
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TESTING FOR OUTLIERS IN A HIDDEN FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Testing for outliers is an important data mining task, rooted in learning theory,
which aims at discovering points that deviate from the most considered “normal”.
It is widely applicable to identify intrusion, fraud, anomalies, but also values that
may occur rarely but are important for various data analysis applications, e.g.,
maximum/minimum, median, etc. We consider a deterministic version of the
problem, called Testing for Hidden Function’s Outliers (HFO-testing for short),
defined as follows. Given a hidden function f of at most ℓ values, the goal is to
find all outliers of f , that is, values whose preimages are of size at most k, together
with their preimages, where ℓ, k are the problem parameters. Finding outliers can
be done by asking OR queries, each represented by a set of pairs (x, y), where
the answer to each query is 1 if at least one pair in the query is consistent with
function f , i.e., a pair (x, f(x)) belongs to the query for some x, and 0 otherwise.
We formally model this process as a learning game between two players: the ad-
versary, who first chooses&hides a function and later provides feedback to the
other player queries, and the other player (user) who creates and asks queries and
later analyzes the obtained feedback. This paper aims at finding a short universal
sequence of queries that allows the user to solve the above-mentioned problem for
any adversarial function f from any given (potentially very large) domain N to
a codomain M . We formally prove nearly-cubic, in terms of parameters ℓ, k and
polylog(N,M), upper and lower bounds for this problem, which are tight up to a
polylogarithmic factor. The upper bound is showed by constructing and analyzing
non-adaptive deterministic OR-query system, with decoding. The lower bound is
proved by designing ”costly” functions for any given OR-query system.

1 INTRODUCTION

The vast majority of machine learning (ML) research focuses on discovering statistically significant
events and values. One of the classic problems is a heavy-hitter problem, in which the goal is to
identify elements with frequency of occurrence above a given threshold, see e.g., Cormode et al.
(2003); Cormode & Muthukrishnan (2005); Cormode & Hadjieleftheriou (2008); Yu et al. (2004);
Kowalski & Pajak (2022). Other related problems include quantile tracking Cormode et al. (2005);
Gilbert et al. (2002b); Greenwald & Khanna (2001) and approximate histogram maintenance and
reconstruction Gibbons et al. (2002); Gilbert et al. (2002a). However, sometimes even (statistically)
non-significant values, commonly called outliers, could have a huge impact on learning process, by
creating an unexpected bias or an information noise. The problems of identifying outliers has been
considered in the context of specific scenarios and applications, e.g., anomaly detection or noise
cancellation, focused on identifying/mitigating unusual stochastic events, see e.g., Hawkins (1980);
Barbará et al. (2006); Krishna et al. (2022); Nedelkoski et al. (2019).

All known testing methods for detecting outliers, considered in the literature, focused on designing
and implementing various statistical tests, even in case of adversarial setting, c.f., Roth et al. (2019).
Inspired by the Combinatorial Group Testing field, see e.g., Du et al. (2000), in this work we abstract
and study a generic problem of identifying outliers in a hidden function, using a deterministic query
system. In each query, also called an OR-query, a set of “guesses” is submitted and a positive feed-
back emphasizes that at least one of the guesses in correct (but without revealing more information,
such as how many guesses are correct or which ones are).1 We are interested in a universal system of

1This kind of feedback is among simplest and fundamental feedbacks used in query systems, group testing
and information theory, c.f., Du et al. (2000); Kautz & Singleton (1964). An equivalent concept (to systems of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

queries that could outlier values, and their inverse images, for any hidden function. One of the visual
examples is the well-known Game of Mastermind (see e.g., Knuth (1977); Doerr et al. (2016)): one
player would like to learn which colors are rarely used by the opponent, and the only way to do it
is by asking questions about colors (corresponding to the values of the function chosen&hidden by
the opponent) at specific positions of the opponent’s board (corresponding to the arguments of the
hidden function). The formal definition of the problem is given in Section 1.1.

The combinatorial group testing (GT), which has been an inspiration for deterministic identification
of outliers by using a query system, is a related, yet more simplistic testing framework, focusing on
finding elements in a hidden set. It has been thoroughly studied since 1943 Dorfman (1943). Group
testing, together with closely related superimposed codes, have already found many applications
in machine learning, the most prominent include: approximating the nearest neighbor Engels et al.
(2021), simplifying multi-label classifiers Ubaru et al. (2020), accelerating forward pass of a deep
neural network Liang & Zou (2021), or dimensionality reduction and error correction in online
decision making Hajiaghayi et al. (2024).

As we will argue later, applying this framework to the HFO problem, by treating the function as a
subset of pairs, is very inefficient (in the sense that the resulting query system is far too long than
desired), therefore in this work we propose more complex and efficient approach.

1.1 THE PROBLEM OF TESTING FOR HIDDEN FUNCTION’S OUTLIERS (HFO)

We consider the following problem of Testing for Hidden Function’s Outliers (HFO problem, for
short). Suppose there are two players, and one of them (also called an adversary) chooses a function
f : [N] → [M], for some domain [N] = {0, 1, . . . , N − 1} and codomain [M] = {0, 1, . . . , }. The
other player, also called a user, only knows the sizes of domain, N , and codomain, M . W.l.o.g. and
to simplify notation, f could be also viewed as the set of pairs {(x, f(x)}x∈[N]. Suppose that the
image of function f is of size at most ℓ, i.e., |f([N])| ≤ ℓ, and parameter ℓ ≤ M (or its upper bound)
is also known to the user. For a given parameters N,M, ℓ and parameter k, an (N,M, ℓ, k)-HFO
problem is to output by the user all pairs (y, f−1(y)), over y ∈ [M], such that |f−1(y)| ≤ k. Such
values y are called k-rare values (of unknown function f), and its value depends on how rare values
of the function (chosen in secret by the adversary) the user wants to identify. W.l.o.g. we assume
that all parameters are positive integers.

We consider solutions of the HFO problem designed in a Query System (QS). More precisely, in
order to solve the HFO problem, the user keeps submitting queries Q1, Q2, . . . , Qτ , each of them
being a subset of [N]× [M] and τ being the number of queries in the considered/designed QS. After
submitting a query Qi, the user receives a feedback Φi =

⌈
|Q∩f |
|Q|

⌉
from the adversary (who knows

function f , and therefore can compute and provide such feedback to the user). In other words,
Φi = 1 if |Q ∩ f | ≥ 1 and Φi = 0 otherwise. Intuitively, each query Qi stores a set of guesses
for possible values of the function f for some arguments (it could contain several guesses for the
same argument), and if at least one of them is correct, feedback Φi = 1 is received (otherwise the
feedback is 0). Because of the feedback definition, these types of queries are also called OR-queries.

We study non-adaptive deterministic query systems, that is, the queries are fixed by the user before
starting testing a hidden function. Such queries could be used to finding outliers in any function
(for given parameters N,M, ℓ, k), therefore they are also called universal. The k-rare values of
the hidden function and their reverse images need to be computed by the user based on the queries
(designed and asked by the user) and the query feedback (received from the adversary, defined
earlier), which is a binary vector Φ = ⟨Φ(1), . . . ,Φ(τ)⟩. (Recall that τ denotes the number of
queries in the considered user’s query system.)

1.2 OUR TECHNICAL CONTRIBUTION

Our main contribution is a deterministic algorithm constructing a QS of length
(k + ℓ)kℓ polylog(N,M, ℓ, k) ,

OR-queries and feedback) is computability by OR-NOT logic circuit, in which gates in odd layers are OR-gates
and gates in even layers are NOT-gates (such simple logic gates and circuits can be efficiently implemented in
majority of ML models). While OR-gates are intuitively relevant to OR-queries, we will discuss relevance of
NOT-gates later on when discussing a decoding algorithm.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which solves (N,M, ℓ, k)-HFO (for any hidden function), see Section 2 and Theorem 1.
Here, polylog(N,M, ℓ, k) denotes some small-degree small-constant polylogarithmic function in
N,M, ℓ, k, to be specified in more details in Theorem 1. It is accompanied by a decoding algorithm
– both algorithm working in time polynomial in N,M (and thus, also polynomial in ℓ, k, since
ℓ ≤ M and k ≤ N). We also show that the constructed QS can be enhanced to tolerate some num-
ber of adversarial errors in the feedback vector (i.e., the adversary may not provide honest/correct
feedback to some queries). Our QS can be applied to both deterministic and random functions – in
the former case, it could help in discovering adversarial anomalies in deterministic systems (e.g., in
systems security), in the latter case – to filter out anomalies and biases (especially adversarial) in
stochastic learning.

We also prove almost matching (up to a small polylogarithmic factor) lower bound on the length of
any QS solving (N,M, ℓ, k)-HFO (for any hidden function). Specifically, in Theorem 2 in Section 3,
we prove that any such QS must have at least Ω(ℓ ·min{k2 logk N,N}) queries.

1.3 WHY GROUP TESTING IS INEFFICIENT FOR HFO

In Group Testing, the goal is to discover a hidden subset of a given universe by asking queries
(which are subsets of the universe) and analyzing the feedback. The classic OR feedback is the
same as considered in the HFO problem: if the intersection of the hidden set with the query is non-
empty then the feedback is 1, otherwise is 0. Assuming that the size of the universe is D and the
size of the hidden set at most d, it is already known that GT can be solved in this feedback model
by using O(d2 log(D/d)) queries, see e.g., De Bonis et al. (2003), and an explicit polynomial-time
construction of length O(d2 logD) exists Porat & Rothschild (2011). The best known lower bound
on the number of queries is Ω(min{d2 logD/ log d,D}) Clementi et al. (2001). 2

One could attempt applying such framework to the HFO problem, by considering a function as
a set of d = N pairs in the universe (of pairs [N] × [M]) of size D = N · M . However, the
above-mentioned lower bound implies that such approach would result in query systems containing
at least Ω(min{N2 · log(N ·M)

logN , N · M}) queries Clementi et al. (2001). The number of queries in
our construction depends only polylogarithmically on N and M .

Paper overview. Section 2 provides the main technical contribution, which is a construction (and
decoding algorithm) of a universal QS solving (N,M, ℓ, k)-HFO for any hidden function, with
fault-tolerant enhancement in Section 2.1. Section 3 provides nearly matching lower bound for the
number of queries in query systems solving (N,M, ℓ, k)-HFO. Additional discussion (to the one
placed already in Section 1) of the results and potential future work is deferred to Appendix A,
while Appendix B summarizes limitations of our setting.

2 UNIVERSAL QS FOR HFO

Suppose that the adversary selected a hidden function f : [N] → [M] such that |f([N])| ≤ ℓ.
Parameters N,M, ℓ are known to the user (i.e., designer of the query system) in the beginning, but
no other information about function f is known. The user chooses parameter k−1, being the cap on
the size of the inverse image of the rare values to select. (Without loss of generality, in this section
we deliberately chose to re-scale parameter k and perform the construction, decoding and analysis
for (k − 1)-rare values, as technical arguments and formulas for k − 1 are a bit shorter than for k.)

In this section, we design one universal query system (QS) which allows learning all (k − 1)-
rare values of any function f chosen&hidden by the adversary, that is, values y ∈ [M] satisfying
|f−1(y)| ≤ k − 1, for a given parameter k − 1 > 0 known/chosen to/by the user. Additionally, the
constructed QS also allows to decode sets f−1(y) for any (k − 1)-rare value of function f .

The following polynomial-time deterministic algorithm produces a universal QS solving
(N,M, ℓ, k− 1)-HFO, which has O((k+ ℓ)kℓ polylog(N,M, ℓ, k)) queries, as shown later in The-
orem 1. Our construction algorithm uses constants ck, cℓ ∈ (4, 8], which have to be chosen to satisfy

2In this paper we use a common asymptotic notation O(f),Ω(f),Θ(f) to denote that a considered formula
is, respectively, asymptotically upper bounded, lower bounded or equivalent to the function f used inside the
parenthesis, up to a constant factor.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

conditions defined in the algorithm and in the analysis, but they do not influence asymptotic length
of the constructed QS.3 It constructs a 0-1 matrix M∗ of N · M rows (each row corresponds to
some pair (x, y) ∈ [N] × [M]), which columns are transformed into queries at the very end of the
construction. The algorithm exploits, among others, various aspects of polynomials over finite fields
of size equal to (different) prime numbers.

Main ideas of constructing queries and decoding feedback. For each pair (x, y), where y is a
(k − 1)-rare value and x is in its preimage, we would like to have a corresponding query Qz′ (i.e.,
column z′ in the constructed matrix) such that:

(1) there is 1 in the row labeled (x, y) and column z′, and

(2) all other valid pairs (x′, y′), where (x′, y′) ̸= (x, y) and y′ is (k − 1)-rare value and x′ is in the
preimage of y′, have 0 in row (x′, y′) and column z′.

This property would allow the decoding algorithm, executed by the user, to filter out all pairs
(x′′, y′′) having 1 in some column z′ receiving feedback 0. All pairs that remain are expected to
be in the solution of the (N,M, ℓ, k − 1)-HFOproblem.

To guarantee the properties (1) and (2) stated above, we select two sets of polynomials, take their
cartesian products and evaluate over certain bounded-size field. Selecting properly polynomials and
sizes of fields, we obtain that each pair (x, y) in the problem solution has an argument z on which
the evaluations of the two associated polynomials are unique, in the sense that no other pair (x′, y′)
in the problem solution has the same pair when evaluated for argument z.

Now, we have to turn these pairs into some binary sequences, such that the binary blocks replacing
column z satisfy properties (1) and (2). This can be done by turning the evaluation of polynomials
into prime numbers of the order corresponding to the evaluations, multiply the primes, and put 1 in
the position corresponding to that multiplication result. This position will be unique for pair (x, y),
among other pairs (x′, y′) in the problem solution, which completes the desription of main ideas.

High-level description of the construction algorithm. The construction algorithm proceeds in five
steps, as described in detail in Figure 1. In Step 1, it sets up background parameters. In Step 2, a
matrix M[N] of N rows is constructed, with values defined by different polynomials Px, x ∈ [N],
evaluated over the elements of some bounded-size field (the field is over one of the prime number
parameters defined in Step 1). Intuitively, some evaluation properties of polynomials Px will help to
ensure the selection of elements in the inverse images of (k−1)-rare values in the final construction.
Analogously, in Step 3, a matrix M[M] of M rows is constructed, with values defined by different
polynomials Ry , y ∈ [M], evaluated over the elements of some bounded-size field (over another
prime parameter defined in Step 1). Intuitively, some evaluation properties of polynomials Ry will
assure selection of (k − 1)-rare values out of other (at most ℓ − 1) values of function f in the final
construction.

In Step 4, matrices M[N] and M[M] are combined into one matrix M of N ·M rows and the number
of columns equal to the sum of the numbers of columns in matrices M[N] and M[M]. The entries
in M are pairs of numbers, in which the first coordinate stores some corresponding number from
M[N] and the second coordinate stores some corresponding number from M[M]. In this way, each
entry stores numbers coming from evaluation of two polynomials, say Px and Ry , from different
sets of polynomials: one of them (the second coordinate of the entry) helps to guess a (k − 1)-rare
value while avoiding guesses of any other ℓ − 1 values of f , and the other one (the first coordinate
of the entry) helps to identify “one by one” the inverse image of the selected (k − 1)-rare value.
Informally speaking, by “helps to guess” we mean that in some column z the considered pair of
numbers (evaluations of two polynomials) will be unique among other pairs (Px′(z), Ry′(z)) in the
same column z associated with some (k − 1)-rare value y′ and one of its counter images x′, where
(x′, y′) ̸= (x, y). This will help the decoding algorithm to identify pair (x, y). But before that, one
more construction step is needed - making the matrix binary in a way to preserve the uniqueness
described above.

More precisely, in Step 5, each entry M(x, y, z) of matrix M, where (x, y) is the row label and
z is the column label, is replaced by a specific 0-1 sequence σx,y,z . The positions of value 1 in

3The exact values of these constants can be deducted from the proof of Theorem 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Input: N,M, ℓ, k − 1.
Step 1: Setting parameters. Let dk = ⌈logk N⌉, and let qk = ck · kdk be a prime number

such that qdk+1
k = (ck · kdk)dk+1 ≥ N , for some constant 4 < ck ≤ 8. Observe that

such absolute constant ck exists, because (kdk)
dk+1 > N and between two integers:

⌈(4kdk)dk+1⌉ and its double 2⌈(4kdk)dk+1⌉ ≤ ⌈(8kdk)dk+1⌉, there is always at least
one prime number.
We also define dℓ and qℓ, by analogy: Let dℓ = ⌈logℓ M⌉, and let qℓ = cℓ · ℓdℓ be a
prime number such that qdℓ+1

ℓ = (cℓ · ℓdℓ)dℓ+1 ≥ M , for some constant 4 < cℓ ≤ 8.
Observe again that such absolute constant cℓ exists, because (ℓdℓ)

dℓ+1 > M and
between two integers: ⌈(4ℓdℓ)dℓ+1⌉ and its double 2⌈(4ℓdℓ)dℓ+1⌉ ≤ ⌈(8ℓdℓ)dℓ+1⌉,
there is always at least one prime number.

Step 2: Defining matrix M[N] . Consider polynomials Px of degree dk over field [qk], for
1 ≤ x ≤ qdk+1

k . There are qdk+1
k of such different polynomials. The role of this set of

polynomials, Px, in the final construction will be to ensure the selection of elements
in the inverse images of (k − 1)-rare values.
A matrix M[N] of size qdk+1

k × qk is constructed as follows. Each row x contains
subsequent values Px(z) of polynomial Px for arguments z = 0, 1, . . . , qk−1, where
z is the column number. Then, matrix M[N] is trimmed to N rows by removing the
excess qdk+1

k −N rows (recall that qdk+1
k ≥ N by definition).

Step 3: Defining matrix M[M] . Analogously to Step 2, consider polynomials Ry of degree
dℓ over field [qℓ], for 1 ≤ y ≤ qdℓ+1

ℓ . There are qdℓ+1
ℓ of such different polynomials.

The role of this set of polynomials, Ry , in the final construction will be to assure
selection of (k − 1)-rare values out of other (at most ℓ− 1) values of function f .
Matrix M[M] of size qdℓ+1

ℓ × qℓ is created analogously to M[N] from Step 2, but
using polynomials Ry instead of Px. Each row y ∈ [M] contains subsequent values
Ry(z) of polynomial Ry for arguments z = 0, 1, . . . , qℓ − 1, where z is the column
number. Then, matrix M[M] is trimmed to M rows by removing excess qdℓ+1

ℓ −M

rows (recall that qdℓ+1
ℓ ≥ M by definition).

Step 4: Combining matrices M[N] and M[M] into matrix M . Matrix M of N · M rows
and q columns, where q = qk + qℓ, is constructed from M[N] and M[M] as fol-
lows. In each row labeled (x, y) ∈ [N] × [M], we take the corresponding poly-
nomials Px, Ry , and then for each column z ∈ [q], we set M(x, y, z) = (Px(z
mod qk), Ry(z mod qℓ)), where (x, y) is the row label and z is the column label.

Step 5: Enhancing matrix M to get final M∗. The following procedure enhances matrix M
to get a new (and final) matrix M∗. Let q′k, q

′
ℓ be the prime numbers of order 2qk and

2qℓ+1, respectively (i.e., the (2qk)-th prime number in the order of all prime numbers,
and (2qℓ+1)-th prime number in the order of all prime numbers, respectively), where
the ordering starts from order 0 (and the corresponding prime 2). For each entry
M(x, y, z) = (Px(z mod qk), Ry(z mod qℓ)), we proceed as follows. Let x∗ =
Px(z mod qk) and y∗ = Ry(z mod qℓ). Let px⋆ be the prime number of order
2x⋆, and let py⋆ be the prime number of order 2y⋆ + 1. We create a 0-1 sequence
σx,y,z of length q′k · q′ℓ, by putting value 1 in column px⋆ · py⋆ , and value 0 elsewhere.
We call σx,y,z a segment z of row (x, y). Then we replace the entry M(x, y, z) by
the 0-1 sequence σx,y,z . After doing it for every entry of the original matrix M, we
obtain a 0-1 matrix that we call M∗. The new matrix has the same number of rows,
N ·M , as the previous one M, while the number of columns is equal to q · (q′k · q′ℓ).

Output: For every i ≤ q · (q′k · q′ℓ), query Qi is defined based on column i of matrix M∗ as
follows: a pair (x, y) ∈ [N]× [M] is in Qi if and only if M∗(x, y, i) = 1.

Figure 1: Algorithm constructing a universal QS, solving (N,M, ℓ, k − 1)-HFO for any hidden (by
the adversary) function f : [N] → [M].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Input: Matrix M∗ of the universal QS (as constructed in Figure 1), solving (N,M, ℓ, k− 1)-
HFO, for any hidden (by the adversary) function f : [N] → [M].
Feedback vector Φ ∈ {0, 1}q·q′k·q′ℓ .

Initial: Let V = [N] · [M] and V ∗ = ∅.
Decode: For any row label (x, y) of matrix M∗: If there is a position z such that

M∗(x, y, z) = 1 and Φ(z) = 0 then remove (x, y) from V .
Verify: For every y such that there is at least one pair (x, y) ∈ V : if the number of pairs in

V with the second coordinate equal to y is at most k − 1, put all pairs in {(x, y) :
(x, y) ∈ V } to set V ∗.

Output: Set V ∗.

Figure 2: Decoding algorithm for the constructed universal QS (from Figure 1) solving (N,M, ℓ, k−
1)-HFO, for any hidden (by the adversary) function f : [N] → [M].

P0

Px

PN-1

z

P (z)x

R0

Ry

RM-1

z

R (z)y

ql

kq

(0,0)

(x,y)

z

R (z))y

lkq = q + q

(P (z),x

(N-1,M-1)

(0,0)

(x,y)

z
lkq (q’ q’)

(00…1…0)

(N-1,M-1)

. .

px* py*
.

Figure 3: Two matrices on the left are M[N] and M[M], respectively at the top and bottom. They
are constructed is Steps 2 and 3, resp., of the construction algorithm in Figure 1 of the main paper.
The matrix in the middle is M, constructed from M[N] and M[N] in Step 4. The argument z of Px

is modulo qk and the argument z of Ry is modulo qℓ. The matrix on the right is the final matrix M∗,
which replaces each entry of each column z of M by a z-segment, which is a 0-1 sequence of length
q′k · q′ℓ with only one value 1 at position px∗ · py∗ defined in Step 5 of the construction algorithm in
Figure 1 of the main paper.

these sequences depend on the values of polynomials Px(z) and Ry(z), turned into primes – this is
to guarantee certain distributions of “single occurrences of 1’s” that, together with the uniqueness
property described in Step 4, allow successful decoding based on the binary OR feedback.

For the sake of convenience in description of Step 5 and its analysis, w.l.o.g. we assume that prime
numbers are ordered starting from 0, i.e., prime of order 0 is 2, of order 1 is 3, of order 2 is 5, etc.

The resulting 0-1 matrix M∗ is then, as mentioned earlier, transformed, column by column, into a
query system.

High-level description of the decoding algorithm. The decoding algorithm is presented in Fig-
ure 2. It takes the matrix M∗, constructed in Figure 1, as part of the input. The other part of the
input is the 0-1 feedback Φ obtained from the adversary after applying the QS defined by M∗ to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the function f (chosen&hidden by the adversary). It filters out all pairs (x′, y′) that are inconsistent
with feedback Φ, and returns set V ∗ of some remaining pairs for which, after the initial filtering, the
second coordinate (a candidate for a (k − 1)-rare value) occurs in at most k − 1 pairs.

More detailed arguments are presented in the proof of Theorem 1 that follows.

Theorem 1. The query system constructed by the algorithm in Figure 1, {Qi}
q·(q′k·q

′
ℓ)

i=1 , together
with the associated decoding algorithm in Figure 2, solve the (N,M, ℓ, k − 1)-HFO problem
using q · (q′k · q′ℓ) = (k + ℓ)kℓ · polylog(N,M, ℓ, k) queries, where polylog(N,M, ℓ, k) =

O
(

log(NM)
logmin{k,ℓ} · logN

log k · logM
log ℓ · (log k + log logN) · (log ℓ+ log logM)

)
, for some absolute con-

stant parameters 4 < ck, cℓ ≤ 8 of the construction hidden in the Big O asymptotic notation. The
construction itself and the algorithm decoding (k − 1)-rare values with their inverse images are
polynomial in N,M .

Proof. Consider a constructed matrix M∗ for some suitable absolute constants ck, cℓ ∈ (4, 8]. Ob-
serve first that two polynomials Px and Px′ of degree at most dk, for i ̸= j, could have equal values
for at most dk different arguments. This is because they have equal values for arguments z for which
Px(z) − Px′(z) = 0. However, since Px − Px′ is also a polynomial of degree at most dk, it could
have at most dk zeroes. Hence, Px(z) = Px′(z) for at most dk different arguments z. Analogous
argument applies to polynomials Ry and their upper bound of the degree, dℓ.

Useful notation. Let us fix a function f with the image containing at most ℓ values. Consider a
(k − 1)-rare value y of function f (if it does not exist, the proof concludes immediately) and any
set K such that K ⊃ f−1(y) and |K| ≤ k. Pick an arbitrary argument x ∈ K. Consider the row
labeled (x, y) in M∗. Let Px be the corresponding polynomial based on the first coordinate of this
row’s label, and Ry be the polynomial corresponding to the second coordinate y. Let P be the set of
all polynomials corresponding to the rows with the first coordinate in K and second equal to y, and
let P ′ = P \ {Px}. Consider the image subset L = f([N]) \ {y} ⊆ [M] \ {y}; by assumption on
function f , we get |L| ≤ ℓ− 1. Define R = {Ry′ : y′ ∈ L}.

Formulating “uniqueness” properties. We first argue that there is a segment z ∈ [q] such that

(a) Px(z) ̸= Px′(z) for any x′ ∈ K \ {x}, and

(b) Ry(z) ̸= Ry′(z), for every y′ ∈ L.

Proof of the “uniqueness” properties for some z. Consider the following Condition1x(z) and
observe that Event1x holds:

Condition1x(z): some of the at most k − 1 polynomials in P ′ could be equal to
Px on argument z, modulo qk.
Event1x: There are at most (k − 1) · dk different arguments z ∈ [qk] satisfying
Condition1x(z).

Note that in fact we only consider different z ∈ [qk], as polynomials P are defined over the field
[qk]. Hence, the upper bound on the number of arguments z ∈ [q] satisfying Condition1x(z) is
(k − 1)dk ·

⌈
q
qk

⌉
.

By analogy, consider the following Condition2y(z) and observe that Event2y holds:

Condition2y(z): some of the at most ℓ−1 polynomials in R could be equal to Ry

on argument z, modulo qℓ.
Event2y: There are at most (ℓ − 1) · dℓ different arguments z ∈ [qℓ] satisfying
Condition2y(z).

Again, here we only consider different z ∈ [qℓ], as polynomials R are defined over the field of
arguments in [qℓ]. Hence, the number of arguments z ∈ [q] satisfying Condition2y(z) is at most

(ℓ− 1) · dℓ ·
⌈

q
qℓ

⌉
.

To summarize the two previous paragraphs, none of Condition1x and Condition2y happens for at
least the following number of arguments z ∈ [q]:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

q − (k − 1)dk ·
⌈
q

qk

⌉
− (ℓ− 1) · dℓ ·

⌈
q

qℓ

⌉
> q − kdk ·

(
q

qk
+ 1

)
− ℓ · dℓ ·

(
q

qℓ
+ 1

)
≥ q − q

ck
− qk

ck
− q

cℓ
− qℓ

cℓ

≥ q − 3q

min{ck, cℓ}
≥ 1 , (1)

since q ≥ qk + qℓ and ck, cℓ > 4.

Consider such an argument z and its corresponding segments in the constructed matrix M∗. Con-
sider column px⋆ · py⋆ in this segment, where px⋆ is the prime numbers of order 2Px(z mod qk),
and py⋆ is the prime number of order 2Ry(z) + 1. By definition, this column of segments z has 1 in
row (x, y), but not in any other rows (x′, y) ∈ (K \ {i}) × {y}, by the fact that z does not satisfy
Condition1x(z); hence, property (a) holds. This column does not have a 1 in rows with second co-
ordinate in set L, as such rows are not divisible by py⋆ , because z does not satisfy Condition2y(z);
hence, property (b) holds. This completes the proof of the “uniqueness” properties for some z. We
use this important property in the correctness argument below.

Concluding correctness analysis – from the “uniqueness” properties to successful decoding. To
finalize the correctness argument, first observe that for every (k − 1)-rare value y of function f , all
pairs in f−1(y) × {y} successfully pass the Decode part of the decoding algorithm (Figure 2), as
they contribute to the feedback by the OR operator. They could, however, hypothetically do not be
put to set V ∗ in the Verify part of the decoding algorithm. This is possible only if at least one pair
(x, y), for some x /∈ f−1(y), had passed the Decode part as well.

Suppose, to the contrary, that it had happened. Consider set K = f−1(y) ∪ {x}. It has at most
k − 1 elements. Therefore, we proved already that there is a column z such that M∗(x, y, z) = 1
while M∗(x′, y, z) = 0 for every x′ ∈ f−1(y) and M∗(x′′, y′, z) = 0 for any x′′ and any y′ ̸= y.
This however implies that Φ(z) = 0, which means that (x, y) would not have passed the Decode
part of the decoding algorithm. This is a contradiction, concluding the proof that the constructed QS
correctly solves the (N,M, ℓ, k − 1)-HFO problem for the user.

Number of queries. The length of the constructed QS is q ·(q′k ·q′ℓ) = O((qk+qℓ)qkqℓ log qk log qℓ),
as q′k = O(qk log qk) and q′ℓ = O(qℓ log qℓ) by the prime number theorem applied to the largest
of the considered prime numbers – the prime numbers of order 2qk and 2qℓ + 1, resp. We have
qk = O(k logN/ log k) and qℓ = O(ℓ logM/ log ℓ). Consequently, log qk = O(log k + log logN)
and log qℓ = O(log ℓ+ log logM). Hence, the length of the constructed QS is

q · (q′k · q′ℓ) = O((qk + qℓ)qkqℓ log qk log qℓ) ≤ (k + ℓ)kℓ · polylog(N,M, ℓ, k) ,

where the polylog(N,M, ℓ, k) is upper bounded by

O

(
log(NM)

logmin{k, ℓ}
· logN
log k

· logM
log ℓ

· (log k + log logN) · (log ℓ+ log logM)

)
.

Time complexity analysis. The construction is clearly polynomial, as the number of considered
polynomials P,R is at most N ·M , the number of columns is also polynomial in N,M , and comput-
ing values of these polynomials and using sieve methods (or other efficient algorithms) to compute
prime numbers of the considered orders are also polynomial. Similarly, the decoding algorithm is
also polynomial, as it scans at most M + N times through each row (there are N · M rows) and
compares it with the feedback vector Φ in polynomial time.

2.1 ENHANCING THE UNIVERSAL QS FOR HFO BY FAULT-TOLERANT GUARANTEES

Suppose one would like to be able to decode the hidden set correctly even if some α positions in
the feedback vector would be altered by a worst-case adversary. More precisely, assume that the
adversary could change the feedback vector in some α positions of its choice. Observe that if we
use larger constants ck, cℓ in the construction, for instance, ck > 2+ α

kdk
and cℓ > 2+ α

ℓdℓ
, there will

be always some column with correct feedback. Specifically, in the proofs of Theorem 1, the number

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of segments (and thus, also columns) for a pair (x, y) to have different values in this segment than
other pairs (x′, y), satisfying f(x′) = y, and pairs (x′′, y′), satisfying y′ ̸= y, is at least (see Eq. (1))
q − (k − 1)dk − (ℓ− 1)dℓ = (ckkdk + cℓℓdℓ)− (k − 1)dk − (ℓ− 1)dℓ

>

(
2 +

⌈
α

kdk

⌉)
kdk +

(
2 +

⌈
α

ℓdℓ

⌉)
ℓdℓ − (k − 1)dk − (ℓ− 1)dℓ ,

which subtracted by the number of adversarially changed ones, α, is still at least 1 (as required in
Eq. (1)). Enhancing constant ck, cℓ increases the lengths of selectors by factor at most ⌈ α

kdk
+ α

ℓdℓ
⌉.

Decreasing the number of queries with respect to the number of tolerated faults or generalizing to
other types of adversarial/stochastic failures is an interesting open direction.

3 LOWER BOUND ON THE LENGTH OF ANY UNIVERSAL QS FOR HFO

Below we show a lower bound that nearly matches Thm. 1.
Theorem 2. Every universal QS system solving (N,M, ℓ, k − 1)-HFO has the number of queries

Ω(ℓ ·min{k2 logk N,N}) .

Proof. Consider a universal QS system Q solving (N,M, ℓ, k − 1)-HFO for any hidden function
f bounded by these parameters. Our goal is to specify one of such functions, which enforces the
number of queries in this QS to be in Ω(ℓ ·min{k2 logk N,N}).
Consider a potential set of values L ⊆ [M] of size ℓ, of such function f . Let us fix any y ∈ L, and
consider a set of pairs [N]× {y} = {(x, y) : x ∈ [N]}. We argue that the number of queries in the
QS system Q that

• contain at least one pair in [N]× {y}, and

• do not have any pair in [N]× (L \ {y})
is at least Ω(min{k2 logk N,N}). We denote the set of these queries by Cy , where by definition
Cy ⊆ Q. Indeed, suppose that the number of such queries is smaller than c · min{k2 logk N,N},
for any arbitrary constant c > 0. It follows that these queries cannot form an (N, k)-superimposed
code, by the lower bound Ω(min{k2 logk N,N}) on the length of any (N, k)-superimposed code,
c.f., Clementi et al. (2001).

(Here, by “queries forming a superimposed code” we understand that the elements of the set
[N] × {y} correspond 1-1 to codewords, and codeword labeled (x, y) has 1 in position j if the
jth considered query contains the pair (x, y) ∈ [N]× {y}. A code is an (N, k)-superimposed code
if for any set K of at most k codewords there is a codeword v ∈ K which is not contained in a
Boolean OR of the codewords in K \ v.)

It further implies that there is a subset K of [N]× {y} of size at most k and an element (x, y) ∈ K
such that for any considered query Q in Cy , if (x, y) ∈ Q then Q ∩ (K \ {(x, y)}) ̸= ∅. In other
words, sets K and K \ {(x, y)} return the same feedback by the considered queries in Cy . If we
define specific functions f1, f2 such that f−1

1 (y) = {x′ : (x′, y) ∈ K} and f−1
2 (y) = {x′ ̸= x :

(x′, y) ∈ K}, then our QS returns the same inverse image set of k-rare value y for both f1, f2,
as it is based on the same feedback obtained for sets f−1

1 (y) × {y} and f−1
2 (y) × {y} (as argued

earlier). This is a contradiction, because these two returned sets should be different, by definition
of f−1

1 (y), f−1
2 (y). This concludes the proof of the lower bound Ω(min{k2 logk N,N}) on the

considered set of queries Cy .

Next, we consider a family of sets C = {Cy′ : y′ ∈ L}, where each set Cy′ of queries is defined
analogously to the above generic definition of Cy . Any Cy, Cy′ in this family C, where y ̸= y′,
are disjoint, by the second bullet in the generic definition of Cy above. There are ℓ = |L| sets
Cy in the considered family C. Hence, the total number of queries in the considered QS system Q
should be at least∑

y∈L

|Cy| = |L| · Ω(min{k2 logk N,N}) ≥ Ω(ℓ ·min{k2 logk N,N}) .

Additional Discussion, Open Problems and Limitations in Appendix A and B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. (This optional reproducibility statement is not part of the main text
and therefore will not count toward the page limit.) This paper is focused on theoretical prob-
lems – the problem and all required notation are defined formally in the main paper. Construction
and decoding algorithms are stated in descriptive pseudo-codes formats in Figures 1 and 2, re-
spectively. They are formally analyzed (correctness and performance) in Theorem 1. The claimed
nearly-matching lower bound is formally proved in Theorem 2. All assumptions are clearly stated
in definitions, and potential limitations are discussed in Appendix B.

REFERENCES

Daniel Barbará, Carlotta Domeniconi, and James P. Rogers. Detecting outliers using transduction
and statistical testing. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pp. 55–64, New York, NY, USA, 2006. As-
sociation for Computing Machinery. ISBN 1595933395. doi: 10.1145/1150402.1150413. URL
https://doi.org/10.1145/1150402.1150413.

Nader H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In COLT
2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June 18-21, 2009,
2009. URL http://www.cs.mcgill.ca/%7Ecolt2009/papers/004.pdf#page=
1.

Keren Censor-Hillel, Bernhard Haeupler, Nancy A. Lynch, and Muriel Médard. Bounded-contention
coding for the additive network model. Distributed Computing, 28(5):297–308, 2015. doi: 10.
1007/s00446-015-0244-9.

Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective families, superimposed
codes, and broadcasting on unknown radio networks. In S. Rao Kosaraju (ed.), SODA, pp. 709–
718. ACM/SIAM, 2001. ISBN 0-89871-490-7.

Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams. Proceedings
of the VLDB Endowment, 1(2):1530–1541, 2008.

Graham Cormode and Shan Muthukrishnan. What’s hot and what’s not: tracking most frequent
items dynamically. ACM Transactions on Database Systems (TODS), 30(1):249–278, 2005.

Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh Srivastava. Finding
hierarchical heavy hitters in data streams. In Proceedings 2003 VLDB Conference, pp. 464–475.
Elsevier, 2003.

Graham Cormode, Minos Garofalakis, Shanmugavelayutham Muthukrishnan, and Rajeev Rastogi.
Holistic aggregates in a networked world: Distributed tracking of approximate quantiles. In
Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp.
25–36, 2005.

Annalisa De Bonis, Leszek Gasieniec, and Ugo Vaccaro. Generalized framework for selectors with
applications in optimal group testing. In Automata, Languages and Programming, 30th Inter-
national Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Pro-
ceedings, volume 2719 of Lecture Notes in Computer Science, pp. 81–96. Springer, 2003. doi:
10.1007/3-540-45061-0\ 8.

Benjamin Doerr, Carola Doerr, Reto Spöhel, and Henning Thomas. Playing mastermind with many
colors. J. ACM, 63(5), November 2016. ISSN 0004-5411. doi: 10.1145/2987372. URL https:
//doi.org/10.1145/2987372.

Robert Dorfman. The detection of defective members of large populations. The Annals of Mathe-
matical Statistics, 14(4):436–440, 1943.

Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its applications,
volume 12. World Scientific, 2000.

10

https://doi.org/10.1145/1150402.1150413
http://www.cs.mcgill.ca/%7Ecolt2009/papers/004.pdf#page=1
http://www.cs.mcgill.ca/%7Ecolt2009/papers/004.pdf#page=1
https://doi.org/10.1145/2987372
https://doi.org/10.1145/2987372

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joshua Engels, Benjamin Coleman, and Anshumali Shrivastava. Practical near neighbor search
via group testing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems (NeurIPS), volume 34, pp.
9950–9962. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/5248e5118c84beea359b6ea385393661-Paper.pdf.

Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental maintenance of approx-
imate histograms. ACM Transactions on Database Systems (TODS), 27(3):261–298, 2002.

Anna C Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, Sivaramakrishnan Muthukrishnan, and
Martin J Strauss. Fast, small-space algorithms for approximate histogram maintenance. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 389–398, 2002a.

Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. How to summarize the
universe: Dynamic maintenance of quantiles. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases, pp. 454–465. Elsevier, 2002b.

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile summaries.
ACM SIGMOD Record, 30(2):58–66, 2001.

Mohammad Taghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, and Jan Olkowski. Online sam-
pling and decision making with low entropy. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024,
pp. 4080–4088. ijcai.org, 2024. URL https://www.ijcai.org/proceedings/2024/
451.

M.D. Hawkins. Identification of Outliers. Springer, 1980.

William Kautz and Roy Singleton. Nonrandom binary superimposed codes. IEEE Transactions on
Information Theory, 10(4):363–377, 1964.

Marek Klonowski, Dariusz R. Kowalski, and Dominik Pajak. Generalized framework for group
testing: Queries, feedbacks and adversaries. Theor. Comput. Sci., 919:18–35, 2022. doi: 10.1016/
j.tcs.2022.03.026. URL https://doi.org/10.1016/j.tcs.2022.03.026.

D. E. Knuth. The computer as master mind. Journal of Recreational Mathematics, 9:1–6, 1977.

Dariusz R. Kowalski and Dominik Pajak. Light agents searching for hot information. In Luc De
Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intel-
ligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. 363–369. ijcai.org, 2022. doi:
10.24963/ijcai.2022/52. URL https://doi.org/10.24963/ijcai.2022/52.

Kundan Krishna, Yao Zhao, Jie Ren, Balaji Lakshminarayanan, Jiaming Luo, Mohammad Saleh,
and Peter J Liu. Improving the robustness of conditional language models by detecting and re-
moving input noise. In NeurIPS ML Safety Workshop, 2022. URL https://openreview.
net/forum?id=DQ5eenIbSSW.

Weixin Liang and James Zou. Neural group testing to accelerate deep learning. In 2021 IEEE
International Symposium on Information Theory (ISIT), pp. 958–963. IEEE, 2021.

Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. Anomaly detection and classification using dis-
tributed tracing and deep learning. In 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pp. 241–250, 2019. doi: 10.1109/CCGRID.2019.00038.

Ely Porat and Amir Rothschild. Explicit nonadaptive combinatorial group testing schemes. IEEE
Trans. Inf. Theory, 57(12):7982–7989, 2011. doi: 10.1109/TIT.2011.2163296. URL https:
//doi.org/10.1109/TIT.2011.2163296.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5498–5507. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/roth19a.html.

11

https://proceedings.neurips.cc/paper/2021/file/5248e5118c84beea359b6ea385393661-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/5248e5118c84beea359b6ea385393661-Paper.pdf
https://www.ijcai.org/proceedings/2024/451
https://www.ijcai.org/proceedings/2024/451
https://doi.org/10.1016/j.tcs.2022.03.026
https://doi.org/10.24963/ijcai.2022/52
https://openreview.net/forum?id=DQ5eenIbSSW
https://openreview.net/forum?id=DQ5eenIbSSW
https://doi.org/10.1109/TIT.2011.2163296
https://doi.org/10.1109/TIT.2011.2163296
https://proceedings.mlr.press/v97/roth19a.html
https://proceedings.mlr.press/v97/roth19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shashanka Ubaru, Sanjeeb Dash, Arya Mazumdar, and Oktay Gunluk. Multilabel clas-
sification by hierarchical partitioning and data-dependent grouping. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems (NeurIPS), volume 33, pp. 22542–22553. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
fea16e782bc1b1240e4b3c797012e289-Paper.pdf.

Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhou. False positive or false negative:
Mining frequent itemsets from high speed transactional data streams. In VLDB, volume 4, pp.
204–215, 2004.

APPENDIX

A DISCUSSION AND OPEN DIRECTIONS

This work introduced new concepts of learning rare values of hidden functions using substantially
smaller number of queries then could follow from the established area of group testing. We designed
polynomially constructable (and decodable) nearly optimal, in terms of the number of queries, non-
adaptive deterministic query systems that learn rare values and their inverse images of any hidden
function in time polynomial in function sparsity ℓ (i.e., the number of values in the function image,
instead of the whole codomain) and in threshold k defining rare values. To justify near-optimality
of our construction, we also proved the corresponding lower bound.

The construction and decoding algorithms could be represented by an OR-NOT logic circuit. The
input are all possible pairs of potential arguments and values. The first internal layer contains nodes
corresponding to the constructed queues, being OR-gates connected to the included pairs; this layer
computes feedback vector. The second layer contains NOT logic gates, one per each OR gate from
layer one – this is to reverse logic values of the feedback vector. Then, the output layer is again the
set of all pairs of potential arguments and values, (x, y), each being an OR logic gate, connected
to those NOT gates in layer two which already have a path to the input node corresponding to the
same pair (x, y). This is to guarantee filtering out pairs that are not in the problem solution. Finally,
the output pairs with value 0, i.e., not filtered out by OR-gate operation on reversed feedback in
layer two, are taken to the problem solution. (Alternatively, we could once again apply another
NOT layer to reverse the filtering outcome, after which nodes/pairs with value 1 are taken to the
problem solution.) This circuit is polynomially constructed, based on the algorithms in Figures 1
and 2 and Theorem 1, it has a constant depth and the number of internal gates is asymptotically
the same as the number of queries stated in Theorem 1 (in particular, it depends on N,M only
polylogarithmically). One may also ask if the polynomial dependence of the number of queries (and
the size of the corresponding logic circuit) on parameters k, ℓ is practical or not? 4 The outliers
parameter k is (close) to constants in applications, by the meaning of outliers (rare elements). The
size of the image could be larger, and therefore practitioners should take this aspect into account and
seek other solutions for large values of ℓ.

Below we discuss interesting open directions emerging from this work.

Complexity gaps. The most straightforward future direction is to improve the remaining polylog-
arithmic gaps on the lengths of the query systems solving HFO.

Multi-dimensional and structured systems. Another promising future direction is to study
whether more structured domains/codomains, e.g., multi-dimensional or metric, (hyper-)graphs or
matroids, etc. could improve the number of queries even further. If so, what properties of do-
main/codomain make substantial impact to query complexity?

Other feedback functions. Extending our construction and lower bound to other types of feed-
back function, considered in the literature (cf., Klonowski et al. (2022)) is another interesting re-
search direction. Different feedback, such as quantitative or parity feedbacks, can in some cases sub-

4The dependence is quadratic in k, ℓ when considered separately, and cubic when considered jointly.

12

https://proceedings.neurips.cc/paper/2020/file/fea16e782bc1b1240e4b3c797012e289-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fea16e782bc1b1240e4b3c797012e289-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

stantially (e.g., nearly quadratically) improve the number of queries, c.f., Bshouty (2009); Censor-
Hillel et al. (2015).

Adversarial settings. There are many adversarial models that could be analyzed. In case of false
positives changes to the feedback: even in case of a malicious Byzantine adversary, surprisingly,
if the number of false positives feedback changes is bounded by α = O(min{kdk, ℓdℓ}), our con-
struction can tolerate them if we adjust constants ck, cℓ with factors α/(kdk), α/(ℓdℓ), respectively.
After such adjustment, our construction guarantees more than α “good” occurrences of every impor-
tant pair of elements (rare value and one of its inverse images) in the feedback (i.e., occurrences that
avoid other similar pairs or pairs with other values). Therefore, even if the adversary introduces α
false-positive changes to the feedback, our QS recognizes them and rejects. It automatically extends
to more benign adversaries with smaller adaptivity. If one wants to tolerate more than O(k logk n)
twists in the feedback without asymptotic increase on the number of queries in the QS, the problem
remains open. We hypothesize that it could work for less adaptive adversaries, but for the Byzantine
adversary an impossibility result is more likely.

Use of randomization. Randomization may possibly help in discovering rare values of a hidden
function, especially against an oblivious adversary who has to decide about the function in advance.
An interesting twist would be to consider a dynamic adaptive adversary who may dynamically “tai-
lor” the hidden function, as long as it is compatible with the feedback obtained so far. If randomness
helps against such adversary, a new question arises about the minimum amount of randomness (en-
tropy) needed and how it affects the number of queries?

B LIMITATIONS

Non-adaptive (universal) QS. There is a distinction between an adaptive QS, which allows for
designing subsequent queries one-by-one, each time applying the knowledge of the results of the
preceding queries, and a non-adaptive QS, which requires that all queries are designed in advance,
without any information about results of other queries. This work considers only non-adaptive
query systems. While adaptive approach might, under some assumptions, result in more efficient
QS schemes – i.e., with a smaller number of queries – there are some advantages of non-adaptive
query systems which make it attractive. One of them is parallelization. While adaptive QS schemes
can be executed only in a sequential way (because each consecutive query may depend on the results
of the previous queries), all the queries of the non-adaptive scheme can be executed in parallel. This
property may, e.g., give much faster testing scenarios. Another advantage of non-adaptive QS could
be better resiliency to failures, which we proved is indeed the case in the considered problem.

Simple single-threshold feedback with s = 1. We focus on a popular and simple variant of a
very general single-threshold feedback model with threshold s = 1 (OR-queries), but there are
other popular feedbacks considered in the literature. cf., Klonowski et al. (2022).

Known parameters. We assume that all parameters (N,M, ℓ, k, α), except the function f itself,
are known in advance to the constructing and decoding algorithms. Parameters N,M are necessary
parts of the game, to be shared by both players (the user and the adversary). Parameters k, α could
be chosen by the user, depending on the level of “rareness” of elements and fault-tolerance the user
wants to be guaranteed. Parameter ℓ ≤ M could be hidden from the user, who may instead use a
classic doubling technique to estimate ℓ when building the QS (and decoding), starting from low
values.

13

	Introduction
	The Problem of Testing for Hidden Function's Outliers (HFO)
	Our Technical Contribution
	Why Group Testing is Inefficient for HFO

	Universal QS for HFO
	Enhancing the Universal QS for HFO by Fault-tolerant Guarantees

	Lower Bound on the Length of any Universal QS for HFO
	Discussion and Open Directions
	Limitations

