total amount of information transmitted
between the server and clients as the main metric, which is similar to reducing the total stochastic oracle calls
in centralized learning settings. This is a particularly meaningful setting if the server prefers to or has to
receive/transmit vectors one by one and can set up communications very fast. The term ’client sampling’ in these
works refers to sampling one client to do the local computation. However, all the clients still need to participate
in the communication from time to time to provide the full gradient information. This is orthogonal to the setup
of this work since we assume each device can do the calculation in parallel. In the scenarios where the number
of devices is too large such that receiving all the updates becomes problematic, we consider instead the standard
partial participation setting.

B Technical Preliminaries

B.1 Basic Definitions

We use the following definitions throughout the paper.

Definition 5. A differentiable function f : Rd → R is called µ-convex for some µ ≥ 0 if for all x,y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥x− y∥2. (B.1)

If f is µ-convex, then, for any x,y ∈ Rd, we have (Nesterov [49], Theorem 2.1.10):

µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥. (B.2)

16

Definition 6. A differentiable function f : Rd → R is called L-smooth for some L ≥ 0 if for all x,y ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (B.3)

If f is L-smooth, then, for any x,y ∈ Rd, we have (Nesterov [49], Lemma 1.2.3)

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2. (B.4)

Lemma 8 (Nesterov [49], Theorem 2.1.5). Let f : Rd → R be convex and L-smooth. Then, for any x,y ∈ Rd,
we have

1

L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y),x− y⟩. (B.5)

B.2 Useful Lemmas

We frequently use the following helpful lemmas for the proofs.

Lemma 9. For any x,y ∈ Rd and any γ > 0, we have

|⟨x,y⟩| ≤ γ

2
∥x∥2 + 1

2γ
∥y∥2, (B.6)

∥x+ y∥2 ≤ (1 + γ)∥x∥2 +
(
1 +

1

γ

)
∥y∥2. (B.7)

Lemma 10 (Jiang et al. [22], Lemma 14). Let {xi}ni=1 be a set of vectors in Rd and let x̄ := 1
n

∑n
i=1xi. Let

v ∈ Rd be an arbitrary vector. Then,

1

n

n∑
i=1

∥xi − v∥2 = ∥x̄− v∥2 + 1

n

n∑
i=1

∥xi − x̄∥2. (B.8)

Lemma 11. Let (Fk)
∞
k=1 and (Dk)

∞
k=0 be two non-negative sequences such that, for any k ≥ 0, it holds that

Fk+1 +Dk+1 ≤ qDk + ε,

where q ∈ (0, 1] and ε ≥ 0 are some constants. Then for all K ≥ 1 and SK :=
∑K

k=1
1
qk

, we have

1

SK

K∑
k=1

Fk

qk
+

1− q

1− qK
DK ≤ 1− q

1
qK

− 1
D0 + ε.

Proof. Indeed, for any k ≥ 0, we have

Fk+1

qk+1
+

Dk+1

qk+1
≤ Dk

qk
+

ε

qk+1
.

Summing up from k = 0 to k = K − 1, we get

K∑
k=1

Fk

qk
+

DK

qK
≤ D0 + SKε.

Dividing both sides by SK and substituting SK = 1
1−q

(1
qK

− 1), we get the claim.

Lemma 12 (c.f. Lemma 2.2.4 in [49]). Let (Ar)
∞
r=0 be a non-negative non-decreasing sequence such that

A0 = 0 and, for any r ≥ 0,

Ar+1 ≤ c(Ar+1 −Ar)
2

1 + µAr
,

where c > 0 and µ ≥ 0 are some constants. If µ ≤ 4c, then for any R ≥ 0, we have

AR ≥ 1

4µ

[(
1 +

√
µ

4c

)R
−
(
1−

√
µ

4c

)R]2
≥ R2

4c
. (B.9)

Otherwise, for any R ≥ 1, it holds that

AR ≥ 1

4c

(
1 +

√
µ

4c

)2(R−1)

. (B.10)

17

Proof. Denote Cr =
√
µAr . For any r ≥ 0, it holds that

µC2
r+1(1 + C2

r) ≤ c(C2
r+1 − C2

r)
2 ≤ c

(
2(Cr+1 − Cr)Cr+1

)2
= 4c(Cr+1 − Cr)

2C2
r+1.

Therefore, for any r ≥ 0:

Cr+1 − Cr ≥
√

µ

4c

√
1 + C2

r .

When µ ≤ 4c, by induction, one can show that, for any R ≥ 0 (see the proof of Theorem 1 in [50] for details):

CR ≥ 1

2

[(
1 +

√
µ

4c

)R
−
(
1−

√
µ

4c

)R]
≥
√

µ

4c
R.

When µ > 4c, we have Cr+1 − Cr ≥
√

µ
4c
Cr . It follows that, for any R ≥ 1,

CR ≥
(
1 +

√
µ

4c

)R−1

C1 ≥
(
1 +

√
µ

4c

)R−1
√

µ

4c
.

Plugging in the definition of CR, we get the claims.

Lemma 13. Let {xi}ni=1 be vectors in Rd with n ≥ 2. Let s ∈ [n] and let S ∈
(
[n]
s

)
be sampled uniformly at

random without replacement. Let x̄ := 1
n

∑n
i=1xi, ζ2 := 1

n

∑n
i=1∥xi − x̄∥2, and x̄S := 1

s

∑
j∈S xj . Then,

E[x̄S] = x̄ and E[∥x̄S − x̄∥2] = n− s

n− 1

ζ2

s
. (B.11)

Proof. Let
(
n
m

)
= n!

m!(n−m)!
be the binomial coefficient for any n ≥ m ≥ 1. By the definition of x̄S , we have

x̄S =
1

s

∑
j∈S

xj =
1

s

n∑
i=1

1[i ∈ S]xi,

where 1[E] denotes the {0, 1}-indicator of the event E. Taking the expectation on both sides, we get

E[x̄S] =
1

s

n∑
i=1

Pr [i ∈ S]xi =
1

s

n∑
i=1

(
n−1
s−1

)(
n
s

) xi =
1

s

n∑
i=1

s

n
xi = x̄.

Further,

E[∥x̄S − x̄∥2] = E
[1

s2

∑
i∈S

∑
j∈S

⟨xi − x̄,xj − x̄⟩
]

= E
[1

s2

∑
i∈S

∥xi − x̄∥2 + 1

s2

∑
i,j∈S,i ̸=j

⟨xi − x̄,xj − x̄⟩
]

= E
[1

s2

n∑
i=1

1[i ∈ S]∥xi − x̄∥2 + 1

s2

∑
i,j∈[n],i ̸=j

1[i, j ∈ S]⟨xi − x̄,xj − x̄⟩
]

=
1

s2

n∑
i=1

Pr [i ∈ S] ∥xi − x̄∥2 + 1

s2

∑
i,j∈[n],i ̸=j

Pr [i, j ∈ S] ⟨xi − x̄,xj − x̄⟩

=
1

s2

n∑
i=1

(
n−1
s−1

)(
n
s

) ∥xi − x̄∥2 + 1

s2

∑
i,j∈[n],i ̸=j

(
n−2
s−2

)(
n
s

) ⟨xi − x̄,xj − x̄⟩

=
ζ2

s
+

s− 1

sn(n− 1)

∑
i,j∈[n],i ̸=j

⟨xi − x̄,xj − x̄⟩.

Note that ∑
i,j∈[n],i ̸=j

⟨xi − x̄,xj − x̄⟩ =
∑

i,j∈[n]

⟨xi − x̄,xj − x̄⟩ −
n∑

i=1

∥xi − x∥2 = −nζ2.

Thus,

E[∥x̄S − x̄∥2] = ζ2

s
− (s− 1)ζ2

s(n− 1)
=

n− s

n− 1

ζ2

s
.

18

Lemma 14. Suppose {fi}ni=1 satisfy ∆s-ED of size s ∈ [n] and ζ-BGV with n ≥ 2. Let f := 1
n

∑n
i=1 fi and

fS := 1
s

∑
i∈S fi, where S ∈

(
[n]
s

)
is sampled uniformly at random without replacement. Further, let y ∈ Rd

be a fixed point, and let xS ∈ Rd be a random point defined by a deterministic function of S. Then, for any
γ > 0, it holds that

ES [f(xS)− fS(xS)] ≤
n− s

n− 1

γζ2

2s
+
(1

2γ
+

∆s

2

)
ES [∥xS − y∥2]. (B.12)

Proof. Let hS := f − fS . Since {fi} satisfy ∆s-ED (Definition 4), we have, in view of inequality (B.4),

hS(xS) ≤ hS(y) + ⟨∇hS(y),xS − y⟩+ ∆s

2
∥xS − y∥2

(B.6)
≤ hS(y) +

γ

2
∥∇hS(y)∥2 +

1

2γ
∥xS − y∥2 + ∆s

2
∥xS − y∥2

Rearranging and taking the expectation on both sides, we get, for any γ > 0,

ES [hS(xS)− hS(y)] ≤
γ

2
ES [∥∇hS(y)∥2] +

1

2γ
ES [∥xS − y∥2] + ∆s

2
ES [∥xS − y∥2]

(7)
≤ n− s

n− 1

γζ2

2s
+
(1

2γ
+

∆s

2

)
ES [∥xS − y∥2],

where the last inequality is due to (B.11). Using the fact that ES [f(y)− fS(y)] = 0, we get the claim.

Lemma 15. Suppose {fi}ni=1 satisfy δs-SOD of size s ∈ [n]. Let fS := 1
s

∑
i∈S fi where s ∈ [n] and

S ∈
(
[n]
s

)
. Let v ∈ Rd be a fixed point, λ > δs, and let

Fi(x) := fi(x) + ⟨∇hS
i (v),x⟩+

λ

2
∥x− v∥2,

where hS
i := fS − fi. Let {xi}i∈S be a set of points in Rd (such that xi ≈ argminx Fi(x) in the sense that

∥∇Fi(xi)∥ is sufficiently small), and let x̄S = 1
s

∑
i∈Sxi. Then,

1

s

∑
i∈S

〈
∇fi(xi) +∇hS

i (x̄S),v − xi

〉
− 1

2λ

∥∥∥1
s

∑
i∈S

∇fi(xi)
∥∥∥2

≥ λ− δs
2

1

s

∑
i∈S

∥v − xi∥2 −
1

λ

1

s

∑
i∈S

∥∇Fi(xi)∥2.

Proof. Using the definition of Fi, we get

∇Fi(xi) = ∇fi(xi) +∇hS
i (v) + λ(xi − v).

Hence,

⟨∇fi(xi) +∇hS
i (x̄S),v − xi⟩ = λ∥v − xi∥2 + ⟨∇hS

i (x̄S)−∇hS
i (v),v − xi⟩+ ⟨∇Fi(xi),v − xi⟩.

Taking the average over i on both sides of the first display, we have

1

s

∑
i∈S

∇fi(xi) = λ(v − x̄S) +
1

s

∑
i∈S

∇Fi(xi). (B.13)

Therefore,

1

2λ

∥∥∥1
s

∑
i∈S

∇fi(xi)
∥∥∥2 =

1

2λ

∥∥∥λ(v − x̄S) +
1

s

∑
i∈S

∇Fi(xi)
∥∥∥2

=
λ

2
∥v − x̄S∥2 +

1

s

∑
i∈S

⟨∇Fi(xi),v − x̄S⟩+
1

2λ

∥∥∥1
s

∑
i∈S

∇Fi(xi)
∥∥∥2.

It follows that
1

s

∑
i∈S

⟨∇fi(xi) +∇hS
i (x̄S),v − xi⟩ −

1

2λ

∥∥∥1
s

∑
i∈S

∇fi(xi)
∥∥∥2

= λ
1

s

∑
i∈S

∥v − xi∥2 −
λ

2
∥v − x̄S∥2 +

1

s

∑
i∈S

⟨∇hS
i (x̄S)−∇hS

i (v),v − xi⟩

19

+
1

s

∑
i∈S

⟨∇Fi(xi), x̄S − xi⟩ −
1

2λ

∥∥∥1
s

∑
i∈S

∇Fi(xi)
∥∥∥2

(B.8)
=

λ

2
∥v − x̄S∥2 + λ

1

s

∑
i∈S

∥xi − x̄S∥2 +
1

s

∑
i∈S

⟨∇hS
i (x̄S)−∇hS

i (v), x̄S − xi⟩

+
1

s

∑
i∈S

⟨∇Fi(xi), x̄S − xi⟩ −
1

2λ

∥∥∥1
s

∑
i∈S

∇Fi(xi)
∥∥∥2

(B.6)
≥ λ

2
∥v − x̄S∥2 + λ

1

s

∑
i∈S

∥xi − x̄S∥2 −
1

2δs

1

s

∑
i∈S

∥∇hS
i (x̄S)−∇hS

i (v)∥2 −
δs
2

1

s

∑
i∈S

∥xi − x̄S∥2

− λ

2

1

s

∑
i∈S

∥xi − x̄S∥2 −
1

2λ

1

s

∑
i∈S

∥∇Fi(xi)∥2 −
1

2λ

∥∥∥1
s

∑
i∈S

∇Fi(xi)
∥∥∥2

(5),(B.8)
≥ λ− δs

2
∥v − x̄S∥2 +

λ− δs
2

1

s

∑
i∈S

∥xi − x̄S∥2 −
1

λ

1

s

∑
i∈S

∥∇Fi(xi)∥2

(B.8)
=

λ− δs
2

1

s

∑
i∈S

∥v − xi∥2 −
1

λ

1

s

∑
i∈S

∥∇Fi(xi)∥2,

where in the second equality, we use the fact that 1
s

∑
i∈S [∇hS

i (x̄S)−∇hS
i (v)] = 0.

C Proofs for S-DANE (Algorithm 1)

C.1 One-Step Recurrence

Lemma 16. Consider Algorithm 1. Let fi : Rd → R be µ-convex with µ ≥ 0 for any i ∈ [n]. Assume that
{fi}ni=1 have δs-SOD. Then, for any r ≥ 0, we have

1

λ
[fSr (x

r+1)− fSr (x
⋆)] +

1 + µ/λ

2
∥vr+1 − x⋆∥2

≤ 1

2
∥vr − x⋆∥2 − 1− δs/λ

2

1

s

∑
i∈Sr

∥vr − xi,r+1∥2 +
1

λ2

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2.

Proof. By µ-convexity of fi, for any r ≥ 0, it holds that

1

λ
fSr (x

⋆) +
1

2
∥vr − x⋆∥2 =

1

λ

1

s

∑
i∈Sr

fi(x
⋆) +

1

2
∥vr − x⋆∥2

(B.1)
≥ 1

λ

1

s

∑
i∈Sr

[
fi(xi,r+1) + ⟨∇fi(xi,r+1),x

⋆ − xi,r+1⟩+
µ

2
∥xi,r+1 − x⋆∥2

]
+

1

2
∥vr − x⋆∥2.

Recall that vr+1 is the minimizer of the final expression in x⋆. This expression is a (1 + µ/λ)-convex function
in x⋆. We can then estimate it by:

1

λ
fSr (x

⋆) +
1

2
∥vr − x⋆∥2

(B.1)
≥ 1

λ

1

s

∑
i∈Sr

[
fi(xi,r+1) + ⟨∇fi(xi,r+1),v

r+1 − xi,r+1⟩+
µ

2
∥xi,r+1 − vr+1∥2

]
+

1

2
∥vr − vr+1∥2 + 1 + µ/λ

2
∥vr+1 − x⋆∥2.

Using the convexity of fi and dropping the non-negative µ
2λ

1
s

∑
i∈Sr

∥xi,r+1 − vr+1∥2 , we further get

1

λ
fSr (x

⋆) +
1

2
∥vr − x⋆∥2

(B.1)
≥ 1

λ

1

s

∑
i∈Sr

[fi(x
r+1) + ⟨∇fi(x

r+1),xi,r+1 − xr+1⟩] + 1 + µ/λ

2
∥vr+1 − x⋆∥2

+
1

λ

1

s

∑
i∈Sr

⟨∇fi(xi,r+1),v
r − xi,r+1⟩+

1

λ

〈1
s

∑
i∈Sr

∇fi(xi,r+1),v
r+1 − vr

〉
+

1

2
∥vr+1 − vr∥2

20

(B.6)
≥ 1

λ
fSr (x

r+1) +
1 + µ/λ

2
∥vr+1 − x⋆∥2 + 1

λ

1

s

∑
i∈Sr

⟨∇fi(x
r+1),xi,r+1 − xr+1⟩

+
1

λ

1

s

∑
i∈Sr

⟨∇fi(xi,r+1),v
r − xi,r+1⟩ −

1

2λ2

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2.

Denote hr
i := fSr − fi. Note that∑

i∈Sr

⟨∇fi(x
r+1),xi,r+1 − xr+1⟩ =

∑
i∈Sr

⟨−∇hr
i (x

r+1),xi,r+1 − vr⟩,

where we have used:

xr+1 =
1

s

∑
i∈Sr

xi,r+1 and
∑
i∈Sr

∇hr
i (x

r+1) = 0.

It follows that

1

λ
fSr (x

⋆) +
1

2
∥vr − x⋆∥2 ≥ 1

λ
fSr (x

r+1) +
1 + µ/λ

2
∥vr+1 − x⋆∥2

+
1

λ

1

s

∑
i∈Sr

⟨∇fi(xi,r+1) +∇hr
i (x

r+1),vr − xi,r+1⟩ −
1

2λ2

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2.

We now apply Lemma 15 (with xi = xi,r+1, v = vr , S = Sr and x = xr+1) to get

1

s

∑
i∈Sr

⟨∇fi(xi,r+1) +∇hr
i (x

r+1),vr − xi,r+1⟩ −
1

2λ

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2

≥ λ− δs
2

1

s

∑
i∈Sr

∥vr − xi,r+1∥2 −
1

λ

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2.

Substituting this lower bound into the previous display, we get the claim.

C.2 Full Client Participation (Proof of Theorem 1)

Proof. Applying Lemma 16 and using
∑n

i=1∥∇Fi,r(xi,r+1)∥2 ≤ δ2
∑n

i=1∥xi,r+1 − vr∥2 and λ = 2δ, for
any r ≥ 0, we have

1

λ
[f(xr+1)− f⋆] +

1 + µ/λ

2
∥vr+1 − x⋆∥2

≤ 1

2
∥vr − x⋆∥2 − 1− δ/λ

2

1

n

n∑
i=1

∥vr − xi,r+1∥2 +
1

λ2

1

n

n∑
i=1

∥∇Fi,r(xi,r+1)∥2

≤ 1

2
∥vr − x⋆∥2 −

(1− 1/2

2
− 1

4

)
∥vr − xi,r+1∥2 =

1

2
∥vr − x⋆∥2.

Rearranging, we get
2q

λ
[f(xr+1)− f⋆] ≤ q∥vr − x⋆∥2 − ∥vr+1 − x⋆∥2.

where q := 1
1+µ/λ

. Applying Lemma 11 with ε = 0 and using convexity of f , we obtain

2q

λ
[f(x̄R)− f⋆] +

1− q

1− qR
∥vR − x⋆∥2 ≤ 1− q

(1/q)R − 1
∥v0 − x⋆∥2 =

1− q

(1/q)R − 1
D2.

Dropping the non-negative term 1−q
1−qR

∥vR − x⋆∥2 and rearranging, we get

f(x̄R)− f⋆ ≤ (1− q)λ

2q
[
(1/q)R − 1

]D2.

Plugging in the choice of λ and the definition of q, we get the claim.

Corollary 17. Under the same setting as in Theorem 1, to achieve f(x̄R) − f⋆ ≤ ε , we need at most the
following number of communication rounds:

R = O
(µ+ δ

µ
log
(
1 +

µD2

ε

))
.

Proof. Using the fact that (1 + q)k ≥ exp(q
1+q

k) for any q ≥ 0 and k > 0, we get

f(x̄R)− f⋆ ≤ µD2

2[(1 + µ
2δ
)R − 1]

≤ µD2

2[exp(µ
µ+2δ

R)− 1]
≤ ε.

Rearranging, we get the claim.

21

Proof of Corollary 3.

Proof. To achieve
∑n

i=1∥∇Fi,r(xi,r+1)∥2 ≤ δ2
∑n

i=1∥xi,r+1 − yr∥2, for each i ∈ [n], it is sufficient to
ensure that ∥∇Fi,r(xi,r+1)∥ ≤ δ∥xi,r+1 − vr∥. Let x⋆

i,r := argminx Fi,r(x). Since

∥xi,r+1 − vr∥ ≥ ∥vr − x⋆
i,r∥ − ∥xi,r+1 − x⋆

i,r∥
(B.2)
≥ ∥vr − x⋆

i,r∥ −
1

λ
∥∇Fi,r(xi,r+1)∥

and λ = 2δ, it suffices to ensure that

∥∇Fi,r(xi,r+1)∥ ≤ 2δ

3
∥vr − x⋆

i,r∥ (C.1)

for any i ∈ [n]. According to Theorem 2 from [33] (or Theorem 3.2 from [37]), there exists a certain algorithm
such that when started from the point vr , after K queries to ∇Fi,r , it generates the point vi,r+1 such that

∥∇Fi,r(xi,r+1)∥ ≤ O
(
(L+ λ)∥vr − x⋆

i,r∥
K2

)
= O

(
L∥vr − x⋆

i,r∥
K2

)
(recall that δ ≤ L). Setting K = Θ(

√
L
δ
) concludes the proof.

Remark 18. Recall that Fi,r is (L+ λ)-smooth and (µ+ λ)-convex, λ = Θ(δ) and δ ≤ L. Suppose worker i
uses the standard GD to approximately solve the local subproblem at round r starting at vr for K steps and

return the last point, then by Lemma 19, we have that ∥∇Fi,r(xi,r+1)∥2 ≤ O
((L+λ)2∥vr−x⋆

i,r∥
2

K2

)
. To satisfy

the accuracy condition (C.1), it is sufficient to make K = Θ(L
δ
) local steps. Suppose worker i uses the fast

gradient method, then by Theorem 3.18 from [4], we have that ∥∇Fi,r(xi,r+1)∥2 ≤ 2(L+ λ)
(
Fi,r(xi,r+1)−

Fi,r(x
⋆
i,r)
)
≤ O

(
(L+ λ)2 exp(−

√
µ+λ
L+λ

K)∥vr − x⋆
i,r∥2

)
. To satisfy the accuracy condition (C.1), it suffices

to make K = Θ(
√

L+δ
µ+δ

log(L+δ
δ

)) = Θ(
√

L
µ+δ

log(L
δ
)) gradient oracle calls.

Lemma 19 (Theorem 2.2.5 in [49]). Let f : Rd → R be a convex and L-smooth function. Consider the gradient
method with constant stepsize:

xk+1 = xk − 1

L
∇f(xk), k ≥ 0,

started from some x0 ∈ Rd. Then, for any K ≥ 1, it holds that

∥∇f(xK)∥ ≤ O
(
L∥x0 − x⋆∥

K

)
. (C.2)

Proof. By Theorem 2.2.5 in [49], we have that

min
k∈[K]

∥∇f(xk)∥ ≤ O
(
L∥x0 − x⋆∥

K

)
.

It remains to note that the algorithm generates non-increasing ∥∇f(xk)∥ since

∥∇f(xk+1)∥2 = ∥∇f(xk+1)−∇f(xk) +∇f(xk)∥2

= ∥∇f(xk+1)−∇f(xk)∥2 + 2⟨∇f(xk+1)−∇f(xk),∇f(xk)⟩+ ∥∇f(xk)∥2

= ∥∇f(xk+1)−∇f(xk)∥2 − 2L⟨∇f(xk)−∇f(xk+1),xk − xk+1⟩+ ∥∇f(xk)∥2

(B.5)
≤ ∥∇f(xk)∥2 − ∥∇f(xk+1)−∇f(xk)∥2 ≤ ∥∇f(xk)∥2.

C.3 Partial Client Participation (Proof of Theorem 5)

The following theorem is a slight extension of Theorem 5, which includes the use of stochastic local solvers.
Theorem 20. Consider Algorithm 1. Let fi : Rd → R be µ-convex with µ ≥ 0 for any i ∈ [n] and let n ≥ 2.
Assume that {fi}ni=1 have δs-SOD, ∆s-ED and ζ-BGV. Let λ = 4(n−s)

s(n−1)
ζ2

ε
+ 2(δs + ∆s). For any r ≥ 0,

suppose we have
1

s

∑
i∈Sr

Eξi,r [∥∇Fi,r(xi,r+1)∥2] ≤
λ2

4

1

s

∑
i∈Sr

Eξi,r [∥xi,r+1 − vr∥2] + λε

4
, (C.3)

for some ε > 0, where ξi,r denotes the randomness coming from device i when solving its subproblem at round r.
We assume that {ξi,r} are independent random variables. To reach E[f(x̄R)− f⋆] ≤ ε, we need at most the
following number of communication rounds:

R = Θ

([
δs +∆s + µ

µ
+

n− s

n− 1

ζ2

sεµ

]
log
(
1 +

µD2

ε

))
≤ Θ

(
(δs +∆s)D

2

ε
+

n− s

n− 1

ζ2D2

sε2

)
,

where x̄R :=
∑R

r=1 p
rxr/

∑R
r=1 p

r , p := 1 + µ
λ

, and D := ∥x0 − x⋆∥.

22

Proof. According to Lemma 16, we have for any r ≥ 0,

1

λ
[fSr (x

r+1)− fSr (x
⋆)] +

1 + µ/λ

2
∥vr+1 − x⋆∥2

≤ 1

2
∥vr − x⋆∥2 − 1− δs/λ

2

1

s

∑
i∈Sr

∥vr − xi,r+1∥2 +
1

λ2

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2.

According to Lemma 14 (with S = Sr , x = xr+1 and y = vr), for any γ > 0, we have

ESr [f(x
r+1)− fSr (x

r+1)] ≤ n− s

n− 1

γζ2

2s
+
(1

2γ
+

∆s

2

)
ESr [∥x

r+1 − vr∥2]

(B.8)
≤ n− s

n− 1

γζ2

2s
+
(1

2γ
+

∆s

2

)
ESr

[1
s

∑
i∈Sr

∥xi,r+1 − vr∥2
]
.

Adding 1
λ
f(xr+1) to both sides of the first display, taking the expectation over Sr on both sides, substituting

the previous upper bound and setting γ = s(n−1)ε

2ζ2(n−s)
, we get

1

λ
ESr [f(x

r+1)− f⋆] +
1 + µ/λ

2
ESr [∥v

r+1 − x⋆∥2]

≤ 1

2
∥vr − x⋆∥2 −

(1
2
− δs +∆s

2λ
− 1

2γλ

)
ESr

[1
s

∑
i∈Sr

∥xi,r+1 − vr∥2
]

+
ε

4λ
+

1

λ2
ESr

[1
s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2
]
.

Denote all the randomness {ξi,r}i∈Sr by ξr . Since ξi,r is independent of the choice of Sr for any i ∈ [n],
taking the expectation over ξr on both sides of the previous display and using our assumption (C.3), we obtain

1

λ
ESr,ξr [f(x

r+1)− f⋆] +
1 + µ/λ

2
ESr,ξr [∥v

r+1 − x⋆∥2]

≤ 1

2
∥vr − x⋆∥2 −

(1
4
− δs +∆s

2λ
− 1

2γλ

)
ESr,ξr

[1
s

∑
i∈Sr

∥xi,r+1 − vr∥2
]
+

ε

2λ
.

By our choice of λ, we have λ
4
− δs+∆s

2
− 1

2γ
≥ 0. Taking the full expectation on both sides, we get

1

λ
E[f(xr+1)− f⋆] +

1 + µ/λ

2
E[∥vr+1 − x⋆∥2] ≤ 1

2
E[∥vr − x⋆∥2] + ε

2λ
.

According to Lemma 11 and the fact that ∥v0 − x⋆∥ = D, we get

2

µ+ λ
E
[
f(x̄R)− f⋆]+ (1− q)E

[∥∥vR − x⋆
∥∥2] ≤ 1− q

(1/q)R − 1
D2 +

1

µ+ λ
ε,

where q := 1
1+µ/λ

. Rearranging and dropping the non-negative E[∥vR − x⋆∥2], we get, for any R ≥ 1,

E
[
f(x̄R)− f⋆] ≤ µD2

2[(µ
λ
+ 1)R − 1]

+
ε

2
≤ µD2

2[exp(µ
µ+λ

R)− 1]
+

ε

2
.

To reach ε-accuracy, it suffices to let µD2

2[exp(µ
µ+λ

R)−1]
≤ ε

2
. Rearranging gives the claim.

C.3.1 Stochastic Local Solver

Note that there exist many stochastic optimization algorithms that can also achieve the accuracy condition (C.3)
such as variance reduction methods [23, 10], adaptive SGD methods [13], etc. Here, we take the simplest
algorithm: SGD with constant stepsize as an example.
Corollary 21. Consider Algorithm 1 under the same settings as in Theorem 20. Further assume that each fi is
L-smooth and each device has access to mini-batch stochastic gradient gi(x, ξ̄i) such that

Eξ̄i
[gi(x, ξ̄i)] = ∇fi(x), Eξ̄i

[∥gi(x, ξ̄i)−∇fi(x)∥2] ≤ σ2.

Suppose for any r ≥ 0, each device i ∈ Sr solves its subproblem approximately by using mini-batch SGD:

zk+1 = zk − 1

H

[
gi(x, ξ̄

r
i,k)−∇fi(v

r) +∇fSr (v
r) + λ(zk − vr)

]
, 0 ≤ k ≤ K,

23

where z0 = vr and H > L + λ is the stepsize coefficient. Let ξi,r denote (ξ̄ri,k)k. To achieve accuracy
condition (C.3) for an appropriately chosen H , each device i requires at most the following number of stochastic
mini-batch oracle calls:

K = Θ

([
L+ λ

µ+ λ
+

(L+ λ)σ2

(µ+ λ)λε

]
log

L+ λ

λ

)
.

Proof. To get (C.3), it suffices to ensure that, for any i ∈ Sr , we have

Eξi,r [∥∇Fi,r(xi,r+1)∥2] ≤
λ2

4
Eξi,r [∥xi,r+1 − vr∥2] + λε

4
.

For this, it suffices to ensure that

Eξi,r [∥∇Fi,r(xi,r+1)∥2] ≤
λ2

10
∥vr − x⋆

i,r∥2 +
λε

5
. (C.4)

where x⋆
i,r := argminx Fi,r(x). Indeed, suppose (C.4) holds, then we have

∥xi,r+1 − vr∥ ≥ ∥vr − x⋆
i,r∥ − ∥xi,r+1 − x⋆

i,r∥
(B.2)
≥ ∥vr − x⋆

i,r∥ −
1

λ
∥∇Fi,r(xi,r+1)∥.

Hence,

∥vr − x⋆
i,r∥2 ≤ 2

λ2
∥∇Fi,r(xi,r+1)∥2 + 2∥xi,r+1 − vr∥2.

Plugging in this inequality into (C.4) and taking expectation w.r.t ξi,r on both sides, we get

Eξi,r [∥∇Fi,r(xi,r+1)∥2] ≤
1

5
Eξi,r [∥∇Fi,r(xi,r+1)∥2] +

λ2

5
Eξi,r [∥xi,r+1 − vr∥2] + λ

5
ε.

Rearranging gives the weaker condition.

We next consider the number of mini-batch stochastic gradient oracles required for SGD to achieve (C.4). Since
Fi,r is (L+ λ)-smooth and (µ+ λ)-convex, according to Lemma 22, we have

Eξi,r [∥∇Fi,r(z̄K)∥2] ≤ 2(L+ λ)Eξi,r [Fi,r(z̄K)− F ⋆
i,r]

≤ 2(L+ λ)

(
(µ+ λ)∥vr − x⋆

i,r∥2

2[exp
(
(µ+ λ)K/H

)
− 1]

+
σ2

2(H − L− λ)

)
,

where z̄K := 1∑K
k=1

1
qk

∑K
k=1

zk
qk

and q = H−µ−λ
H

. Choosing now H = (L+ λ) + 5(L+λ)σ2

λε
, and letting the

coefficient of the first part in the previous display be ≤ λ2

10
, we get the claim.

Lemma 22. Let f be a µ-convex and L-smooth function. Consider SGD with constant stepsize H > L:

xk+1 := argmin
x∈Rd

{
⟨gk,x⟩+

H

2
∥x− xk∥2

}
,

where gk := g(xk, ξk) with Eξ[g(x, ξ)] = ∇f(x) and Eξ[∥g(x, ξ)−∇f(x)∥2] ≤ σ2 for any x ∈ Rd. Then
for any K ≥ 1, we have

E[f(x̄K)]− f⋆ ≤ µ∥x0 − x⋆∥2

2
[
exp(µK/H)− 1

] + σ2

2(H − L)
. (C.5)

where x̄K := 1∑K
k=1

1
qk

∑K
k=1

xk

qk
and q = H−µ

H
.

Proof. Indeed, for any k ≥ 0, we have

f(xk) + ⟨gk,x⋆ − xk⟩+
H

2
∥xk − x⋆∥2

≥ f(xk) + ⟨gk,xk+1 − xk⟩+
H

2
∥xk+1 − xk∥2 +

H

2
∥xk+1 − x⋆∥2

(B.3)
≥ f(xk+1) + ⟨gk −∇f(xk),xk+1 − xk⟩+

H − L

2
∥xk+1 − xk∥2 +

H

2
∥xk+1 − x⋆∥2

(B.6)
≥ f(xk+1)−

∥gk −∇f(xk)∥2

2(H − L)
+

H

2
∥xk+1 − x⋆∥2.

Taking the expectation on both sides and using µ-convexity of f , we get

E[f(xk+1)− f⋆] +
H

2
E[∥xk+1 − x⋆∥2] ≤ H − µ

2
E[∥xk − x⋆∥2 + σ2

2(H − L)
.

Applying Lemma 11, we have for any K ≥ 1:

E[f(x̄K)− f⋆] ≤ µ∥x0 − x⋆∥2

2
[
(1/q)K − 1

] + σ2

2(H − L)
≤ µ∥x0 − x⋆∥2

2
[
exp(µK/H)− 1

] + σ2

2(H − L)
.

24

D Proofs for Accelerated S-DANE (Algorithm 2)

D.1 One-Step Recurrence

Lemma 23. Consider Algorithm 2. Let fi : Rd → R be µ-convex with µ ≥ 0 for any i ∈ [n]. Assume that
{fi}ni=1 have δs-SOD. For any r ≥ 0, we have

ArfSr (x
r) + ar+1fSr (x

⋆) +
Br

2
∥vr − x⋆∥2

≥ Ar+1fSr (x
r+1) +

Br+1

2
∥vr+1 − x⋆∥2

+Ar+1

(
λ− δs

2

1

s

∑
i∈Sr

∥xi,r+1 − yr∥2 − 1

λ

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2
)
.

Proof. By µ-convexity of fi, for any r ≥ 0, it holds that

ArfSr (x
r) + ar+1fSr (x

⋆) +
Br

2
∥vr − x⋆∥2

= Ar
1

s

∑
i∈Sr

fi(x
r) + ar+1

1

s

∑
i∈Sr

fi(x
⋆) +

Br

2
∥vr − x⋆∥2

(B.1)
≥ Ar

1

s

∑
i∈Sr

[fi(xi,r+1) + ⟨∇fi(xi,r+1),x
r − xi,r+1⟩] +

Br

2
∥vr − x⋆∥2

+ ar+1
1

s

∑
i∈Sr

[
fi(xi,r+1) + ⟨∇fi(xi,r+1),x

⋆ − xi,r+1⟩+
µ

2
∥xi,r+1 − x⋆∥2

]
.

Recall that vr+1 is the minimizer of the final expression in x⋆. This expression is a (µar+1 + Br)-convex
function in x⋆. By convexity and using the fact that Ar+1 = Ar + ar+1 and Br+1 = µar+1 +Br , we obtain

ArfSr (x
r) + ar+1fSr (x

⋆) +
Br

2
∥vr − x⋆∥2

≥ Ar+1
1

s

∑
i∈Sr

fi(xi,r+1) +
µar+1

2

1

s

∑
i∈Sr

∥xi,r+1 − vr+1∥2 + Br

2
∥vr − vr+1∥2

+
1

s

∑
i∈Sr

⟨∇fi(xi,r+1), Arx
r + ar+1v

r+1 −Ar+1xi,r+1⟩+
Br+1

2
∥vr+1 − x⋆∥2.

Recall that yr = Ar
Ar+1

xr +
ar+1

Ar+1
vr . Therefore,

Br

2
∥vr − vr+1∥2 + 1

s

∑
i∈Sr

⟨∇fi(xi,r+1), Arx
r + ar+1v

r+1 −Ar+1xi,r+1⟩

=
Br

2
∥vr − vr+1∥2 + ar+1

〈1
s

∑
i∈Sr

∇fi(xi,r+1),v
r+1 − vr

〉
+Ar+1

1

s

∑
i∈Sr

⟨∇fi(xi,r+1),y
r − xi,r+1⟩

(B.6)
≥ −a2

r+1

2Br

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2 +Ar+1

1

s

∑
i∈Sr

⟨∇fi(xi,r+1),y
r − xi,r+1⟩.

Substituting this lower bound, using convexity of fi and dropping the non-negative µar+1

2
1
s

∑
i∈Sr

∥xi,r+1 −
vr+1∥2, we further get

ArfSr (x
r) + ar+1fSr (x

⋆) +
Br

2
∥vr − x⋆∥2

(B.1)
≥ Ar+1

1

s

∑
i∈Sr

[fi(x
r+1) + ⟨∇fi(x

r+1),xi,r+1 − xr+1⟩] + Br+1

2
∥vr+1 − x⋆∥2

+Ar+1
1

s

∑
i∈Sr

⟨∇fi(xi,r+1),y
r − xi,r+1⟩ −

a2
r+1

2Br

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2.

25

Denote hr
i := fSr − fi. Substituting∑

i∈Sr

⟨∇fi(x
r+1),xi,r+1 − xr+1⟩ =

∑
i∈Sr

⟨−∇hr
i (x

r+1),xi,r+1 − yr⟩

into the previous display, we get

ArfSr (x
r) + ar+1fSr (x

⋆) +
Br

2
∥vr − x⋆∥2

≥ Ar+1fSr (x
r+1) +

Br+1

2
∥vr+1 − x⋆∥2

+Ar+1
1

s

∑
i∈Sr

⟨∇fi(xi,r+1) +∇hr
i (x

r+1),yr − xi,r+1⟩ −
a2
r+1

2Br

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2.

We now apply Lemma 15 (with xi = xi,r+1, v = yr , S = Sr and x = xr+1) to get

1

s

∑
i∈Sr

⟨∇fi(xi,r+1) +∇hr
i (x

r+1),yr − xi,r+1⟩ −
1

2λ

∥∥∥1
s

∑
i∈Sr

∇fi(xi,r+1)
∥∥∥2

≥ λ− δs
2

1

s

∑
i∈Sr

∥yr − xi,r+1∥2 −
1

λ

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2.

Substituting this lower bound into the previous display and using Ar+1 =
a2
r+1λ

Br
, we get the claim.

D.2 Full Client Participation (Proof of Theorem 6)

Proof. Applying Lemma 23 and using
∑n

i=1∥∇Fi,r(xi,r+1)∥2 ≤ δ2
∑n

i=1∥xi,r+1 − yr∥2 and λ = 2δ, for
any r ≥ 0, we have

Arf(x
r) + ar+1f

⋆ +
Br

2
∥vr − x⋆∥2

≥ Ar+1f(x
r+1) +

Br+1

2
∥vr+1 − x⋆∥2 +Ar+1

(λ− δ

2
− δ2

λ

)1
s

∑
i∈Sr

∥xi,r+1 − yr∥2

= Ar+1f(x
r+1) +

Br+1

2
∥vr+1 − x⋆∥2.

Subtracting Ar+1f
⋆ on both sides, we get

Ar+1[f(x
r+1)− f⋆] +

Br+1

2
∥vr+1 − x⋆∥2 ≤ Ar[f(x

r)− f⋆] +
Br

2
∥vr − x⋆∥2.

Recursively applying the previous display from r = 0 to r = R− 1, we get

AR[f(x
R)− f⋆] +

BR

2
∥vR − x⋆∥2 ≤ A0[f(x

0)− f⋆] +
1

2
∥v0 − x⋆∥2 =

1

2
∥x0 − x⋆∥2.

It remains to apply Lemma 12 and plug in the estimation of the growth of AR.

Corollary 24. Under the same setting as in Theorem 6, to achieve f(xR) − f⋆ ≤ ε, we need at most the
following number of communication rounds:

R = O

(√
δ + µ

µ
log

(
1 +

√
min{µ, δ}D2

ε

))
.

Proof. When µ ≤ 8δ, by using(
1 +

√
µ

8δ

)R
−
(
1−

√
µ

8δ

)R
≥
(
1 +

√
µ

8δ

)R
− 1 ≥ exp

(√
µR

√
8δ +

√
µ

)
− 1,

we get

f(xR)− f⋆ ≤ 2µD2[(
1 +

√
µ
8δ

)R −
(
1−

√
µ
8δ

)R]2 ≤ 2µD2[
exp(

√
µR√

8δ+
√
µ
)− 1

]2 .
Making the right-hand side ≤ ε and rearranging, we get the claim. When µ ≥ 8δ, it suffices to ensure that
δD2

4R−2 ≤ ε.

26

D.3 Partial Client Participation

It is well known that accelerated stochastic gradient methods are not able to improve the complexity in the
stochastic part compared with the basic methods [11]. A similar result is also shown for our accelerated
distributed method.
Theorem 25. Consider Algorithm 2 under the same setting as in Theorem 20. Let

λ = Θ

(
(δs +∆s) +

(n− s)R

s(n− 1)

ζ2

ε

)
and suppose that, for any r ≥ 0, we have

1

s

∑
i∈Sr

Eξi,r [∥∇Fi,r(xi,r+1)∥2] ≤ O
(
λ2

4

1

s

∑
i∈Sr

Eξi,r [∥xi,r+1 − vr∥2] + λε

4R

)
.

Denote D := ∥x0 − x⋆∥. Then, to ensure that E[f(xR)]− f⋆ ≤ ε for some ε > 0, we need to perform at most
the following number of communication rounds:

R = Θ

(√
δs +∆s +

√
µ

√
µ

log

(
1 +

√
min{µ, λ}D2

ε

)
+

n− s

n− 1

ζ2

sεµ
log2

(
1 +

√
min{µ, λ}D2

ε

))
≤ Θ

(√
(δs +∆s)D2

ε
+

n− s

n− 1

ζ2D2

sε2

)
.

The error term that depends on ζ2 and ε is at the same scale as S-DANE, i.e. O(ζ
2

ε
) when µ > 0 and O(ζ

2

ε2
)

when µ = 0. Nevertheless, when s is large enough such that this second error becomes no larger than the first
optimization term, then ACC-S-DANE can still be faster than S-DANE.

Proof of Theorem 25.

Proof. According to Lemma 23, we have, for any r ≥ 0,

ArfSr (x
r) + ar+1fSr (x

⋆) +
Br

2
∥vr − x⋆∥2

≥ Ar+1fSr (x
r+1) +

Br+1

2
∥vr+1 − x⋆∥2

+Ar+1
λ− δs

2

1

s

∑
i∈Sr

∥xi,r+1 − yr∥2 −Ar+1
1

λ

1

s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2.

According to Lemma 14 (with S = Sr , x = xr+1 and y = yr), for any γ > 0, we have

ESr

[
f(xr+1)− fSr (x

r+1)
]
≤ n− s

n− 1

γζ2

2s
+
(1

2γ
+

∆s

2

)
ESr [∥x

r+1 − yr∥2]

(B.8)
≤ n− s

n− 1

γζ2

2s
+
(1

2γ
+

∆s

2

)
ESr

[1
s

∑
i∈Sr

∥xi,r+1 − yr∥2
]
.

Adding Ar+1f(x
r+1) to both sides of the first display, taking the expectation over Sr on both sides, substituting

the previous upper bound, and setting γ = s(n−1)ε′

2ζ2(n−s)
with ε′ > 0, we get

Arf(x
r) + ar+1f

⋆ +
Br

2
∥vr − x⋆∥2

≥ Ar+1 ESr [f(x
r+1)] +

Br+1

2
ESr [∥v

r+1 − x⋆∥2]

+Ar+1

(λ
2
− δs +∆s

2
− 1

2γ

)
ESr

[1
s

∑
i∈Sr

∥xi,r+1 − yr∥2
]

− Ar+1

4
ε′ − Ar+1

λ
ESr

[1
s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2
]
.

Denote all the randomness {ξi,r}i∈Sr by ξr . Since ξi,r is independent of the choice of Sr for any
i ∈ [n], taking the expectation over ξr on both sides of the previous display and using the assumption that

ESr,ξr

[
1
s

∑
i∈Sr

∥∇Fi,r(xi,r+1)∥2
]
≤ ESr,ξr

[
λ2

4
1
s

∑
i∈Sr

∥xi,r+1 − yr∥2
]
+ λε′

4
, we obtain

Arf(x
r) + ar+1f

⋆ +
Br

2
∥vr − x⋆∥2

27

≥ Ar+1 ESr,ξr [f(x
r+1)] +

Br+1

2
ESr,ξr [∥v

r+1 − x⋆∥2]

+Ar+1

(λ
4
− δs +∆s

2
− 1

2γ

)
ESr,ξr

[1
s

∑
i∈Sr

∥xi,r+1 − yr∥2
]
− Ar+1

2
ε′.

By choosing λ = 4ζ2(n−s)
s(n−1)ε′ + 2(δs +∆s), we have that λ

4
− (δs+∆s)

2
− 1

2γ
≥ 0. Taking the full expectation

on both sides, we get

Ar E[f(xr)] + ar+1f
⋆ +

Br

2
E[∥vr − x⋆∥2] ≥ Ar+1 E[f(xr+1)] +

Br+1

2
E[∥vr+1 − x⋆∥2]− Ar+1

2
ε′.

Subtracting Ar+1f(x
⋆) on both sides , summing up from r = 0 to r = R− 1 and using the fact that A0 = 0,

v0 = x0 and B0 = 1, we get

AR E[f(xR)− f⋆] +
BR

2
E[∥vR − x⋆∥2] ≤ 1

2
∥x0 − x⋆∥2 + ε′

2

R∑
r=1

Ar.

Dividing both sides by AR, setting ε′ = ε
R

and using the fact that the sequence {Ar} is non-decreasing, we get

E[f(xR)]− f⋆ ≤ 1

2AR
∥x0 − x⋆∥2 + ε

2
.

We now apply Lemma 12 with c = λ to get

AR ≥
[(1 +

√
µ
4λ

)R − (1−
√

µ
4λ

)R]2

4µ
≥

[(1 +
√

µ
4λ

)R − 1]2

4µ
≥

[
exp
(√

µR√
4λ+

√
µ

)
− 1
]2

4µ

when µ ≤ 4λ, and AR ≥ 1
4λ

(1 +
√

µ
4λ

)2(R−1) when µ ≥ 4λ. Letting these lower bounds be larger than
∥x0−x⋆∥2

ε
, we get

R = Ω

(√
µ+

√
λ

√
µ

log

(
1 +

√
min{µ, λ}∥x0 − x⋆∥2

ε

))
.

Plugging λ = Ω
(ζ2(n−s)R

snε
+ (δs +∆s)

)
into the last display and rearranging, we get the condition for R.

D.3.1 Stochastic Local Solver

Corollary 26. Consider Algorithm 2 under the same settings as in Theorem 25. Consider the same stochastic
local solver used in Corollary 21. To achieve

1

s

∑
i∈Sr

Eξi,r [∥∇Fi,r(xi,r+1)∥2] ≤ O
(
λ2

4

1

s

∑
i∈Sr

Eξi,r [∥xi,r+1 − yr∥2] + λε

4R

)
,

each device i requires at most the following number of stochastic mini-batch oracle calls:

K = Θ

([
L+ λ

µ+ λ
+

(L+ λ)σ2R

(µ+ λ)λε

]
log

L+ λ

λ

)
.

Proof. The proof is the same as that for Corollary 21.

E Dynamic Estimation of Similarity Constant by Line Search

Theorem 27. Consider Algorithm 3. Suppose that each function fi is µ-convex for some µ ≥ 0, and {fi}ni=1

have δ-SOD for some δ > 0. Let λ̃ ≤ 2δ. Then, for any R ≥ 1, it holds that

f(x̄R)− f⋆ ≤ µD2

2[(1 + µ
4δ
)R − 1]

≤ 2δD2

R
,

where x̄R := argminx∈{x1,...,xR} f(x). To ensure that f(x̄R)− f⋆ ≤ ε for any given ε > 0, it suffices to set

R = Θ

(
δ + µ

µ
log
(
1 +

µD2

ε

))
,

where D := ∥x0−x⋆∥. Furthermore, the total number of communication rounds spent inside the r- and k-loops
since the start of the algorithm and up to the moment x̄R has been computed is

O(1)

R−1∑
k=0

(kr + 1) ≤ O
(
R+ log

2δ

λ̃

)
.

28

Algorithm 3 S-DANE with line search
1: Input: λ̃ > 0, µ ≥ 0, x0 = v0 ∈ Rd. Let hi := f − fi.
2: Set λ0,0 = λ̃.
3: for r = 0, 1, 2, . . . do
4: for k = 0, 1, . . . do
5: for each device i ∈ [n] in parallel do
6: xi,r+1,k ≈ argminx∈Rd

{
Fi,r,k(x) := fi(x) + ⟨∇hi(v

r),x⟩+ λr,k

2
∥x− vr∥2

}
.

7: (stop running the local solver once ∥∇Fi,r,k(xi,r+1,k)∥ ≤ λr,k

2
∥xi,r+1 − vr∥)

8: Aggregate local models: xr+1,k = 1
n

∑n
i=1xi,r+1,k.

9: if 1
n

n∑
i=1

⟨∇fi(xi,r+1,k) +∇hi(x
r+1,k),vr − xi,r+1,k⟩ ≥ 1

2λr,k

∥∥ 1
n

n∑
i=1

∇fi(xi,r+1,k)
∥∥2 then

10: kr = k and break the loop.
11: λr,k+1 = 2λr,k.
12: λr = λr,kr , xi,r+1 = xi,r+1,kr , xr+1 = xr+1,kr , λr+1,0 = 1

2
λr .

13: vr+1 = argminx∈Rd

{
1
n

∑n
i=1[⟨∇fi(xi,r+1),x⟩+ µ

2
∥x− xi,r+1∥2] + λr

2
∥x− vr∥2

}
.

Proof. According to Lemma 15 (with xi = xi,r+1, v = vr , S = [n] and x̄S = xr+1) and our requirement on
∥∇Fi,r(xi,r+1)∥, whenever λr,k ≥ 2δ, we can estimate

1

n

n∑
i=1

⟨∇fi(xi,r+1) +∇hi(x
r+1),vr − xi,r+1⟩ −

1

2λr,k

∥∥∥ 1
n

n∑
i=1

∇fi(xi,r+1)
∥∥∥2

≥ λr,k − δ

2

1

n

n∑
i=1

∥vr − xi,r+1∥2 −
1

λr,k

1

n

n∑
i=1

∥∇Fi,r(xi,r+1)∥2

≥ λr,k − 2δ

4

1

n

n∑
i=1

∥vr − xi,r+1∥2 ≥ 0.

Hence, at any iteration of the r-loop, the corresponding k-loop eventually terminates. Further, since λ0,0 ≤ 2δ,
we can easily prove by induction that the quantities λr,k stay reasonably bounded:

λr,0 ≤ 2δ, λr ≡ λr,kr ≤ 4δ =: λmax, ∀r ≥ 0. (E.1)

Proceeding exactly in the same way as in the proof of Lemma 16 and using the termination condition of the
k-loop, we conclude that, for any r ≥ 0, it holds that

1

λr
[f(xr+1)− f⋆] +

1 + µ/λr

2
∥vr+1 − x⋆∥2 ≤ 1

2
∥vr − x⋆∥2.

In view of (E.1), this means that, for any r ≥ 0,

1

λmax
[f(xr+1)− f⋆] +

1 + µ/λmax

2
∥vr+1 − x⋆∥2 ≤ 1

2
∥vr − x⋆∥2.

Following the same proof as in Appendix C.2 but with λ replaced by λmax, we obtain the first two claims.

It remains to estimate the total number of communication rounds required to construct the point x̄R. In order
to carry out the k-loop, the server needs to compute ∇f(vr) and send this vector, as well as vr and λr,0,
to each client, which requires O(1) communication rounds. Every iteration of the k-loop also requires O(1)
communication rounds, and the total number of such iterations is kr . Thus, every iteration of the r-loop
requires O(kr + 1) communication rounds. Furthermore, during the corresponding rounds, the server may also
additionally compute the function value f(xr+1) needed for updating the output point x̄r+1; this could be done,
e.g., inside the k-loop, alongside with the computation of the gradient ∇f(xr+1,k) needed to evaluate the “if”
condition. Thus, x̄R can be indeed computed after O(1)

∑R−1
r=0 (kr + 1) communication rounds. To estimate

the latter sum, observe that, by construction, for any r ≥ 0, we have λr+1,0 ≡ 1
2
λr,kr = 2kr−1λr,0. Taking

logarithms, we see that kr = 1 + log2
λr+1,0

λr,0
for any r ≥ 0. Thus,

R−1∑
r=0

(kr + 1) =

R−1∑
r=0

(
2 + log2

λr+1,0

λr,0

)
= 2R+ log2

λR,0

λ0,0
≤ 2R+ log2

2δ

λ̃
,

where the final inequality is due to (E.1) and our choice of λ0,0.

29

Algorithm 4 ACC-S-DANE with line search
1: Input: λ̃ > 0, µ ≥ 0, x0 = v0 ∈ Rd. Let hi = f − fi.
2: Set A0 = 0, B0 = 1, λ0,0 = λ̃.
3: for r = 0, 1, 2, . . . do
4: for k = 0, 1, . . . do
5: Find ar+1,k > 0 from the equation λr,k =

(Ar+ar+1,k)Br

a2
r+1,k

. Set Ar+1,k = Ar + ar+1,k.

6: yr,k = Ar
Ar+1,k

xr +
ar+1,k

Ar+1,k
vr .

7: for each device i ∈ [n] in parallel do
8: xi,r+1,k ≈ argminx∈Rd

{
Fi,r,k(x) := fi(x) + ⟨∇hi(y

r,k),x⟩+ λr,k

2
∥x− yr,k∥2

}
.

9: (stop running the local solver once ∥∇Fi,r,k(xi,r+1,k)∥ ≤ λr,k

2
∥xi,r+1,k − yr,k∥)

10: Aggregate local models: xr+1,k = 1
n

∑n
i=1xi,r+1,k.

11: if 1
n

n∑
i=1

⟨∇fi(xi,r+1,k) +∇hi(x
r+1,k),yr,k − xi,r+1,k⟩ ≥ 1

2λr,k

∥∥ 1
n

n∑
i=1

∇fi(xi,r+1,k)
∥∥2 then

12: kr = k and break the loop.
13: λr,k+1 = 2λr,k.
14: λr = λr,kr , xi,r+1 = xi,r+1,kr , xr+1 = xr+1,kr , ar+1 = ar+1,kr , λr+1,0 = 1

2
λr .

15: Ar+1 = Ar + ar+1, Br+1 = Br + µar+1.
16: vr+1 = argminx∈Rd

{ar+1

n

∑n
i=1[⟨∇fi(xi,r+1),x⟩+ µ

2
∥x− xi,r+1∥2] + Br

2
∥x− vr∥2

}
.

Theorem 28. Consider Algorithm 4. Suppose that each function fi is µ-convex for some µ ≥ 0, and {fi}ni=1

have δ-SOD for some δ > 0. Let λ̃ ≤ 2δ. If µ ≤ 16δ, then, for any R ≥ 1, it holds that

f(xR)− f⋆ ≤ 2µD2[
(1 +

√
µ

16δ
)R − (1−

√
µ

16δ
)R
]2 ≤ 8δD2

R2
,

where D := ∥x0 − x⋆∥. Otherwise, f(xR) − f⋆ ≤ 8δD2

(1+
√

µ
16δ

)2(R−1)
for any R ≥ 1. To ensure that

f(xR)− f⋆ ≤ ε for any given ε > 0, it suffices to set

R = Θ

(√
δ + µ

µ
log
(
1 +

√
min{µ, δ}D2

ε

))
.

Furthermore, the total number of communication rounds spent inside the r- and k-loops since the start of the
algorithm and up to the moment xR has been computed is

O(1)

R−1∑
k=0

(kr + 1) ≤ O
(
R+ log

2δ

λ̃

)
.

Proof. Using the same reasoning as in the proof of Theorem 27, we can justify that, at any iteration of the
r-loop, the corresponding k-loop eventually terminates, and λr,k stays uniformly bounded as in (E.1). Next, we
proceed in the same way as in the proof of Lemma 23 and use the termination condition of the k-loop to obtain
that, for any r ≥ 0,

Ar+1[f(x
r+1)− f⋆] +

Br+1

2
∥vr+1 − x⋆∥2 ≤ Ar[f(x

r)− f⋆] +
Br

2
∥vr − x⋆∥2.

This shows that, for any R ≥ 1,

f(xR)− f⋆ ≤ D2

2AR
.

To estimate the rate of growth of AR, we use the equation for ar+1 ≡ ar+1,kr and the bound on λr from (E.1).
This gives us, for any r ≥ 0, the following inequality:

Ar+1Br

a2
r+1

= λr ≤ λmax,

where Br ≡ 1 + µAr . Invoking Lemma 12, we get a lower bound on AR, and the first claim follows.

The bound on R via ε can be justified by the same argument as in the proof of Corollary 24.

To estimate the total number of communication rounds, we can follow exactly the same argument as in the proof
of Theorem 27.

30

0 1000 2000 3000 4000 5000 6000
Communication rounds

100

101

102

103

104

f(x
)-f

0 10000 20000 30000 40000 50000 60000
Total number of gradient oracle calls

100

101

102

103

104

f(x
)-f

DANE-GD S-DANE-GD (ours)

Figure E.1: Comparison of S-DANE against DANE for solving a convex quadratic minimization problem with
the same number of local steps.

Algorithm 5 S-DANE (DL)
1: Input: λ > 0, η > 0, γ ∈ [0, 1], x0 = v0 ∈ Rd, s ∈ [n]
2: for r = 0, 1, 2 . . . do
3: Sample Sr ∈

(
[n]
s

)
uniformly at random without replacement

4: for each device i ∈ Sr in parallel do
5: Set xi,r+1 ≈ argminx∈Rd

{
Fi,r(x)

}
, where

6:
Fi,r(x) := fi(x)− ⟨x,∇fi(v

r)−∇fSr (v
r)⟩+ λ

2
∥x− vr∥2. (option 1)

7:
Fi,r(x) := fi(x) +

λ

2
∥x− vr∥2. (option 2)

8: Set xr+1 = 1
s

∑
i∈Sr

xi,r+1

9: Set vr+1 = γxr+1 + (1− γ)vr − η 1
s

∑
i∈Sr

∇fi(xi,r+1)

F Additional Details on Experiments

F.1 Convex Quadratics

We generate random vectors {bi,j} and diagonal matrices {Ai,j} in the same way as in [22] such that
maxi,j{∥Ai,j∥} = 100 and δ ≈ 5. We use n = 10, m = 5 and d = 1000. We compare S-DANE
and ACC-S-DANE with DANE. We use the standard gradient descent (GD) with constant stepsize 1

200
≤ 1

2L
for all three methods as the local solver, where L is the smoothness constant of each fi. We use λ = 5 for
all three methods. We use the stopping criterion ∥∇Fi,r(xi,r+1)∥ ≤ λ

2
∥xi,r+1 − vr∥ for our methods (vr

becomes yr for the accelerated method). We use ∥∇F̃i,r(xi,r+1)∥ ≤ λ
r+1

∥xi,r+1 − xr∥ for DANE.

F.2 Deep Learning Tasks

We simulate the experiment on one NVIDIA DGX A100. We split the training dataset into n = 10 parts
according to the Dirichlet distribution with α = 0.5. We use SGD with a batch size of 512 as a local solver
for each device. For all the methods considered in Figure 3, we choose the best number of local steps among
{10, 20, . . . 80} (for SCAFFNEW, this becomes the inverse of the probability) and the best learning rate among
{0.02, 0.05, 0.1}. For this particular task, it is often observed that using control variate makes the training less
efficient [38]. The possible issue comes from the fact that local smoothness is often much smaller than local
dissimilarity for this task. We here remove the control variate term on line 6 in S-DANE which is defined
as ⟨x,∇fi(v

r) − ∇fSr (v
r)⟩. Moreover, if we write the explicit formula for vr+1 on line 8, it becomes

vr+1 = γxr+1 + (1 − γ)vr − η 1
s

∑
i∈Sr

∇fi(xi,r+1) with γ ∈ [0, 1] and η > 0. We set γ = 0.99 and η
to be the local learning rate in our experiment. The method can be found in Algorithm 5. Note that the only
difference between it and FEDPROX is the choice of the prox-center. The best number of local steps for the
algorithms without using control variates is 70 while for the others is 10 (otherwise, the training loss explodes).

F.3 Implementation

To implement Algorithms 1 and 2 (Algorithm 5 with option 2 is the same as Algorithm 1) , each device has the
freedom to employ any efficient optimization algorithm, depending on its computation power and the local data
size. At each communication round r, these local algorithms are called to approximately solve the sub-problems
defined by {Fi,r}, until the gradient norm satisfies a certain accuracy condition that is stated in the corresponding

31

theorems. The server only needs to perform basic vector operations. Note that Gr defined in those algorithms
has a unique solution so that vr+1 can be explicitly derived (in the same form as line 9 in Algorithm 5).

G Impact Statement

This paper presents work that aims to advance the field of distributed Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted here

32

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: In the abstract and the introduction, we first stately clearly what are goals of this study,
which is first to achieve the best-known communication complexity and then to maintain the overall
computation efficiency. We then discussed the performance of the previous state-of-the-art algorithms.
Finally, we compared our methods with them (for instance in Table 1) and showed what contribution
and scope we made in this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 7, we discuss the limitations of our work, in terms of the slightly stronger
assumption on µ-convexity and the lack of non-convex analysis. On top of that, we also discuss
potential future works building on our results.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: We make clear assumptions and provide complete and concise proofs in the Appendix
for all the claims written in the main text.

33

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the necessary information to reproduce our experimental results in
Section 6 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide the github link to the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The details of the experiments to reproduce our experimental results can be found in
Section 6 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Two sets of our experiments are defined in a totally deterministic setting (no randomness.)
We ran the other two sets of experiments three times with different randomness seeds. The results are
almost indistinguishable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: We provide the information on the computing resources at the start of Section F for the
deep learning experiment. The other experiments are run on a MacBook Pro laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and understood Code of Ethics and we have conducted our research in
accordance with it

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We provide an impact statement in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

36

https://neurips.cc/public/EthicsGuidelines

Justification: Our resesarch does not have any risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly cite and credit the original owners of the open-source datasets LIBSVM and
CIFAR 10 in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: We do not release any new assets in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

37

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

38

	Introduction
	Problem Setup and Background
	Proximal-Point Methods on Single Machine
	Distributed Proximal-Point Methods

	Stabilized DANE
	Accelerated S-DANE
	Dynamic Estimation of Similarity Constant by Line Search
	Numerical Experiments
	Conclusion
	More Related Work
	Technical Preliminaries
	Basic Definitions
	Useful Lemmas

	Proofs for S-DANE (Algorithm 1)
	One-Step Recurrence
	Full Client Participation (Proof of Theorem 1)
	Partial Client Participation (Proof of Theorem 5)
	Stochastic Local Solver

	Proofs for Accelerated S-DANE (Algorithm 2)
	One-Step Recurrence
	Full Client Participation (Proof of Theorem 6)
	Partial Client Participation
	Stochastic Local Solver

	Dynamic Estimation of Similarity Constant by Line Search
	Additional Details on Experiments
	Convex Quadratics
	Deep Learning Tasks
	Implementation

	Impact Statement

