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ABSTRACT

Recent advances in machine learning for molecules exhibit great potential for
facilitating drug discovery from in silico predictions. Most models for molecule
generation rely on the decomposition of molecules into frequently occurring sub-
structures (motifs), from which they generate novel compounds. While motif
representations greatly aid in learning molecular distributions, such methods fail
to represent substructures beyond their known motif set, posing a fundamental
limitation for discovering novel compounds. To address this limitation and enhance
structural expressivity, we propose to separate structure from features by abstract-
ing motifs to scaffolds and, subsequently, allocating atom and bond types. To this
end, we introduce a novel factorisation of the molecules’ data distribution that
considers the entire molecular context and facilitates learning adequate assignments
of atoms and bonds to scaffolds. Complementary to this, we propose MAGNet,
the first model to freely learn motifs. Importantly, we demonstrate that MAGNet’s
improved expressivity leads to molecules with more structural diversity and, at the
same time, diverse atom and bond assignments.

1 INTRODUCTION

Generative models have become a powerful tool for generating novel compounds, finding applications
in fields like drug discovery, material science, or chemistry (Bian & Xie, 2021; Butler et al., 2018;
Choudhary et al., 2022; Hetzel et al., 2022; Moret et al., 2023). Such deep learning-based molecular
generators offer a promising avenue for efficiently navigating the chemical space and generating
unique molecules with specific properties (Zhou et al., 2019; Hoffman et al., 2022). A crucial
factor contributing to the impressive performance of these models is the incorporation of molecular
fragments, known as motifs. Motifs make it possible to explicitly include complex structures, such as
cycles, into a model and provide a powerful inductive bias for the generative process (Sommer et al.,
2023; Jin et al., 2018; Maziarz et al., 2022; Geng et al., 2023; Kong et al., 2022). However, motif-
based approaches often lead to a prohibitively large vocabulary if all motifs are included. As a result,
these methods resort to including only the top-k most frequently occurring motifs (Maziarz et al.,
2022; Kong et al., 2022), claiming that remaining complex structures can be decoded atom-for-atom.

This claim, however, does not hold in practice, and we demonstrate that a vocabulary of the most
commonly occurring motifs is insufficient to capture the vast structural diversity of the molecular
space. A simple experiment exposes this shortcoming: As demonstrated in Fig. 1 a, state-of-the-art
molecular models fail to reconstruct key structures of FDA-approved drugs. This is because these
structures are absent from its vocabulary. If a model struggles to handle structures of known drugs
that cannot be trivially built from its vocabulary, how can it be effective in discovering new drugs?
This inability raises significant questions about the usefulness of previous generative models and
calls for a reassessment of molecular generators from the perspective of structural diversity.

We address this fundamental limitation of previous motif-based methods by separating the molecular
structure from its features. We achieve this by abstracting motifs to their more general representation:
scaffolds. In our case, these scaffolds are related to generic Murcko scaffolds but technically do not
hold any feature information about bonds or atoms, see Fig. 1 b. Hence, our approach reduces the
combinatorial complexity needed to effectively capture the molecules’ structural diversity, thereby
enhancing expressivity within a fixed-size vocabulary. At the same time, it requires learning the
features, i.e. atom and bond types, enabling the generation of motifs beyond those contained in a
fixed set.
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Figure 1: (a) Motif-based generative models fail to capture key molecular structures, which limits
their expressivity. (b) MAGNet overcomes this limitations by separating structures and features. The
reduced inductive bias allows for a more expressive vocabulary while enabling the modelling of a
wider range of molecular structures by freely learning the mapping from scaffolds to motifs. (c) This
separation is particularly relevant for “uncommon structures” that pose difficult for state-of-the-art
models, see App. D.2

To realise a generative model based on this abstraction, we derive a novel factorisation of the data
distribution that splits a molecule into distinct components. The resulting factorisation is utilised
in two ways. First, we develop a new fragmentation scheme to generate a structurally expressive
scaffold vocabulary. Second, we introduce a new hierarchical method, MAGNet, designed to facilitate
the sampling of diverse molecular structures and enable the free learning of scaffold features into
motifs, thereby generating molecules in a motif-agnostic manner.

Furthermore, we find that established evaluation benchmarks do not sufficiently evaluate the structural
diversity of generated molecules. To address this gap, we propose several new analyses to complement
existing distribution learning benchmarks. Our primary focus lies on evaluating a model’s ability to
reliably decode uncommon molecular structures, such as those illustrated in Fig. 1 c, including also
those rare substructures that were encountered during training. Additionally, we assess models at the
motif level, comparing MAGNet’s feature prediction to its motif-based competitors. We specifically
examine how diverse and accurate the generated allocations of atom and bond types are.

In summary, our contributions are:

• We improve structural expressivity by abstracting motifs to scaffolds. To this end, we introduce
a novel factorisation scheme that facilitates the creation of a more expressive scaffold vocabulary
as well as a novel hierarchical generation procedure, MAGNet.

• MAGNet freely learns the featurisation of scaffolds, enabling the generation of a greater variety
of atom and bond type allocations than motif-based approaches.

• We propose alternative evaluation analyses for effectively assessing a model’s ability to decode
complex and uncommon substructures at both the scaffold and motif level.

2 RELATED WORK

Molecule generation Existing generative models can be divided into three categories (Zhu et al.,
2022; Yang et al., 2022; Du et al., 2022): (1) string-based models, relying on string representations
like SMILES or SELFIES (Gómez-Bombarelli et al., 2018; Segler et al., 2018; Flam-Shepherd
et al., 2022; Fang et al., 2024; Adilov, 2021; Grisoni, 2023), which do not leverage structural
information, (2) graph-based models, which model the molecular graphs, and (3) geometry-based
models, which represent molecules by atomic point clouds (Luo & Ji, 2022; Ragoza et al., 2020;
Satorras et al., 2021; Luo et al., 2021a; Gebauer et al., 2022; 2019; Hoogeboom et al., 2022; Xu
et al., 2023; Huang et al., 2022; Vignac et al., 2023b; Huang et al., 2024; Qiang et al., 2023). Within
the area of molecular geometry generation, Adams & Coley (2023), Chen et al. (2023) and Long
et al. (2022) focus on the shape-constrained design of conformers within a 3D context and consider
surface areas as generation targets. Moreover, graph-based approaches involve models that represent
molecular graphs (i) primarily at the atom level or (ii) predominantly through motifs. Zhu et al.
(2022) categorise the generation process further into sequential methods, building molecules per
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fragment while conditioning on a partial molecule (Khemchandani et al., 2020; Shi* et al., 2020;
Popova et al., 2019; Mercado et al., 2021; Luo et al., 2021b; Liu et al., 2018; Li et al., 2018; Assouel
et al., 2018; You et al., 2019; Yang et al., 2021; Lim et al., 2020; Kajino, 2019; Jin et al., 2020; Bengio
et al., 2021; Ahn et al., 2021; Shirzad et al., 2022), and one-shot (OS) approaches that create each
aspect of the molecular graph in a single step (Kong et al., 2022; Simonovsky & Komodakis, 2018;
Ma et al., 2018; Liu et al., 2021; De Cao & Kipf, 2018; Zang & Wang, 2020; Bresson & Laurent,
2019; Flam-Shepherd et al., 2020; Samanta et al., 2020). Note that diffusion-based models iteratively
refine the entire graph, making them difficult to categorise as sequential or OS. We refer the reader to
App. C for a more detailed discussion on the classification of models into the one-shot or sequential
category. While these models are predominantly used in the 3D context, Vignac et al. (2023a) propose
a discrete diffusion process that fits category (2).

Fragmentation and scaffold representation Various techniques are available for constructing
fragment vocabularies, with a distinction between chemically-inspired and data-driven approaches.
For example, both HierVAE (Jin et al., 2020) and MoLeR (Maziarz et al., 2022) adopt a heuristic
strategy known as “breaking bridge bonds” to decompose molecules into rings and remainder
fragments, emphasising chemically valid substructures. In a similar vein, JT-VAE (Jin et al., 2018)
employs fragmentation guided by the construction of junction trees. In contrast, PS-VAE (Kong et al.,
2022) and MiCaM (Geng et al., 2023) take a data-driven bottom-up approach, creating fragments by
merging smaller components, starting from single atoms. MiCaM even integrates attachment points,
resulting in a larger, “connection-aware” vocabulary.

3 FACTORISING THE DATA DISTRIBUTION P(G)

We provide a general mathematical description of our framework below. However, this section is
not essential for understanding the main concepts of the remainder of this work and we introduce
the matching model in Sec. 4. We consider a molecule G to be defined by its underlying graph, i.e.,
by its graph structure (nodes and edges), together with its node and edge features, describing atoms
and bonds, respectively. We consider a factorisation of the probability mass function P(G), which is
illustrated in Fig. 2, that decouples structure from features:

P(G) = P(G | GS)P(GS) , since P(GS | G) = 1 ,

where G refers to the full atom-level graph and GS to its abstraction to scaffolds. GS represents a
coarse view of a molecule’s topology by specifying the scaffolds that make up the molecule as well
as their connectivity. Representing GS by the multiset of scaffolds S and their (typed) connectivity
A ∈ A|S|×|S|, where A defines the possible values of A, GS = (S, A), P(GS) becomes:

P(GS) = P(A | S)P(S) .

Moving forward to the atom level, a node S in the scaffold graph GS can be expanded into its binary
adjacency matrix of its s = |S| nodes, i.e. S ∈ {0, 1}s×s and is equipped with node and edge features,
corresponding to atom and bond types, respectively. We consider this feature-equipped representation
of S to be a typed subgraph M , or motif, of the input graph G, and denote the associated multiset of
motifs within the molecule by M.

The connectivity between two scaffolds, signified by Akl ̸= 0, indicates that, at the atom level, the
two scaffolds share a common join node (atom) j. To determine a node j, we define the set of join
nodes J , which includes all join nodes j that are contained in two motifs: J = {j | j ∈ Mk, j ∈
Ml, Akl ̸= 0, Sk, Sl ∈ S}. Note that we can effectively provide information about the atom type of
the join node j by considering A = {0,C,N, . . . } to include atom types, which is reflected by the
ablation study on A in App. D.7. Lastly, we do not include all atoms in the scaffold graph to allow
for a concise set of structurally distinct scaffolds, see Sec. 4.1. Specifically, we define the set of leaf
nodes L to describe nodes l with degree dl = 1 and neighbours k ∈ Nl with dk = 3.

In conclusion, G is defined by the combination of motifs M, join nodes J , and leaf nodes L, enabling
to factorise P(G) as follows:

P(G) := P(L,J ,M)

= P(L | M,J )P(J | M, A)P(M | GS)P(GS) ,

3
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Figure 2: On the scaffold-level, MAGNet predicts the scaffold multiset S and its connectivity A.
Progressing to the atom-level, GS informs the generation of motifs M. To fully define the molecular
graph G, the join node positions J and the leaf nodes L are predicted.

where we use GS to factorise the distribution. Note that J is conditionally independent of S given
the motifs M. Similarly, L is conditionally independent of A given J .

4 MODELLING MOLECULES FROM SCAFFOLDS

Building upon the presented factorisation, we continue to introduce our method to derive a concise
scaffold vocabulary and discuss the matching generative model: MAGNet. MAGNet is a graph-based
model that employs a unique approach by generating each hierarchy level in a single step. It positions
itself between the traditional categories of single-atom and fragment-based models by utilising
scaffolds as building blocks and subsequently generating appropriate atom and bond attributes. To
facilitate this generation of diverse motifs and molecular structures, our fragmentation is designed to
achieve concise representations.

4.1 IDENTIFYING A CONCISE SET OF SCAFFOLDS VS FROM DATA

Given a dataset of molecules, our fragmentation scheme aims to represent a molecule through clear
structural elements, for which we provide examples in App. A. For this, we start by removing all leaf
nodes L across the graph, following the approach outlined in previous works (Jin et al., 2020; Maziarz
et al., 2022). This step helps to divide the molecule G into cyclic and acyclic parts. Importantly,
instead of modelling the connection between two fragments Mi and Mj with a connecting bond, we
represent it by a shared atom, matching the definition of a join node ν ∈ J from Sec. 3.

In a subsequent step, we decompose the resulting acyclic fragments to reduce the number of required
scaffolds as much as possible. To this end, we introduce “junctions”, acyclic structures that are defined
by a center node of degree three or four and its neighbours. When compared to the “Breaking Bridge
Bonds” decomposition (Jin et al., 2020; Maziarz et al., 2022), our approach reduces complexity
and results in a much smaller vocabulary by collapsing acyclic structures into distinct scaffolds.
Additionally, in contrast to data-driven methods like those outlined in Kong et al. (2022) and Geng
et al. (2023), our decomposition method maintains structural integrity through its top-down approach.

To arrive at our scaffold vocabulary, we remove atom and bond types from the resulting fragments in
the final step. As a suitable generative model has to map a single scaffold to its various representations,
this fragmentation further enables us to model smoother transitions between scaffold representations.
This is in contrast to fragment-based methods, which have to select different tokens from a large
vocabulary when two motifs differ in, e.g. just bond type, see Fig. 6 b in App. A.

4.2 MAGNET’S ENCODER

MAGNet is trained as a VAE model (Kingma & Welling, 2022), where the latent vectors z are trained
to encode meaningful semantics about the input data, which subsequently inform the generation
process. During training, our model is optimised by maximising the ELBO:
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L = Ez∼Q
[
P
(
G | z

)]
+ βDKL

(
Q(z | G)

∥∥P )
with P ∼ N (0,1)

where the KL-divergence DKL serves to regularise the posterior Q(z | G) towards similarity with the
Normal prior P in the latent space, weighted by β.

MAGNet’s encoder aims to learn the approximate posterior Q(z | G). At its core, the encoder
leverages a graph transformer (Shi et al., 2021) for generating node embeddings of the molecular
graph. Since MAGNet generates molecules in a coarse to fine-grained fashion, we encode information
about the decomposition of the molecules. We compute individual embeddings for the molecular
graph G and the scaffold graph GS by aggregating over the corresponding atom and scaffold nodes,
respectively. In addition, we separately aggregate all join and leaf nodes. The resulting representation
of these individual components—molecular graph, scaffolds, join nodes, and leaf nodes—is then
mapped to the latent space, constituting the graph embedding zG . More details about the chosen node
features as well as technical specifications of the encoder can be found in App. B.1.

4.3 MAGNET’S GENERATION PROCESS

MAGNet is designed to represent the hierarchy of the factorisation into scaffold- and atom-level from
Sec. 3, see Fig. 2. That is, given a vector z from the latent space, MAGNet’s generation process first
works on the scaffold-level to predict GS , defined by the multiset S and its connectivity A, before
going to the atom level defined by the motifs M, join nodes J , and leaf nodes L. Additional details
on the implementation can be found in App. B.2.

Scaffold-Level On the scaffold-level, MAGNet first generates the scaffold multiset S via a trans-
former decoder module—the same scaffold can occur multiple times in one molecule—from the
latent representation z. More specifically, we learn P(S | z) by conditioning the generation on the
latent code z and generate one scaffold at a time, conditioning also on the intermediate representation
of the scaffolds.

Given the scaffold multiset S, MAGNet infers the scaffold connectivity A between scaffolds
Si, Sj ∈ S from scaffold set embeddings obtained with a multi-attention module. Formally, we
learn P(A | S, z) =

∏n
i,j=1 P(Aij = t | S, z) where t ∈ {0,C,N, . . . } not only encodes the

existence (or absence) of a scaffold connection but also its atom type. We consider a typed version of
A to provide a meaningful condition for generating the motifs M later on and provide and ablation
on this in App. D.7. The scaffold-level loss is computed by LGS = LS + LA, where LS and LA

refer to the categorical losses of the scaffold set and connectivity, respectively.

Atom-Level Leveraging a molecule’s scaffold-level representation (S, A), MAGNet incorporates
a feature-predicting module to identify appropriate node and edge attributes for each scaffold,
see Fig. 1 b. By freely predicting the atom and bond types to define the motifs M, MAGNet
gains flexibility compared to its motif-based competitors. The mapping of a scaffold Si to a motif
P(Mi | S, A, z) is performed in two steps, starting with the prediction of the respective atom
types Ma

i from the scaffold graph and latent code z by means of a transformer decoder module.
Subsequently, the resulting atom embeddings Ma

i are leveraged to determine the matching bond
types M b between connected nodes. By conditioning on A, we can ensure that Mk includes all
nodes needed for connectivity on the atom-level. This comes from the fact that the motifs M adhere
to the join node types defined by A. In mathematical terms, this means Akl ∈

⋃
j M

a
k ∩Ma

l , where
a signifies the exclusive consideration of atoms.

To establish the connectivity on the atom level, MAGNet proceeds to identify the join nodes J ,
whose types are already defined, via a multi-layer perceptron. Therefore, MAGNet only needs to
predict the pairs of node positions pa that form joins, collectively creating the set of join nodes J .
Mathematically, we express the likelihood of merging nodes i and j in motifs Mk and Ml by the merge
probability J

(k,l)
ij = P(pi ≡ pj | M, A, z), which constitutes the join matrix J (k,l) ∈ [0, 1]VSk

×VSl .
In the final step, MAGNet utilises a transformer decoder to predict the leaf nodes L, which consists
of determining the atom type and its attachment to the current atom graph C (for core molecule).
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Optimising the likelihood P(LS | C, z) is done similarly to the motif prediction, only that we use the
atom graph C as model input. The final atom-level loss consists of LG = LM+LJ +LL, where LM,
LJ , and LL describe categorical losses for motifs M, including both atom and bond types, join nodes
J , and leaf nodes L, respectively. When optimising MAGNet with a reconstruction loss consisting
of LG + LGS , we have observed that a simple KL-regularisation alone is inadequate for achieving a
smoothly structured latent space. Our analysis in App. B.3 shows that the latent space suffers from
over-pruning behaviour (Yeung et al., 2017). To remedy this, we apply a normalising flow post-hoc to
the latent space, aligning it more effectively with the prior. To this end, we rely on Conditional Flow
Matching (Lipman et al., 2023) and, more specifically, use the version based on minibatch optimal
transport as presented by Tong et al. (2024). We specify MAGNet’s hyperparameter configuration in
App. B.4.

Limitations As for the limitations, we note that both sequential and one-shot molecular generation
methods are susceptible to error propagation (Muenkler et al., 2023). Our results in Sec. 5, however,
indicate that the separation between scaffold and atom-level does not harm MAGNet in practice,
as MAGNet reliably identifies suitable atom and bond allocations for the generated scaffold graph.
While MAGNet successfully generates diverse molecular structures, incorporating synthesizability
considerations would further enhance its practical applicability in drug discovery pipelines. This
limitation could be addressed by training on multi-component reaction datasets, potentially bridging
the gap between computational predictions and experimental validation (Graziano et al., 2023).

5 RESULTS

We compare MAGNet to state-of-the-art molecular generators across several dimensions of the
generation process. In Sec. 5.1, we investigate the reconstruction and sampling of scaffolds S , as the
fundamental component of MAGNet’s factorisation, and show that our model, unlike the baselines,
captures the diverse structural characteristics found in molecules. In Sec. 5.2, we continue to evaluate
the generative performance using established benchmarks. In Sec. 5.3, we analyse MAGNet’s ability
to determine atom and bond allocations M freely and demonstrate that MAGNet learns to generate a
larger variety of motifs in accordance with the dataset compared to motif-based approaches. Finally,
in Sec. 5.4, we give an outlook on how MAGNet can be utilised for downstream applications, such as
goal-directed generation and conditioning on various levels of the generation process.

Baselines In this section, our focus lies on variational autoencoder models designed to generate
molecular graphs. We select models from the one-shot and sequential categories as detailed in Sec. 2.
These include PS-VAE (Kong et al., 2022), a two-step generation framework that first generates
subgraphs before predicting connections, from the one-shot category and MoLeR, a method that
extends a partially generated graph by adding new fragments at each step, (Maziarz et al., 2022)
from the sequential category. Additionally, we incorporate MiCaM (Geng et al., 2023) as a third
baseline, which is another fragment-based method that utilises connection-aware motifs, leading to a
significantly larger and more fine-grained vocabulary than ours. In order to contextualise MAGNet
with the full spectrum of molecule generation methods, we also evaluate JTVAE (Jin et al., 2018),
HierVAE (Jin et al., 2020), GraphAF (Shi* et al., 2020), SMILES-LSTM (SM-LSTM) (Segler
et al., 2018) and CharVAE (Gómez-Bombarelli et al., 2018) as baselines for distribution learning
benchmarks.

Benchmarks and datasets To evaluate the ability to learn the underlying distribution of molecules,
we employ two standard benchmarks for de novo molecule generation. The GuacaMol benchmark
asseses the ability of a generative model to sample by the distribution of a molecular dataset (Brown
et al., 2019). Next to evaluating the uniqueness and novelty of sampled molecules, the benchmark
also computes distributional distances to the reference, i.e. the KL-divergence and Fréchet distance
score (FCD) (Brown et al., 2019). We use the MOSES benchmark (Polykovskiy et al., 2020) to report
measures for the internal diversity (IntDiv) of generated molecules as well as chemical properties
such as synthetic accessibility (SA), the octanol-water partition coefficient (logP), and the viability for
drugs (QED). We also evaluate a subset of our baselines on the GuacaMol goal-directed benchmark,
which tests the ability of generative models to generate molecules that maximise certain score
functions, e.g. similarity to a known drug-like molecule. All models are trained on the ZINC dataset
(Irwin et al., 2020) and the benchmarks conducted on the corresponding test set. We further use
QM9 (Wu et al., 2018), GuacaMol (Brown et al., 2019), CheMBL (Mendez et al., 2019), and L1000
(Subramanian et al., 2017) for additional evaluations.
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Figure 3: (a) Reconstruction of molecules that include large cycles or complex junctions. Relying
on individual atoms to build these structures is not sufficient. Only MAGNet is able to reliably
decode its latent code z. (b) Percentage of reconstructed scaffolds. MAGNet substantially improves
in reconstructing both common and—more importantly—uncommon scaffolds. (c) Comparison of
sampled scaffolds to their frequency in the training distribution. A ratio of 1 is optimal.

5.1 USING SCAFFOLDS TO REPRESENT STRUCTURAL VARIETY OF MOLECULES

Reconstructing complex structures As a continuation of Fig. 1, our first experiment provides
qualitative insights into how accurately scaffolds are decoded, P(S | z). We assess the decoder’s
performance in reconstructing molecules from the test set, which includes uncommon scaffolds like
large rings or complex junctions. Our observations reveal that the baseline models have difficulty in
constructing complex scaffolds, as illustrated in Fig. 3a. We attribute this limitation to the absence
of motifs which map to such scaffolds in their top-k vocabularies. Consequently, these models
face the challenge of constructing scaffolds such as large rings from individual atoms. In contrast,
our proposed model, MAGNet, operates with a moderately-sized vocabulary that includes complex
scaffolds, enabling it to generate molecules that follow the latent code and the corresponding ground
truth molecules (see the latent displacement analysis in App. D.4).

MAGNet reliably decodes scaffolds Building on our analysis of large cycles and uncommon
junctions, we extend our investigation to assess how effectively different models can reconstruct the
scaffold set S in a general context. Given our focus on P(S | z), we can disregard the connectivity
A and motifs M. As illustrated in Fig. 3b, our findings demonstrate that MAGNet consistently
outperforms all evaluated baselines, supporting the hypothesis that the other methods fail to faithfully
decode complex molecular structures from single atoms and rely primarily on the information encoded
in their vocabulary. Even with a significantly increased vocabulary for methods such as MoLeR,
we find in App. D.1 that a larger vocabulary does not significantly help to model to reconstruct
uncommon scaffolds. Furthermore, we observe that MiCaM, MoLeR, and PS-VAE hallucinate
structures dissimilar to the scaffolds present in the dataset, see App. D.8.

MAGNet matches the scaffold distribution more accurately To further analyse to what extent
uncommon scaffolds are not only reconstructed but purposefully sampled, we analyse the scaffold
set of generated molecules. If the other models are able to represent scaffolds that are not included
in their vocabulary, they should be able to reflect the reference distribution of scaffolds. For this
evaluation, we decompose sampled molecules into their scaffolds. We then measure the models’
over- and undersampling behaviour based on the ratio rSi

= cs(Si)∑
k cs(Sk)

×
∑

k ct(Sk)

ct(Si)
, where ct and cs

refer to the count function applied to the training and sampled sets, respectively. Fig. 3c shows that
baseline methods fail to generate molecules in accordance with the reference scaffold distribution in
practice. On common scaffolds, i.e. those that occur in more than 10% of the molecules, all evaluated
models are able to match the ratio of the data distribution. For uncommon scaffolds, however, the
baselines fail: while PS-VAE heavily oversamples both ring-like and chain-like scaffolds, MoLeR
and MiCaM oversample chain-like scaffolds. MAGNet matches the reference distribution best across
categories and we conclude that the abstraction to scaffolds benefits generation.
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Table 1: GuacaMol and MOSES Benchmark. We report mean and standard deviation using 5 random
seeds. We underline the best graph-based method and make the best method within each category
bold.

GuacaMol MOSES
FCD (↑) KL (↑) IntDiv (↑) logP (↓) SA (↓) QED (↓)

SM
. CharVAE 0.17 ± 0.08 0.78 ± 0.04 0.88 ± 0.01 0.87 ± 0.14 0.48 ± 0.13 0.06 ± 0.03

SM.-LSTM 0.93 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.12 ± 0.01 0.04 ± 0.02 0.00 ± 0.00
Se

qu
en

tia
l GraphAF 0.05 ± 0.00 0.67 ± 0.01 0.93 ± 0.00 0.41 ± 0.02 0.88 ± 0.10 0.22 ± 0.01

HierVAE 0.53 ± 0.14 0.92 ± 0.01 0.87 ± 0.01 0.36 ± 0.17 0.20 ± 0.14 0.03 ± 0.00

MiCaM 0.63 ± 0.02 0.94 ± 0.00 0.87 ± 0.00 0.20 ± 0.05 0.51 ± 0.03 0.08 ± 0.00

JTVAE 0.75 ± 0.00 0.94 ± 0.00 0.86 ± 0.00 0.28 ± 0.03 0.34 ± 0.01 0.01 ± 0.00
MoLeR 0.80 ± 0.01 0.98 ± 0.00 0.87 ± 0.00 0.13 ± 0.02 0.06 ± 0.01 0.01 ± 0.01

O
ne

-S
ho

t PSVAE 0.28 ± 0.01 0.83 ± 0.00 0.89 ± 0.00 0.34 ± 0.02 1.18 ± 0.05 0.05 ± 0.00

DiGress 0.65 ± 0.00 0.91 ± 0.00 0.86 ± 0.00 0.61 ± 0.02 0.09 ± 0.01 0.05 ± 0.01

MAGNet 0.76 ± 0.00 0.95 ± 0.00 0.88 ± 0.00 0.22 ± 0.01 0.12 ± 0.01 0.01 ± 0.00

Figure 4: (a) Example of generated fragments by MAGNet and baseline methods. (b) MMD computa-
tion to quantify similarity between generated and ground truth motifs. (c) Rank comparison between
predicted fragments and their original counterparts.

5.2 GENERATIVE PERFORMANCE EVALUATED ON COMMON BENCHMARKS

MAGNet performs on par with motif-based approaches The MOSES and GuacaMol benchmarks
are conducted on 104 latent codes sampled from the prior distribution, z ∼ P , and decoded into valid
molecules. Our results for both benchmarks are depicted in Tab. 1, where we classify the methods
into their generative approaches as described in Sec. 2. We do not report Novelty and Uniqueness, as
almost all evaluated models achieve 100% on these metrics. Solely GraphAF and HierVAE perform
slightly worse but still achieve above 90% in Uniqueness and Novelty. For the baselines DiGress,
SM-LSTM, and CharVAE, which are not able to achieve 100% Validity, we sample until we obtain
104 valid molecules. We report all benchmark metrics in App. D.3. While MoLeR sets the state of
the art on both FCD and KL, MAGNet outperforms all other graph-based baselines. This supports
the proposed factorisation in Sec. 3 while also challenging the common perception that methods for
molecule generation must rely on motif vocabularies to obtain good generative performance.

The FCD metric is insufficient for evaluating structural diversity Despite the FCD being an
important metric for molecular distribution learning, we find that it fails to provide insights about
the structural diversity of the generated molecules. Evaluating the benchmark on a subset of 104
molecules from the training data, which was filtered to include only the 10 most common scaffolds,
results in an FCD score of 0.89. This observation offers an explanation for why models like MoLeR
can achieve state-of-the-art FCD scores, despite not accurately capturing the scaffold distribution,
as demonstrated in Sec. 5.1. This underscores that our analysis on structural diversity complements
these benchmarks, providing valuable insights about the molecular distribution.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Examples of conditional molecule generation with MAGNet. The generation is conditioned
on (top) a complete fragment, including atoms and edges, and (bottom) two distinct scaffolds.

5.3 GENERATION OF MOTIFS M

Having established that MAGNet reliably decodes molecular structures and their scaffolds and
samples diversely, we continue to evaluate MAGNet on the motif level.

MAGNet’s generated motifs are superior to fixed fragments The larger a given scaffold, the
more the combinatorial aspect starts to dominate: with a size-limited vocabulary, it is challenging to
reflect the diversity of a scaffold’s realisations to motifs during decoding. This is shown in Fig. 4a,
which provides a qualitative view on generated and sampled motifs. We extract the motif of a
single scaffold from the molecules sampled in Tab. 1 and plot the two principal components of their
fingerprints. For the chosen scaffold alone, there are 791 representations in ZINC. PS-VAE, MiCaM,
and MoLeR do not cover the distribution fully, even though the scaffold appears commonly in the
dataset. MAGNet, however, covers all parts of the distribution, even outliers. Fig. 4b shows the MMD
quantification of the procedure shown in Fig. 4a, confirming that MAGNet is able to cover the entire
distribution of motifs best. Note that, by learning to predict the bond and atom assignments, MAGNet
achieves coverage of motifs that extend upon the fixed motif sets of the other methods. This effect
becomes also apparent when assessing the zero-shot generalisation capabilities on other datasets,
where MAGNet is able to achieve the highest similarity scores, improving over the strongest baseline
by up to 20%, see App. D.6.

Allocation of atom and bonds to scaffolds Extending the sampling analysis from Fig. 4b, we
quantify the process of turning a scaffold into a chemically valid motif in Fig. 4c. For each scaffold
in the dataset, we compute the similarities between the set of all generated and ground truth motifs.
Within the set of ground truth motifs and successful scaffold decodings, we compute the similarity
rank between generated and ground truth pairs. In the majority of cases, MAGNet achieves rank 0 or
1 in the motif generation, indicating near-perfect accuracy, with uncommon rings remaining the most
challenging to decode.

5.4 MAGNET FOR DOWNSTREAM APPLICATIONS

Having analysed the generative performance of MAGNet and the benefit of the proposed scaffold
fragmentation, we demonstrate that, like all VAE-based architectures, MAGNet can be adapted to
generate molecules with desired properties. Additionally, we outline how one can use MAGNet’s
factorisation for the generation of linkers and structure-constrained generation.

Table 2: Results for the GuacaMol goal-
directed benchmarks. All scores should
be maximised. We report mean and stan-
dard deviation and highlight the best
method in bold.

MAGNet MoLeR MiCaM Random

Isomers 0.34 ± 0.03 0.32 ± 0.03 0.31 ± 0.04 0.17 ± 0.12
MPO 0.74 ± 0.06 0.70 ± 0.08 0.71 ± 0.07 0.61 ± 0.22
Property 0.82 ± 0.02 0.81 ± 0.03 0.82 ± 0.01 0.34 ± 0.30
Redisc. 0.17 ± 0.00 0.24 ± 0.00 0.24 ± 0.00 0.14 ± 0.01
Similarity 0.43 ± 0.03 0.38 ± 0.04 0.38 ± 0.03 0.26 ± 0.08

Goal-directed generation We evaluate to what extent
the models can be used to find molecules that maximise
a given score function. We compare against MoLeR and
MiCaM and additionally provide a random baseline that
samples molecules from the dataset as lower bound. Tab. 2
shows the results and we observe that MAGNet performs
on par with or better than MoLeR, confirming our compet-
itive performance on established benchmarks. We provide
more information about the latent optimisation procedure
as well as additional goal-directed results in App. D.9.
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MAGNet efficiently generates molecules conditioned on fragments and scaffolds In the context
of potential downstream applications, we investigate novel scaffold conditioning methods made
possible by MAGNet’s factorisation. Besides the latent space interpolation in App. D.5, Fig. 5
illustrates that MAGNet is capable to condition not only on a single scaffold but also on multiple
scaffolds, even when they are not directly connected within the resulting molecule. MAGNet makes
this possible by enforcing e.g. a set of conditioning scaffolds or given scaffold representations
during the decoding phase. This poses a significant challenge for models like MoLeR, which rely on
extending connected subgraphs for scaffold conditioning. Moreover, MAGNet enables conditioning
on multiple levels of abstraction and can generate molecules conditioned on a fragment as well as
solely based on a scaffold, see Fig. 5.

6 CONCLUSION
To address fundamental limitations of motif-based approaches for molecular graph generation, we
propose to separate structure from features. To this end, we introduce a novel graph factorisation
that enables us to build an expressive scaffold vocabulary using a novel fragmentation scheme.
Furthermore, we present MAGNet, a generative model that builds upon this abstraction to achieve
greater structural expressivity. Our experiments demonstrate that MAGNet outperforms existing motif-
based models in terms of structural diversity and performs competitively on established benchmarks.
We argue that a hierarchical approach, such as the one adopted in MAGNet, is crucial for effectively
leveraging scaffold representations. However, modifications to this approach could be promising for
future advancements building upon our proposed method.
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Figure 6: (a) Examples of the fragmentation procedure. Starting with the entire molecules, the
fragmentation first removes leaf nodes L, continues to split into motifs M, and then identifies distinct
scaffolds S. (b) Example for a single scaffold that has multiple similar representations in terms of
atom and bond types, illustrating how our scaffold abstraction can reduce combinatorial explosion
and enable smooth learning.

A ABSTRACTION TO SCAFFOLDS AND DETAILS ON PROPOSED
FRAGMENTATION

Fig. 6 a shows examples of the proposed fragmentation and abstraction to scaffolds. First, we identify
leaf nodes L and then divide the core molecule C into structurally distinct fragments M that can be
categorised into rings, chains, and junctions. Note that adjacent scaffolds share a join node v ∈ J
instead of being connected through a bond. This representation of connectivity between fragments is
advantageous compared to the “Breaking Bridge Bonds” decomposition (Jin et al., 2020; Maziarz
et al., 2022), as the separation of motifs, such as rings and chains, does not require truncating the
chain. Given this fragmentation, atoms can simultaneously be part of a ring and a chain, and MAGNet
accounts for that.

Fig. 6 a illustrate that many fragments share the same topology but differ in the atom and bond
types. Extracting a scaffold Si from its motif Mi means to reduce the typed adjacency to its binary
connectivity, discarding any node features. After creating a vocabulary using all unique scaffolds
from the dataset, we can check their isomorphism by comparing their hashes (Leman & Weisfeiler,
1968).

By this abstraction, MAGNet can learn smoother transitions between different scaffold representations.
Fig. 6 b showcases a simple example of this: the shown motifs share very similar sets of atoms and
bonds, as well as their underlying structure, but they differ in the exact positions of atoms and bonds.
Fragment-based methods would be required to replace the motif token entirely, having to choose its
replacement from a potentially large vocabulary. By disentangling structure from features, we enable
MAGNet to learn such transitions smoothly.
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B DETAILS MAGNET

B.1 ENCODER

We build the node features that are processed in MAGNet’s encoder from different attributes, see
Tab. 3. We include the atom type (‘atom id dim’), its charge (‘atom charge dim’), as well as its
multiplicity value (‘atom multiplicity dim’). We proceed accordingly for the scaffold level and
include the scaffold id (‘scaffold id dim’), its multiplicity (‘scaffold multiplicity dim’), as well
chemical features (‘motif feat dim’) computed through RDKit (Landrum & others, 2013). Since the
latter are not learned during training, the features are mapped to the specified dimensionality by a
linear map.

After processing the resulting node features through the graph transformer (Shi et al., 2021) with
‘num layers enc’-many layers, they are aggregated in different ways and mapped to specified dimen-
sions as defined by ‘enc <> dim’ for the atoms, scaffolds, join nodes, and leaf nodes, respectively.
On top, the scaffold embeddings are additionally processed with the same transformer architecture
(‘num layers scaffold enc’) to inform the embedding about the scaffold-level connectivity. We then
concatenate the resulting graph-level embeddings and further combine them with global molecule
features, again computed via RDKit and then mapped to the required dimension (‘enc global dim’),
before mapping them to the latent space via the latent module which has ‘num layers latent’-many
layers.

Table 3: Parameter configuration of the best MAGNet runs.

Parameter Value

Train batch size 64
flow batch size 1024
lr 3.07× 10−4

lr sch decay 0.9801
flow lr 1× 10−3

flow lr sch decay 0.99
flow patience 13
gradclip 3

Model latent dim 100

di
m

co
nfi

g

enc atom dim 25
enc scaffolds dim 25
enc joins dim 25
enc leaves dim 25
enc global dim 25
atom id dim 25
atom charge dim 10
atom multiplicity dim 10
scaffold id dim 35
scaffold multiplicity dim 10
motif feat dim 50
scaffold hidden 256
scaffold gnn dim 128
motif seq pos dim 15
leaf hidden 256
latent flow hidden 512

Parameter Value

Model node aggregation sum
num layers latent 2
num layers enc 2
num layers scaffold enc 4
num layers hgraph 3

lo
ss

w
ei

gh
ts joins 1

leaves 1
motifs 1
hypergraph 1

be
ta

an
ne

al
in

g max 0.01
init 0
step 0.0005
every 2500
start 2000

B.2 DECODER

All decoding steps are conditioned on the latent code z. From z, MAGNet employs two transformer
decoder layers to autoregressively decode the set of scaffolds S by selecting tokens Si from the
extracted scaffold vocabulary. Generation of the variable-sized multiset S ends with selecting a stop
token. In the next step, an MLP predicts the connectivity A matrix between individual nodes in a
permutation-invariant manner. This prediction is solely based on the learnable scaffold token and
multiplicity embeddings. Indicating multiplicity is required, as multiple scaffolds in S share the same
scaffold type but have to be connected in different ways.

At this point, MAGNet instantiates the atom-level graph by expanding scaffold tokens to their untyped
graph objects. These graphs without features are then first assigned atom types by transformer decoder
layers. Subsequently, the atom features and the respective scaffold embeddings are used by an MLP
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Figure 7: Displacement between latent representation of the input vs. the decoded output.

to assign bond types independently for every edge, thus creating M. For any connection Aij between
two motifs Mi and Mj , another MLP then determines the join matrix J (k,l), that is used to identify
the shared join node which is then “collapsed”. This process applies only to atoms of the same type,
is subject to valency constraints, and has to adhere to the predicted join node type Aij .

After constructing the core molecule C, MAGNet creates meaningful node embeddings by employing
a graph neural network on the core molecule. These embeddings are the basis for a final module
consisting of transformer decoder layers that equips the core molecule’s atoms with leaf nodes L. By
the definition of the leaf nodes, every core molecule’s atom can only have one leaf node. A leaf node
prediction includes the node’s atom type and the bond type connecting it to its attachment atom in the
core molecule. The predicted bond type is again subject to valency constraints.

B.3 ANALYSIS OF ACTIVE UNITS IN THE LATENT SPACE

Formally, the VAE optimises the ELBO

L = Ez∼Q
[
P
(
G | z

)]
+ βDKL

(
Q(z | G) | P

)
with P ∼ N (0,1)

where the posterior Q(z | G) is regularised towards the Normal prior P . In practice, finding a balance
between the reconstruction loss Ez∼Q

[
P
(
G | z

)]
and the KL-divergence DKL is challenging. Yeung

et al. (2017) and Burda et al. (2015) observe that optimising this objective can result in the VAE
learning to collapse several units to the prior to compensate for few non-Gaussian components that
support reconstruction. Behaviour like this can be measured through the number of active units in the
latent space, defined as CovG

(
Ez∼Q(z|G)[z]

)
> 0.02 (Burda et al., 2015).

Due to generating the entire molecular context at each generation step, MAGNet heavily relies on
the latent representation; also, our reconstruction experiments Sec. 5.1 support this. However, this
intended behaviour requires the approximate posterior Q(z | G) to be close to the Normal prior P
to allow for good-quality samples. Although there are several methods available to improve the
alignment between the approximate posterior and the prior, such as latent dropout (Yeung et al.,
2017), a cyclic β-annealing schedule (Fu et al., 2019), and the GECO loss (Rezende & Viola, 2018),
none of them have been able to achieve a rate of active units over 50 % beyond a simple weighting of
the DKL term. As a result of this analysis, we fitted a normalising flow to the VAE, which was trained
with low KL regularisation. For this, we follow the framework of Conditional Flow Matching (Tong
et al., 2024; Lipman et al., 2023) and achieve 100 % active units.

B.4 MAGNET: HYPERPARAMETERS AND TRAINING

Training MAGNet for one epoch takes around 30minutes on a single ‘NVIDIA GeForce GTX 1080
Ti’. We trained MAGNet for 30 epochs and fitted the latent normalising flow post-hoc for 5000
epochs in total and conducted a random hyperparameter sweep including the learning rate, beta
annealing scheme, and the number of layers for the encoder and latent module. The MAGNet model
reported in the main text has 12.6M parameters and its configuration is depicted in Tab. 3. In its
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Figure 8: Additional quantitative evaluation shows that MAGNet is faithful to its latent code. From
this follows decoding consistency even in challenging cases and on unseen datasets.

current version, MAGNet processes roughly 70 molecules per second during training and samples
about 8 molecules per second during inference.

C DISCUSSION ON GENERATION APPROACHES

Zhu et al. (2022) categorise graph generation approaches into One-Shot and Sequential models based
on how the latent code is mapped to the final graph. Models like GraphAF clearly fall into the
One-Shot category, while MoLeR fits within the Sequential category. However, models such as
DiGress, PS-VAE, and MAGNet do not match this classification perfectly.

According to Zhu et al. (2022), sequential models “generate a graph consecutively in a few steps,”
conditioning on a partial graph, i.e. complete parts of a molecule, at each step. Importantly, PS-VAE
and MAGNet do not follow this scheme. Even though they generate a set of motifs autoregressively
using an RNN or Transformer, they never generate a graph conditioned on a partial structure.

One-Shot models, as defined by Zhu et al. (2022), “generate a new graph represented in an adjacency
matrix with optional node and edge features in one single step,” first generating the set of node
features and subsequently the set of edge features. This approach aligns more closely with the
strategies employed by PS-VAE and MAGNet. The discrepancy arises due to the autoregressive
manner in which these models generate the set of motifs.

Parallel to Zhu et al. (2022), Yang et al. (2022) propose similar terminology, categorising models
into All-At-Once, Fragment-based (attaching fragments to a partial molecule), and node-by-node
(attaching nodes to a partial molecule) methods. Under this classification, DiGress is considered an
All-At-Once model, while PS-VAE is categorised as a Fragment-based method. This is inconsistent
given that PS-VAE does connect any fragments until the final prediction step. Therefore, both
MAGNet and PS-VAE would more appropriately fall into the All-At-Once category under this
definition, while relying on a fragment-based or scaffold-based vocabulary.

To address these inconsistencies, we classify PS-VAE, MAGNet, and DiGress as One-Shot models,
since they do not condition on a partial graph during generation (with diffusion models conditioning
on a full but noisy graph). In each generation step, the module that generates motifs is invoked only
once and does not depend on other modules like the bond-generating component.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION ON LARGER VOCABULARY SIZE

In the experiments conducted in Fig. 3c and b, we compare MAGNet to the top-k vocabulary models
MoLeR and PS-VAE. To ensure a fair comparison, we limit all models to a vocabulary size of 350.
We conclude from this experiment, as well as e.g. Fig. 3a, that models cannot generate uncommon
scaffolds, if they are not in their motif vocabulary and need to resort to constructing them from single
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Figure 9: Left: percentage of reconstructed scaffolds. Right: comparison of sampled scaffolds to
their frequency in the training distribution. A ratio of 1 is optimal.

Figure 10: Qualitative examples of the reconstruction of FDA-approved drug-like molecules.

atoms. To investigate whether a model with just a significantly larger vocabulary can alleviate these
shortcomings, we additionally conduct analysis with the MoLeR vocabulary trained with a vocabulary
of size 2000 in Fig. 9. Interestingly, we can observe that a larger vocabulary does help the MoLeR
model in sampling more uncommon scaffolds in better accordance with the training distribution.
However, when investigating the model’s ability to reconstruct uncommon scaffolds, even MoLeR
with a larger vocabulary falls short. This indicates that uncommon scaffolds might be sampled at
random during unconditional generation but the vocabulary becomes too large to navigate in the case
of an explicit signal to decode a certain scaffold.

D.2 DECODING DRUG-LIKE MOLECULES

Following up on the limitations of current molecular generators discussed in Fig. 1, Fig. 10 demon-
strates that MAGNet does not display the same difficulties in decoding complex scaffolds.

D.3 FULL BENCHMARK RESULTS

In addition to the results of the GuacaMol distribution learning benchmark results in Tab. 1, we
provide the full benchmark results in Tab. 4.
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Table 4: Metrics obtained by the MOSES and GuacaMol benchmarks for all evaluated models. We
highlight the best method in each category.

CharVAE SM-LSTM GraphAF HierVAE MiCaM JTVAE MoLeR PSVAE MAGNet DiGress

FCD/T (↓) 18.9 ± 16.0 0.50 ± 0.01 14.9 ± 0.34 3.52 ± 1.25 2.49 ± 0.16 1.67 ± 0.02 1.28 ± 0.05 6.57 ± 0.22 1.50 ± 0.00 2.79 ± 0.16

SNN/T (↑) 0.29 ± 0.04 0.40 ± 0.00 0.25 ± 0.00 0.36 ± 0.03 0.34 ± 0.00 0.34 ± 0.00 0.36 ± 0.00 0.28 ± 0.00 0.34 ± 0.00 0.32 ± 0.00

Frag/T (↑) 0.85 ± 0.13 1.00 ± 0.00 0.84 ± 0.03 0.96 ± 0.02 0.97 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.78 ± 0.01 0.99 ± 0.00 0.97 ± 0.00

Scaf/T (↑) 0.17 ± 0.15 0.38 ± 0.01 0.21 ± 0.03 0.37 ± 0.10 0.34 ± 0.01 0.24 ± 0.02 0.34 ± 0.02 0.20 ± 0.02 0.38 ± 0.01 0.25 ± 0.02

IntDiv (↑) 0.85 ± 0.04 0.87 ± 0.00 0.93 ± 0.00 0.87 ± 0.01 0.87 ± 0.00 0.86 ± 0.00 0.87 ± 0.00 0.89 ± 0.00 0.88 ± 0.00 0.87 ± 0.00

IntDiv2 (↑) 0.83 ± 0.05 0.86 ± 0.00 0.91 ± 0.00 0.86 ± 0.01 0.87 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.86 ± 0.00

Filters (↑) 0.36 ± 0.13 0.59 ± 0.01 0.47 ± 0.03 0.58 ± 0.05 0.54 ± 0.02 0.56 ± 0.01 0.56 ± 0.00 0.86 ± 0.01 0.71 ± 0.00 0.66 ± 0.02

logP (↓) 2.24 ± 2.41 0.12 ± 0.01 0.41 ± 0.02 0.36 ± 0.17 0.20 ± 0.05 0.28 ± 0.03 0.13 ± 0.02 0.34 ± 0.02 0.22 ± 0.01 0.40 ± 0.07

SA (↓) 0.42 ± 0.08 0.04 ± 0.02 0.88 ± 0.10 0.20 ± 0.14 0.51 ± 0.03 0.34 ± 0.01 0.06 ± 0.01 1.18 ± 0.05 0.12 ± 0.01 0.38 ± 0.07

QED (↓) 0.16 ± 0.16 0.00 ± 0.00 0.22 ± 0.01 0.03 ± 0.00 0.08 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.05 ± 0.00 0.01 ± 0.00 0.03 ± 0.00

weight (↓) 32.9 ± 6.74 2.45 ± 0.36 96.9 ± 4.99 18.6 ± 8.93 51.1 ± 6.58 2.90 ± 0.06 5.96 ± 1.16 38.3 ± 2.14 14.5 ± 0.43 27.5 ± 0.04

Valid (↑) 0.09 ± 0.01 0.96 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.85 ± 0.01

Unique (↑) 0.95 ± 0.07 1.00 ± 0.00 0.91 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

Novelty (↑) 0.95 ± 0.07 0.98 ± 0.00 0.91 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

KL div. (↑) 0.63 ± 0.26 1.00 ± 0.00 0.67 ± 0.01 0.92 ± 0.01 0.94 ± 0.00 0.94 ± 0.00 0.98 ± 0.00 0.83 ± 0.00 0.95 ± 0.00 0.91 ± 0.00

FCD (↑) 0.11 ± 0.13 0.93 ± 0.00 0.05 ± 0.00 0.53 ± 0.14 0.63 ± 0.02 0.75 ± 0.00 0.80 ± 0.01 0.28 ± 0.01 0.76 ± 0.00 0.65 ± 0.00

To provide further details on the results presented in Tab. 2, we provide the achieved scores for all
evaluated methods for each of the GuacaMol goal-directed benchmark targets in Tab. 5.

Table 5: Results for the individual tasks of the GuacaMol goal-directed benchmark.

Gradient Ascent MSO
MAGNET MICAM MOLER MAGNET MICAM MOLER

Albuterol similarity 0.508 0.425 0.485 0.725 0.563 0.775
Aripiprazole similarity 0.622 0.558 0.585 0.768 0.712 0.841
Mestranol similarity 0.362 0.372 0.307 0.443 0.458 0.469

C11H24 0.389 0.369 0.348 0.816 0.634 0.671
C7H8N2O2 0.360 0.388 0.372 0.837 0.536 0.935
C9H10N2O2PFCl 0.515 0.461 0.479 0.787 0.665 0.743

CNS MPO 0.992 0.984 0.994 1.000 1.000 1.000
Cobimetinib MPO 0.858 0.830 0.835 0.901 0.899 0.895
Fexofenadine MPO 0.734 0.759 0.758 0.814 0.786 0.821
Osimertinib MPO 0.832 0.810 0.831 0.855 0.852 0.868
Physchem MPO 0.652 0.598 0.573 0.813 0.725 0.796
Pioglitazone MPO 0.637 0.571 0.403 0.960 0.855 0.878
Ranolazine MPO 0.206 0.177 0.200 0.798 0.730 0.764

Median molecules 0.210 0.151 0.159 0.302 0.149 0.306

Celecoxib rediscovery 0.235 0.273 0.232 0.414 0.317 0.449
Thiothixene rediscovery 0.123 0.218 0.275 0.308 0.391 0.262
Troglitazone rediscovery 0.167 0.233 0.219 0.261 0.268 0.336

QED 0.907 0.899 0.916 0.946 0.946 0.948
TPSA target: 150.0 0.821 0.868 0.894 1.000 0.984 1.000
logP target: −1.0 0.954 0.887 0.935 1.000 0.995 1.000
logP target: 8.0 0.636 0.723 0.591 1.000 0.923 0.993

D.4 DISPLACEMENT OF LATENT CODES

To quantify the discrepancy between input and reconstructed molecule visible in Fig. 3a, we measure
the displacement of latent codes in Fig. 7. That is, we obtain the latent representation for the
input molecule, decode this latent representation into the output molecule and then obtain the latent
representation for the output molecule. This verifies what can be observed qualitatively in Fig. 3a–the
evaluated baselines can not reliably decode complex scaffolds.

D.5 INTERPOLATION

Extending on Fig. 5, we additionally provide examples for latent space interpolation in Fig. 12.
During interpolation, MAGNet stays faithful to the scaffolds present in the input molecules. The last
row shows a failure case of MAGNet: it identifies a scaffold multiset that can not be fully connected
to a molecule.
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Table 6: GuacaMol and MOSES Benchmark for ablations of MAGNet

FCD (↑) KL (↑) IntDiv (↑) logP (↓) SA (↓) QED (↓)
MAGNet 0.76 ± 0.00 0.95 ± 0.00 0.88 ± 0.00 0.22 ± 0.01 0.12 ± 0.01 0.01 ± 0.00

no NF 0.65 ± 0.00 0.92 ± 0.00 0.88 ± 0.00 0.38 ± 0.06 0.24 ± 0.03 0.01 ± 0.00

Binary A 0.66 ± 0.00 0.92 ± 0.00 0.89 ± 0.00 0.43 ± 0.05 0.28 ± 0.02 0.04 ± 0.00

D.6 TRANSFERABILITY OF SCAFFOLDS VIA ZERO-SHOT RECONSTRUCTION

We calculate the Tanimoto similarity in the reconstruction setting for a variety of datasets, Fig. 8. For
all evaluated datasets, MAGNet achieves the best similarity scores between molecules, highlighting
the transferability of scaffolds across various distributions.

We compute the Tanimoto scores only for those molecules that can be represented via the scaffolds
that were extracted from the ZINC dataset. For the QM9 dataset, MAGNet can represent roughly
75% of the molecules in the dataset. This is due to unseen scaffolds which make up around 11% out
of the total number of 289,966 scaffolds. For GuacaMol, MAGNet can represent around 97% of the
molecules in the dataset. Out of the 9,562,028 scaffolds in GuacaMol, only 0.5% are missing from
the scaffolds vocabulary extracted from the ZINC dataset. We consider a fragmentation into scaffolds
that is more flexible and translates even better across datasets important future work.

D.7 MAGNET ABLATION STUDIES

We show additional results for ablations of different parts of the MAGNet model in Tab. 6, performing
the same analysis as done in Sec. 5.2. MAGNet without a normalising flow achieves an FCD score of
0.65, leading to a performance decrease of more than 14%. A similar decrease can be observed for
MAGNet with only a binary scaffold connectivity A. This result further verifies that the atom type of
a join node j is an important conditioning for the generation of motifs M.

D.8 HALLUCINATING SCAFFOLDS

In Fig. 3 we compare the ratio between generated scaffolds and scaffolds in the dataset. However,
often, the evaluated models generate scaffolds that never appear in the dataset. We refer to this
behaviour as “hallucination” and quantify this observation in Fig. 11. We can observe that both
PS-VAE and MiCaM often generate scaffolds that are not part of the training data and sometimes
also MoLeR constructs out-of-distribution scaffolds via single atoms. By design, MAGNet samples
in distribution

D.9 GOAL-DIRECTED MOLECULE GENERATION

We evaluate MAGNet as well as our baseline generative methods on the GuacaMol goal-directed
benchmark Brown et al. (2019). It aims to test a model’s ability to explore the chemical space

Figure 11: Number of scaffolds that were generated at sampling time but do not appear in the dataset.
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Table 7: Additional results for the GuacaMol goal-directed benchmarks. All scores should be
maximised. We report mean and standard deviation and highlight the best method in bold.

MAGNet MoLeR MiCaM Random

Isomers 0.81 ± 0.00 0.81 ± 0.02 0.56 ± 0.01 0.17 ± 0.12
MPO 0.89 ± 0.01 0.88 ± 0.01 0.85 ± 0.01 0.61 ± 0.22
Property 0.99 ± 0.00 0.99 ± 0.00 0.93 ± 0.00 0.34 ± 0.30
Redisc. 0.33 ± 0.01 0.35 ± 0.01 0.33 ± 0.00 0.14 ± 0.01
Similarity 0.56 ± 0.05 0.60 ± 0.06 0.47 ± 0.06 0.26 ± 0.08

through a variety of single and multi-objective optimization tasks. We employ two latent optimisation
mechanisms and evaluate all models under the same setting. In Tab. 2, we train a proxy regressor
consisting of a simple MLP with default parameters Pedregosa et al. (2011) for each of the required
score functions on a subset of 10, 000 labelled samples. The proxy regressor maps from latent space
embedding to the predicted score for that embedding. During optimisation, we then utilise a gradient
ascent procedure to find a latent code with a high predicted score. Across models, we use 100
gradient steps per sample with a learning rate of 0.01. We consider this latent procedure an especially
important means of evaluating the generative models, as it indicates to what extent the latent space is
organised smoothly with respect to certain properties.

Additionally, we also employ “Molecular Swarm Optimisation” as a second technique for goal-
directed generation Winter et al. (2019). We use a configuration of one swarm per sample initialised
with 50 particles and we run the optimisation procedure for 10 rounds. We report these results in
Tab. 7. We can observe from these results that especially MoLeR benefits from the random noise
introduced by this latent procedure. Nevertheless, MAGNet performs competitively or better on
almost all evaluated tasks.
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Figure 12: We provide four interpolation examples for MAGNet and MoLeR. The input molecules
(left and right) are shared between the two models. We report the Tanimoto similarity as a rough
estimate for the interpolation’s goodness.
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