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ABSTRACT

Without access to the source data, source-free domain adaptation (SFDA) transfers
knowledge from a source-domain trained model to target domains. Recently,
SFDA has gained popularity due to the need to protect the data privacy of the
source domain, but it suffers from catastrophic forgetting on the source domain due
to the lack of data. To systematically investigate the mechanism of catastrophic
forgetting, we first reimplement previous SFDA approaches within a unified
framework and evaluate them on four benchmarks. We observe that there is
a trade-off between adaptation gain and forgetting loss, which motivates us
to design a consistency regularization to mitigate forgetting. In particular, we
propose a continual source-free domain adaptation approach named CoSDA,
which employs a dual-speed optimized teacher-student model pair and is equipped
with consistency learning capability. Our experiments demonstrate that CoSDA
outperforms state-of-the-art approaches in continuous adaptation. Notably, our
CoSDA can also be integrated with other SFDA methods to alleviate forgetting.

1 INTRODUCTION

Domain adaptation (DA) (Ben-David et al., 2010) aims to transfer features from a fully-labeled source
domain to multiple unlabeled target domains. Prevailing DA methods perform the knowledge transfer
by by consolidating data from various domains and minimizing the domain distance (Ganin et al.,
2016; Hoffman et al., 2018; Long et al., 2015; Saito et al., 2018). However, due to the privacy policy,
we cannot access source domain data in most cases, where all data and computations must remain
local and only the trained model is available (Al-Rubaie & Chang, 2019; Mohassel & Zhang, 2017).

Source-free domain adaptation (SFDA) (Kundu et al., 2020; Li et al., 2020; Liang et al., 2020; 2022b)
maintains the confidentiality of the domain data by transferring knowledge straight from a source-
domain-trained model to target domains. SFDA also allows for spatio-temporal separation of the
adaptation process since the model-training on source domain is independent of the knowledge trans-
fer on target domain. However, due to the lack of alignment with prior domain features, typical SFDA
methods tend to overfit the current domain, resulting in catastrophic forgetting on the previous do-
mains (Bobu et al., 2018; Tang et al., 2021; Yang et al., 2021a). This forgetting can lead to severe relia-
bility and security issues in many practical scenarios such as autonomous driving (Shaheen et al., 2022)
and robotics applications (Lesort et al., 2020). To address this issue, a possible solution is to preserve a
distinct model for each domain, but this solution is impractical since (1) the model pool expands with
the addition of new domains, and (2) obtaining the specific domain ID for each test sample is hard.

In this paper, we introduce a practical DA task named continual source-free domain adaptation
(continual SFDA), with the primary goal of maintaining the model performance on all domains
encountered during adaptation. The settings of continual SFDA are presented in Figure 1I. We initiate
the adaptation process by training a model in the fully-labeled source domain, and then subsequently
transfer this off-the-shelf model in a sequential manner to each of the target domains. During the
testing phase, data is randomly sampled from previously encountered domains, thereby rendering it
impossible to determine the specific domain ID in advance.

To systematically investigate the mechanism of catastrophic forgetting, we reimplement previous
SFDA approaches within a unified framework and conduct a realistic evaluation of these methods un-
der the continual SFDA settings on four multi-domain adaptation benchmarks, i.e. DomainNet (Peng
et al., 2019), Office31 (Saenko et al., 2010), OfficeHome (Venkateswara et al., 2017) and VisDA (Peng

1



Under review as a conference paper at ICLR 2024

𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇

𝐗𝐗,𝐲𝐲 ∼ 𝔻𝔻𝑆𝑆

𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇

(a) Typical DA.

⋯ ⋯
⟨S⟩ ⟨T1|S⟩ ⟨T2|S, T1⟩ ⟨Tk|S,⋯ , Tk−1⟩

Target 1Source
𝐗𝐗,𝐲𝐲 ∼ 𝔻𝔻𝑆𝑆

Target 2
⋯

Target k
⋯

𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇1 𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇2 𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇𝑘𝑘

𝐗𝐗 ∼ 𝔻𝔻𝑆𝑆
𝐗𝐗 ∼ 𝔻𝔻𝑆𝑆
𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇1

𝐗𝐗 ∼ 𝔻𝔻𝑆𝑆
𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇1
𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇2

⋯
𝐗𝐗 ∼ 𝔻𝔻𝑆𝑆
𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇1

⋮
𝐗𝐗 ∼ 𝔻𝔻𝑇𝑇𝑘𝑘

⋯

Adaptation

(b) Continual source-free domain adaptation.

⟨T|S⟩

Test

Train

(I) The illustration of continual DA.

Teacher

Student

𝝍𝝍
Infer ℎ𝝍𝝍 �𝐗𝐗

𝐷𝐷KL �𝐩𝐩‖ℎ𝝍𝝍 �𝐗𝐗
Consistency Loss�

𝐗𝐗i
𝐗𝐗j

Mixup �𝐗𝐗 +

𝝍𝝍 ← 𝝍𝝍− η ⋅ ∇𝝍𝝍 𝐷𝐷KL �𝐩𝐩‖ℎ𝝍𝝍 �𝐗𝐗 − αMI ℎ𝝍𝝍 �𝐗𝐗

𝜽𝜽 ← m ⋅ 𝜽𝜽 +
1 − m ⋅ 𝝍𝝍

Batch-wise update 𝝍𝝍

Stop grad

Infer

𝜽𝜽

Scaling
�
𝐩𝐩i
𝐩𝐩j�

ℎ𝜽𝜽 𝐗𝐗i
ℎ𝜽𝜽 𝐗𝐗j

Mixup �𝐩𝐩�
𝐗𝐗i
𝐗𝐗j

+

Epoch-wise 
update 𝜽𝜽

MI ℎ𝝍𝝍 �𝐗𝐗
Mutual Information

(II) The pipeline of CoSDA.

Figure 1: Illustration of continuous source-free domain adaptation. Left: Comparing typical DA (a)
and continuous DA (b). In typical DA, models are trained on both source and target domains, but tested
only on the target domain. In contrast, continuous DA sequentially trains on each target domain and
tests on all previously seen domains. Right: The pipeline of the proposed CoSDA method, utilizing a
dual-speed optimized teacher-student model pair to adapt to new domains while avoiding forgetting.

et al., 2017). To ensure the representativeness of our evaluation, we select six commonly used SFDA
methods as follows: SHOT (Liang et al., 2020), SHOT++ (Liang et al., 2022b), NRC (Yang et al.,
2021b), AaD (Yang et al., 2022), DaC (Zhang et al., 2022) and EdgeMix (Kundu et al., 2022). For
further comparison, we also consider two well-performed continual DA methods: GSFDA (Yang
et al., 2021a) and CoTTA (Wang et al., 2022). We measure the extent of forgetting exhibited by the
aforementioned methods in both single-target and multi-target sequential adaptation scenarios.

As shown in Figure 2, our experiments reveal two main findings: (1) the accuracy gain in the target
domain often comes at the cost of huge forgetting in the source domain, especially for hard domains
like quickdraw; (2) the catastrophic forgetting can be alleviated with data augmentations (e.g., DaC
and Edgemix) and domain information preservation (e.g., GSFDA and CoTTA). Our investigation
also finds some limitations of current continual DA techniques, such as GSFDA, which relies on
domain ID information for each sample during testing, and CoTTA, which has a tendency to overfit
the source domain and learn less plastic features, leading to suboptimal adaptation performance.

In light of the above findings, we introduce CoSDA, a new Continual Source-free Domain Adaptation
approach that reduces forgetting on all encountered domains and keeps adaptation performance on
new domains through teacher-student consistency learning. CoSDA employs a dual-speed optimized
teacher-student model pair: a slowly-changing teacher model to retain previous domain knowledge
and a fast optimized student model to transfer to new domain. During adaptation, the teacher model
infers on target domain to obtain knowledge that matches previous domain features, and the student
model learns from this knowledge with consistency loss. We also incorporate mutual information
loss to enhance the transferability and robustness to hard domains. Extensive experiments show
that CoSDA significantly outperforms other SFDA methods in terms of forgetting index. Moreover,
CoSDA does not require prior knowledge such as domain ID and is highly robust to hard domains.
CoSDA is easy to implement and can be integrated with other SFDA methods to alleviate forgetting.

2 PRELIMINARIES AND RELATED WORKS

Preliminaries. Let DS and DT denote the source domain and target domain. In domain adaptation,
we have one fully-labeled source domain DS and K unlabeled target domains {DTk

}Kk=1. To ensure
confidentiality, all data computations are required to remain local and only the global model h is
accessible, which is commonly referred to as source-free domain adaptation (Li et al., 2020; Liang
et al., 2020). With this setting, continual DA starts from training an off-the-shelf model h on the
source domain, and subsequently transfer it to all target domains. The goal of continual DA is
to sustain the model’s performance on all previous domains after adaptation. We summarize two
adaptation scenarios based on the number of target domains, as depicted in Figure 1I:

Single target adaptation. We start from K = 1, which is most common for current SFDA studies. In
this setting, A source pre-trained model is transferred to one target domain and test data is arbitrarily
sampled from both source and target domain without prior knowledge such as domain ID.

Multi-target sequential adaptation. We extend to K ≥ 2, where the model is sequentially transferred
to each target domain and test data is drawn from all seen domains.
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Figure 2: Multi-target sequential adaptation on the DomainNet with the adaptation order of Real→
Infograph→ Clipart→ Painting→ Sketch→ Quickdraw. The accuracy matrix measures the transfer-
ability, with the value in position (i, j) denotes the accuracy on the i-th domain after adaptation on
the j-th domain. Backward transfer (BWT) measures the total degree of forgetting with range −100
to 0, where a larger BWT value indicates a smaller degree of forgetting and 0 indicates no forgetting.

Related works. Current SFDA methods adopt self-training techniques to address domain shift as
follows: SHOT (Liang et al., 2020) uses entropy regularization for adaptation; NRC (Yang et al.,
2021b) and AaD (Yang et al., 2022) generate pseudo-labels with nearest-neighbor; DaC (Zhang
et al., 2022) and EdgeMix (Kundu et al., 2022) adopt data augmentation as consistency loss and
SHOT++ (Liang et al., 2022b) designs auxiliary tasks to learn domain-generalized features. Despite
the above methods, we further survey two types of methods closely related to CoSDA: knowledge
distillation-based methods and continual DA.

Knowledge distillation-based methods. Knowledge distillation (Hinton et al., 2015), which transfers
knowledge from a well-trained teacher model to a student model, has been widely used in domain
adaptation. To enhance adaptation performance, bi-directional distillation is applied in TSML (Li
et al., 2023) while SSNLL (Chen et al., 2022) utilizes the mean-teacher (Tarvainen & Valpola,
2017) structure. DINE (Liang et al., 2022a) introduces a memory-bank to store historical inference
results, providing better pseudo-labels for the student model. However, in contrast to the dual-speed
optimization strategy used in CoSDA, these distillation-based methods update both the teacher and
student models simultaneously, leading to the forgetting of previous domain features.

Continual DA. A few works have explored continual domain adaptation by incorporating continual
learning techniques, which can be summarized into three categories: feature replay (Bobu et al., 2018),
dynamic architecture (Mallya & Lazebnik, 2018; Mancini et al., 2019; Yang et al., 2021a) and parame-
ter regularizations (Niu et al., 2022; Wang et al., 2022). CUA (Bobu et al., 2018) and ConDA (Taufique
et al., 2021) samples a subset from each target domain as replay data. PackNet (Mallya & Lazeb-
nik, 2018) separates a subset neurons for each task. Aadgraph (Mancini et al., 2019) encodes the
connection of previous domains into one dynamic graph and uses it to select features for new domain.
GSFDA (Yang et al., 2021a) assigns specific feature masks to different domains. EATA (Niu et al.,
2022) uses the elastic-weight consolidation (EWC) (Kirkpatrick et al., 2017) as the regularization loss.
CoTTA (Wang et al., 2022) ensures knowledge preservation by stochastically preserving a subset of
the source model’s parameters during each update. Distinct from the above methods, CoSDA adopts
a dual-speed optimized teacher-student model pair, inspired by LSTM (Hochreiter & Schmidhuber,
1997), to mitigate forgetting. Specifically, a slowly-changing teacher model is utilized to preserve long-
term features, while a fast optimized student model is employed to learn domain-specific features.

3 COSDA: AN APPROACH FOR CONTINUAL SFDA

Overview. CoSDA is a continual source-free domain adaptation method that achieves multi-target
sequential adaptation through pseudo-label learning. For continual learning, CoSDA uses the features
learned from previous domains to construct pseudo-labels, which are then used for both adapting
to new target domains and preventing forgetting on previously encountered domains. Inspired by
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knowledge distillation (Hinton et al., 2015), CoSDA utilizes a dual-speed optimized teacher-student
model pair, consisting of the teacher model hθ which retains the knowledge of previous domains, and
the student model hψ that learns domain-specific features. The teacher model generates pseudo-labels
for the student model during training, and the student model learns from both the target data and
the pseudo-labels using a consistency loss. After adaptation, the teacher model serves as the global
model. The framework of CoSDA is presented in Figure 1II, and the details are discussed below.

3.1 CONSISTENCY LEARNING WITH TEACHER KNOWLEDGE

For each data point X from current target domain DTk
, we obtain the classification score from the

teacher model hθ(X), and use it as the pseudo-label to train the student model. However, directly
learning from hθ(X) may lead to overfitting to the teacher model. To address this issue, we introduce
a consistency loss that consists of three steps. First, we compress the soft-label hθ(X) into a hard-
label p with a temperature parameter τ as p := softmax (hθ(X)/τ). Next, we augment X and train
the student model to consist with the hard-label p for the augmented samples. Among existing meth-
ods (Chen et al., 2020; Cubuk et al., 2019), We choose mixup (Zhang et al., 2018) as the augmentation
strategy for three advantages: (1) Mixup has the lowest computation cost. Non-mixup augmentation
methods typically require k× data-augmentations and model inferences for each sample (e.g., k = 4
for MixMatch (Berthelot et al., 2019) and 32 for CoTTA (Wang et al., 2022)), while mixup works with
k = 1 and therefore does not require any extra computations. (2) Mixup can be applied to other data
modalities, such as NLP (Guo et al., 2019) and Audio (Meng et al., 2021), while other methods are
specifically designed for image data. (3) Mixup facilitates the learning of domain-invariant features.
Recent studies (Carratino et al., 2022; Zhang et al., 2021) point out that mixup can contract the data
points towards their domain centroid, thereby holistically reducing the domain distance (details are
provided in Appendix A.1). With mixup augmentation, we construct the consistency loss as follows:

Consistency learning with mixup. For a random-sampled data pair (Xi,Xj) with hard-labels (pi,pj).
We sample λ ∼ Beta(a, a) and construct the mixed data point as X̃ = λXi + (1 − λ)Xj ; p̃ =
λpi + (1− λ)pj , then the consistency loss for hψ is

ℓcons(X̃, p̃;ψ) := DKL

(
p̃∥hψ(X̃)

)
. (1)

Consistency loss helps student model to learn from both previous domain knowedge and the target
domain features. However, when the target data is extremely different from the previous domains, the
consistency loss may cause the model collapse. To improve the robustness of the model and enable it
to learn from hard domains, we employ the mutual information (MI) loss as the regularization:

Mutual information maximization. For a batch of mixed data {X̃i}Bi=1, we obtain the marginal
inference results as h̄ψ = 1

B

∑B
i=1 hψ(X̃i) and formalize the MI as follows:

MI
(
{hψ(X̃i)}Bi=1

)
:= − 1

B

B∑
i=1

DKL

(
hψ(X̃i)∥h̄ψ

)
. (2)

Our goal is to maximize mutual information during training, which is achieved through the related
MI loss as ℓMI := −MI(·). Based on previous studies (Hu et al., 2017; Liang et al., 2020), ℓMI can
be decomposed into two components: maximizing the instance entropy and minimizing the marginal
inference entropy. The former encourages the model to learn distinct semantics for each data sample,
while the latter prevents the model from overfitting to only a few classes (see Appendix A.2 for
detailed analysis). Experimental results demonstrate that using the MI loss enables CoSDA to adapt
to hard domains (such as Quickdraw on DomainNet) without experiencing catastrophic forgetting.
The total loss is obtained by combining the consistency loss and MI loss, i.e., ℓψ = ℓcons + α · ℓMI.

3.2 DUAL-SPEED OPTIMIZATION STRATEGY

In continual domain adaptation, the global model adapts to each target domain in sequence. To prevent
forgetting of previously learned features, we are inspired by LSTM for sequence data processing and
adopt a dual-speed strategy to optimize the student and teacher models separately, with the student
learning short-term features specific to the current domain and the teacher filtering out long-term
domain-invariant features. Specifically, the student model is updated rapidly using SGD with loss
ℓψ after every batch, while the teacher model is slowly updated by performing exponential moving
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Algorithm 1 Adaptation process of CoSDA for DTk

1: Inputs: global model h, unlabeled training set DTk
.

2: Hypars: total epochs E, learning rate η, temperature τ , mixup Beta(a, a), loss weight α, EMA
momentum m.

3: Initialize θ ← h,ψ ← h, (µ,Var)← h;
4: for t = 0 to E−1 do
5: for every mini-batch X in DTk

do
6: Init. p = softmax (hθ(X)/τ), λ ∼ Beta(a, a);
7: Mixup. (X̃, p̃) = λ(X,p) + (1− λ)Shuffle(X,p);
8: Infer. ℓ(X̃, p̃;ψ) = ℓcons(X̃, p̃;ψ) + αℓMI(X̃;ψ);
9: SGD. ψ ← ψ − η · ∇ψℓ(X̃, p̃;ψ); # Student

10: end for
11: EMA. θ ← m · θ + (1−m) ·ψ; # Teacher
12: EMA. µ← m · µ+ (1−m) · µψ;
13: EMA. Var← m ·Var+ (1−m) ·Varψ .
14: end for
15: Return: new global model h with params (θ,µ,Var).

average (EMA) between the previous-step teacher model and the current-step student model at the
end of each epoch, as depicted in Figure 1II. This dual-speed strategy allows for a smooth knowledge
transition between the two models, preventing abrupt changes during adaptation and maintaining the
model’s performance on previous domains.

Updating the mean and variance in BatchNorm. BatchNorm is a widely-used normalization technique
in deep learning models, which estimates the mean and variance of the overall dataset as (µ,Var) and
utilizes these statistics to normalize the data. As the µ-Var statistics can exhibit significant variation
across different domains, prior DA methods, such as FedBN (Li et al., 2021) and DSBN (Chang et al.,
2019), typically assign distinct statistics to different domains. However, these methods are not appli-
cable to continual DA since the test data randomly comes from all previously encountered domains
without prior knowledge of the domain ID. To unify the BN statistics among different domains, we
propose a dual-speed updating method for the mean and variance values. During the training process,
the student model estimates the mean and variance of the target domain data as µψ and Varψ
respectively. After each epoch, the teacher model updates its BN statistics using the EMA method as:

µ← mµ+ (1−m)µψ; Var← mVar+ (1−m)Varψ. (3)
During testing, the teacher model applies the global (µ,Var) parameters to BatchNorm layers.

3.3 ALGORITHM AND HYPER-PARAMETERS

Based on the concepts of consistency learning and dual-speed optimization, we present the operating
flow of our CoSDA method in Algorithm 1 as follows: at first, we initialize the teacher and student
models with the global model that has been trained on previous domains. During each epoch, we
employ consistency learning to train the student model while keeping the teacher model frozen.
When an epoch is finished, we use EMA to update the teacher model as well as the mean and
variance statistics of BatchNorm. After adaptation, the teacher model serves as the new global model.

CoSDA is easy to integrate with other SFDA methods to further mitigate the forgetting. As outlined
in Section 3.1, the pseudo-labels for the student model are simply generated by compressing the
soft-label from the teacher model. The quality of these pseudo-labels can be further enhanced
with advanced SFDA methods such as the memory bank (Yang et al., 2021b; Liang et al., 2022a),
kNN (Yang et al., 2022), and graph clustering (Yang et al., 2020). By further refining the inference
results from the teacher model, these pseudo-label-based methods can be seamlessly integrated
with CoSDA. The results on both single target (Figure 2,3) and multi-target sequential adaptation
(Table 1,2, and 3) extensively show that the integration of CoSDA significantly reduces forgetting
while maintaining adaptation performance.

Implementation details of CoSDA. We introduce four hyper-parameters: label compression temper-
ature (τ ), mixup distribution (a), loss weight (α) and EMA momentum (m). Following prior research
on knowledge distillation and mixup (Berthelot et al., 2019), we fix τ = 0.07 and a = 2 for all exper-
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iments. Our findings suggest that the mutual information (MI) loss function performs well on datasets
with a small number of well-defined classes and clear class boundaries, but it may lead to incorrect clas-
sification on datasets with a large number of classes exhibiting semantic similarity. Therefore, we set
α empirically to 1 for OfficeHome, Office31 and VisDA, and 0.1 for DomainNet. To apply the EMA
strategy, we follow the settings in MoCo (He et al., 2020) and BYOL (Grill et al., 2020) and increase
the momemtum from 0.9 to 0.99 using a cosine schedule as: mt = 0.99− 0.1×

[
cos

(
t
Eπ

)
+ 1

]
/2.

4 EXPERIMENTS

We investigate the mechanisms of catastrophic forgetting through a systematic analysis of various
continual DA scenarios. First, we conduct extensive experiments on representative methods from
SFDA and continual DA, and report their forgetting on several benchmarks. Then we demonstrate
the effectiveness of CoSDA in reducing forgetting under both single and multi-target sequential
adaptation scenarios. We also analyze the robustness of CoSDA to hard domains. To ensure fairness
in comparison, we reimplement the selected methods in a unified framework. The code used to
reproduce our results is provided as supplementary materials.

4.1 REALISTIC EVALUATION OF CURRENT METHODS

To avoid unfair comparisons that can arise from variations in the backbones, pretraining strategies,
total benchmark datasets, etc., we implemented several representative SFDA methods in a unified
framework and evaluated them on four benchmarks: DomainNet (Peng et al., 2019), Office-
Home (Venkateswara et al., 2017), Office31 (Saenko et al., 2010), and VisDA (Peng et al., 2017).
In detail, we employ the ImageNet-pretained ResNet with a weight-normed feature bottleneck (Liang
et al., 2022b) as the backbone, utilize the dual-lr pre-training strategy proposed in SHOT (Liang et al.,
2020), and adopt mini-batch SGD with momentum 0.9 as the optimizer. The total number of epochs
is set to 20 and batch size is 64. For model-specific hyperparameters, please refer to Appendix A.4.

Without loss of generality, we selected six representative methods: (1) SHOT (Liang et al., 2020)
and SHOT++ (Liang et al., 2022b) as they are the first to propose the SFDA setting and have
been followed by many works such as DINE (Liang et al., 2022a), CPGA (Qiu et al., 2021), and
Decision (Ahmed et al., 2021). (2) NRC (Yang et al., 2021b) and AaD (Yang et al., 2022) as they
perform the best on all benchmarks and can integrate with CoSDA. (3) DaC (Zhang et al., 2022)
and Edgemix (Kundu et al., 2022) as they both use data augmentations to construct consistency loss
for adaptation, which is similar to our approach. For comparison, we consider two well-performed
continual DA methods: GSFDA (Yang et al., 2021a) and CoTTA (Wang et al., 2022). We report
the adaptation performance and forgetting loss of the above methods on both single-target and
multi-target sequential adaptation settings:

For single target adaptation, we traverse all domain combinations and report both the adaptation
accuracy on the target domain and the accuracy drop on the source domain.

For multi-target adaptation, we follow the studies on the domain distances (Peng et al., 2019; Zhang
et al., 2019) and select the shortest path for sequential adaptation, i.e., Real → Infograph → Clipart
→ Painting → Sketch → Quickdraw for DomainNet and Art → Clipart → Product → Real-world
for OfficeHome. Following the continual learning protocols (Lopez-Paz & Ranzato, 2017; Hadsell
et al., 2020), we construct an accuracy matrix R ∈ RK×K over K target domains, where Ri,j is the
accuracy on the i-th domain after adaptation on the j-th domain. The accuracy matrix R is reported
to measure the transferability of the features. Moreover, we use backward transfer (BWT) to measure
the degree of forgetting, which is calculated as BWT = 1

K−1

∑K−1
i=1 Ri,K − Ri,i. BWT ranges

from −100 to 0, with −100 indicating the complete forgetting and 0 indicating no forgetting.

4.2 SINGLE TARGET ADAPTATION

Extensive experiments on DomainNet (Table 1), OfficeHome, Office31 (Table 2), and VisDA (Table 3)
reveal a widespread trade-off between the adaptation performance and the forgetting for commonly
used SFDA methods, with the accuracy gain on the target domain coming at the cost of significant
accuracy drop on the source domain. For example, NRC and AaD achieve the best adaptation
performance among all benchmarks, but they also suffer from the highest levels of catastrophic
forgetting. We also find that consistency learning can alleviate catastrophic forgetting in methods
such as DaC and EdgeMix. Specifically, DaC applies both weak and strong augmentations on the
target data and establishes a consistency loss to align the features of the augmented data, while
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Table 1: Single target adaptation on DomainNet with six domains as R (real), I (infograph), C (clipart),
P (painting), S (sketch) and Q (quickdraw). Vanilla refers to the accuracy of applying the source-
trained model directly to the target domain without adaptation. (-) MI refers to removing the mutual
information loss from CoSDA, (+) NRC and (+) AaD refers to integrating CoSDA with NRC and AaD.
Results: Adaptation accuracy (%) on the target domain | Accuracy drop (%) on the source domain.

DA Vanilla SHOT SHOT++ NRC AaD DaC EdgeMix GSFDA CoTTA CoSDA CoSDA (-) MI CoSDA (+) NRC CoSDA (+) AaD
I2R 44.99 59.89 | 13.69 60.14 | 15.95 59.64 | 14.44 60.19 | 14.18 54.86 | 9.21 60.07 | 12.87 52.12 | 7.50 48.00 | 0.64 55.75 | 3.27 55.64 | 4.95 59.19 | 4.34 58.21 | 2.73
C2R 50.83 62.80 | 18.03 62.47 | 17.51 64.14 | 20.40 63.20 | 23.33 58.83 | 13.47 64.70 | 19.06 55.26 | 2.59 53.60 | 0.87 60.31 | 4.16 59.92 | 6.14 61.29 | 4.13 61.04 | 3.66
P2R 57.20 62.94 | 14.76 62.62 | 13.68 64.50 | 14.22 64.15 | 17.94 60.97 | 6.91 65.36 | 15.67 58.18 | 2.78 58.24 | 0.26 61.56 | 1.22 61.37 | 3.46 63.21 | 3.37 62.84 | 3.21
S2R 45.41 61.84 | 21.43 62.32 | 19.03 62.83 | 15.66 62.29 | 25.61 59.26 | 9.95 63.64 | 22.00 56.25 | 6.12 51.56 | 0.33 60.62 | 4.42 60.22 | 7.02 60.32 | 5.54 60.11 | 4.38
Q2R 5.17 33.55 | 55.87 34.62 | 58.96 35.59 | 60.46 38.74 | 62.29 25.76 | 34.91 35.19 | 55.61 20.53 | 25.29 14.09 | 14.13 19.93 | 19.54 — 24.58 | 20.69 24.99 | 16.44
Avg. 40.72 56.20 | 24.76 56.43 | 25.03 57.34 | 25.04 57.71 | 28.67 51.94 | 14.89 57.79 | 25.04 48.47 | 8.86 45.10 | 3.25 51.63 | 6.52 53.72 | 7.61 53.44 | 6.08

R2I 17.36 18.30 | 18.11 18.72 | 18.46 21.74 | 21.05 23.06 | 22.91 19.61 | 12.32 21.45 | 21.92 17.37 | 11.41 18.41 | 2.60 18.68 | 0.38 19.77 | 2.22 20.18 | 1.25 20.55 | 1.13
C2I 14.59 15.51 | 22.47 15.97 | 21.71 17.88 | 31.70 19.92 | 24.24 15.31 | 23.78 17.94 | 26.29 14.21 | 8.99 15.87 | 2.08 16.73 | 3.74 — 20.78 | 6.24 20.44 | 7.29
P2I 15.23 16.86 | 17.21 16.64 | 18.06 18.28 | 21.60 19.65 | 20.31 17.18 | 15.17 18.46 | 22.25 15.84 | 12.47 16.33 | 2.50 17.76 | 2.82 17.87 | 2.01 20.27 | 5.73 20.65 | 8.51
S2I 11.86 16.72 | 20.81 16.53 | 23.77 18.89 | 16.14 20.04 | 17.29 16.69 | 18.12 18.43 | 20.43 14.66 | 13.66 14.70 | 3.05 12.94 | 2.62 15.18 | 3.06 20.22 | 9.39 20.33 | 9.60
Q2I 1.09 3.38 | 46.04 4.47 | 55.57 5.98 | 43.99 6.96 | 48.47 4.03 | 49.38 7.18 | 56.35 3.03 | 50.07 2.54 | 19.73 2.05 | 4.24 — 5.66 | 13.34 5.43 | 10.27
Avg. 12.03 14.15 | 24.93 14.47 | 27.51 16.55 | 26.90 17.93 | 26.64 14.56 | 23.75 16.69 | 29.45 13.02 | 19.32 13.57 | 5.99 13.63 | 2.76 17.42 | 7.19 17.48 | 7.36

R2C 45.62 54.82 | 21.71 56.09 | 21.17 56.42 | 20.64 57.54 | 26.62 52.12 | 12.52 57.66 | 21.23 49.53 | 6.97 48.26 | 1.13 56.37 | 6.29 55.83 | 6.11 56.64 | 6.92 56.85 | 7.98
I2C 30.46 45.67 | 14.82 46.32 | 14.80 44.13 | 18.01 47.12 | 13.43 39.35 | 10.40 46.06 | 13.79 32.81 | 8.00 33.12 | 1.14 41.57 | 6.02 40.97 | 8.07 45.65 | 6.68 46.42 | 7.13
P2C 40.74 50.84 | 23.33 50.77 | 22.41 51.82 | 22.39 53.40 | 22.91 45.61 | 14.48 52.87 | 21.50 44.19 | 9.61 43.92 | 2.23 50.88 | 7.66 50.49 | 6.53 52.73 | 7.53 52.05 | 7.62
S2C 47.48 57.26 | 15.98 58.19 | 14.72 58.93 | 14.16 60.28 | 15.51 55.79 | 9.48 59.35 | 12.66 54.06 | 5.73 52.00 | 0.09 61.28 | 5.49 60.60 | 5.32 59.24 | 5.44 60.22 | 6.10
Q2C 10.13 33.67 | 34.80 35.92 | 38.95 38.44 | 44.27 39.19 | 43.13 31.54 | 30.98 38.61 | 43.81 26.94 | 20.68 23.20 | 8.98 32.96 | 14.58 32.88 | 26.88 34.13 | 14.39 34.55 | 15.07
Avg. 34.89 48.45 | 22.13 49.46 | 22.41 49.95 | 23.89 51.51 | 24.32 44.88 | 15.57 50.91 | 22.60 41.51 | 10.20 40.10 | 2.71 48.61 | 8.01 48.15 | 10.58 49.68 | 8.19 50.02 | 8.78

R2P 45.54 50.74 | 7.73 50.65 | 7.77 52.94 | 14.06 53.34 | 19.85 50.94 | 5.46 53.05 | 12.68 49.22 | 3.71 47.50 | 0.35 54.29 | 4.47 53.78 | 5.03 54.44 | 4.67 53.96 | 6.71
I2P 29.09 41.57 | 12.34 42.38 | 14.75 41.80 | 12.99 44.47 | 13.42 39.61 | 7.15 43.18 | 13.90 35.71 | 5.72 32.40 | 0.74 42.40 | 4.61 42.52 | 5.30 44.69 | 4.86 44.27 | 4.76
C2P 33.13 42.92 | 18.16 43.64 | 16.26 44.72 | 18.65 45.09 | 19.68 41.32 | 14.49 44.68 | 16.30 37.92 | 3.59 36.44 | 1.17 44.12 | 4.42 44.39 | 6.19 45.27 | 4.66 45.52 | 6.60
S2P 32.81 46.51 | 14.13 46.91 | 11.39 48.11 | 13.27 48.59 | 12.78 47.04 | 9.14 47.85 | 13.68 43.96 | 5.95 40.13 | 0.42 50.62 | 4.85 49.90 | 5.44 48.52 | 6.04 48.32 | 6.56
Q2P 1.79 15.27 | 47.94 18.55 | 51.85 18.87 | 62.80 23.52 | 63.75 14.48 | 37.73 21.04 | 63.47 10.03 | 31.70 6.53 | 16.29 9.47 | 14.32 — 14.81 | 13.47 16.70 | 14.20
Avg. 28.47 39.40 | 20.06 40.43 | 20.40 41.29 | 24.35 43.00 | 25.90 38.68 | 14.79 41.96 | 24.01 35.37 | 10.13 32.60 | 3.79 40.18 | 6.53 41.55 | 6.74 41.75 | 7.77

R2S 32.42 40.04 | 24.19 40.96 | 23.46 44.19 | 22.56 43.87 | 31.27 40.52 | 18.97 44.37 | 24.43 41.70 | 14.03 36.44 | 2.17 43.35 | 8.81 43.77 | 8.60 46.07 | 8.18 45.15 | 10.00
I2S 24.44 32.45 | 18.99 35.17 | 19.37 34.37 | 17.27 37.73 | 16.77 30.04 | 14.04 35.19 | 17.31 27.52 | 16.41 27.40 | 1.78 32.32 | 6.05 32.53 | 11.17 36.61 | 5.56 37.07 | 6.11
C2S 38.40 43.86 | 16.25 44.59 | 12.95 46.25 | 14.30 47.14 | 15.94 41.41 | 13.10 45.98 | 18.61 41.70 | 7.53 40.53 | 1.39 46.11 | 4.05 46.43 | 4.93 47.67 | 3.95 47.21 | 5.72
P2S 33.89 40.07 | 21.53 41.14 | 19.95 43.64 | 16.17 43.39 | 23.70 41.05 | 12.77 42.93 | 19.71 39.04 | 15.41 37.45 | 3.25 43.29 | 6.01 43.81 | 6.77 44.86 | 5.61 44.38 | 8.13
Q2S 8.23 23.43 | 35.69 24.49 | 35.29 29.54 | 47.71 27.65 | 48.55 22.20 | 27.02 30.31 | 45.97 14.58 | 43.90 13.68 | 7.20 17.14 | 10.06 — 23.48 | 13.77 24.34 | 14.81
Avg. 27.48 35.97 | 23.33 37.27 | 22.20 39.60 | 23.60 39.96 | 27.25 35.04 | 17.18 39.76 | 25.21 32.91 | 19.46 31.10 | 3.16 36.44 | 7.00 39.74 | 7.41 39.63 | 8.95

R2Q 4.54 7.08 | 69.33 8.32 | 70.96 8.14 | 72.13 10.81 | 66.83 8.73 | 55.82 7.62 | 73.35 6.15 | 61.61 6.40 | 7.49 6.01 | 2.95 — 7.04 | 5.34 8.58 | 5.71
I2Q 2.36 4.97 | 28.45 5.21 | 31.29 4.28 | 31.28 6.89 | 30.99 3.38 | 28.18 4.91 | 31.53 2.89 | 27.20 3.20 | 8.41 2.97 | 1.80 3.07 | 2.99 5.11 | 8.96
C2Q 9.56 14.31 | 57.27 14.07 | 62.85 15.19 | 62.36 18.23 | 52.51 12.02 | 50.44 14.47 | 64.73 11.86 | 65.98 11.57 | 6.11 11.58 | 2.07 8.50 | 7.97 12.72 | 2.20 15.89 | 8.24
P2Q 3.40 8.14 | 61.03 9.52 | 60.04 9.19 | 59.95 12.10 | 63.10 8.16 | 51.93 9.61 | 64.70 6.50 | 57.15 6.19 | 12.41 5.12 | 3.77 — 5.70 | 2.98 8.99 | 9.00
S2Q 11.11 14.55 | 49.63 14.65 | 45.13 15.37 | 37.25 18.59 | 42.09 14.32 | 36.74 15.32 | 38.15 14.73 | 34.21 12.62 | 4.59 12.66 | 2.61 10.56 | 8.66 16.34 | 10.57 17.61 | 6.84
Avg. 6.19 9.81 | 53.14 10.35 | 54.05 10.43 | 52.59 13.32 | 51.10 9.32 | 44.62 10.39 | 54.49 8.43 | 49.23 8.00 | 7.80 7.67 | 2.64 — 8.97 | 4.82 11.24 | 7.75

Table 2: Single target adaptation on OfficeHome (with A (art), C (clipart), P (product) and R
(real-world)) and Office31 (with A (amazon), D (dslr) and W (webcam)). Results are reported as:
Adaptation accuracy (upper) and Accuracy drop (lower).

OfficeHome Office31Method C2A P2A R2A A2C P2C R2C A2P C2P R2P A2R C2R P2R Avg. D2A W2A A2D W2D A2W D2W Avg.
Vanilla 48.98 67.09 74.57 50.68 63.14 64.15 50.89 42.27 73.26 63.82 48.66 77.90 60.45 78.11 71.82 94.34 98.59 57.29 61.06 76.87

SHOT 66.96 65.10 72.89 58.01 57.34 60.25 75.60 76.21 82.95 79.50 76.11 81.39 71.03 73.30 74.12 88.76 100.00 89.81 97.99 87.33
17.66 9.85 6.84 17.00 11.49 12.32 11.54 16.38 6.61 7.96 15.48 7.62 11.73 8.23 6.79 6.14 0.13 7.10 0.20 4.77

SHOT++ 67.04 65.84 72.31 59.59 58.76 62.70 76.19 76.44 83.49 79.57 76.75 81.89 71.71 74.62 75.65 88.76 100.00 92.08 97.99 88.18
16.28 11.47 8.79 15.50 12.03 12.11 12.61 16.70 8.19 8.90 16.74 7.57 12.24 7.03 9.18 6.95 0.25 6.95 0.40 5.13

NRC 66.05 64.81 72.19 60.16 58.28 61.56 77.61 75.76 83.40 80.15 76.61 78.56 71.26 75.68 74.72 93.57 100.00 92.70 98.24 89.15
22.58 20.37 20.17 16.65 23.66 25.29 12.53 22.29 10.69 14.26 19.08 15.43 18.58 11.24 8.18 9.55 0.00 8.73 0.20 6.32

AaD 70.91 67.57 73.75 60.25 60.60 60.94 78.46 76.41 84.46 81.75 78.91 81.59 72.97 75.43 75.61 93.57 99.80 92.20 98.49 89.18
23.82 17.87 12.48 19.66 16.06 15.95 14.55 21.19 8.35 12.16 18.69 11.38 16.01 10.64 14.21 8.52 0.00 7.10 0.00 6.74

DaC 66.71 65.22 72.31 58.76 57.18 61.35 74.82 74.75 82.16 80.19 76.25 80.56 70.86 73.91 75.36 89.75 100.00 90.57 98.49 88.01
12.64 7.55 6.86 11.95 8.13 9.34 8.90 9.87 4.84 4.49 9.16 4.03 8.15 5.42 3.65 4.40 0.00 4.08 0.00 2.93

EdgeMix 66.50 63.95 71.24 58.03 54.73 60.92 77.25 74.41 83.28 79.73 75.05 79.41 70.37 75.04 72.42 91.57 99.80 91.07 98.36 88.04
12.25 11.02 4.45 5.61 5.97 10.51 9.15 7.99 5.30 7.34 12.32 9.69 8.47 7.63 17.86 9.72 0.00 7.38 0.00 7.10

GSFDA 68.97 65.55 72.39 57.04 54.27 59.66 77.18 74.54 83.98 80.47 76.47 81.71 71.02 72.17 73.30 88.55 100.00 88.43 98.97 86.90
8.52 4.66 2.80 5.03 2.18 2.80 1.77 5.52 1.77 0.83 4.67 1.55 3.51 1.00 0.63 3.19 0.13 2.48 0.00 1.24

CoTTA 53.73 53.32 64.98 50.45 45.59 51.68 67.45 63.14 77.79 74.87 62.79 74.23 61.67 66.88 65.53 86.14 99.80 85.16 97.74 83.54
1.58 1.01 0.13 0.17 0.25 0.59 0.00 0.04 0.02 0.00 1.03 0.02 0.40 0.00 0.38 0.64 0.00 1.77 0.00 0.46

CoSDA 67.86 64.94 73.34 58.85 54.75 61.15 75.44 74.50 82.83 79.78 75.03 80.65 70.76 74.90 74.16 86.75 100.00 89.43 98.62 87.31
4.42 2.73 2.41 2.97 3.06 2.96 1.36 4.58 2.06 0.99 4.42 1.76 2.81 3.61 2.14 1.03 0.00 1.63 0.00 1.40

CoSDA
(-) MI

61.19 58.43 68.97 53.33 49.31 57.14 71.16 70.13 80.78 77.14 70.23 76.70 66.21 70.96 68.90 84.34 99.80 85.79 97.74 84.59
1.76 0.81 0.82 0.58 0.97 1.33 0.29 1.69 0.59 0.00 1.35 0.65 0.90 0.40 0.13 1.17 0.00 1.42 0.00 0.52

CoSDA
(+) NRC

67.41 65.84 71.82 58.51 53.86 58.53 77.49 75.56 83.89 81.89 75.14 81.20 70.93 75.93 74.26 91.37 100.00 91.37 98.49 88.57
8.31 7.93 6.67 4.58 10.70 7.59 2.06 5.20 3.60 2.56 7.03 2.70 5.74 2.21 3.65 2.27 0.00 2.41 0.00 1.76

CoSDA
(+) AaD

67.12 66.05 73.51 58.44 55.21 61.40 76.86 74.70 83.62 80.51 75.63 80.65 71.14 76.29 76.39 92.97 100.00 93.71 98.49 89.64
4.88 5.14 3.94 1.90 2.57 4.40 1.73 3.84 2.14 0.95 4.17 1.12 3.07 2.81 3.90 2.48 0.00 3.16 0.00 2.06

EdgeMix employs a pretrained DexiNed (Soria et al., 2020) model to extract edge information and
uses these features as domain-invariant features by fusing them into input data using mixup. However,
these methods heavily rely on pre-determined data augmentation strategies, which may not generalize
well to all domains. For instance, EdgeMix failed to mitigate catastrophic forgetting on DomainNet,
and DaC exhibited significant forgetting on the infograph and quickdraw of DominNet. Compared to
these methods, CoSDA exhibits a significant reduction in forgetting across all adaptation pairs and
does not rely on pre-determined data-augs. The experimental results on DomainNet, OfficeHome, and
VisDA demonstrate that CoSDA outperforms SHOT, SHOT++, and DaC in most adaptation scenarios,
while reducing the average forgetting to approximately 1

3 on DomainNet. Moreover, as mentioned
in Section 3.1, CoSDA can be combined with pseudo-label-based methods to alleviate forgetting.
Results on the four benchmarks demonstrate that CoSDA can be used in conjunction with NRC
and AaD to reduce their forgetting to approximately 1

10 to 1
3 while incurring only a slight decrease
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Table 3: Single target domain on VisDA. Results are
reported on each of the 12 classes separately, and the
ablation study of CoSDA is conducted by successively
removing the four components of the method.
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Avg.
Vanilla 62.84 16.59 58.6 64.59 66.31 3.71 80.33 29.56 65.78 24.17 89.86 12.41 47.9

SHOT 95.58 85.64 85.44 71.22 95.84 96.19 85.85 85.65 91.25 89.00 84.47 48.41 84.55
1.33 0.68 51.45 31.88 2.84 1.33 52.48 0.58 0.46 20.21 19.75 3.33 15.53

NRC 95.56 87.54 82.11 63.11 95.01 93.44 88.52 80.43 95.25 88.46 87.69 62.18 84.94
0.08 0.20 27.39 34.81 11.23 0.36 16.77 7.60 1.67 9.82 34.04 13.90 13.16

AaD 95.39 86.35 82.87 69.63 95.18 95.13 89.77 82.52 91.58 90.92 90.20 57.60 85.60
1.30 1.17 59.10 13.58 11.51 9.84 26.62 8.28 0.71 10.53 21.97 33.29 16.49

DaC 95.78 81.93 83.69 80.20 96.83 97.06 94.10 81.40 94.77 94.21 90.82 45.28 86.34
0.10 0.34 40.44 30.15 9.08 1.66 14.13 7.20 0.33 1.52 13.97 2.58 10.12

EdgeMix 95.07 88.05 84.72 70.89 95.48 93.44 83.16 78.14 92.37 89.30 88.40 48.47 83.96
0.65 0.94 28.31 31.11 7.84 0.32 33.45 14.30 0.54 7.68 24.74 16.69 13.88

GSFDA 96.32 90.73 83.73 69.20 96.53 92.34 86.09 80.58 93.76 92.81 88.62 45.17 84.66
0.07 2.04 -0.24 29.30 5.05 0.00 33.99 1.07 0.19 4.28 15.44 9.79 8.41

CoTTA 94.50 60.14 92.62 71.20 96.08 38.41 96.13 81.39 94.61 85.39 84.57 30.81 77.15
0.42 0.38 2.72 29.78 10.49 2.16 14.59 6.51 0.05 -0.02 15.07 19.48 8.47

CoSDA
(+) NRC

94.99 80.69 86.99 73.41 94.75 85.97 93.58 79.72 93.11 85.75 90.25 37.71 83.08
0.24 0.18 24.44 17.19 2.18 4.24 9.08 2.59 0.08 1.26 6.68 14.86 6.92

CoSDA
(+) AaD

95.29 83.29 82.46 68.65 95.33 90.69 91.66 80.80 93.45 85.05 89.91 54.27 84.24
0.23 0.16 31.43 25.83 1.70 1.30 18.15 1.78 0.11 9.53 8.94 9.75 9.08

Ablation Study

CoSDA 95.04 86.76 86.69 75.13 95.58 90.98 91.95 82.66 93.38 88.99 90.01 51.30 85.71
0.19 0.65 27.59 34.61 3.11 1.55 17.91 11.50 0.46 5.40 14.30 12.84 10.84

(-) Teacher 89.22 77.61 73.89 28.45 64.97 34.19 79.11 58.75 73.76 71.35 66.94 60.32 64.88
0.49 95.93 86.19 98.04 89.28 96.45 93.02 99.41 87.89 96.03 94.62 87.23 85.38

(-) Dual-Speed 94.55 84.72 86.09 63.01 94.11 94.84 89.04 81.53 92.19 90.18 86.64 53.44 84.19
1.08 9.63 28.29 57.40 21.86 12.25 49.08 37.74 2.40 9.59 33.68 32.48 24.62

(-) Mixup & MI 93.36 55.94 85.52 74.07 94.33 61.40 95.20 80.25 92.72 75.00 86.75 34.62 77.43
0.06 0.43 0.70 17.23 4.69 0.06 5.35 7.23 0.06 -0.04 10.79 12.13 4.89

(-) Mixup 94.26 78.10 85.05 71.23 94.78 84.58 91.97 82.17 92.58 87.02 85.86 42.03 82.47
0.24 1.10 10.34 25.21 8.71 0.21 16.65 9.22 0.35 0.37 19.03 13.06 8.71

(-) MI 94.45 72.94 89.16 76.90 95.99 74.87 94.22 79.21 93.82 72.41 88.86 29.68 80.21
0.10 1.07 25.14 39.05 3.63 0.06 17.44 8.12 0.40 0.38 6.66 8.04 9.17

Figure 3: Multi-target sequential adapta-
tion on the OfficeHome with the order of
Art→Clipart→Product→Real-world.

SHOT NRC AaD

DaC GSFDA CoTTA

CoSDA CoSDA (+) NRC CoSDA (+) AaD

BWT
−9.31

BWT
−9.58

BWT
−8.00

BWT
−14.26

BWT
−4.68

BWT
−4.45

BWT
−2.24

BWT
−4.39

BWT
−2.47

in target accuracy (about 1% on average). Furthermore, by incorporating CoSDA, we achieve the
best performance on the C,P,S→I, R,I,C→P, and R,C,P→S adaptation pairs of DomainNet, while
significantly mitigating forgetting. Comparison among continual DA methods. GSDA and CoTTA
reduce the forgetting by restoring the prior domain information: GSFDA assigns specific feature
masks to different domains and CoTTA adapts parameter regularization by stochastically preserving
a subset of the source model in each update. The experiments reveal some limitations of the above
two methods: GSFDA relies on domain ID for each sample during testing, and CoTTA tends to
overfit the source domain and learn less plastic features, leading to poor adaptation performance.
CoSDA outperforms these methods by obviating the requirement of domain ID and preserving high
adaptation performance on the target domain.

Robustness to hard domains. The infograph and quickdraw in DomainNet are considered hard and
typically exhibit low adaptation performance (Peng et al., 2019; Feng et al., 2021). Results in Table 1
show that CoSDA exhibits robust performance on both hard domains, reducing the forgetting from
≥ 23% to 2.76% and from ≥ 44% to 2.64%, respectively. Additionally, by integrating CoSDA, the
robustness of NRC and AaD methods is significantly improved.

4.3 MULTI-TARGET SEQUENTIAL ADAPTATION

We use two metrics to evaluate multi-target sequential adaptation: feature transferability and degree
of forgetting. As mentioned in Section 4.1, we utilize the diagonal entries of the accuracy matrix to
measure transferability and BWT to measure the degree of forgetting. As shown in Figure 2 and 3, the
BWT indices of prior SFDA methods are remarkably low, indicating severe catastrophic forgetting.
For instance, the BWT of SHOT, NRC, and AaD in DomainNet are all below−35, which corresponds
to a continuous decrease in accuracy from 81.31% to ≤ 10% on the real domain. As observed in
the single-target adaptation, the forgetting in EdgeMix and DaC is alleviated due to the adoption of
consistency loss. For example, DaC alleviates forgetting with the BWT value of −31 on DomainNet
and −8 on OfficeHome. Compared to these methods, CoSDA exhibits a significant reduction in
forgetting, with BWT values of −8.6 on DomainNet and −2.24 on OfficeHome. Furthermore, we
find that catastrophic forgetting not only leads to a decrease in accuracy on previous domains but
also impairs the model’s ability to adapt to new domains. For single target adaptation, although NRC
and AaD suffer from catastrophic forgetting, they still achieve the best performance on the target
domain. However, in multi-domain settings, their performance on subsequent domains becomes
much lower than CoSDA. By integrating CoSDA with other SFDA methods, we can simultaneously
mitigate catastrophic forgetting and enhance the model’s transferability to new domains. For example,
by integrating CoSDA with NRC, we improve the BWT from −39.48 to −8.44 on DomainNet,
accompanied by an average increase of 12.34% adaptation accuracy on the clipart, painting, and
sketch. Similarly, integrating CoSDA with AaD resulted in an increase in BWT from −36.79 to
−10.01 on DomainNet, accompanied by an average improvement of 11.31% in adaptation accuracy.
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Comparison among continual DA methods. In single domain adaptation (Sec 4.2), we discuss the
limitations of GSFDA and CoTTA, with GSFDA relying on domain ID during testing and CoTTA
having suffered from limited transferability. These limitations become more severe in multi-domain
settings. For instance, GSFDA needs to store features for each domain, leading to a decrease in
transferability and difficulty in fitting to hard domains in large-scale datasets with many categories,
such as DomainNet. However, in benchmarks with a small number of categories such as OfficeHome,
GSFDA performs well in both transferability and mitigating catastrophic forgetting. CoTTA tends to
overfit to the source domain, leading to a continuous drop in performance on the target domain until
it becomes unfeasible for transfer. In contrast, CoSDA exhibits superior transferability, surpassing
GSFDA by 4.02% on average and CoTTA by 5.23%, and also outperforms GSFDA in terms of BWT.

4.4 ABLATION STUDY: WHY COSDA WORKS

In this section, we perform an ablation study to investigate the mechanisms underlying CoSDA’s
transferability and forgetting prevention. We approach this through both quantitative and qualitative
analysis, focusing on the adaptation performance and feature visualization. As discussed in Section 3,
we design a teacher-student structure as well as a consistency loss to enable adaptation and utilize dual-
speed optimization to prevent forgetting. Specifically, we employ mixup to generate pseudo-labels
for the consistency loss and introduce MI loss to enhance robustness to hard domains.

Figure 4: The t-SNE visualizations of the features on
VisDA extracted by Vanilla, CoSDA and CoSDA w.o.
dual-speed. Red color denotes the source feature and
Blue color denotes the target feature. The foreground
points denote the data feature, while the background
lattice represent the overall feature distributions.

First, we conduct domain adaptation on
VisDA to validate our claims. As shown in
the lower part of Table 3, we investigate the
contributions of each part in our method by
successively removing the teacher model,
dual-speed optimization, mixup, and MI
loss. The first row of the table shows that
removing the teacher model and using
only the student model for predictions
leads to overfitting to certain classes and
complete failure of adaptation, highlighting
the importance of the teacher-student
structure. The second row shows that
removing dual-speed optimization and
simultaneously updating both teacher and
student models hardly affects adaptation
accuracy, but leads to severe catastrophic forgetting. This highlights the crucial role of dual-speed
optimization in preventing forgetting. The next three rows of the table illustrate the results of
removing mixup, MI loss, and both mixup and MI loss, and the results indicate that both mixup
and MI loss contribute significantly to improving the adaptation performance. We further conduct
ablation study of MI loss on DomainNet. The results in Table 1 show that the removal of MI loss
leads to training failure on hard domains, highlighting its crucial role in maintaining robustness.

Moreover, we visualize the features of source and target domains under three settings: vanilla,
CoSDA, and CoSDA without dual-speed optimization, as shown in Figure 4. Vanilla shows significant
distribution shift between source and target domains. After adaptation with CoSDA, we observe
that the model learns a shared feature space for both source and target domains, indicating its ability
to achieve transferability and prevent catastrophic forgetting. However, without the application
of dual-speed optimization, we observe that while some distances between source-target features
decrease, others remain distant, suggesting the occurrence of catastrophic forgetting.

5 CONCLUSION

In summary, this work conducts a systematic investigation into the issue of catastrophic forgetting on
existing domain adaptation methods and introduce a practical DA task named continual source-free
domain adaptation. CoSDA, a dual-speed optimized teacher-student consistency learning method, is
proposed to mitigate forgetting and enable multi-target sequential adaptation. Extensive evaluations
show that CoSDA outperforms state-of-the-art methods with better transferability-stability trade-off,
making it a strong baseline for future studies. In addition, our open-source unified implementation
framework designed for different SFDA methods can serve as a foundation for further explorations.
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Figure 5: An overview of mixup process on VisDA. Red color denotes the source feature and Blue
color denotes the target feature. The centroids of source and target features are denoted by X̄S and
X̄T . For CoSDA, we set the value of β(a, a) to a = 2 and use λ̄ = 2

3 . The mixup process results
in data points shrinking to their centroids, thereby reducing the domain distance.

A APPENDIX

A.1 THE RATIONALE OF SELECTING MIXUP AS DATA AUGMENTATION STRATEGY

In Section 3.1, we introduce mixup as a data augmentation strategy used in CoSDA, which is claimed
to holistically reduce the domain distance and thereby facilitating the learning of domain-invariant
features. In this section, We provide evidence to support this claim. We start with summarizing an
equivalent form of mixup proposed by Carratino et al. (2022) which establishes a connection with
label-smoothing techniques as follows:

Theorem A.1. Let DT be the target domain with N training samples Xi and their corresponding
pseudo-labels pi. Suppose the mixup augmentation with distribution β[0,1](a, a) are used for the
student model hψ with the consistency loss ℓcons(·). Then, the empirical risk of the consistency loss
can be approximated as:

ξmixup(ℓcons, hψ) :=
1

N

N∑
i=1

E
j,θ

[
ℓcons(X̃i + δi, p̃i + ϵi;ψ)

]
, (4)

where j ∼ Unif(1, . . . , N), θ ∼ β[ 12 ,1]
(a, a), and (X̃i, p̃i, δi, ϵi) can be formulated by squeezing the

samples towards their centroid X̄ = 1
N

∑N
i=1 Xi as follows:

X̃i = θ̄(Xi − X̄) + X̄,

p̃i = θ̄(pi − p̄) + p̄,

δi = (θ − θ̄)Xi + (1− θ)Xj − (1− θ̄)X̄,

ϵi = (θ − θ̄)pi + (1− θ)pj − (1− θ̄)p̄,

(5)

where δi, ϵi are zero-mean random perturbations, ∥δi∥2 ≪ ∥Xi∥2 and θ̄ = 2 − a(a−1)

a− 1
2

is the

expectation of distribution θ ∼ β[1/2,1](a, a). For CoSDA, we have θ̄ = 2
3 with a = 2.

Proof. We recap the format of ξmixup as follows:

ξmixup(ℓcons, hψ) :=
1

N2

N∑
i=1

N∑
j=1

E
λ
[ℓcons (hψ(λXi + (1− λ)Xj , λpi + (1− λ)pj))] , (6)

where λ ∼ β[0,1](a, a). To investigate the impact of λ on Eq. (6), we construct a function that relates
the value of λ to mixup data pairs as mi,j(λ):

mi,j(λ) = ℓcons (hψ(λXi + (1− λ)Xj , λpi + (1− λ)pj)) . (7)
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Denoting λ = (1 − π)θ + πθ′, θ ∼ β[ 12 ,1]
(a, a), θ′ ∼ β[0, 12 ]

(a, a), π ∼ Ber( 12 ), we can rewrite
mi,j(λ) as

Eλ [mi,j(λ)] = Eθ,θ′,π [mi,j ((1− π)θ + πθ′)] =
1

2
(Eθ [mi,j(θ)] + Eθ′ [mi,j(θ

′)]) . (8)

Since θ′ = 1− θ, we have Eθ [mi,j(θ)] = Eθ′ [mi,j(θ
′)]. Substituting it into Eq. (6), we obtain:

ξmixup(ℓcons, hψ) =
1

N2

N∑
i=1

N∑
j=1

Eθ [mi,j(θ)] =
1

N

N∑
i=1

 1

N

N∑
j=1

Eθ [mi,j(θ)]

 . (9)

Denote ξi = 1
N

∑N
j=1 Eθ [mi,j(θ)], we have ξi = Eθ,j [ℓcons (hψ(θXi + (1− θ)Xj), θpi + (1− θ)pj)].

Notably, (X̃i, p̃i) has the following relation with ξi:

X̃i = θ̄(Xi−X̄)+X̄ = Eθ,j [θXi+(1−θ)Xj ]; p̃i = θ̄(pi−p̄)+p̄ = Eθ,j [θpi+(1−θ)pj ]. (10)
With the relations in Eq. (10), we denote ϵ, δ and prove Eq. (4) as follows

δi = θXi+(1−θ)Xj−X̃i; ϵi = θpi+(1−θ)pj−p̃i; ξi = Eθ,j

[
ℓcons

(
hψ(X̃i + δi), p̃i + ϵi

)]
,

(11)
Combining the equations Eq. (10) and Eq. (11), we can obtain E[δi] = 0 and E[ϵi] = 0. Furthermore,
following the empirical study in Carratino et al. (2022), we can conclude that the ℓ2-norm of δi is
much smaller than that of Xi.

We conduct the following analysis of Theorem A.1. Since the magnitude of the perturbation ∥δ∥2
is much smaller than the norm of the mixed samples ∥X̃∥2 (Carratino et al., 2022), we can interpret
the mixup augmentation as squeezing the samples towards their centroid, i.e., X→ X̃. In domain
adaptation, the cluster distance between source and target domains (Deng et al., 2019) is often used
to measure the degree of distribution shift. As shown in Figure 5, a source-domain-trained model
has a clear boundary in the distributions of source and target domains (as shown in (a)). However,
the centroids of the source and target domains are much closer than the sample points. By using
the mixup method, all sample points are squeezed towards the centroids (as shown in (b)), thereby
heuristically reducing the domain distance and facilitating the learning of domain-invariant features.

A.2 THE ANALYSIS OF MUTUAL INFORMATION LOSS

Mutual information (MI) is a concept used to quantify the degree of dependence between two random
variables. It measures the reduction in uncertainty of one variable by knowing the value of the other
variable, indicating the amount of information they share. The mutual information between two
random variables X and y is defined as follows:

MI(X,y) = DKL (p(X,y)∥p(X)p(y)) . (12)
During the training process of CoSDA, we use y to denote the label and use hψ(X) as the label
distribution p(y|X). For B samples in a mini-batch, we estimate the distribution of data X using
empirical distribution as p(X) = 1

B . Then we estimate p(y) as p(y) =
∑

X p(y|X)p(X) =
1
B

∑B
i=1 hψ(Xi) := h̄ψ . Based on the definitions above, the mutual information for CoSDA can be

expressed as follows:

MI({Xi}Bi=1,ψ) = −
1

B

B∑
i=1

DKL

(
hψ(Xi)∥h̄ψ

)
, (13)

and the mutual information loss is ℓMI := −MI({Xi}Bi=1,ψ).

In Section 3.2, we claim the mutual information loss can improve the robustness of the model and
enable it to learn from hard domains. We provide evidence to support this claim. Based on previous
studies (Liang et al., 2020; Hu et al., 2017), ℓMI can be decomposed into two components: minimizing
the instance entropy and maximizing the marginal inference entropy:

1. Minimize instance entropy:

min
ψ

1

B

B∑
i=1

ent(hψ(Xi)) := min
ψ

1

B

B∑
i=1

C∑
c=1

−hψ(Xi)i,c log hψ(Xi)i,c. (14)
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Table 4: Hyperparameters for all the methods evaluated in the experiments.

Method Shared hyperparameters Dataset specific hyperparameters

SHOT&SHOT++

learning rate: 1× 10−3˜2× 10−4 for backbone;
learning rate: 1× 10−2˜2× 10−3 for bottleneck and classifier;

cls_loss weight: 0.3;
ent_loss weight: 1.0;

ssl_loss weight: 0.6 (for SHOT++).

Same for all datasets.

NRC learning rate: 2× 10−3˜1× 10−3;
k = 4, m = 3.

For VisDA, set learning rate: 2× 10−3˜1× 10−4,k = 8, m = 8;
For DomainNet, set k = 6, m = 4.

AaD learning rate: 2× 10−3˜1× 10−3;
α = 0.4, decay γ = 0.96.

For VisDA, set learning rate: 2× 10−3˜1× 10−4;
k = 2, 3, 4, 8 For Office-Home, Office31, DomainNet, VisDA.

DaC

learning rate: 2× 10−3˜2× 10−4;
temperature: 0.05, K: 40, k: 5;

momentum: 0.8, threshold: 0, gate: 0.97;
coefficients for cls, im, con and mmd: (0.02, 0.25, 0.03, 0.15).

For VisDA, set learning rate: 5× 10−4˜6× 10−5;
K: 300, momentum: 0.2;

coefficients for cls, im, con and mmd: (0.39, 0.1, 1.0, 0.3) ;
For DomainNet, set learning rate: 1× 10−3˜2× 10−4.

EdgeMix learning rate: 1× 10−3˜2× 10−4;
λ = 0.9, finetune epochs: 2.

For Office31, learning rate: 2× 10−3˜1× 10−3;
For VisDA, learning rate: 2× 10−3˜1× 10−4.

GSFDA
learning rate: 1× 10−3˜2× 10−4 for backbone;

learning rate: 1× 10−4˜2× 10−5 for bottleneck and classifier;
k = 2, s = 100, λgen : 1.

For VisDA, set k = 10;
For DomainNet, set backbone learning rate: 5× 10−4˜1× 10−5;

bottleneck and classifier learning rate: 5× 10−5˜1× 10−6;
k = 10, λgen = 2 .

CoTTA
source model preserve ratio (rst): 0.01;

average predictive prob (ap): 0.92;
aug times: 32.

For Office31and VisDA, set ap to 0.5 and rst to 0.001.

CoSDA

learning rate: 2× 10−3˜1× 10−3;
temperature: τ = 0.07;

mixup: β(2, 2); loss weight α = 1;
EMA momentum: m = [0.9, 0.99].

For DomainNet, set α = 0.1 and m = [0.95, 0.99];
For VisDA, set learning rate: 4× 10−3˜2× 10−3.

2. Maxmizie marginal entropy:

max
ψ

ent(h̄ψ) := max
ψ

C∑
c=1

−h̄ψ,c log h̄ψ,c. (15)

By minimizing instance entropy, the model learns to assign distinct semantics for each data, resulting
in a concentrated classification distribution. This enables the model to learn classification information
even in the presence of inaccurate pseudo-labels in hard domains. By maximizing the marginal
entropy, we ensure that the model learns a uniform marginal distribution, which allows it to learn
information from all classes in a broad and balanced manner, rather than overfitting to a few specific
classes. Based on the above two advantages, we demonstrate that integrating mutual information
loss into the training objective can lead to good properties such as improved robustness and effective
learning from hard domains.

A.3 TRAINING PARADIGM

In our experiments, we follow previous settings (Long et al., 2015; Ganin et al., 2016; Liang et al.,
2020; Yang et al., 2021b; Zhang et al., 2022) and utilize two common training paradigms: inductive
learning and transductive learning. For DomainNet that provides an official train-test split, we use
the inductive learning pipeline to train models on the training set and report model performance
on the test set. On the other hand, for OfficeHome, Office31, and VisDA, which do not provide an
official train-test split, most methods adopt the transductive learning based adaptation pipeline. In
this pipeline, the training and testing datasets are identical. Specifically, models are trained on the
entire source domain and adapted to the entire unlabeled target domain. During testing, the models
are evaluated on the same training dataset to report the adaptation performance as well as the degree
of catastrophic forgetting. It is important to note that, since the inductive learning paradigm is more
practical, we primarily focus on the analysis and discussion of our results based on the DomainNet
experiments, supplemented by the transductive learning performance on the other three benchmarks.

A.4 HYPERPARAMETERS

We build a unified implementation for all methods with the following settings: we use ResNet50 as
the backbone for DomainNet, OfficeHome, and Office31, and ResNet101 for VisDA. We apply cyclic
cosine annealing as the learning rate schedule, set the weight decay to 5 × 10−3, and use random
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horizontal flip as regular data augmentations, except for DaC, EdgeMix, and CoTTA. Specifically,
EdgeMix uses a pretrained DexiNed (Soria et al., 2020) to extract and confuse edge features, while
DaC and CoTTA use AutoAug (Cubuk et al., 2019) as augmentation strategies.

In addition, we construct a validation dataset to select suitable model-specific hyperparameters.
Specifically, we split 5% of the data from the current target domain’s training set as the validation
dataset. In the CoSDA setting, we are not allowed to access the data from previous domains.
Therefore, we do not construct a validation dataset on the source domain or previously encountered
target domains. The details of hyperparameter selection for each method are presented in Table 4.
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