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ABSTRACT

Modern deep learning is increasingly characterized by the use of open-weight
foundation models that can be fine-tuned on specialized datasets. This has led
to a proliferation of expert models and adapters, often shared via platforms like
HuggingFace and AdapterHub. To leverage these resources, numerous model up-
cycling methods have emerged, enabling the reuse of fine-tuned models in multi-
task systems. A natural pipeline has thus formed to harness the benefits of transfer
learning and amortize sunk training costs: models are pre-trained on general data,
fine-tuned on specific tasks, and then upcycled into more general-purpose sys-
tems. A prevailing assumption is that improvements at one stage of this pipeline
propagate downstream, leading to gains at subsequent steps. In this work, we
challenge that assumption by examining how expert fine-tuning affects model up-
cycling. We show that long fine-tuning of experts that optimizes for their indi-
vidual performance leads to degraded merging performance, both for fully fine-
tuned and LoRA-adapted models, and to worse downstream results when LoRA
adapters are upcycled into MoE layers. We trace this degradation to the memo-
rization of a small set of difficult examples that dominate late fine-tuning steps and
are subsequently forgotten during merging. Finally, we demonstrate that a task-
dependent aggressive early stopping strategy can significantly improve upcycling
performance.

1 INTRODUCTION

The rise of open-weight foundation models, such as CLIP (Radford et al., 2021} Ilharco et al.,|2021),
T5 (Raffel et al., 2020) and the more recent Gemma (Team, |2025)), Llama (Grattafior1 et al., 2024)
and DeepSeek (DeepSeek-All 2024), has caused a paradigm shift in the field of machine learning.
Instead of training a model from scratch as was previously the norm, it is now increasingly common
for practitioners and researchers alike to start with a pre-trained foundation model and then fine-tune
it on a task of interest (Stanford-CRFM, 2021)). This approach leverages the benefits of transfer-
learning, leading to performance and robustness gains. The proposal of multiple parameter-efficient
fine-tuning (PEFT) methods (Hu et al., 2022} Liu et al.,2022), which reduce the computational costs
of fine-tuning and limit catastrophic forgetting by only updating a subset of the model parameters,
further enables this approach. This has lead to a proliferation of different versions of these founda-
tion models and of PEFT adapters, fine-tuned on a variety of downstream tasks, which are openly
accessible on public model repositories such as Hugging Face (Wolf et al.,2019) and Adapter Hub
(Pfeiffer et al., 2020)).

Model upcycling, the practice of reusing existing models to create new, more capable deep learning
systems (Zhang et al.| [2024; He et al.| 2024]), capitalizes on this proliferation of fine-tuned models
and adapters. Two upcycling strategies stand out: model merging, and model MoErging. Model
merging methods combine multiple fine-tuned versions of the same foundational model into one,
preserving the size and therefore the computational and memory requirements of the original pre-
trained model while infusing it with multiple new capabilities (Matena & Raffel, 2022} Jin et al.,
2023 [Ilharco et al.l 2023 [Yadav et al.| 2023} |Yu et al., 2024} |[Davari & Belilovsky, [2024). The
advent of model merging techniques and open-source libraries for merging (Kandpal et al., [2023;
Goddard et al., [2024) has had an important impact on the deep learning community, providing a
simple, training-free way to create better models from already existing checkpoints and adapters.
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In the past year, many of the top performing models on HuggingFace’s Open LLM Leaderboard
(Beeching et al.,|2023) have resulted from the merging of fine-tuned checkpoints (Yu et al.,[2024).

Model MoErging (Yadav et al.| |2024) similarly combines multiple adapted experts, but instead of
fusing the parameters directly, MoErging approaches such as|Ostapenko et al.|(2024); Mugeeth et al.
(2024) combine adapters into modular, mixture-of-experts (MoE) type layers (Shazeer et al., 2017)
expanding the model’s size and capabilities. A routing mechanism determines which input, or part
of the input, gets processed by which expert modules. For this upcycling strategy further training is
often required to let the router and expert adapters learn how to interact with one another.

A natural pipeline has therefore emerged to leverage the benefits of transfer-learning and amortize
past sunk training costs: large models are pre-trained in an unsupervised fashion on large amounts
of general, unlabeled data; these foundational models are then fine-tuned, potentially using PEFT
techniques, on specialized datasets or tasks; finally these fine-tuned expert checkpoints or adapters
are upcycled and combined to create more capable, often multi-task models.

A common assumption is that increased performance at one stage of this pipeline will propagate
downstream. In other words, a stronger pre-trained model should yield a stronger fine-tuned model,
and similarly, stronger fine-tuned experts should produce a stronger merged / MoErged model. We
challenge this assumption in this work by studying the following questions: How does expert train-
ing affect upcycling? and Do all capabilities and knowledge transfer equally well?

We find that long fine-tuning that optimizes for expert performance can substantially hurt model up-
cycling, a phenomenon to which we refer as “overtraining” in the context of this paper. While over-
trained experts might be better on their respective fine-tuning tasks, they lead to worse performance
when merged or when used as initializations for model MoErging. We validate this phenomenon
across diverse settings, including merging fully fine-tuned and PEFT models, performing MoErging
with LoRA adapters, in both vision and language domains and across different model sizes. Ad-
ditionally, we identify what type of knowledge gets preserved during model merging. We find that
easy examples are correctly classified by merged models while harder data points are overwhelm-
ingly forgotten during the merging process. While some recent work has hinted that undertraining
experts can benefit merging performance (Pari et al., 2024} Zhou et al.| [2025)), our work provides
a systematic analysis of this phenomenon, and demonstrates how a simple early stopping strategy
can significantly improve the efficacy of existing merging and MoErging techniques. Our research
introduces a critical new dimension to model upcycling, showing how careful expert training, and
targeted checkpoint release can unlock improved performance.

Concretely, our contributions are the following:

* We show that overtraining full fine-tuned (FFT) models produces sub-optimal merges ( Sec-
tion [3.I), and that the negative impact is even stronger when using LoRA adapters for
parameter-efficient fine-tuning (Section 3.2));

» We explain this phenomenon through the lens of data difficulty in Section[4] showing that later

training steps are primarily guided by the loss of a small fraction of difficult examples which

are predominantly forgotten when merging.

We show that for model MoErging, overtraining the constituent experts leads to lower final

accuracy after further multi-task training of the modular model (Section [3.3).

We show that a task-dependent training time of experts can bring a further boost in upcycling

performance. We propose a simple early stopping strategy that favors expert undertraining.

This strategy effectively adapts the training duration for each task, and can recover optimal

upcycling accuracy (Section [5).

2 PRELIMINARIES AND METHODOLOGY

2.1 MODEL MERGING

Model merging has recently gained a lot of popularity as a means to combine the abilities of mul-
tiple fine-tuned versions of the same pre-trained model into one, preserving the model architecture
and size. Formally, a model merging method, M erge, takes the parameters 6y of the pre-trained
foundation model, and parameters {6, } ;<7 of the multiple experts, which are fine-tuned models on
each task ¢ from a set 7, and outputs the parameters of the merged model 8 = Merge(6o, {0;}ite7)-
A simple example of this combination step is averaging the different fine-tuned models’ parameters:

é:‘—}rlztget. (1)
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A common challenge in model merging is the observed performance degradation of the merged
model 6 on individual tasks ¢ € T, relative to the original fine-tuned model ;. This phenomenon
has been coined “interference”, and a plethora of merging methods have been proposed to reduce
interference when merging models and to preserve as much of the accuracy of the expert models as
possible (Matena & Raffel, [2022; [Jin et al., 2023} [Yadav et al., 2023} [Yu et al., 2024; [Deep et al.,
2024; Davar1 & Belilovsky| 2024). These methods have mainly focused on modifying the experts
parameters {6; }:c7 or the respective fask vectors {7 }+e1, where 7 = 6; — 6, and / or changing
the combination step. We consider 4 popular merging methods:

* Average simply averages the parameters of all fine-tuned models following Equation (I));

¢ Task Arithmetic (TA) (Ilharco et al., 2023) scales the sum of the task vectors by a tuned scalar
A, and adds it to the pre-trained model parameters, returning 0o + A >, 7¢;

* TIES (Yadav et al.l 2023) prunes low magnitude parameters from each task vector, then only
averages the parameters from each sparse task vector that have the same sign as the weighted
majority;

* DARE (Yu et al.,|2024) randomly prunes a fraction of each task vector parameters; the remain-
ing sparse task vectors are then rescaled based on the pruning fraction, and are combined as in
the TA method.

2.2 MODEL MOERGING

Another popular class of upcycling strategies besides model merging are model MoErging tech-
niques. MoErging methods aggregate multiple fine-tuned experts with the use of modular architec-
tures to build stronger deep learning systems. The large design space of these methods, paired with
their effectiveness has led to the rapid development of many new methods in the recent past (Yadav
et al.,|2024). A key feature of MoErging approaches is modularity; multiple experts are considered
simultaneously and a routing mechanism decides which input, or which part of an input, is processed
by which expert.

In this work we consider per-token and per-layer routing, following recent works which suggest
this leads to better performance relative to other possible configurations (Ostapenko et al., 2024
Mugeeth et al., 2024). Concretely, let W € Reut*din ) ¢ Rut denote the weight matrix and
bias of a pre-trained linear layer, whose original output is Wx + b. We assume the availability of
a fine-tuned expert module E}(-) for each target task ¢ € 7 and we replace the original linear layer
with a MoE layer. A router 7 parameterized by matrix R € RI71*%x computes routing logits Rx
and applies softmax o(-) to obtain the routing probabilities. The outputs of the experts with top k
highest probabilities are then computed and weight-averaged. The resulting MoE layer output is:

Dten@) T(@)e Ey(x)
Dter(a) T()

y = Wz+b + )

where Ij;(z) = {t | m(x); € top k elements of 7(x)}. We use k = 2 for our experiments.

We consider the “multi-task”™ setting where we assume access to all the datasets the experts were
trained on. After updating every linear layer of the pre-trained model with available adapters, we
continue training the MoE-fied model on the multi-task mixture of data by freezing the original
model parameters and only updating the router and the expert modules.

2.3 LOW-RANK ADAPTATION

Modern foundation models have tens, if not hundreds, of billions of parameters, making full
fine-tuning impractical on typical hardware (Grattafiori et al. [2024; |DeepSeek-All 2024; [Team,
2025)). Parameter-Efficient Fine-Tuning (PEFT) updates only a small subset of the parameters to
ease the computational burden and curb catastrophic forgetting (Hu et al.| [2022; [Liu et al.l [2022).
Low-Rank Adaptation (LoRA) (Hu et al.l 2022), has emerged as one of the most popular PEFT
methods due to its simplicity and effectiveness. LoRA inserts two low-rank matrices A and B into
selected linear layers of a model. If the input and output dimension at that layer are n;,, and 74y,
LoRA uses a rank r < min(ny,, Moyt ) to define matrices A € R"™*"i» and B € R™ut*", The
output of that layer then becomes (Wx + b) + ©BAx where « is a scaling hyperparameter. Dur-
ing fine-tuning, the original model parameters are frozen and only the LoRA’s A, B matrices are
updated.
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Merging LoRA adapters At each layer, the weight update induced by LoRA is exactly
AW = Wiine-tuned — Whre-trained = BA Consequently, standard merging techniques can be di-
rectly applied to LoRA-adapted models if the updates *BA are added to the pre-trained weights
or if they are directly used to compute the task vectors. Merging the LoRA A and B matrices
separately is not recommended since this can lead to mismatched representation spaces resulting in
poor performance (Stoica et al.,2025). Nevertheless, recent work has observed that merging LoRA-
adapted models is harder than merging FFT models (Tang et al., [2024; |Stoica et al.| [2025), often
leading to significant performance degradation.

Model MoErging with LoRA adapters Using LoRA adapters for model MoErging is straight-
forward, with each adapter being used to define one expert module in the MoE layer. Let A; and
B; denote the LoRA low-rank matrices obtained from fine-tuning on task ¢, then we can define the
expert modules in Equation (2) as E;(z) = “B;A;x for each task of interest t € 7.

2.4 DATA DIFFICULTY

Prior work has examined how individual data points influence neural network training dynamics
and properties such as generalization, memorization, and privacy, leading to the development of
various data difficulty scores (Kwok et al., | 2024). These scores have been used for data pruning,
i.e. removing certain examples from the training set, without harming test performance (Paul et al.,
2021). In particular, large fractions of easy examples can be pruned since they contribute little to
learning, while removing a small fraction of the hardest examples can improve generalization, as
these are likely to be outliers with uncommon features (Toneva et al.,[2019), or examples with noisy
/ incorrect labels (Paul et al., [2021). (Sorscher et al., [2022) further showed that appropriate data
pruning can yield better-than-power-law error scaling with dataset size. A natural relationship exists
between data difficulty and deep learning generalization and memorization. For instance, [Sorscher
et al.|(2022) found a 0.78 Spearman rank correlation between EL2N scores (Paul et al.,[2021]) and the
memorization score presented by Feldman & Zhang| (2020). This indicates that, in order to classify
difficult examples, models often need to memorize them. This relationship between memorization
and generalization has been further substantiated with theoretical results in simpler settings (Attias
et al., [2024; [Feldman, 2020)).

We utilize data difficulty scores to identify which knowledge is transferred during upcycling. Specif-
ically, we use the EL2N score proposed by [Paul et al.[(2021) which is the norm of the error vector,
i.e. the predicted class probabilities minus the one-hot label encoding. The EL2N score of a training
example 2 with one-hot encoded label y is defined to be E||p(, z) — y||2, where p(6, ) are the
predicted class probabilities of example x by a deep learning model with parameters 6.

2.5 MODELS AND DATASETS

Vision domain We evaluate merging performance in a standard vision benchmark setting using
the official codebase from [[lharco et al.|(2023): a CLIP (Radford et al., [2021) pre-trained ViT-B-32
model (Dosovitskiy et al., 2021) is fine-tuned on 8 image classification tasks: Cars (Krause et al.,
2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al.,|2019), GTSRB (Stallkamp et al.,|2012),
MNIST (Deng, |2012), RESISC45 (Cheng et al., [2017), SUN397 (Xiao et al) [2010) and SVHN
(Netzer et al., 2011). The fine-tuning is done with a batch size of 128, the AdamW optimizer
(Loshchilov & Hutter, [2019; |Paszke et al.|[2019) and a learning rate of 1e-5. We use a learning-rate
scheduler with linear warm-up for the first 10% of training, followed by cosine annealing. When
evaluating merged models, we use the corresponding frozen classification head for each task.

Language domain For our natural language processing (NLP) experiments, we adopt the setting
of the TIES paper (Yadav et al., 2023) and use their released code. We use pre-trained T5-Base
models (Raffel et al., 2020) which we fine-tune on 7 tasks: QASC (Khot et al.l [2020), WikiQA
(Yang et al.| 2015) and QuaRTz (Tafjord et al.| 2019) for question answering; PAWS (Zhang et al.,
2019) for paraphrase identification; Story Cloze (Sharma et al., 2018 for sentence completion and
Winogrande (Sakaguchi et al.| [2020) and WSC (Levesque et al., |2012) for coreference resolution.
We use the AdamW (Loshchilov & Hutter, |2019) optimizer with a batch size of 256, a constant Ir of
0.0001 and no weight decay. bfloat16 mixed precision training is used to reduce GPU utilization.

Evaluation For all our experiments we report the raw, un-normalized test accuracy averaged
across the multiple considered tasks. We chose not to use the popular normalized accuracy met-
ric because the set of experts being merged here differs across experiments, which also changes the
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Figure 1: Average test accuracy across the 8 vision classification tasks for merged and MoErged
ViT-B-32 experts. Left: merging fully fine-tuned experts, we plot the average accuracy of the expert
models evaluated on their respective tasks as well as merging accuracies for multiple methods;
Center: merging LoRA-adapted experts; Right: final multi-task accuracy of MoE-fied models vs.
LoRA training steps used for initialization. Shaded regions show mean=+std over 3 random seeds.

normalization factor and makes comparisons inconsistent. A more detailed justification is provided
in Appendix [Al Our experiments are ran using the PyTorch (Paszke et al.,[2019) and HuggingFace
(Wolf et al.;,2019) open source machine learning frameworks on an Nvidia Quadro RTX 8000 GPU
with 48GB of memory.

3 LONGER FINE-TUNING HURTS MODEL UPCYCLING

In this section, we present results challenging the common assumption that better fine-tuned models
lead to better upcycling results. We show that overtrained experts lead to worse merged models for
both FFT and LoRA, as well as lower accuracy when used to initialize MoErging methods.

3.1 MERGING FULLY FINE-TUNED MODELS

While a multitude of model merging methods have been proposed, the influence of the fine-tuning
procedure itself on merging remains understudied. Most prior works have used similar fine-tuning
protocols, typically training for a fixed 2000 steps in the vision setting described in Section [2.5]
Instead of proposing yet another model merging method, we take a look at how the number of
training iterations affects merging. We fine-tune our vision and NLP models for varying number of
training steps s € {2,4, 8,16, 32, 64,128,256, 512, 1024, 2048} on every considered dataset. Each
merge combines either 8 vision or 7 NLP experts (one per task) all trained for the same duration.

Undertrained experts result in better merging Figure[T](left) shows that, except for Average, all
methods achieve better merging performance when the ViT experts are trained for just 256 training
steps, only ~1/8 of the commonly used 2000. TA, TIES, and DARE yield models with ~3% higher
accuracy at 256 steps compared to 2048, a gain comparable to the 3.4% gap between TA and the
more sophisticated TIES at 2048 steps. The same conclusions hold in the NLP setting (Figure 2]
left), with both TA and TIES peaking around 256-512 training steps. Further training leads to a
drop in merging performance of over 3% for both merging methods. Notably, merging undertrained
experts with TA outperforms merging experts trained for longer with TIES. Average is the only
method that seems to benefit from training the experts longer, but it consistently underperforms
overall. Moreover, TA, TIES, and DARE show similar trends across training durations, suggesting
that training length itself, rather than the merging method, plays a key role in merging performance.

Better experts do not necessarily lead to better merging The black lines in the left and central
panels of Figures|1|and |2 show the average accuracy of the expert models on their respective fine-
tuning tasks. In both the vision and NLP settings, we observe that higher expert accuracy does not
necessarily translate into better merging performance. In the vision setting, expert models trained
for 256 steps achieve an average accuracy of 88.4%, which is 1.6% lower than at 2048 steps (90.0%).
Nevertheless, merging after 256 steps yields models with approximately 3% higher accuracy than
merging after 2048 steps. The discrepancy is even more pronounced in the NLP setting. Expert
accuracy improves from 78.2% at 256 steps to 82.4% at 1024 steps, a 4% gain, yet the merging
accuracy of TA and TIES drops by around 3% over the same interval.

Effect of model scale In the right panel of Figure [2] we compare Task Arithmetic merging accu-
racy across different model sizes in the T5 family: T5-Base (220M parameters), T5-Large (770M),
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Figure 2: Average test accuracy across all 7 NLP tasks for fully fine-tuned (left) and LoRA-adapted
(center) T5-Base models. We plot the average accuracy of the expert models evaluated on their re-
spective tasks as well as merging accuracies for multiple methods. Right: Task Arithmetic merging
accuracy for different T5 model sizes. Shaded regions show mean=+std over 3 random seeds.

and T5-3B (3B). We observe that the same trend persists across scales: upcycling performance peaks
at an intermediate number of training steps before degrading with longer fine-tuning. Additional
merging results are provided in Appendix [D]

3.2 MERGING LORA ADAPTERS

We now extend our previous results to the highly relevant setting of merging LoRA adapters. We
find that long training of LoRA experts hurts merging performance even more than in the FFT case.
We add LoRA adapters at every linear layer of the original ViT-B-32 and T5-Base models. We use
LoRA rank r = 8, scaling parameter « = 32 and learning rates le-4 and 5e-4 for the ViT and T5
models respectively. We train the LoRAs for different number of steps s to evaluate the impact of
training duration on accuracy and mergeability. The parameters of the base model are kept frozen.

Overtraining severely impairs LoORA merging The center panels of Figures|I|and[2]show expert
and merging accuracies for our vision and NLP LoRA models, respectively. For the ViT mod-
els, merging performance peaks at 128 training steps (64 for DARE), with accuracies ranging from
65—-67% across all methods. Although further training improves expert accuracy by about 1%, it
significantly degrades merging performance, with accuracy drops of 5-6% for Average, TA, and
DARE, and nearly 17% for TIES. In the NLP setting, different methods reach peak merging perfor-
mance at different training durations: 512 steps for Average (66.5%), 256 for TA (68.5%), and 128
for TIES (68.6%). Expert models, however, continue to improve, reaching an average accuracy of
81.9% at 2048 steps. Despite this, merging at 2048 steps harms performance, with drops of 2.5%,
4.6%, and 9.9% for Average, TA, and TIES, respectively. In Appendix [E] we examine the impact of
LoRA rank and show that higher ranks lead to smaller performance degradations when merging.

3.3 MODEL MOERGING WITH LORA EXPERTS

We next analyze how the performance of MoE-fied models, initialized with LoRA experts, is af-
fected by the training time of these experts. We use the LoRA adapters obtained in Section with
different number of training steps to initialize our MoE experts, one LoRA for each task. The routing
mechanism is initialized using Arrow (Ostapenko et al.| 2024)), where the weight vector associated
with each expert is the first right-singular vector of the B A matrix multiplication. These vectors are
assumed to determine the direction of most variance induced by expert F, for t € T in the space of
hidden states induced by data from task ¢.

We create one MoE-fied model for each number of steps s, i.e. for each different model we initialize
the MoE layers with the expert LoRAs for each task, all trained for s steps. Once the MoE-fied
model has been initialized using the fine-tuned LoRAs, we further train the routing mechanism and
the LoRA experts in a multi-task fashion for 4000 steps with a peak learning rate of le-5, with the
base parameters frozen. We report the final, multi-task, accuracies over the 8 classification tasks in
the right panel of Figure[T]

We observe that the MoE-fied models initialized with overtrained LoRA experts reach about 2%
lower final multi-task accuracy than the models initialized with experts trained for less. Even expert
LoRAs trained for as little as 4 steps on their respective tasks reach a higher final multi-task accuracy
than those overtrained. We conclude that overtraining experts can hurt downstream MoErging.
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Figure 3: Left: Percentage of total loss for examples in different data difficulty bins. Bin 1 represents
10% easiest examples (lowest EL2N scores), bin 10 represents 10% hardes examples (highest EL2N
scores). Mean across all 8 vision datasets shown. Right: Merging accuracy for experts trained
without the hardest examples. Experts are trained on data with EL2N scores from percentile 0 to
varying max percentiles in {90, 95, 98,99, 100}.

4  WHY IS UNDERTRAINING BENEFICIAL FOR MERGING?

Easy examples are learned early during training while harder examples are learned later. To
link our main observation to the training duration of the expert models we track the loss of the
training examples during training, these results are shown in the left panel of Figure 3] We group
the training examples into 10 bins according to their data difficulty scores, the 10% of examples
with the lowest EL2N scores are in bin 1, etc. EL2N scores are computed early in fine-tuning, after
only 32 steps, across 10 different seeds. We observe that easy examples, which have more common
features, are learned early in training. The rest of training is dedicated to learning the more difficult
examples. In fact, the top 10% of hardest examples account for over 50% of the total loss during
most of training. As discussed in Section[24] these results imply that in later training steps models
try to memorize difficult examples with uncommon features or noisy labels.

Model merging leads to the forgetting of difficult examples. To analyze why merging benefits
from less training of the expert models we take a look at which examples are forgotten during
merging, i.e. which examples from the training set are correctly classified by the expert models but
incorrectly classified once these models are merged. We hypothesize that merging primarily affects
the classification of difficult examples. Memorizing such examples, with uncommon features or
noisy labels, is likely to yield parameter updates which are unique from one dataset to the other, and
which will be destroyed by the aggregation step of model merging.

Figure ] shows pie charts of the examples which are forgotten during merging, with each “slice”
representing one of ten data difficulty bins. Hard examples are overwhelmingly forgotten when
merging, with over 50% of forgotten data points being in the top 30% in terms of data difficulty.
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Figure 4: Proportion of forgotten examples in each data difficulty bin for three different model merg-
ing methods. Bin 1 represents 10% easiest examples (lowest EL2N scores), bin 10 represents 10%
hardest examples (highest EL2N scores). Hard examples are overwhelmingly forgotten when merg-
ing with all methods, with the 30% hardest examples representing over 50% of forgotten examples.

From these 2 observations, we conclude that fine-tuning for longer, which mainly helps the experts
memorize difficult examples, is not beneficial to merging since those harder examples will most
likely be forgotten during the merging procedure.
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Difficult examples are still necessary for good generalization. We remove difficult examples
from expert training to see how this effects merging performance. Past work has determined that
removing a small percentage of the most difficult examples can help generalization (Toneva et al.,
2019; |Paul et al., [2021). We remove the top 1, 2, 5 or 10% most difficult examples from training
to see the impact on downstream merging, the results are shown in the right panel of Figure [3] We
see that the best merging results are achieved when the entire available data is used for training.
Removing a fraction of the most difficult examples consistently yields lower merging performance,
with more data removed leading to greater performance loss. This suggests that some amount of
memorization of hard examples / uncommon features during fine-tuning is beneficial for merging.

5 AGGRESSIVE EARLY STOPPING IMPROVES UPCYCLING RESULTS

We next examine the variability of optimal expert training time among different tasks. We find that
upcycling can be further improved if the stopping time is optimized for a specific task, and propose
a strategy on when to stop training.

The learning rate scheduler we use in Section[3] i.e. linear warm-up followed by cosine decay, is a
popular choice in the literature for training vision models, and has been extensively used in recent
model merging papers. Both the warm-up and the decay phases are beneficial for performance since
the former provides stability at the start of training while the latter helps convergence with smaller
steps at the end of training. Therefore, our early stopping strategy uses a learning rate scheduler
with warm-up and decay phases which can adapt to the varying training length induced by early
stopping. Altogether, our proposed early stopping strategy uses a simple learning rate scheduler
paired with an early stopping condition: a linear warm-up phase of a fixed number of steps followed
by a “reduce learning rate on plateau” phase which gradually decreases the learning rate when a
plateau is observed in the validation accuracy. Once the learning rate is decreased below a certain
threshold, training is stopped.

Table 1: Merging accuracy (%) for the overtrained, optimal and early stopped experts. Mean and
standard deviation across 3 random seeds shown.

Average Task Arithmetic TIES DARE
FFT 2048 steps 65.9 £0.2 69.8 +0.27 73.8 £0.4 69.6 £0.3
FFT best (# steps) 65.9 +0.2 (2048)  72.7 £0.2 (256)  75.8 £0.4 (256) 72.6 +£0.3 (256)
FFT early stop 64.5 £0.1 72.6 £0.5 74.7 £0.3 72.5 £0.5
LoRAs 2048 steps 60.3 +0.3 61.1 +£0.3 50.7 +0.4 58.8 £0.5
LoRAs best (# steps)  65.4 +0.4 (128) 67.0 £0.5 (128)  66.9 +0.6 (128)  64.7 £0.1 (64)
LoRAs early stop 65.6 +£0.4 68.0 +0.8 67.1 £0.6 65.3 £0.3

We fine-tune FFT and LoRA models on the 8 considered vision tasks. We use a fixed num-
ber of 50 steps for the linear warm-up, then we evaluate accuracy on a validation set every
5 training steps and multiply the learning rate by a factor of 0.5 when the validation accu-
racy has not improved for 3 consecutive validation rounds. The peak learning rates are le-
5 and le-4 for the FFT and LoRA models respectively. In Table [, we report the merged
model’s average accuracy across eight tasks. We compare the merging of early stopped ex-
perts to two baselines from Section merging “overtrained” models (trained for 2048 steps)
and merging the checkpoints that achieved the highest accuracy among all training durations.
We see that the models trained using our simple task-
dependent early stopped strategy yield merges that
are better than those of overtrained models and as

Table 2: Early stopping MoErging results

good, if not better, than the best merged experts ob-  Expert initialization Avg. accuracy
tained from a single stopping time, as presented in 2048 steps LoRAs 8514+ 0.1
Sections[3.T]and[3.2] Early stopping seems to work  Begt LoRAs (256 steps) 8734+02
especially well for LoRA adaptation, yield results on  Early stop LoRAs 873 +0.1

average better than the best ones from Section

We also use the early-stopped LoRAs to initialize MoE layers and continue training in a multi-task
fashion, as in Section[3.3] As shown in Table 2] the MoErged models initialized with the early stop
LoRAs achieve the same accuracy as the best LoRAs across all training steps.
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6 RELATED WORK

Model merging Combining multiple versions of a model into a single, more capable one has been
a powerful technique in deep learning, and a very active research area (Yang et al., 2024)). We review
some of the popular methods in Appendix [B] These merging methods often rely on the so-called
linear mode connectivity (Frankle et al., |2020; |Sharma et al., 2024), i.e., minima in a deep learning
model’s loss landscape that are connected by a low loss linear path in parameter space. Models
that share a significant part of their training trajectories were found to be linearly mode connected
(Frankle et al.,|2020; Neyshabur et al., [2020). Therefore, it is generally assumed that different fine-
tuned versions of the same pre-trained model can be merged successfully. [Sharma et al.| (2024) goes
beyond that, exploring merging of experts that were trained from different or poorly performing
pre-trained models. However, little attention has been paid to how the expert fine-tuning procedure
itself, specifically its duration, affects merging performance.

Model MoErging Model MoErging methods propose to re-use expert modules by combining
them into mixture-of-experts (MoE) layers (Shazeer et al., [2017)), with a router deciding which
input, or part of an input, is processed by which expert module. Numerous model MoErging tech-
niques have been proposed, with varying expert, router and application design choices (Yadav et al.,
2024; Huang et al.}2024; |Ostapenko et al.,|2024; |Mugeeth et al.,[2024). While existing surveys and
methods focus on routing algorithms and module selection, none examine how expert overtraining
influences downstream MoFErging efficacy to our knowledge. Our MoErging setup is comparable
to |Ostapenko et al.| (2024), where LoRA experts are combined into MoE layers and the router is
initialized with Arrow, except that we assume access to training data and continue training.

Expert training time Most model merging and MoErging papers do not examine how expert
fine-tuning affects downstream upcycling, there are however two notable exceptions. [Zhou et al.
(2025) show that the effectiveness of taskvector based approaches is largely driven by first-epoch
gradients and therefore propose alternating 1-epoch fine-tuning and merging. While they note that
less training can improve accuracy, they only test 1 epoch. Given the disparity in dataset sizes,
1 epoch of training can yield either overtrained experts (on large datasets) or undertrained experts
(on small datasets). Secondly, [Pari et al.| (2024) observe representational incompatibilities when
merging highly specialized experts but study only two-model merges and their solution is to bypass
merging altogether and use MoErging instead. To our knowledge, we are the first to systematically
link expert training duration to downstream merging and MoErging outcomes, to analyze merging
through example difficulty, and to propose an early-stopping strategy that adapts to dataset hetero-
geneity. Finally, although the TIES Merging paper (Yadav et al.|[2023)) uses early stopping, it is only
used to avoid expert overfitting and its effect on merging is not studied.

Analogous to our work, others have studied how scaling pre-training impacts downstream fine-
tuning. A large scale study on vision models, Abnar et al.|(2022) found that as pre-training accuracy
improves, fine-tuning saturates. More recently, |[Springer et al.|(2025) show that over-training LLMs
during pre-training can harm fine-tuned performance on both in- and out-of-distribution tasks.

7 CONCLUSION

In this paper, we challenged the assumption that better fine-tuned experts yield better upcycling
performance. Across multiple merging methods, model sizes and for both fully fine-tuned and
LoRA-adapted models, we found that optimal merging occurs well before full convergence, often
when experts are less accurate on their original tasks. For MoErging, continued fine-tuning of LoRA
experts even degrades downstream multi-task performance. We attribute this to a shift in training
dynamics: as fine-tuning progresses, the training loss is dominated by a small subset of difficult
examples whose memorization does not survive merging, an insight supported by tools from the data
difficulty literature. Finally, we show that a simple early stopping strategy mitigates overtraining and
restores near-optimal upcycling performance.

While our findings do not offer actionable insights for existing adapters (e.g., HuggingFace, Adapter-
Hub), they have important implications for publishing new adapters and evaluating upcycling
pipelines. Publish intermediate checkpoints: Releasing not only final but also intermediate check-
points is crucial, as the best upcycling point may precede convergence. Prioritize early-stopped
experts: When training experts in-house, aggressive early stopping can outperform convergence for
downstream upcycling. Since upcycling reuses checkpoints and amortizes sunk costs, our findings
can help reduce the future computational and environmental footprint of training AI models.
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8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. In Section [2.5| we describe
the exact models, datasets, and codebases used, as well as the machine learning frameworks and
hardware employed. All frameworks and codebases are open-sourced and publicly available, and
our exact codebase is provided as supplementary material. In addition, the main text and Appendix
include all relevant details and a description of our hyperparameter tuning procedures, ensuring
that our experiments can be fully reproduced.
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A USING THE RAW, UN-NORMALIZED ACCURACY

The normalized accuracy is a very common metric used to compare model merging methods ([lharco
et al., 2023} |Yadav et al., |2023). However, because the normalized accuracy depends on both the
merged model’s performance and that of the experts, it isn’t suitable for settings like ours where
different sets of experts are used and compared.

The core issue is that normalized accuracy, defined as (merged_accuracy / expert_accuracy), is a
relative metric designed to compare different merging methods when the set of experts (the denom-
inator) is fixed. Papers that propose a novel model merging method are justified in using this metric
by the fact that they have a fixed set of experts and they are comparing merging methods, therefore
only the numerator changes. In our study, the experts themselves are the primary variable, as their
training duration and performance change in each experiment, therefore the denominator changes
from one merging experiment to another. This creates paradoxical situations that make the metric
misleading for our purposes. For example consider the following scenario:

e Case 1 (Undertraining): Experts trained for only a few steps have very low absolute
accuracy (e.g., 60%). When merged, they interfere very little since they’re all relatively
close in parameter space to the zeroshot model, so the merged model also achieves around
60% accuracy. This yields a normalized accuracy near 100%, despite the models being bad
at solving the considered tasks.

* Case 2 (Optimal Training): Experts trained for longer have high accuracy (e.g., 90%).
Merging them results in a high-performing model with 85% absolute accuracy. However,
the normalized accuracy is only 85/90 = 94.4% due to negative interference caused by
longer training.

Comparing the “useless” 100% from Case 1 with the “useful” 94.4% from Case 2 is meaningless.
Absolute, un-normalized accuracy on the other hand allows for a fair and interpretable comparison
of the final upcycled model’s quality across different expert training durations.

B ADDITIONAL RELATED WORK

The simplest approach, parameter averaging, was shown to lead to better generalization when used
on checkpoints from the same training trajectory (Izmailov et al., [2018) and was popularized in
federated learning with FedAvg (McMahan et al., 2017). Recently, parameter averaging was also
shown to be useful in the context of robust fine-tuning (Wortsman et al., [2022) and to obtain better
pre-trained models (Choshen et al., [2022). When merging multiple fine-tuned versions of the same
pre-trained model, Fisher-weighted averaging (Matena & Raffel,|2022) and related methods improve
upon this simple averaging by adjusting per-parameter contributions (Jin et al.l 2023; Tam et al.,
2024). Task arithmetic based methods rely on the computation of task vectors, which are then
summed, scaled and added back to the pretrained model (Ilharco et al.l [2023)) to give it multi-task
capabilities. Pruning the task vector parameters (Yadav et al.l 2023} Davari & Belilovskyl, 2024;
Yu et al., 2024; Deep et al., 2024)) and selectively combining them to reduce negative interference
(Yadav et al.,2023) further benefits performance.

C TUNING MERGING HYPERPARAMETERS

Several merging methods require careful hyperparameter tuning to achieve optimal performance. In
particular, Task Arithmetic, TIES, and DARE each apply a scaling factor « to their task-vector sums
before adding them to the pretrained weights; TIES and DARE additionally specify a percentage
k of weights to retain after pruning. As is standard, we select the best o, k values by maximizing
merging accuracy on a held-out validation set. All merging accuracies reported in the main text are
evaluated on the test set using hyperparameters selected via validation performance. We followed
the hyperparameter configurations from the original papers (Ilharco et al.,|2023};|Yadav et al., 2023
Yu et al., [2024)), adjusting them as needed to optimize performance in our experimental settings.
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Vision setting: Following (Ilharco et al.|[2023), we reserve 10% of the training data for validation
and train the ViT models on the remaining 90%. We tune the following hyperparameter values using
the validation set:

¢ Task Arithmetic: o € {0.05,0.1,...,1}
« TIES: a € {0.5,0.6,...,1.5) and k € {10, 20,30}
« DARE: € {0.05,0.1,...,0.55} and k € {10, 20,30}

NLP setting: We adopt the validation splits from (Yadav et al.| 2023) and evaluate the following
hyperparameter values:

* Task Arithmetic: o € {0.1,0.2,...,1}
« TIES: o € {0.8,0.9,...,2.1} and k € {10, 20, 30}

D EFFECT OF MODEL SCALE

In the right panel of Figure[2] we have investigated how model size influences the merging dynam-
ics by comparing Task Arithmetic merging results across TS5-Base (220M parameters), T5-Large
(770M), and T5-3B (3B). In Figure [5] we also show the average expert accuracy on their respec-
tive tasks as well as the merging accuracies for Average, Task Arithmetic and TIES methods. The
purpose of these experiments is to test whether the decrease in merging accuracy observed after ex-
tended fine-tuning in smaller models also occurs at larger scales. We find that the same phenomenon
persists: for both Task Arithmetic and TIES, merging accuracy peaks at an intermediate number of
training steps and then degrades as fine-tuning continues, even though the absolute merging accu-
racy is generally higher for the larger models. Interestingly, Average merging appears robust to this
degradation, but its overall accuracy remains comparatively low.
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Figure 5: Average test accuracy across all 7 NLP tasks for fully fine-tuned T5-Large (left) and T5-
3B (right) models. We plot the average accuracy of the expert models evaluated on their respective
tasks as well as merging accuracies for multiple methods. Shaded regions show mean-+tstd over 3
random seeds.

E EFFECT OF LORA RANK

In this section, we examine how the choice of LoRA rank affects the degradation effect reported in
the main paper. We find that increasing the LoRA rank mitigates the loss in merging accuracy that
occurs as experts are trained for longer.

We fine-tune ViT-B-32 models on the eight image-classification tasks from Sec-
tion [2.5] applying LoRA adapters to every linear layer while systematically varying
the adapter rank r. We employ square-root scaling for the LoRA factor «, choosing
(r,a) € {(16,45), (32,64), (64,90), (128,128), (256,181)}.  The models are trained for
varying number of steps s € {8,32,128,512, 2048} to assess how training duration interacts with
rank. When merging, we combine LoRA-adapted models with the same rank and trained for the
same number of steps. The resulting accuracies are plotted in Figure[d

Across all three merging methods (Average, Task Arithmetic, and TIES) increasing the LoRA
adapter rank consistently raises merging accuracy at every training duration. Moreover, higher
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Figure 6: Average test accuracy across all 8 vision classification tasks as a function of the number
of fine-tuning steps for different LoRA ranks and three merging methods. Each panel shows one
method: Average (left), Task Arithmetic (center) and TIES (right). Colored solid lines and distinct
markers denote the different LoRA adapter ranks. The x-axis is in log, scale.

ranks substantially attenuate the accuracy drop associated with extended training: as the number
of fine-tuning steps grows, models with larger ranks exhibit smaller declines from their peak merg-
ing performance.
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