
Published as a conference paper at ICLR 2023

MIND THE GAP: OFFLINE POLICY OPTIMIZATION FOR
IMPERFECT REWARDS

Jianxiong Li♠∗ , Xiao Hu♠∗ , Haoran Xu♠, Jingjing Liu♠, Xianyuan Zhan♠,♢† ,
Qing-Shan Jia♠† & Ya-Qin Zhang♠†
♠ Tsinghua University, Beijing, China ♢ Shanghai Artificial Intelligence Laboratory, Shanghai, China
{li-jx21,hu-x21}@mails.tsinghua.edu.cn, zhanxianyuan@air.tsinghua.edu.cn

ABSTRACT

Reward function is essential in reinforcement learning (RL), serving as the guiding
signal to incentivize agents to solve given tasks, however, is also notoriously diffi-
cult to design. In many cases, only imperfect rewards are available, which inflicts
substantial performance loss for RL agents. In this study, we propose a unified
offline policy optimization approach, RGM (Reward Gap Minimization), which can
smartly handle diverse types of imperfect rewards. RGM is formulated as a bi-level
optimization problem: the upper layer optimizes a reward correction term that
performs visitation distribution matching w.r.t. some expert data; the lower layer
solves a pessimistic RL problem with the corrected rewards. By exploiting the du-
ality of the lower layer, we derive a tractable algorithm that enables sampled-based
learning without any online interactions. Comprehensive experiments demonstrate
that RGM achieves superior performance to existing methods under diverse settings
of imperfect rewards. Further, RGM can effectively correct wrong or inconsistent
rewards against expert preference and retrieve useful information from biased re-
wards. Code is available at https://github.com/Facebear-ljx/RGM.

1 INTRODUCTION

Reward plays an imperative role in every reinforcement learning (RL) problem. It encodes the desired
task behaviors, serving as a guiding signal to incentivize agents to learn and solve a given task. As
widely recognized in RL studies, a desirable reward function should not only define the task the agent
learns to solve, but also offers the “bread crumbs” that allow the agent to efficiently learn to solve the
task (Abel et al., 2021; Singh et al., 2009; Sorg, 2011).

However, due to task complexity and human cognitive biases (Hadfield-Menell et al., 2017), accurately
describing a complex task using numerical rewards is often difficult or impossible (Abel et al., 2021;
Li et al., 2019). In most practical settings, the rewards are typically “imperfect" and hard to be
fixed through reward tuning when online interactions are costly or dangerous (Zhan et al., 2022).
Such imperfect rewards are widespread in real-world applications and can appear in forms such as
partially correct rewards, sparse rewards, mismatched rewards from other tasks, and completely
incorrect rewards (see Figure 1 for an intuitive illustration). These rewards either fail to incentivize
agents to learn correct behaviors or cannot provide effective signals to speed up the learning process.
Consequently, it is of great importance and practical value to devise a versatile method that can
perform robust offline policy optimization under diverse settings of imperfect rewards.

Reward shaping (Ng et al., 1999) is the most common approach to tackling imperfect rewards, but
it requires tremendous human efforts and numerous online evaluations. Another possible avenue is
imitation learning (IL) (Pomerleau, 1988; Kostrikov et al., 2019) or offline inverse reinforcement
learning methods (IRL) (Jarboui & Perchet, 2021), by directly imitating or deriving new rewards
from expert behaviors. However, these methods heavily depend on the quantity and quality of expert
demonstrations and offline datasets, which are often beyond reach in practice. Another key challenge
is how to precisely measure the discrepancy between the given reward in the data and the true reward

*Equal contribution.
†Correspondence to Xianyuan Zhan, Qing-Shan Jia and Ya-Qin Zhang

1

https://github.com/Facebear-ljx/RGM

Published as a conference paper at ICLR 2023

Figure 1: Diverse settings of imperfect rewards.

of the task. As evaluating the learned policy’s behavior under a specific reward function through
environment interactions becomes impossible under the offline setting, let alone revising the reward.

In this paper, we investigate the challenge of learning effective offline RL policies under imperfect
rewards, when environment interactions are not possible. We first formally define the relative gap
between the given and perfect rewards based on state-action visitation distribution matching (referred
to as reward gap), and formulate the problem as a bi-level optimization problem. In the upper layer,
the imperfect rewards are adjusted by a reward correction term, which is learned by minimizing the
reward gap toward expert behaviors. In the lower layer, we solve a pessimistic RL problem to obtain
the optimized policy under the corrected rewards. By exploiting Lagrangian duality of the lower-level
problem, the overall optimization procedure can be tractably solved in a fully-offline manner without
any online interactions. We call this approach Reward Gap Minimization (RGM). Compared to
existing methods, RGM can: 1) evaluate and minimize the reward gap without any online interactions;
2) eliminate the strong dependency on human efforts and numerous expert demonstrations; and 3)
handle diverse types of reward settings (e.g., perfect, partially correct, sparse, multi-task data sharing,
incorrect) in a unified framework for reliable offline policy optimization.

Through extensive experiments on D4RL datasets (Fu et al., 2020), sparse reward tasks, multi-task
data sharing tasks and a discrete-space navigation task, we demonstrate that RGM can achieve
superior performance across diverse settings of imperfect rewards. Furthermore, we show that RGM
effectively corrects wrong/inconsistent rewards against expert preference and effectively retrieves
useful information from biased rewards, making it an ideal tool for practical applications where
reward functions are difficult to design.

2 RELATED WORK ON DIFFERENT REWARD SETTINGS

We here briefly summarize relevant methodological approaches that handle different types of rewards.

Perfect rewards. Directly applying offline RL algorithms is a natural choice when rewards are
assumed to be perfect for the given task (Fujimoto et al., 2019; Kumar et al., 2019; 2020; Xu
et al., 2021; Fujimoto & Gu, 2021; Kostrikov et al., 2021a;b; Xu et al., 2022a; Li et al., 2023; Lee
et al., 2021; Bai et al., 2021; Xu et al., 2023). However, specifying perfect rewards requires deep
understanding of the task and domain expertise. Even given the perfect rewards, some offline RL
methods still need to shift the rewards to achieve the best performance (Kostrikov et al., 2021a;
Kumar et al., 2020), which is shown to be equivalent to engineering the initialization of Q-function
estimation that encourages conservative exploitation under offline learning (Sun et al., 2022).

Partially correct rewards. Reward shaping is the most common approach to handle partially
correct rewards, by modifying the original reward function to incorporate task-specific domain
knowledge (Dorigo & Colombetti, 1994; Randløv & Alstrøm, 1998; Ng et al., 1999; Marom &
Rosman, 2018; Wu & Lin, 2018). However, these approaches follow a trial-and-error paradigm and
require tremendous human efforts. Recent approaches such as population-based method (Jaderberg
et al., 2019), optimal reward framework (Chentanez et al., 2004; Sorg et al., 2010; Zheng et al., 2018)
and automatic reward shaping (Hu et al., 2020; Devidze et al., 2021; Marthi, 2007) can automatically
shape the rewards when online interaction is allowed. However, to the best of the authors’ knowledge,
no reward shaping or correction mechanism exists for offline policy optimization. Researchers have to
discard the given imperfect rewards and resort to other stopgaps like offline IL under offline settings.

Sparse rewards. Sparse rewards can be seen as a special case of partially correct rewards. The key
challenge of offline policy optimization for sparse rewards is how to effectively back-propagate the
sparse signals to stitch up suboptimal trajectories (Levine et al., 2020). Recent works (Kostrikov et al.,
2021b; Kumar et al., 2020) use reward shaping to densify the sparse rewards for better performance.

2

Published as a conference paper at ICLR 2023

However, reward shaping requires online evaluation and tuning, which is not applicable in the offline
setting. Currently, few mechanisms are specifically designed for offline RL to handle sparse rewards.

Imperfect rewards in multi-task data sharing. Sharing data across different tasks can potentially
enhance offline RL performance on a target task by utilizing additional data from other relevant tasks.
As the goals of other relevant tasks are different from that of the target task, the rewards designed for
other tasks are naturally imperfect for solving the target task. Since directly sharing datasets from
other tasks exacerbates the distribution shift in offline RL (Yu et al., 2021; Bai et al., 2023), prior
work such as CDS (Yu et al., 2021) shares data relevant to the target task based on learned Q-values,
but it requires access to the functional form of the reward for relabling. CDS+UDS (Yu et al., 2022)
directly set the shared rewards to zero without reward relabeling to reduce the bias in the shared
rewards, but it cannot completely remedy the reward bias.

Completely incorrect rewards. When rewards are believed to be totally wrong or missing, re-
searchers typically adopt offline imitation learning (IL) methods. These methods directly mimic
the expert from demonstrations without the presence of a reward signal. Among these approaches,
behavior cloning (BC) (Pomerleau, 1988; Florence et al., 2022) is the simplest one, but is vulnerable
to covariate shift and compounding errors (Rajaraman et al., 2020). Recent works tackle this problem
via distribution matching (Jarboui & Perchet, 2021; Kostrikov et al., 2019; Kim et al., 2021; Ma
et al., 2022) or using a discriminator to measure the optimal level of the data and further guide policy
learning (Zolna et al., 2020; Xu et al., 2022b; Zhang et al., 2022). These approaches all have strong
requirements on the size and coverage of the expert datasets, and only try to imitate the expert rather
than improve beyond the policies in data via RL based on the underlying reward of the task.

3 PRELIMINARIES

Markov decision process under imperfect rewards. We consider the typical Markov Decision
Process (MDP) setting (Puterman, 2014), which is defined by a tuple M := (S,A, r, T, µ0, γ).
S and A represent the state and action space, r : S × A → R is the perfect reward function,
T : S × A → ∆(S) is the transition dynamics which represents the probability T (st+1|st, at) of
the transition from state st to state st+1 by executing action at at timestep t. µ0 ∈ ∆(S) is the
distribution of the initial state s0, and γ ∈ (0, 1) is the discount factor.

The perfect reward function r(s, a) encodes the desired behaviors of the task. But in most cases, we
only have access to an imperfect human-designed reward function r̃(s, a), which may not align well
with the target task. This leads to a biased MDP M̃ := (S,A, r̃, T, µ0, γ) as compared to the original
MDPM. To remedy the adverse effects of imperfect reward signals, existing offline policy learning
studies (Zolna et al., 2020; Xu et al., 2022b; Ma et al., 2022; Kim et al., 2021; Jarboui & Perchet,

2021) introduce additional expert demonstrations DE =
{(
sE0 , a

E
0 , s

E
1 , · · ·

)(i)}NE

i=0
to provide extra

information on the desired policy behaviors. We follow a similar setup, but only consume very
limited expert demonstrations. In our offline policy optimization setting, we are given a pre-collected

dataset D =
{
(s0, a0, r̃0, s1, · · ·)(i)

}N

i=0
that is generated by an unknown behavior policy πβ and

annotated with imperfect rewards r̃. We aim to learn an effective policy πr : S → ∆(A) to capture
the optimized agent behavior inM rather than M̃ using both D and a very small expert dataset DE .

Reinforcement learning. Given a MDP and the reward function r(s, a), the goal of RL is to find
an optimized policy π∗

r to maximize the expected cumulative discount reward: π∗
r = argmax

πr

(1−

γ)E[
∑∞

t=0 γ
tr (st, at) |s0 ∼ µ0(·), at ∼ πr (·|st) , st+1 ∼ T (·|st, at)]. This optimization objective

can be equivalently written into the following succinct form (Puterman, 2014; Nachum et al., 2019b)
by defining the normalized discounted state-action visitation distribution dπr (s, a) (in the rest of the
paper, we omit “normalized discounted state-action” for brevity unless otherwise specified):

π∗
r = argmax

πr

E(s,a)∼dπr [r(s, a)] (1)

dπr (s, a) = (1− γ)
∞∑
t=0

γtPr[st = s, at = a|s0 ∼ µ0(·), at ∼ πr (·|st) , st+1 ∼ T (·|st, at)]

3

Published as a conference paper at ICLR 2023

This RL objective is not directly applicable to offline setting, as it is no longer possible to sample from
dπr via online interactions, and serious distributional shift (Kumar et al., 2019) may occur without
proper data-related regularization when learning from offline datasets. To tackle these problems,
several recent works (Nachum et al., 2019b; Nachum & Dai, 2020; Lee et al., 2021) incorporate a
regularizer into Eq. (1) to formulate a pessimistic RL framework that is solvable in the offline setting:

π∗
r = argmax

πr

E(s,a)∼dπr [r(s, a)]− αD
(
dπr∥dD

)
(2)

where dD is the visitation distribution of dataset D, D (·∥·) represents some statistical discrepancy
measures and α > 0 controls the strength of the regularization.

4 REWARD GAP MINIMIZATION

To handle diverse imperfect reward settings, three challenges have to be tackled:

1) Measure the gap between the given rewards and the underlying unknown perfect rewards;
2) Unify different reward settings and bridge the reward gap;
3) Perform offline policy optimization using an integrated framework.

Our solution to these challenges is Reward Gap Minimization (RGM). We formally define the reward
gap in the perspective of visitation distribution matching and introduce a correction term to correct
the problematic rewards. Then, we model RGM as a bi-level optimization problem, with the upper
layer minimizing the reward gap and the lower layer solving a pessimistic RL problem. To derive a
tractable algorithm, we leverage Lagrangian duality to eliminate the requirement for online samples.

4.1 DEFINITION OF REWARD GAP

As observed in recent literature, some tasks cannot be captured by a numerical Markovian reward
function (Abel et al., 2021). Hence, learning an explicit proxy of the perfect reward function and
comparing it to the given rewards is unlikely the best option to characterize the reward gap. In this
study, we define the reward gap based on the outcome of the learned agent behavior, i.e., from the
perspective of visitation distribution matching.
Definition 1. (Reward gap) Given an arbitrary reward function r̂(s, a) and the visitation distribution
d∗ of the optimal policy induced from the perfect rewards r, the reward gap between r̂ and r is:

Df

(
dπ

∗
r̂ ∥d∗

)
(3)

where Df (p∥q) = Ez∼q

[
f
(

p(z)
q(z)

)]
is the f -divergence between distributions p and q, and dπ

∗
r̂

represents the visitation distribution induced by π∗
r̂ , which is derived using Eq. (2) with r̂.

Note that d∗ is unobtainable since the perfect reward function is unknown. We can alternatively use
the visitation distribution dE induced by unknown πE in expert demonstrations DE to approximate
d∗. Next, we discuss how to adjust r̂ to minimize the reward gap.

4.2 BI-LEVEL OPTIMIZATION

Reward correction. In our study, we consider r̂(s, a) := r̃(s, a) + ∆r(s, a, r̃), where ∆r(s, a, r̃)
is a learnable reward correction term that is correlated with the given imperfect rewards r̃ in D.
The introduction of ∆r(s, a, r̃) enables us to exploit useful information within the partially correct
rewards, while also correcting the wrong or inconsistent reward signals. We can further use it to
construct a bi-level optimization formulation for RGM, where the upper-level problem optimizes
the reward correction term to minimize the f -divergence between dπ

∗
r̂ and dE , and the lower-level

problem solves π∗
r̂ as the optimal policy of a pessimistic RL problem with the corrected rewards:

∆r∗ = argmin
∆r

Df

(
dπ

∗
r̂ ∥dE

)
(4)

s.t. π∗
r̂ = argmax

πr̂

E(s,a)∼dπr̂ [r̂(s, a)]− αDf

(
dπr̂∥dD

)
(5)

4

Published as a conference paper at ICLR 2023

The above bi-level optimization formulation poses several technical difficulties, stemming from the
complexity of deriving dπ

∗
r̂ from π∗

r̂ , as well as the requirement of online samples from dπ
∗
r̂ , which is

impossible under the offline setting. In the following, we present reformulations for both lower and
upper-level problems, which leads to a tractable form and an easy-to-implement algorithm.

Reformulation of the lower-level problem. We first reformulate the lower-level problem by
exploiting duality and the Bellman flow constraint (Puterman, 2014).

Definition 2. (Bellman flow constraint) Let T⋆d(s) =
∑

s̄,ā T (s|s̄, ā)d(s̄, ā) denote the transpose
(or adjoint) transition operator, the Bellman flow constraint for the visitation distribution d(s, a) is:∑

a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S (6)

If d(s, a) ≥ 0 satisfies the Bellman flow constraint, then d(s, a) is feasible and there is a one-to-one
correspondence between d and the related policy π: i.e., d is the only visitation distribution for
policy π(a|s) = d(s,a)∑

ā d(s,ā) , while π is the only policy whose visitation distribution is d (for detailed
proof see Puterman (2014)). Then, the lower level problem Eq. (5) can be re-written to a constraint
maximization problem w.r.t. d in place of πr̂:

dπ
∗
r̂ = argmax

d≥0
E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
s.t.

∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s), ∀s ∈ S

(7)
The Lagrange dual problem of Eq. (7) is as follow:

min
V (s)

max
d≥0

E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
+

∑
s

V (s)

[
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

]
(8)

where V (s) are Lagrange multipliers. Note that the primal problem Eq. (7) is convex w.r.t. d, and
under a mild assumption (see Assumption 1 in Appendix A.2), the Slater’s condition (Boyd et al.,
2004) holds, which means by strong duality, we can solve the original primal problem by solving
Eq. (8). After rearranging the terms, Eq. (8) can be equivalently written as the following form (see
Lemma 2 in Appendix A.2 for detailed deduction):

min
V (s)

max
d≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d[r̂(s, a) + γT V (s, a)− V (s)]− αDf

(
d∥dD

)
(9)

in which T V (s, a) =
∑

s′T (s
′|s, a)V (s′) denotes the transition operator. Next, by exploiting the

Fenchel conjugate, we can further transform the minimax problem Eq. (9) into a tractable single-level
unconstrained minimization problem (see Proposition 1 in Appendix A.2 for detailed derivation),
which eliminates the requirement of online samples:

min
V (s)

(1− γ)Es∼µ0
[V (s)] + αE(s,a)∼dD

[
f⋆(

r̂(s, a) + γT V (s, a)− V (s)

α
)

]
(10)

where f⋆ is the Fenchel conjugate of f . In the above formulation, the Lagrange multipliers V (s)
can be equivalently perceived as some sort of state-value function, which can be learned and opti-
mized via a parameterized neural network, similar to the treatment used in the DICE-family of RL
algorithms (Nachum et al., 2019a; Nachum & Dai, 2020).

Reformulation of the upper-level problem. Using the property of Fenchel conjugate, the optimal
d∗ and V ∗ from the lower level problem satisfy the following nice relationship (see Proposition 2 in
Appendix A.3 for details):

dπ
∗
r̂ (s, a)

dD(s, a)
= f ′⋆

(
r̂(s, a) + γT V ∗(s, a)− V ∗(s)

α

)
(11)

Plugging the above equation into Eq. (5), we can obtain a new objective for the upper-level problem:

∆r∗ = argmin
∆r

Df

(
f ′
⋆

(
r̂ + γT V ∗ − V ∗

α

)
dD∥dE

)
(12)

5

Published as a conference paper at ICLR 2023

Figure 2: Illustration of the reformulated bi-level optimization problem.

For simplicity, we denote f ′⋆
(

r̂+γT V ∗−V ∗

α

)
as g. By expanding the f -divergence, we have:

Df

(
dDg∥dE

)
= E(s,a)∼dE

[
f

(
dD(s, a)g(s, a)

dE(s, a)

)]
= E(s,a)∼dD

[
dE(s, a)

dD(s, a)
f

(
dD(s, a)

dE(s, a)
g(s, a)

)]
(13)

The above objective involves computing the distribution ratio w(s, a) ≜ dE(s, a)/dD(s, a). In the

tabular case, we can empirically estimate w(s, a) =
∑

(s̄,ā)∈DE 1(s̄=s,ā=a)/NE∑
(s̄,ā)∈D 1(s̄=s,ā=a)/N . But in the continuous

state-action settings, estimating the distribution ratio w using only samples from dD and dE becomes
a challenge. Inspired by previous studies (Goodfellow et al., 2020; Ma et al., 2022), we instead train
a discriminator h : S ×A→ (0, 1) to infer if (s, a) samples are from DE or not:

h∗ = argmin
h

E(s,a)∼dD [log(h(s, a))] + E(s,a)∼dE [log(1− h(s, a))] (14)

where the optimal discriminator is h∗(s, a) = dD(s,a)
dD(s,a)+dE(s,a)

(Goodfellow et al., 2020). We can
optimize the above objective to obtain the optimal h∗, and further recover w(s, a) = 1/h∗(s, a)− 1.

Finally, combining all the reformulations, the final tractable form of the original bi-level optimization
problem Eq. (4)-(5) is given as follows:

∆r∗ = argmin
∆r

E(s,a)∼dD

[
w(s, a) · f

(
f ′
⋆

(
r̂(s, a) + γT V ∗(s, a)− V ∗(s)

α

)
/w(s, a)

)]
s.t. V ∗(s) = argmin

V (s)
(1− γ)Es∼µ0 [V (s)] + αE(s,a)∼dD

[
f⋆

(
r̂(s, a) + γT V (s, a)− V (s)

α

)] (15)

Policy extraction. With the learned reward correction term ∆r(s, a, r̃), we can in principle use
existing offline RL algorithms to learn the policy with the corrected rewards. However, this implicates
additional policy evaluation and policy improvement steps. A more elegant way is to extract the
policy through weighted BC as follows, which is substantially more robust and less expensive:

π∗ = argmin
π
−E

(s,a)∼dπ∗
r̂
[log π(a|s)] = argmin

π
−E(s,a)∼dD

[
dπ

∗
r̂ (s, a)

dD(s, a)
log π(a|s)

]
(16)

where dπ∗
r̂ (s,a)

dD(s,a)
can be calculated from Eq. (11).

4.3 PRACTICAL IMPLEMENTATION

In our implementation, we use stochastic first-order two-timescale optimization technique (Borkar,
1997), which has been successfully applied in several RL algorithms (Hong et al., 2020; Cheng et al.,
2022), to solve bi-level optimization problems. Specifically, we make the gradient update step size
of the upper layer much smaller than the one of the lower layer (see Figure 2 for RGM framework.
Refer to Appendix B for additional implementation details of RGM).

5 EXPERIMENTS

In this section, we present empirical evaluations of RGM under diverse imperfect reward settings,
including partially correct rewards, completely incorrect rewards, sparse rewards, and multi-task data
sharing setting on Robomimic (Mandlekar et al., 2021), D4RL-v2 (Fu et al., 2020) and a dataset
of a grid-world navigation task. As D4RL MuJoCo tasks are deterministic, we use only one expert
trajectory to assist the reward correction and policy learning for these tasks.

6

Published as a conference paper at ICLR 2023

Table 1: Average normalized scores of RGM compared with offline IL and RL baselines on D4RL datasets.
The scores are from the final 10 evaluations with 5 seeds. (T), (P) and (C) mean policy optimization with
true rewards, partially correct rewards and completely incorrect rewards, respectively. “-r",“-m",“-m-r", and
“-m-e" are short for random, medium, medium-replay, and medium-expert, respectively. We obtain the results by
running author-provided open-source code, and some scores are reported from TD3+BC and IQL papers. For
each dataset, the top 2 scores under partially correct rewards are marked in blue.

D4RL Dataset Offline IL Offline RL RGM (T / P / C)
BC DWBC SMODICE TD3+BC (T / P / C) IQL (T / P / C) CQL (T / P / C)

hopper-r 4.9 23.9 5.9 8.5 13.3 0.4 7.9 1.3 0.7 8.3 1.7 0.0 29.7 21.2 25.9

halfcheetah-r 0.2 2.0 2.6 11.0 -17.1 -11.6 11.2 2.2 2.2 20.0 -0.4 -38.4 0.2 0.2 0.2

walker2d-r 1.7 68.3 -0.2 1.6 0.8 2.0 5.9 0.3 -0.3 8.3 0.1 -0.0 3.9 7.7 -0.1

hopper-m 52.9 16.5 54.5 59.3 13.7 37.3 66.2 34.0 35.5 58.5 56.4 11.2 56.2 55.5 54.6

halfcheetah-m 42.6 8.2 42.9 48.3 35.2 1.2 47.4 42.0 35.4 44.0 43.5 4.1 40.4 40.7 40.3

walker2d-m 75.3 18.8 1.0 83.7 30.1 17.2 78.3 68.9 22.0 72.5 71.1 3.3 73.3 72.3 38.4

hopper-m-r 18.1 21.4 20.4 60.9 23.5 16.3 94.7 0.7 0.7 95.0 11.5 0.0 60.3 59.1 44.5

halfcheetah-m-r 36.6 9.2 37.1 44.6 31.8 -1.0 44.2 18.1 1.8 45.5 16.5 -1.1 37.7 37.8 29.8

walker2d-m-r 26.0 56.6 41.1 81.8 7.8 -0.7 73.8 4.9 -0.2 77.2 17.4 -0.0 46.3 48.6 46.1

hopper-m-e 52.5 16.5 75.4 98.0 50.8 22.3 91.5 49.3 13.6 105.4 68.3 11.6 106.1 87.1 66.0

halfcheetah-m-e 55.2 0.0 88.2 90.7 35.3 1.9 86.7 53.4 35.8 91.6 64.8 11.1 85.6 81.5 78.4

walker2d-m-e 107.5 54.3 29.8 110.1 44.7 6.8 109.6 108.3 20.9 108.8 75.4 16.6 108.3 108.8 108.8

Mean Score 39.5 22.6 33.2 58.2 24.6 7.7 59.8 32.0 14.0 60.5 35.5 -0.3 54.1 52.0 41.9

5.1 COMPARATIVE RESULTS

Comparisons for partially correct rewards. We train RGM and SOTA offline RL methods
(TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021b) and CQL (Kumar et al., 2020))
under partially correct1 rewards and report their performances evaluated based on the perfect rewards2

in Table 1. Table 1 shows that RGM surpasses offline RL methods under partially correct rewards3

by a large margin and achieves similar performance to offline RL policies that are trained on
perfect rewards. This shows a remarkable advantage of RGM as it can alleviate severe performance
degradation when perfect rewards are unattainable and hence removes the restrictive requirements on
perfect rewards, which can be particularly useful for a wide range of real-world scenarios.

Comparisons for completely incorrect rewards. When rewards are believed to be completely
incorrect, one generally resorts to IL methods. We compare RGM with BC and SOTA offline IL
methods (DWBC (Xu et al., 2022b) and SMODICE (Ma et al., 2022)) that can learn from mixed-
quality data. Only offline IL methods are considered as baselines, because other existing methods
that tackle incorrect rewards can only be applied in the online settings (see Section 2 for discussions).

In our setting, we train offline IL baselines using the original D4RL dataset D, which may not cover
enough expert trajectories. However, DWBC and SMODICE both build on the strong assumption
that D already covers a large proportion of expert datasets, which is a rare case in real scenarios. As
a result, Table 1 shows that these two methods suffer from inferior performance when the restrictive
requirements on the quality and state-action space coverage of expert data are not satisfied. RGM,
however, performs well when nearly no expert trajectories are contained in the offline dataset, because
RGM is optimizing an RL objective that relaxes the requirements on the quality of the dataset.

To further illustrate the superiority of RGM, we compare RGM against DWBC and SMODICE
under their settings by adding 100∼200 expert trajectories into D. Results show that RGM can still
outperform SOTA offline IL methods by a large margin (see Table 8 in Appendix D).

Comparisons for sparse rewards. We evaluate RGM against BC and offline RL methods TD3+BC,
CQL and IQL on Robomimic (Mandlekar et al., 2021) Lift and Can tasks. We also evaluate on
the well-known extremely difficult AntMaze tasks. We report the average max success rate as the
evaluation metric in Table 2 (See Appendix C.2 for task descriptions and experimental setups).

1The signs of 50% D4RL rewards are flipped and hence only half rewards can give correct learning signals.
2We regard the original D4RL rewards as perfect since we evaluate the policies in terms of these rewards,

which can be perceived as solving the tasks encoded in the original D4RL rewards.
3All sign of the original rewards is flipped.

7

Published as a conference paper at ICLR 2023

Table 2: Results on sparse reward tasks.

Dataset BC TD3+BC CQL IQL RGM

Antmaze-m-p 0 0 0 0 13.7

Antmaze-m-d 0 0 0 0 3.3

Lift-MG 65.3 87.3 64.0 56.0 90.3

Can-MG 64.7 55.3 64.7 50.0 66.7

Table 2 shows that the offline RL baselines fail
miserably on AntMaze tasks4, as sparse rewards
are hard to back-propagate through a very long
horizon (≈ 1K steps), while RGM can correctly
provide dense signals to guide the ant navigate
to the destination. For Robomimic Lift and Can
tasks, RGM again outperforms existing methods,
while other methods can also achieve reason-
able performance. We suspect that these offline
datasets may already contain near-optimal trajectories as BC can achieve reasonable performance.
Moreover, the planning horizon of both tasks are relatively short (≈ 150 steps), thus is relatively
simple for offline RL to back-propagate the sparse signals.

Figure 3: Results on multi-task data sharing tasks.

Extension to multi-task data sharing. We
highlight that RGM can also perform well in the
offline multi-task data sharing tasks (Yu et al.,
2021), which utilize datasets from other rele-
vant tasks to enhance the offline RL performance
on a target task. Prior works either require the
functional form of rewards to be known for re-
labeling (Yu et al., 2021) or partially correct the
reward biases (Yu et al., 2022). In contrast, RGM
systematically corrects the reward biases with-
out reward relabelling, using just one expert trajectory from the target task. To demonstrate the
efficacy of RGM compared to SOTA multi-task data sharing algorithms CDS (Yu et al., 2021) and
CDS+UDS (Yu et al., 2022), we conduct experiments in multi-task Walker (Stand, Walk, Run, Flip)
and Quadruped (Walk, Run, Roll-Fast, Jump) domains built on DeepMind Control Suite (Tassa et al.,
2018). For each task, we use TD3 (Fujimoto et al., 2018) to collect three types of datasets (expert,
medium, replay), and share the replay dataset of the relevant task with the medium dataset of the
target task. For RGM, we only draw one expert trajectory for the discriminator training. We report
the experimental results in Figure 3, which shows that RGM substantially outperforms CDS and
CDS+UDS (see Appendix C.3 and D.5 for more experiment details and results).

5.2 INVESTIGATIONS ON REWARD CORRECTION

Benefits of learned rewards. We investigate the potential benefits of the learned rewards via
demonstrative experiments in an 8×8 grid world environment. We observe the learned rewards in
RGM enjoy three desirable properties that are unlikely to be provided in other existing methods: 1)
encode long horizon information; 2) correct wrong rewards against expert preference; and 3) retrieve
useful information from existing rewards, as shown in Figure 4.

(a) Expert demonstration (b) Results of zero r̃ (c) Results of partially correct r̃

Figure 4: Learned rewards r̂ and optimal distribution dπ
∗
r̂ trained on two types of imperfect rewards r̃. The

opacity of each square represents the value of marginal state distribution dπ
∗
r̂ (s). The opacity of the arrow shows

the learned reward r̂, where the darkest arrow points to the direction of the highest reward. The expert starts
from , follows the path and arrow to reach the goal . r̃ in (b) is +10 at the goal and is zero at other
states. r̃ in (c) falsely punishes the agent on and correctly punishes the RL agent on fire marks .

4Note that in IQL and CQL papers, they turn the original sparse rewards into dense rewards by applying the
reward subtraction trick (minus 1 on every reward, so the reward becomes negative except at the goal).

8

Published as a conference paper at ICLR 2023

Figure 5: Performance drop of normalized returns of SOTA offline RL methods on D4RL datasets under perfect
and RGM corrected rewards. The wrong rewards are the partially correct rewards as in Table 1. H: Hopper; HC:
HalfCheetah; W: Walker2d.

(a) Learning curve of ∆r (b) Effect of r̃ on r̂ (c) Effect of r̃ on ∆r

Figure 6: Experiments on learned rewards in hopper-m-r task. The superscript “¯" denotes the mean value of
mini-batch samples. The subscript “E" and “O" denote the value on expert and non-expert data. In (b)(c), large
¯̂rE − ¯̂rO and ∆r̄E −∆r̄O indicate that expert and non-expert data are clearly distinguishable according to the
learned rewards, and small values mean the opposite.

Specifically, Figure 4b shows that the learned rewards not only recover correct learning signals on the
path of the expert, but also generalize well on regions not covered by expert data. In most locations,
the agent can navigate to the destination by simply maximizing the one-step reward, meaning that
the learned rewards encode long-horizon information. Moreover, Figure 4c shows that the learned
rewards can avoid the dangerous fire locations by retrieving useful information provided in imperfect
r̃, meanwhile correcting the wrong rewards against expert preference.

Offline RL with corrected rewards. The learned corrected rewards r̂ obtained by RGM can also
be used in other offline RL approaches. To be mentioned, the corrected rewards are optimized based
on the specific α in Eq. (5), hence may not be optimal to other offline RL methods. Nevertheless,
Figure 5 shows that the corrected rewards can largely remedy the negative effects of the partially
correct rewards and even surpass perfect rewards in some datasets.

Ablations on learned rewards. Additionally, we investigate the learned rewards in high-
dimensional continuous control tasks by inspecting the learning process of both the reward correction
term ∆r and the final learned rewards r̂. Figure 6a shows that the reward correction term ∆r initially
cannot distinguish expert and non-expert data well, but adapts and converges quickly. After a few
training steps, ∆r can correctly reward expert data and punish non-expert data very well. We also
perform ablations on the effect of diverse types of imperfect rewards r̃ on ∆r and r̂. Figure 6b shows
that a perfect r̃ is beneficial to enlarge reward differences on expert and non-expert samples, and
incorrect r̃ can be counterproductive. Nevertheless, RGM can largely correct the wrong rewards and
produce reasonable learning signals. Similar effects are also observed on ∆r, as Figure 6c shows.

6 DISCUSSION AND CONCLUSION

In this paper, we propose RGM (Reward Gap Minimization), a unified offline policy optimization
approach applicable to diverse settings of imperfect rewards. RGM is formulated as a bi-level
optimization problem, which achieves reward correction and simultaneous policy learning in a fully
offline paradigm. Extensive experiments and illustrative examples show that RGM can perform
robust policy optimization under imperfect rewards. Several desirable properties are also identified
in the corrected rewards learned by RGM. One limitation of RGM is the need for a small expert
dataset, which may not be easily accessible in some applications. However, RGM relaxes the strong
dependencies on online reward tuning and tedious human efforts, which renders it a powerful tool to
solve many real-world problems.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work is supported by funding from Haomo.AI, and National Natural Science Foundation of
China under Grant 62125304, 62073182. The authors would also like to thank the anonymous
reviewers for their feedback on the manuscripts.

REFERENCES

David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and
Satinder Singh. On the expressivity of markov reward. Advances in Neural Information Processing
Systems, 34:7799–7812, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhen Wang, Zhaoran Wang, Bin Zhao, and Xuelong
Li. Uncertainty-based multi-task data sharing for offline reinforcement learning, 2023. URL
https://openreview.net/forum?id=u1Vj68CJZP.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. In International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 3852–3878. PMLR, 2022.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems, 17, 2004.

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from conditional distributions
via dual embeddings. In Artificial Intelligence and Statistics, pp. 1458–1467. PMLR, 2017.

Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable reward
design for reinforcement learning agents. Advances in Neural Information Processing Systems, 34:
20118–20131, 2021.

Marco Dorigo and Marco Colombetti. Robot shaping: Developing autonomous agents through
learning. Artificial intelligence, 71(2):321–370, 1994.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158–168. PMLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

10

https://openreview.net/forum?id=u1Vj68CJZP

Published as a conference paper at ICLR 2023

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931–15941, 2020.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Firas Jarboui and Vianney Perchet. Offline inverse reinforcement learning. arXiv preprint
arXiv:2106.05068, 2021.

Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect
demonstrations. In International Conference on Learning Representations, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2019.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang. When
data geometry meets deep function: Generalizing offline reinforcement learning. In International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=lMO7TC7cuuh.

Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. A formal methods approach to interpretable
reinforcement learning for robotic planning. Science Robotics, 4(37):eaay6276, 2019.

Yecheng Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Versatile offline imitation from
observations and examples via regularized state-occupancy matching. In International Conference
on Machine Learning, pp. 14639–14663. PMLR, 2022.

11

https://openreview.net/forum?id=lMO7TC7cuuh
https://openreview.net/forum?id=lMO7TC7cuuh

Published as a conference paper at ICLR 2023

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
human demonstrations for robot manipulation. In 5th Annual Conference on Robot Learning,
2021.

Ofir Marom and Benjamin Rosman. Belief reward shaping in reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In Proceedings of the
24th International Conference on Machine learning, pp. 601–608, 2007.

Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. Advances in Neural Information Processing Systems,
32, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019b.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and
shaping. In ICML, volume 98, pp. 463–471. Citeseer, 1998.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Proceedings
of the annual conference of the cognitive science society, pp. 2601–2606. Cognitive Science Society,
2009.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gradient ascent.
Advances in Neural Information Processing Systems, 23, 2010.

Jonathan Daniel Sorg. The optimal reward problem: Designing effective reward for bounded agents.
PhD thesis, University of Michigan, 2011.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploiting reward shifting in
value-based deep rl. In Advances in Neural Information Processing Systems, 2022.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Yueh-Hua Wu and Shou-De Lin. A low-cost ethics shaping approach for designing reinforcement
learning agents. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

12

Published as a conference paper at ICLR 2023

Haoran Xu, Xianyuan Zhan, Jianxiong Li, and Honglei Yin. Offline reinforcement learning with soft
behavior regularization. arXiv preprint arXiv:2110.07395, 2021.

Haoran Xu, Li Jiang, Jianxiong Li, and Xianyuan Zhan. A policy-guided imitation approach for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2022a.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation
learning from suboptimal demonstrations. In International Conference on Machine Learning, pp.
24725–24742. PMLR, 2022b.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xianyuan
Zhan. Sparse q-learning: Offline reinforcement learning with implicit value regularization. In
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=ueYYgo2pSSU.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. Advances in Neural
Information Processing Systems, 34:11501–11516, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, pp. 25611–25635. PMLR, 2022.

Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepthermal:
Combustion optimization for thermal power generating units using offline reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Wenjia Zhang, Haoran Xu, Haoyi Niu, Peng Cheng, Ming Li, Heming Zhang, Guyue Zhou, and
Xianyuan Zhan. Discriminator-guided model-based offline imitation learning. In Conference on
Robot Learning, 2022.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 31, 2018.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

13

https://openreview.net/forum?id=ueYYgo2pSSU
https://openreview.net/forum?id=ueYYgo2pSSU

Published as a conference paper at ICLR 2023

A PROOFS

A.1 BACKGROUND

We begin by briefly introducing the Fenchel conjugate (also known as convex conjugate or Legen-
dre–Fenchel transformation):
Definition 3. (Fenchel conjugate) In a real Hilbert space X , if a function f(x) is proper, then the
Fenchel conjugate f⋆ of f at y is:

f⋆(y) = sup
x∈X

(yTx− f(x)) (17)

where the domain of the f⋆(y) is given by:

dom f⋆ =

{
y : sup

x∈dom f

(
yTx− f(x)

)
<∞

}
(18)

If f is convex and lower semi-continuous as well, we have the duality f⋆⋆(x) = f(x). Furthermore,
if f is also differentiable, then the maximizer x∗ of f⋆(y) satisfies:

x∗ = f ′⋆(y) (19)

Next, we present the interchangeability principle, which plays a key role in Proposition 1.
Lemma 1. (Interchangeability principle) Let ξ be a random variable on Ξ and assume for any
ξ ∈ Ξ, function g(·, ξ) is a proper and upper semi-continuous concave function. Then

Eξ

[
max
u∈R

g(u, ξ)

]
= max

u(·)∈G(Ξ)
Eξ[g(u(ξ), ξ)] (20)

where G(Ξ) = {u(·) : Ξ→ R} is the entire space of functions defined on support Ξ .

Proof. Please refer to (Dai et al., 2017; Rockafellar & Wets, 2009).

A.2 PROOF OF TRACTABLE TRANSFORMATION OF THE LOWER-LEVEL PROBLEM

We start our proof from the original bi-level optimization problem Eq. (4) and Eq. (5). Using the
Bellman flow constraint for Eq. (5) yields:

∆r∗ = argmin
∆r

Df

(
dπ

∗
r̂ ∥dE

)
s.t. dπ

∗
r̂ = argmax

d≥0
E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
s.t.

∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S

(21)

Assumption 1. There exists at least one d such that:∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s), d(s) > 0, ∀s ∈ S (22)

We note that this assumption is mild since when every state is reachable from the initial state
distribution, the assumption is satisfied, which is common in practice.

Slater’s theorem (Boyd et al., 2004) states that strong duality holds, if the optimization problem is
strictly feasible (Slater’s condition holds) and the problem is convex. So under Assumption 1 with
the fact that the lower level problem is convex w.r.t. d, the strong duality holds, which means that the
above lower level problem can be re-written as the following form:

min
V (s)

max
d≥0

E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
+

∑
s

V (s)

[
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

]
(23)

14

Published as a conference paper at ICLR 2023

Lemma 2. The minimax problem:

min
V (s)

max
d≥0

E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
+

∑
s

V (s)

[
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

]
(24)

can be equivalently written as:

min
V (s)

max
d≥0

(1− γ)Es∼µ0 [V (s)] + E(s,a)∼d [r̂(s, a) + γT V (s, a)− V (s))]− αDf

(
d∥dD

)
(25)

Proof.

E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
+

∑
s

V (s)

[
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

]

= E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
+

∑
s

V (s)

[
(1− γ)µ0(s) + γ

∑
s̄,ā

T (s|s̄, ā)d(s̄, ā)−
∑
a

d(s, a)

]

=
∑
s,a

d(s, a)r̂(s, a)− αDf

(
d∥dD

)
+ (1− γ)

∑
s

µ0(s)V (s) + γ
∑
s̄,ā

d(s̄, ā)
∑
s

T (s|s̄, ā)V (s)−
∑
s,a

d(s, a)V (s)

=
∑
s,a

d(s, a)r̂(s, a)− αDf

(
d∥dD

)
+ (1− γ)

∑
s

µ0(s)V (s) + γ
∑
s,a

d(s, a)
∑
s′

T (s′|s, a)V (s′)−
∑
s,a

d(s, a)V (s)

= (1− γ)
∑
s

µ0(s)V (s) +
∑
s,a

d(s, a)

[
r̂(s, a) + γ

∑
s′

T (s′|s, a)V (s′)− V (s)

]
− αDf

(
d∥dD

)
= (1− γ)Es∼µ0 [V (s)] + E(s,a)∼d [r̂(s, a) + γT V (s, a)− V (s))]− αDf

(
d∥dD

)
(26)

Proposition 1. The minimax problem:

min
V (s)

max
d≥0

E(s,a)∼d[r̂(s, a)]− αDf

(
d∥dD

)
+

∑
s

V (s)

[
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

]
(27)

shares the same optimal value as the following minimization problem:

min
V (s)

(1− γ)Es∼µ0
[V (s)] + αE(s,a)∼dD

[
f⋆(

r̂(s, a) + γT V (s, a)− V (s)

α
)

]
(28)

where f⋆ is the Fenchel conjugate function of f with dom f = {u : u ≥ 0}

Proof. Using Lemma 2, this minimax problem can be re-written as:

min
V (s)

max
d≥0

(1− γ)Es∼µ0 [V (s)] + E(s,a)∼d [r̂(s, a) + γT V (s, a)− V (s)]− αDf

(
d∥dD

)
(29)

Next,

min
V (s)

max
d≥0

(1− γ)Es∼µ0 [V (s)] + E(s,a)∼d [r̂(s, a) + γT V (s, a)− V (s)]− αDf

(
d∥dD

)
= min

V (s)
(1− γ)Es∼µ0 [V (s)] + max

d≥0
E(s,a)∼d [r̂(s, a) + γT V (s, a)− V (s)]− αDf

(
d∥dD

)
= min

V (s)
(1− γ)Es∼µ0 [V (s)] + α

[
max
d≥0

E(s,a)∼d

[
r̂(s, a) + γT V (s, a)− V (s)

α

]
− Df

(
d∥dD

)]
︸ ︷︷ ︸

L

(30)

15

Published as a conference paper at ICLR 2023

L in the last step reduces to:

α

[
max
d≥0

E(s,a)∼d

[
r̂(s, a) + γT V (s, a)− V (s)

α

]
− Df

(
d∥dD

)]
= α

[
max
d≥0

E(s,a)∼dD

[
d(s, a)

dD(s, a)

(r̂(s, a) + γT V (s, a)− V (s))

α

]
− E(s,a)∼dD

[
f

(
d(s, a)

dD(s, a)

)]]
= α

[
max
d≥0

E(s,a)∼dD

[
d(s, a)

dD(s, a)

(r̂(s, a) + γT V (s, a)− V (s))

α
− f

(
d(s, a)

dD(s, a)

)]]
= αE(s,a)∼dD

[
max

d(s,a)≥0

d(s, a)

dD(s, a)

(r̂(s, a) + γT V (s, a)− V (s))

α
− f

(
d(s, a)

dD(s, a)

)]

= αE(s,a)∼dD

 max
d(s,a)

dD(s,a)
≥0

d(s, a)

dD(s, a)
y(s, a)− f

(
d(s, a)

dD(s, a)

)
= αE(s,a)∼dD [f⋆(y(s, a))]

(31)

where y(s, a) = r̂(s,a)+γT V (s,a)−V (s)
α , the third step follows the interchangeability principle (Lemma

1) and the last step comes from the Fenchel conjugate of convex function f 5.

Using this result, we finally yield the tractable lower-level problem Eq. (10).

A.3 PROOF OF TRACTABLE TRANSFORMATION OF THE UPPER-LEVEL PROBLEM

Proposition 2. The original upper-level problem

min
∆r

Df

(
dπ

∗
r̂ ∥dE

)
(32)

can be equivalently written as:

min
∆r

Df

(
f ′⋆

(
r̂ + γT V ∗ − V ∗

α

)
dD∥dE

)
(33)

where dπ
∗
r̂ is the optimal state-action visitation distribution of Eq. (7)

Proof. By the property Eq. (19), the maximizer
(

d(s,a)
dD(s,a)

)∗
of f⋆(y(s, a)) in Eq. (31) satisfies(

d(s, a)

dD(s, a)

)∗

= f ′⋆

(
r̂(s, a) + γT V (s, a)− V (s)

α

)
(34)

Given V ∗, we have:

dπ
∗
r̂ (s, a)

dD(s, a)
= f ′⋆

(
r̂(s, a) + γT V ∗(s, a)− V ∗(s)

α

)
(35)

Substituting this result into the original upper-level problem completes the proof.

Next, we denote f ′⋆
(

r̂+γT V ∗−V ∗

α

)
as g. By expanding the f -divergence, we have the upper-level

objective:

Df

(
dDg∥dE

)
= E(s,a)∼dE

[
f

(
dD(s, a)g(s, a)

dE(s, a)

)]
(36)

= E(s,a)∼dD

[
dE(s, a)

dD(s, a)
f

(
dD(s, a)

dE(s, a)
g(s, a)

)]
(37)

= E(s,a)∼dD

[
w(s, a)f

(
g(s, a)

w(s, a)

)]
(38)

5dom f = {u : u ≥ 0} and f is convex, so f⋆(y) = −f(0) when y ≤ f ′(0).

16

Published as a conference paper at ICLR 2023

where the distribution ratio w(s, a) ≜ dE(s, a)/dD(s, a).

Finally, by combining proposition 1 and proposition 2, the original bi-level optimization problem Eq.
(4)-(5) is rewritten equivalently as follows:

∆r∗ = argmin
∆r

E(s,a)∼dD

[
w(s, a)f

(
f ′⋆

(
r̂(s, a) + γT V ∗(s, a)− V ∗(s)

α

)
/w(s, a)

)]
s.t. V ∗(s) = argmin

V (s)
(1− γ)Es∼µ0

[V (s)] + αE(s,a)∼dD

[
f⋆

(
r̂(s, a) + γT V (s, a)− V (s)

α

)]
(39)

B IMPLEMENTATION DETAILS OF RGM

B.1 RGM WITH KL-DIVERGENCE

In this section, we introduce the implementation details of RGM. For KL-divergence, we have
f(x) = x log x and its Fenchel conjugate is f⋆(x) = ex−1. However, this exponential form is
numerically unstable and prone to value explosion in practice. We address this issue by using the
fact that the conjugate of the negative entropy function, restricted to the probability simplex, is the
log-sum-exp function (Boyd et al., 2004), i.e., D⋆,f (y) = logEx∼q[exp y(x)]. Then, the optimization
problem of RGM with KL divergence is

min
∆r

E(s,a)∼dD

[
Softmax

(
Adv(∆r, V ∗)

α

)(
log

dD(s, a)

dE(s, a)
+ log

(
Softmax

(
Adv(∆r, V ∗)

α

)))]
s.t.V ∗ = argmin

V
(1− γ)Es∼µ0

[V (s)] + α logE(s,a)∼dD

[
exp

(
Adv(∆r, V)

α

)]
(40)

where, Adv(∆r, V) := r̂(s, a)+γT V (s, a)−V (s) = r̃(s, a)+∆r(s, a, r̃)+γT V (s, a)−V (s) and
log dD(s,a)

dE(s,a) can be obtained by training a discriminator log dD(s,a)

dE(s,a) = − log
(

1
h∗ − 1

)
using Eq. (14)

in continuous MDPs. The importance ratio used to extract the policy is

ψ∗(s, a) =
dπ

∗
r̂ (s, a)

dD(s, a)
= Softmax

[
r̃ +∆r + γT V ∗(s, a)− V ∗(s)

α

]
(41)

B.1.1 OPTIMIZE WITHOUT SUM-EXP

Note that in the upper level objective of Eq. (40), we need to calculate a log-sum-exp value in the de-
nominator of the log(Softmax) term, where log (Softmax(Adv(∆r, V ∗)/α)) = Adv(∆r, V ∗)/α−
log

∑
s,a∈S×A exp(Adv(∆r, V ∗)/α). In low-dimensional discrete state-action space, we can easily

get this value via summing over the overall space. In high-dimensional continuous MDPs, however, it
is pretty difficult to retrieve the value because it requires integration over the entire space. CQL (Ku-
mar et al., 2020) approximates this value via importance sampling but requires additional samples
from the entire state-action space. There are some other methods like Markov Chain Monte Carlo
(MCMC) or Score Match (SM) (Song & Kingma, 2021) that can approximate the update gradient but
bring additional computation costs and suffer from some technical issues.

Fortunately, we can subtly circumvent the log-sum-exp term by optimizing the upper bound of the
original upper-level problem using the following inequality (Boyd et al., 2004):

max
xi∈B
{x1, ..., xn} ≤ max{x1, ..., xn} ≤ log

n∑
i

exp (xi) (42)

where max
xi∈B
{x1, ..., xn} is the max value in a mini-batch B which is sampled from {x1, ..., xn}.

For simplicity, we denote max
xi∈B
{x1, ..., xn} as max

xi∈B
{x}. Substituting Eq. (42) into the upper-level

problem of Eq. (40), we get the upper bound of the original upper-level optimization objective:

17

Published as a conference paper at ICLR 2023

Upper(40) = E(s,a)∼dD

Softmax

(
Adv(∆r, V ∗)

α

)log
dD(s, a)

dE(s, a)
+

Adv(∆r, V ∗)

α
− log

∑
s,a∈S×A

exp

(
Adv(∆r, V ∗)

α

)
≤ E(s,a)∼dD

[
Softmax

(
Adv(∆r, V ∗)

α

)(
log

dD(s, a)

dE(s, a)
+

Adv(∆r, V ∗)

α
− max

B

{
Adv(∆r, V ∗)

α

})]

∝ E(s,a)∼dD

[
exp

(
Adv(∆r, V ∗)

α

)(
log

dD(s, a)

dE(s, a)
+

Adv(∆r, V ∗)

α
− max

B

{
Adv(∆r, V ∗)

α

})]
(43)

where Upper(40) denotes the upper level objective in Eq. (40).

Replacing Eq. (43) to the upper level objective in Eq. (40), we obtain the final optimization problem:

min
∆r

E(s,a)∼dD

[
exp

(
Adv(∆r, V ∗)

α

)(
log

dD(s, a)

dE(s, a)
+

Adv(∆r, V ∗)

α
−max

B

{
Adv(∆r, V ∗)

α

})]
s.t.V ∗ = argmin

V
(1− γ)Es∼µ0

[V (s)] + α logE(s,a)∼dD

[
exp

(
Adv(∆r, V ∗)

α

)]
(44)

We practically utilize the same mini-batch B as that of SGD gradient update step to calculate
max
B

{
Adv(∆r,V ∗)

α

}
. Note that the exp term in the upper-level problem is prone to value explosion

in practice, we clip the exp value to (−∞, 100] like IQL (Kostrikov et al., 2021b) does to improve
training stability.

When extracting the policy, we can ignore the annoying sum-exp term in the denominator of Softmax
and get the following ratio, because it does not influence the direction of gradients to update the
policy.

ψ∗(s, a) =
dπ

∗
r̂ (s, a)

dD(s, a)
∝ exp

[
r̃ +∆r + γT V ∗(s, a)− V ∗(s)

α

]
:= ψ̃∗(s, a) (45)

However, using Eq.(45), we can only get an unnormalized distribution ratio instead of an exact one.
We resort to self-normalized importance sampling (Owen, 2013) to obtain a normalized ratio:

ψ∗(s, a) =
ψ̃∗(s, a)

E(s,a)∼dD [ψ̃∗(s, a)]
(46)

B.2 RGM WITH X 2-DIVERGENCE

Additionally, we can also implement RGM using X 2-divergence. For X 2-divergence, we have
f(x) = 1

2 (x− 1)2 with dom f = {x : x ≥ 0}6 and its Fenchel conjugate is f⋆(x) = 1
2 (x+ 1)

2 and
f ′⋆(x) = max (0, x+ 1). Then, the optimization objective of RGM with X 2 divergence is

min
∆r

E(s,a)∼dD

[
dE(s, a)

2dD(s, a)

(
max

(
0,

Adv(∆r, V ∗)

α
+ 1

)
dD(s, a)

dE(s, a)
− 1

)2
]

s.tV ∗ = argmin
V

(1− γ)Es∼µ0 [V (s)] +
α

2
E(s,a)∼dD

[(
Adv(∆r, V)

α

)2
] (47)

The importance ratio used to extract the policy is:

ψ∗(s, a) =
dπ

∗
r̂ (s, a)

dD(s, a)
= max

(
0,
r̃ +∆r + γT V ∗(s, a)− V ∗(s)

α
+ 1

)
(48)

For RGM with KL-divergence, the upper layer contains an exponential term exp(Adv(δr,V ∗)
α), which

may pose numerical instability. For RGM with χ2 divergence, f ′⋆(x) = max (0, x+ 1) and so the

6On account of the state-action visitation distribution d ≥ 0

18

Published as a conference paper at ICLR 2023

gradient vanishes when x+ 1 < 0, which makes the policy learning slow or even fail. In practice, we
follow the criteria from SMODICE (Ma et al., 2022) by monitoring the initial policy loss to choose
the types of f -divergence.

B.3 RGM HYPERPARAMETERS AND PSEUDOCODE

For continuous MDPs with high dimensional state-action spaces, we implement RGM by parameter-
izing hτ ,∆rϕ, Vθ and πw using deep neural networks with parameter τ, ϕ, θ and w, respectively. We
implement RGM based on a two-time scale first-order stochastic gradient update, where the reward
correction term is updated much slower than the Lagrangian multiplier V . We choose the cosine
annealing learning rate schedule of the reward correction term and policy network to stabilize the
training process. To make the reward correction term comparable w.r.t the original imperfect rewards,
we normalize the imperfect rewards to standard Gaussian distribution N (0, 1) and strict the output
range of ∆rϕ to [−3, 3] by Tanh function. The conclusive hyperparameters can be found in Table 3.

Table 3: The hyperparameters of RGM with deep neural networks

Hyperparameter Value

Architecture

Reward correction hidden dim 256
Reward correction layers 2
Reward correction activation function ReLU
Discriminator hidden dim 512
Discriminator layers 3
Discriminator activation function Tanh
V hidden dim 256
V hidden layers 2
V activation function ReLU
Policy hidden dim 256
Policy hidden layers 2
Policy activation function ReLU

RGM Hyperparameters

Optimizer Adam (Kingma & Ba, 2015)
Reward correction learning rate lϕ 3e-7
Reward correction learning rate schedule cosine annealing
Discriminator learning rate lτ 1e-3
Vθ learning rate lθ 3e-4
Policy learning rate lw 3e-4
Policy learning rate schedule cosine annealing
Vθ gradient L2-regularization 1e-4
Discount factor 0.99

f -divergence χ2 for Robomimic tasks
KL for other tasks

α

4 for walker2d-medium-replay
0.5 for other D4RL tasks
0.5 for Antmaze tasks
2 for Lift and Can tasks
0.3 for Quadruped-walk + Quadruped-jump and
3 for the others in multi-task data sharing experiments

The pseudocode of RGM with deep neural networks can be found in Algorithm 1. We run RGM on
one RTX 3080Ti GPU with about 1h30min training time to apply 1M gradient steps.

We report the wall-clock training time of RGM compared with SOTA offline RL methods as well as
SOTA offline IL methods that can learn from mixed quality data in Table 4. RGM is as efficient as
most baselines but has an additional ability to combat the negative impacts of imperfect rewards.

Table 4: Wall-clock run time comparison of RGM and other baselines

BC DWBC SMODICE TD3+BC CQL IQL RGM(ours)

30min 2h40min 2h20min 45min 4h30min 1h30min 2h30min

19

Published as a conference paper at ICLR 2023

Algorithm 1 RGM (KL-divergence) with Deep Neural Networks

Input: One Expert demonstration DE , offline Dataset D, set D ← DE ∪ D. Initialize τ, ϕ, θ, w.
/ / Discriminator learning
Train hτ using DE and D using Eq. (14).
for t = 0, 1, 2, ..., N do

Sample mini-batch transitions (s, a, r̃, s′) ∼ D
/ / Reward Gap Minimization Bi-level optimization
Update Vθ,∆rϕ using Eq. (44) with lϕ << lθ
/ / Policy extraction
Update πw based on Eq. (16) and Eq. (46)

end for

C EXPERIMENTAL DETAILS

In this section, we introduce the detailed experimental setups in our paper.

C.1 D4RL EXPERIMENTS

Task Descriptions. The D4RL (Fu et al., 2020) tasks we try to solve include Hopper, Halfcheetah
and Walker2d. For these tasks, RL policies need to control the robots to move in the forward (right)
direction by applying torques on the joints.

(a) Hopper (b) Halfcheetah (c) Walker2d

Figure 7: D4RL MuJoCo tasks

Dataset composition. The D4RL (Fu et al., 2020) datasets that we used in this paper contain 5
types of datasets: random: roll out a random policy for 1M steps. expert: roll out an expert policy
that trained with SAC (Haarnoja et al., 2018) for 1M steps. medium: roll out a medium policy that
achieves 1/3 the performance of the expert for 1M steps. medium-replay: replay buffer of a SAC
agent that is trained to the performance of the medium policy. medium-expert: equally mixed dataset
combines medium and expert data. We sample only one trajectory from the expert dataset to serve
as the expert demonstration DE . The other datasets are treated as non-expert datasets D.

Table 5: Dataset compositions for D4RL Experiments

Task State Dim Expert Dataset Number of Trajectories Expert Data Size

Hopper 11 hopper-expert-v2 1 1000
Halfcheetah 17 halfcheetah-expert-v2 1 1000
Walker2d 17 walker2d-expert-v2 1 1000

Imperfect rewards. We assume the original rewards in D4RL datasets are perfect, since we
evaluate the policy performance based on the perfect reward function in the original gym environment
during evaluation. We randomly flip the sign of 50% original rewards to construct partially correct
rewards, where half rewards can provide correct learning signals while the other half cannot. We flip
all signs of the original rewards to construct completely incorrect rewards.

20

Published as a conference paper at ICLR 2023

C.2 SPARSE REWARD EXPERIMENTS

Task descriptions. The Robomimic (Mandlekar et al., 2021) tasks we try to solve include Lift and
Can. For the Lift task, RL policy needs to control a 7-DOF robot arm to learn to lift a cube that is
randomly located at a table. For the Can task, RL policy needs to control a 7-DOF robot arm to learn
to pick a can that is randomly located at a table and place it in a specific location.

(a) Lift (b) Can

Figure 8: Robomimic tasks

The AntMaze tasks we try to solve include AntMaze medium tasks, where an ant not only needs
to learn to walk but also navigates from the goal to the destination in a medium-size maze. This
task is extremely difficult due to the non-markovian and mixed-quality offline dataset, the stochastic
property of environments, and the high dimensional state-action space (Fu et al., 2020).

Figure 9: AntMaze medium task.

Robomimic dataset composition. The Robomimic (Mandlekar et al., 2021) datasets that we used
in this paper contain 3 types of datasets: PH (Proficient-Human): datasets are collected by a single,
experienced human operator. MH (Multi-Human): datasets are collected by 6 human operators of
varying proficiency. MG (Machine-Generated): datasets are collected by first training SAC on the
Lift and Can task, taking agent checkpoints that are saved regularly during training, and collecting
300 rollout trajectories from each checkpoint. We treat PH dataset as the expert dataset since the
environment is stochastic, thus only one expert trajectory is difficult to capture the expert distribution.
We use MG datasets as the large potentially suboptimal dataset rather than MH datasets since MH
datasets are non-markovian and thus are hard to be solved by modern offline RL methods (Mandlekar
et al., 2021), which is not the main challenge we try to solve.

Table 6: Dataset compositions for Robomimic Datasets

Task State Dim Expert Dataset Expert Size Non-expert Dataset Non expert Size

Lift 19 Lift-PH 9666 Lift-MG 225K
Can 23 Can-PH 23207 Can-MG 585K

AntMaze dataset composition. The expert dataset of RGM is composed of 30 successful
trajectories (which may be suboptimal) that are collected by training IQL with dense rewards. We set
the original D4RL Antmaze-medium-play-v2 and Antmaze-medium-diverse-v2 datasets as non-expert
datasets.

21

Published as a conference paper at ICLR 2023

C.3 MULTI-TASK DATA SHARING EXPERIMENTS

Task descriptions. The multi-task data sharing experiments contain 2 domains with 4 tasks per
domain built on DeepMind Control Suite (Tassa et al., 2018). The immediate rewards in the 8 tasks
are all in the unit interval, r(s, a) ∈ [0, 1]. (a) For Walker (Stand, Walk, Run, Flip) domain, the
agent needs to control a biped in a 2D vertical plane to master four different locomotion skills. The
observation space is 24 dimensional, and the action space is 6 dimensional. The episode length is
set to 1000. (b) For Quadruped (Walk, Run, Roll-Fast, Jump) domain, the agent needs to control
a quadruped within a 3D space to master four different moving skills. The observation space is 78
dimensional, and the action space is 12 dimensional. The episode length is set to 1000.

(a) Walker-stand (b) Walker-walk (c) Walker-run (d) Walker-flip

(e) Quadruped-walk (f) Quadruped-run (g) Quadruped-jump (h) Quadruped-roll_fast

Figure 10: Different tasks in Walker and Quadruped domain

Dataset composition. We take the same rule of dataset generation and similar task settings as
the work (Bai et al., 2023). For each task, we utilize TD3 (Fujimoto et al., 2018) to collect three
types of datasets (expert, medium, replay). The expert dataset contains only one expert episode, the
medium dataset contains 1000 episodes of interactions, and the replay dataset contains 2000 episodes
of interactions. For Walker (Stand, Walk, Run, Flip) domain, the Stand task is set to the target task,
and the others are relevant tasks. For Quadruped (Walk, Run, Jump, Roll-Fast) domain, the Walk
task is set to the target task, and the others are relevant tasks. We conduct two-task data sharing
experiments, in which we share the replay dataset of the relevant task with the medium dataset of the
target task.

C.4 GRID WORLD EXPERIMENTS

Dataset composition. The offline dataset D we use in grid world experiments consists of 1000
trajectories generated by a completely random policy (Figure 11 (b)). There are two settings of
imperfect rewards r̃: (i) r̃ = +10 when reaching the goal while r̃ = 0 anywhere else. (ii) (Figure
11 (c)) r̃ = +10 when reaching the goal, r̃ = −10 when encountering the fire (true fire or fake
fire), r̃ = 0 everywhere else. The expert demonstration dataset DE consists of only one expert
demonstration (Figure 11 (a)).

D ADDITIONAL RESULTS

In this section, we provide additional comparative and ablation results of RGM against baseline
methods.

22

Published as a conference paper at ICLR 2023

(a) Expert demonstration (b) Empirical distribution of DO r̃ (c) Imperfect rewards r̃

Figure 11: (a) The only one expert demonstration path, which starts from , follows the path and arrow
to reach the goal . (b) The empirical distribution heatmap of offline dataset DO , which consists of trajectories
generated by random policy starting from . The darker the color is, the more frequently the agent passes. (c)
Illustration of imperfect rewards. Agent gets r̃ = −10 when reaching , r̃ = +10 when reaching , r̃ = 0
everywhere else.

D.1 ADDITIONAL COMPARISON TO OFFLINE IL

Recall that DWBC (Xu et al., 2022b) and SMODICE (Ma et al., 2022) all assume the offline dataset
already covers a lot of expert trajectories, which is more restrictive compared to the requirement
of RGM. Therefore, we further demonstrate the superiority of RGM compared to these offline IL
methods by evaluating RGM under the same settings of DWBC and SMODICE. We combine the
original D4RL dataset with 200 or 100 expert trajectories as the offline dataset D, see Table 7 for
descriptions of the expert trajectories. The comparisons under these dataset configurations can be
found in Table 8. We can observe from Table 8 that RGM still outperforms existing SOTA offline IL
methods under their settings.

Table 7: The details about the expert data that are used to construct the non-expert dataset in offline IL settings.

Task State Dim Expert Dataset Number of Trajectories Expert Data Size

Hopper 11 hopper-expert-v2 200 193430
Halfcheetah 17 halfcheetah-expert-v2 200 199800
Walker2d 17 walker2d-expert-v2 100 99900

D.2 EXPERIMENTS ON SAMPLING FROM DISCOUNTED DISTRIBUTIONS

We also implemented the discounted visitation distribution sampling in RGM. This is done by
augmenting the D4RL datasets that adds the timestep of each (s, a) pair in an episode. When
performing sampling in Eq.(14-16) and calculating the gradient, we sample (s, a, t) in the D4RL
datasets and then multiply the gradient by γt. Empirically, we found that the performance of the
discounted visitation distribution version is not better than the sampling distribution version of RGM.
Figure 12 and Table 9 show that RGM (sampling distribution) surpasses RGM (discounted visitation
distribution) in most cases with lower variance, while the latter wins by a slight margin in only a few
cases.

D.3 EXPERIMENTS ON NOISY PARTIALLY CORRECT REWARDS

We add i.i.d Gaussian noises with different standard deviation σ to original D4RL rewards to construct
noisy imperfect rewards with different degrees of imperfection. We set σ = 1 to construct partially
correct rewards and σ = 10 as largely incorrect rewards, see Table 10 for detailed results.

Table 10 shows that RGM under perfect rewards slightly outperforms RGM with partially correct
rewards, indicating that RGM can largely remedy the negative impacts caused by reward noises with
σ = 1. Meanwhile, the highly noisy rewards (σ = 10) surely impact the performance, but its mean

23

Published as a conference paper at ICLR 2023

Table 8: Average normalized scores of RGM compared with SOTA offline IL methods that can learn
from mixed quality data under their settings. The notation "-w.e" stands for the mixed dataset that
combines the original D4RL dataset with some expert trajectories. The scores are taken over the final
10 evaluations with 5 random seeds. We obtain the results via ruining author-provided open-source
codes. RGM achieves 7 highest scores in 12 tasks.

Dataset BC DWBC SMODICE RGM (Ours)

hopper-r-w.e 2.8 59.5±30.3 108.7±5.4 110.4 ±1.2
halfcheetah-r-w.e 0.2 3.3±1.7 89.3 ±1.5 57.6±6.4
walker2d-r-w.e 1.2 81.8±0.6 102.0±9.9 109.2 ±0.2
hopper-m-w.e 54.9 39.0±22.5 54.5±4.3 66.1 ±9.7
halfcheetah-m-w.e 41.2 8.5±9.2 55.4 ±10.9 50.5±7.9
walker2d-m-w.e 62.1 56.1±39.2 6.5±9.7 79.2 ±12.4
hopper-m-r-w.e 23.4 23.1±17.1 53.0±27.5 58.6 ±27.0
halfcheetah-m-r-w.e 24.2 1.1±1.2 84.9 ±7.2 65.4±15.1
walker2d-m-r-w.e 21.8 85.5 ±33.6 8.9±12.3 71.7±32.6
hopper-m-e-w.e 51.2 40.0±22.5 71.4±15.5 89.1 ±13.5
halfcheetah-m-e-w.e 61.7 1.2±0.5 87.2 ±1.9 76.8±8.8
walker2d-m-e-w.e 103.2 76.8±31.7 14.1±2.0 105.8 ±8.6

Mean Score 37.8 39.7±17.5 61.3±9.0 78.3 ±12.0

Figure 12: Experiments on sampling from discounted and undiscounted distributions

score is 45.0, which is still considerably higher than other Offline RL and IL methods under partially
correct rewards with the largest mean value of 35.5 as shown in Table 1.

D.4 ABLATIONS ON THE NUMBER OF EXPERT TRAJECTORIES

We add the ablations on the number of expert trajectories in DE (NE) for RGM, SMODICE and
DWBC. Table 11, 12 and 13 show that RGM achieves better performance than offline IL methods

24

Published as a conference paper at ICLR 2023

Table 9: Normalized scores of RGM sampling from discounted distribution and undiscounted
distribution

Dataset RGM (Discounted) RGM (Undiscounted)

hopper-r 19.8±0.2 21.2 ±0.4
halfcheetah-r 0.2 ±0.0 0.2 ±0.0
walker2d-r 1.2±1.7 7.7 ±3.3
hopper-m 51.1±4.9 55.5 ±1.0
halfcheetah-m 40.3±1.6 40.7 ±1.4
walker2d-m 62.2±22.5 72.3 ±10.7
hopper-m-r 43.3±11.6 59.1 ±15.3
halfcheetah-m-r 34.5±4.5 37.8 ±2.6
walker2d-m-r 34.3±11.0 48.6 ±3.6
hopper-m-e 65.3±19.5 87.1 ±10.7
halfcheetah-m-e 87.3 ±7.8 81.5±0.8
walker2d-m-e 108.4±0.6 108.8 ±0.4

Mean score 45.7±7.2 52.0 ±4.2

Table 10: Normalized scores of RGM on different degrees of noisy datasets.

Dataset RGM(T) RGM (σ = 1) RGM (σ = 10)

hopper-r 29.6 8.5 9.8
halfcheetah-r 0.2 0.3 0.2
walker2d-r 3.9 0.6 -0.1
hopper-m 56.2 52.0 47.9
halfcheetah-m 40.4 41.2 38.4
walker2d-m 73.3 71.9 72
hopper-m-r 60.3 58.0 40.0
halfcheetah-m-r 37.9 38.3 28.1
walker2d-m-r 46.3 42.5 43.8
hopper-m-e 106.1 82.0 82.8
halfcheetah-m-e 85.6 88.7 69.1
walker2d-m-e 109.2 108.2 108.5

Mean score 54.1 49.4 45.0

designed for mixed-quality data (DWBC and SMODICE). It is found that RGM also enjoys a higher
level of performance gains when the amount of expert data is increased.

D.5 EXPERIMENTS ON MULTI-TASK DATA SHARING

We present concrete results of the multi-task data sharing experiment. Table 14 shows the evaluated
scores on multi-task data sharing, which are illustrated in Fig. 3.

D.6 ADDITIONAL LEARNING CURVES OF RGM

We present the learning curves of RGM compared with offline IL and RL baselines on D4RL datasets
related to the results presented in Table 1.

D.7 ILLUSTRATIVE EXAMPLE FOR THE NON-TABULAR SCENARIOS

The results of the 8×8 grid world experiments in Section 5.2 and Appendix C.4 illustrate the potential
benefits of the learned rewards in the tabular case. In this subsection, we consider a one-dimensional

25

Published as a conference paper at ICLR 2023

Table 11: Normalized scores of RGM and offline IL baselines when DE contains 10 expert trajectories.

Dataset DWBC (NE = 10) SMODICE (NE = 10) RGM (NE = 10)

hopper-r 52.5 1.3 30.8
halfcheetah-r -0.3 2.1 0.2
walker2d-r 96.2 0.3 6.1
hopper-m 31.1 53.8 54.5
halfcheetah-m 5.0 40.9 41.4
walker2d-m 22.4 3.3 72.9
hopper-m-r 37.4 33.2 55.5
halfcheetah-m-r 3.9 36.7 34.9
walker2d-m-r 90.7 34.7 43.1
hopper-m-e 31.2 85.0 89.2
halfcheetah-m-e 10.9 86.6 79.4
walker2d-m-e 46.3 14.1 109.0

Mean score 35.6 32.7 51.4

Table 12: Normalized scores of RGM and offline IL baselines when DE contains 40 expert trajectories.

Dataset DWBC (NE = 40) SMODICE (NE = 40) RGM (NE = 40)

hopper-r 54.6 67.2 36.9
halfcheetah-r 8.8 14.8 18.7
walker2d-r 78.7 92.9 -0.1
hopper-m 13.5 54.2 57.0
halfcheetah-m 5.6 44.5 40.9
walker2d-m 16.9 3.5 74.3
hopper-m-r 54.3 47.2 54.3
halfcheetah-m-r 46.1 54.6 46.1
walker2d-m-r 87.8 35.7 61.2
hopper-m-e 34.5 75.9 92.4
halfcheetah-m-e 3.4 85.1 84.7
walker2d-m-e 57.2 17.1 108.6

Mean score 38.5 44.9 56.5

random walk task in the non-tabular case and provide the visualization of the learned corrected
rewards r̂. In this task, the state space is a straight line from [0, +3] and the agent can move at each
step in the range of [-0.5, 0.5]. If the agent goes beyond the edge (s < 0 or s > +3), then we keep it
at the edge (s = 0 or s = +3). The agent needs to start from state s = 0 and reach the destination
located at s = 3 as fast as possible. The expert dataset DE consists of one trajectory where the expert
takes action a = 0.5 at every state. The offline dataset D consists of 1000 trajectories generated by
a completely random policy where the agent takes action uniformly from [-0.5, 0.5] at every state.
The sparse rewards r̃ = +10 is set when reaching the destination while r̃ = 0 anywhere else. The
visualization of learned rewards r̂ at each state-action pair is shown in Figure 14.

E DISCUSSION ON THE APPLICABILITY TO ONLINE SETTINGS

It should be noted that the proposed RGM framework can also be applied to the online setting. This
can be achieved by simply setting α = 0 in Eq. (4-5), and we have the bi-level objective of the online

26

Published as a conference paper at ICLR 2023

Table 13: Normalized scores of RGM and offline IL baselines when DE contains 80 expert trajectories.

Dataset DWBC (NE = 80) SMODICE (NE = 80) RGM (NE = 80)

hopper-r 65.1 92.7 47.3
halfcheetah-r 2.3 48.1 40.4
walker2d-r 86.1 98.8 109.1
hopper-m 8.8 53.4 59.7
halfcheetah-m 6.7 51.2 42.5
walker2d-m 36.5 2.9 73.4
hopper-m-r 35.3 46.6 66.2
halfcheetah-m-r 36.1 59.6 54.0
walker2d-m-r 85.8 32.8 64.9
hopper-m-e 8.8 83.7 97.1
halfcheetah-m-e 12.1 87.4 83.9
walker2d-m-e 64.5 43.7 108.6

Mean score 37.5 58.4 70.6

Table 14: Evaluated scores on multi-task data sharing.

Domain Dataset CDS CDS+UDS RGM

Walker stand-medium + walk-replay 486.1±7.2 415.3±44.8 753.3±107.6
Walker stand-medium + run-replay 455.8±21.9 440.0±8.4 620.0±31.0
Walker stand-medium + flip-replay 492.4±19.0 371.2±123.0 745.6±100.8
Quadruped walk-medium + run-replay 527.6±213.0 155.7±53.0 900.0±48.6
Quadruped walk-medium + roll_fast-replay 476.2±45.1 439.1±90.7 493.2±37.3
Quadruped walk-medium + jump-replay 533.5±168.5 521.9±236.9 490.9±119.4

Mean score 495.3±79.1 390.5±92.8 667.0±74.1

version of RGM:
∆r∗ = argmin

∆r
Df

(
dπ

∗
r̂ ∥dE

)
s.t. π∗

r̂ = argmax
π

E(s,a)∼dπr̂ [r̂(s, a)]
(49)

Since we could get online samples from dπ
∗
r̂ in the online setting, so we don’t have to eliminate

dπ
∗
r̂ . One can use the existing popular online RL algorithms to solve the lower-level problem, while

leveraging the online samples from dπ
∗
r̂ to solve the upper-level problem. Hence the online version of

RGM can be perceived as a reduced and simplified version of the original RGM. The core idea of the
reward correction has not been changed in the online setting, which illustrates that to some extent,
our proposed RGM is a unified policy optimization method for imperfect rewards.

27

Published as a conference paper at ICLR 2023

Figure 13: Learning curves of RGM trained on D4RL datasets under imperfect rewards.

(a) Empirical distribution of D (b) Visualization of learned rewards r̂

Figure 14: (a) The empirical distribution of offline datasetD in a continuous one-dimensional random
walk task. Most states in the offline dataset are distributed near the starting point. (b) At each state (at
each vertical line), the learned reward r̂ gets a larger value when the action gets closer to 0.5. The
expert data has contain 7 states (s = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), but the learned rewards can still
generalize well in the state space even in regions that are not covered by the expert data. Similar to
the 8×8 grid world experiment, we can successfully navigate to the destination by only maximizing
per-step reward r̂, which means that the learned rewards also encode long-horizon information.

28

	Introduction
	Related Work on Different Reward Settings
	Preliminaries
	Reward Gap Minimization
	Definition of reward gap
	Bi-level optimization
	Practical implementation

	Experiments
	Comparative results
	Investigations on reward correction

	Discussion and Conclusion
	Proofs
	Background
	Proof of tractable transformation of the lower-level problem
	Proof of tractable transformation of the upper-level problem

	Implementation details of RGM
	RGM with KL-divergence
	Optimize without Sum-exp

	RGM with X2-divergence
	RGM hyperparameters and pseudocode

	Experimental details
	D4RL experiments
	Sparse reward experiments
	Multi-task data sharing experiments
	Grid world experiments

	Additional Results
	Additional comparison to offline IL
	Experiments on sampling from discounted distributions
	Experiments on noisy partially correct rewards
	Ablations on the number of expert trajectories
	Experiments on multi-task data sharing
	Additional learning curves of RGM
	Illustrative example for the non-tabular scenarios

	Discussion on the Applicability to Online Settings

