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Abstract

Transformer-based pre-trained language mod-
els achieve superior performance on most NLP
tasks due to large parameter capacity, but also
lead to huge computation cost. Fortunately, we
observe that most inputs only activate a tiny ra-
tio of neurons of large Transformer-based pre-
trained models during inference. Hence, we
propose to convert a model into its mixture-
of-experts (MoE) version with the same pa-
rameters, namely MoEfication, which acceler-
ates large-model inference by conditional com-
putation based on the sparse activation phe-
nomenon. Specifically, MoEfication consists
of two phases: (1) splitting the parameters of
feed-forward neural networks (FFNs) into mul-
tiple parts as experts, and (2) building expert
routers to decide which experts will be used
for each input. Experimental results show that
MokEfication can save 80% computation cost
of FFNs while maintaining over 95% origi-
nal performance for different models, includ-
ing models with different sizes (up to 3 billion
parameters) and distilled models, on various
downstream tasks. Moreover, we find that the
MokEfied model achieves better performance
than the MoE model pre-trained from scratch
with the same model size. We will release all
the code and models of this paper.

1 Introduction

Recent years have witnessed an exponential in-
crease in the size of Transformer-based pre-trained
language models (PLMs) (Han et al., 2021). From
BERT (Devlin et al., 2019) in 2018 to GPT-
3 (Brown et al., 2021) in 2020, the number of pa-
rameters has already increased by nearly 600 times.
Moreover, the exploration of larger models is con-
tinuing. The increasing model size significantly
improves the model performance on a variety of
downstream NLP tasks (Raffel et al., 2020; He
et al., 2021b), but also comes with huge computa-
tion cost, which limits the potential applications of
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Figure 1: Results of a fine-tuned T5-Large (Raffel et al.,
2020) on SST-2. (a) Relative performance compared to
the original performance with different reduction ratios
of FFNs. Large pruning ratios significantly degrade
the performance. (b) Cumulative distribution function
(CDF) of the ratio of activated neurons for each input.
SST-2’s training set is used as inputs. 90% inputs only
activate less than 5% neurons of FFNSs.

large-scale PLMs. Hence, it is essential to explore
novel techniques to make PLMs more efficient.
The computation of Transformer mainly consists
of two parts: attention networks and feed-forward
networks (FFNs). Much effort has been made to re-
duce the cost of attention networks (Beltagy et al.,
2020; Kitaev et al., 2020; Tay et al., 2020) while
little has been made for FFNs. Previous work on
the acceleration of FFNs usually uses general prun-
ing algorithms and ignores the characteristics of
FFNs (Li et al., 2020; Xu et al., 2021). Hence, large
pruning ratios will lead to poor results as shown
in Figure 1. In this work, we explore to further
accelerate FFNs beyond model pruning.
Fortunately, according to our observation on
FFNs in Transformer models, we find a phe-
nomenon of sparse activation, i.e., only a tiny
fraction of neurons are activated for a single input.
As shown in Figure 1, when we perform inference
on a fine-tuned T5-Large model with 700-million
parameters, 90% inputs only activate less than 5%
neurons'. Hence, we can omit the computation of

I'T5 uses ReLU as the activation function. We treat the
neurons having positive outputs as activated neurons.



inactive neurons to reduce the cost. Meanwhile,
most neurons will be eventually activated by some
inputs. As a result, model pruning is not applicable
and will significantly degrade the performance. In-
stead of model pruning, we explore efficient FFNs
based on conditional computation (Bengio, 2013),
which selectively activates parts of the network ac-
cording to input. This mechanism naturally exists
in the FFNs of pre-trained Transformers.

Inspired by the sparse activation phenomenon,
we propose to convert a large-scale PLM into its
mixture-of-experts (MoE) version with the same
parameters for efficient conditional computation
in inference, namely MoEfication. Different from
previous work on MoE Transformers that typically
breeds models into multiple experts (Lepikhin et al.,
2021; Fedus et al., 2021), MoEfication aims to
split existing models into multiple experts while
keeping the model size unchanged. We expect an
MoEfied model will improve the model efficiency
and maintain the performance of the original model
by dynamically selecting experts.

MokEfication consists of two phrases. (1) Expert
Construction: Split a whole feed-forward layer
into multiple experts. The goal is to group those
neurons that are often activated simultaneously into
the same expert network. To achieve this goal, we
build a co-activation graph based on the activation
results and divide this graph into several subgraphs
as experts by graph partition. (2) Expert Selection:
Select those experts that contain as many activated
neurons as possible for each input to approximate
to the original results. To reach this target, we
first find the best selections based on the activation
results and then use them to train shallow neural
networks as expert routers.

In the experiments, we validate the effectiveness
of MoEfication on two typical kinds of downstream
tasks, including GLUE and QA benchmarks (Wang
etal., 2019; Rajpurkar et al., 2016; Lai et al., 2017),
using TS5 with different sizes (Raffel et al., 2020).
Experimental results show that MoEfication can
save 80% computation cost of FFNs while main-
taining over 95% original performance for both
conventional models (the number of parameters
varies from 60 millions to 3 billions) and distilled
models. Besides, we find that the MoEfied model
achieves better performance than the MoE model
pre-trained from scratch with the same model size.
Then, we study the routing patterns of MoEfied
models and hope these findings can help future

work on the design and training of MoE models.

2 Related Work

Model Acceleration for PLMs. Model accelera-
tion aims to reduce the time and space complex-
ity of PLMs for faster inference and deployment
on resource-constrained devices. There are sev-
eral techniques for model acceleration, including
knowledge distillation (Sanh et al., 2019; Sun et al.,
2019; Jiao et al., 2020), model pruning (Voita et al.,
2019; Michel et al., 2019; Zhang et al., 2021),
model quantization (Zafrir et al., 2019; Zhang et al.,
2020), and dynamic inference (Xin et al., 2020;
Li et al., 2021). Among these techniques, model
pruning and dynamic inference explore to omit un-
necessary computation for acceleration, which is
similar to the target of MoEfication. Different from
model pruning, which omits redundant parame-
ters, MoEfication keeps the original model size and
dynamically selects parts of parameters at a time.
For dynamic inference, previous work focuses on
how to dynamically drop layers to accelerate infer-
ence (Huang et al., 2018; Wu et al., 2020; Li et al.,
2021). In this manner, the output of each layer is ex-
pected to be able to predict labels, and hence it will
introduce additional training objectives and predic-
tion strategies. In contrast, MoEfication simplifies
models in a finer granularity, and does not change
the process of training and inference. In summary,
MokEfication can be regarded as a novel direction
diagonal with the above-mentioned approaches.
Large-scale PLMs with MoE. Jacobs et al.
(1991) propose mixture-of-experts to build a sys-
tem composed of many separate networks, which
learn to handle a subset of the training examples in-
dependently. When deep neural networks achieve
great success (Hinton et al., 2012; Krizhevsky et al.,
2012; Goodfellow et al., 2013), Bengio (2013)
thinks the model size is a key factor and MoE
is an important technique to scaling model com-
putation and proposes the idea of “conditional
computation”. The first large-scale MoE lan-
guage model is proposed by Shazeer et al. (2017),
which adds an MoE layer between two LSTM lay-
ers and independently assigns tokens to combi-
nations of experts. Recently, GShard (Lepikhin
et al., 2021), Switch-Transformer (Fedus et al.,
2021), BASELayer (Lewis et al., 2021), and Hash-
Layer (Roller et al., 2021) study how to build large-
scale Transformer-based models with MoE and op-
timal training strategies, which can fully utilize the
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Figure 2: An example of the sparse activation phenomenon and MoEfication. (a) shows the computation process
of an FFN for a given input. (b) shows the unused elements and neurons for this input. (c) shows how to construct
experts. (d) shows how the MoEfied model handles this input efficiently.

model capacity. Different from them, we utilize the
naturally-existing sparse activation phenomenon
to convert a model into its MoE version for better
efficiency during inference.

3 Method

In this section, we will introduce the general idea of
MokEfication and divide it into two phases: expert
construction and expert selection.

3.1 Opverall Framework

MokEfication aims to utilize the sparse activation
phenomenon in the FENs of Transformers to reduce
the computation cost.

We first formally describe the sparse activation
phenomenon. The FFNs of Transformers are two-
layer fully connected networks, which process an
input representation 2 € R%modet by

h:.’BW1 —|—b1,

F(:I)) :O'(h)‘/‘/2<|>bz7 (1)

where Wi € RimoderXdss and Wy € R4S X dmodel
are the weight matrices, b; € R%s and by €
R@modet are the bias vectors, and o(-) is a non-linear
activation function, which prefers to retain positive
values and discard negative ones. In this work,
we study the activation function ReLLU (Nair and
Hinton, 2010), which is used by the original Trans-
former (Vaswani et al., 2017) and some widely-
used Transformer-based PLMs (Sun et al., 2020;
Raffel et al., 2020).

As shown in Figure 1, there are many inactive
(zero) values in the intermediate output o(h). The
computation of these values can be omitted for
acceleration. Meanwhile, different inputs will acti-
vate different neurons. Hence, we explore to select
the possiblely-activated neurons of h before the
FFN computation instead of model pruning.

We show an example in Figure 2. In this FFN,
Amodet 18 2, dj s is 4, and the bias vectors are omit-
ted for simplification. For a given input representa-
tion x, there are two positive values in h. Hence,
we only need to compute part of the FFN, i.e., a
2 x 2 submatrix of W7 and a 2 x 2 submatrix of
W, to obtain the same output F'(x). Correspond-
ingly, we can MoEfy the original FFN to have an
MOoE layer with two experts and select the one on
the right-hand side for this input x.

For MokEfication, we first split the FFN into sev-
eral independent parts, namely expert construction,
and then design a router to select suitable experts
for each input, namely expert selection.

3.2 Expert Construction

In this subsection, we introduce how to split an
FFN into several parts. The core idea is to group
together the neurons that are often activated simul-
taneously. In this way, for each input, we can select
a small number of experts to cover all its activated
neurons. To achieve better parallel computation
performance, we set the size of each expert to be
the same. If the number of experts is k, the input
and output dimension of experts is still d,;,oq¢; and
their intermediate dimension is d. = . Then,
the parameters of i-th expert are denoted by

W17' c Rdnwdel Xde , b7i c Rdc’ WQZ c Rdc Xdmodel . (2)

Given the result of splitting, we construct the cor-

responding permutation of intermediate neurons by

1 2 .. d . .
(f(l) @) f(C{fff))’ where f(n) is the mapping

function from the original neuron index to the per-
muted neuron index. We compute f(n) by

f(n) = (e(n) — 1)de + [{m|m < n,e(m) =e(n)}, 3)

where e(n) is the expert index of the n-th neuron,
which varies from 1 to k, and [{m|m < n,e(m) =



e(n)}| is the index of the n-th neuron in the expert.
Then, we use its permutation matrix P € R%7*4ss
to permute the rows or columns of parameters and
have the following split:
[W117W127 sy Wlk] - W1P7
blabla...ab =b P, )
[(W21)T7 (W22)T7 EERE) (WZk)T] = (PTWQ)Tv
where @ represents the vertical concatenation.
Note that the permutation will not influence the
output representation:
o(h)Ws + by = o(h)PP" Wy + bs,
o(hP)PT" Wy + by, ®
= o(@WLP + b, P)P" Wy + bs.

In this work, we propose two methods to split an
FFN into k parts.

Parameter Clustering Split. To take the pa-
rameter information into consideration, we treat
the columns of W7 as a collection of vectors with
dmoder dimension. Based on the intuition that the
neurons with similar vectors will be activated simul-
taneously, we apply balanced K-Means (Malinen
and Frinti, 2014) to the vector collection to obtain
k clusters to construct the mapping function.

Co-Activation Graph Split. To directly use
the information of co-activation, we construct a
co-activation graph by counting co-activations of
PLMs for the samples of the training set. Each
neuron will be represented by a node in the graph,
and the edge weight between two nodes are their
co-activation values. The co-activation value is

computed by
co-activation(n, m) = Z hglm)h$,f)]lh<w)>0 R@ <o (6)
where hﬁf’), hgff ) are the n-th and the m-th neurons

of h for the input  and 1 indicates

R{)>0,R) >0
h%w) and hgff ) are activated simultaneously. Then,
we apply graph partitioning algorithms (Karypis
and Kumar, 1998) to the co-activation graph to
obtain the split, where the internal connections for
each group will be strong. It means that the neurons
splitted into the same group are often activated
simultaneously for the training samples.

3.3 Expert Selection

In this subsection, we introduce how to create a
router for expert selection. An MoEfied FFN pro-
cessed an input x by

Fu(x) =Y o(xWi + b))W; + b, @)
i€S

where S is the set of the selected experts. If all ex-
perts are selected, we have F,,,(x) = F(x). Con-
sidering that o (z W7 + b} ) W equals to 0 for most
experts, we try to select n experts, where n < k,
minimize || F,,(x) — F(x)||2. The selection meth-
ods will assign a score s; to each expert for the
given input & and select the experts with the n
highest scores by

S = arg max Z Si. ®)
AC{1,2,.. .k}, Al=n {4

Groundtruth Selection for the intermediate
output o(h). We can obtain the groundtruth se-
lection, which minimizes || ", g o (W7 + b}) —
o(h)||2, by a greedy algorithm. We calculate
the sum of positive values in each expert as s;
and select experts using Equation 8. This selec-
tion should approximate to the lower bound of
||Fin(x) — F(x)||2. Correspondingly, its perfor-
mance will approximate to the ideal performance of
an MoEfied model. Meanwhile, it is intractable to
directly optimize ||F}, (x) — F'(x)||2 because there
are too many possible combinations of experts.

Similarity Selection. To utilize the parameter
information, we average all columns of W{ and
use it as the expert representation. Given an input
x, we calculate the cosine similarity between the
expert representation and x as s;.

MLP Selection. We train a multi-layer percep-
tron (MLP), which takes the x as input and predicts
the sum of positive values in each expert. Then,
we use the prediction as s;. This method tries to
approximate to the performance of groundtruth se-
lection.

4 Experiment

4.1 Experimental Setups

Models and Hyperparameters We use four vari-
ants of TS (Raffel et al., 2020), which are the
60-million-parameter T5-Small, the 200-million-
parameter T5-Base, the 700-million-parameter T5-
Large, and the 3-billion-parameter T5-XLarge. The
non-linear activation function is ReLU (Nair and
Hinton, 2010). We use Adam as the optimizer and
a learning rate of 10~% for fine-tuning on down-
stream tasks. The batch size is set to 64 and the
number of epochs is set to 3.

Datasets. We use several natural language un-
derstanding datasets to evaluate our models. For
text classification, we use GLUE benchmark (Wang
et al., 2019), including MNLI-matched (Williams



et al.,, 2018), QNLI (Rajpurkar et al., 2016),
QQP?, RTE (Dagan et al., 2006), SST-2 (Socher
et al., 2013), MRPC (Dolan and Brockett, 2005),
CoLA (Warstadt et al., 2019), and STS-B (Gi-
ampiccolo et al., 2007). For reading comprehen-
sion, we use SQuAD (Rajpurkar et al., 2016) and
RACE (Lai et al., 2017), which are the representa-
tive datasets for span extraction and multi-choice
QA, respectively. We report the results on their
development sets. For MNLI, QNLI, QQP, RTE,
SST-2, MRPC, RACE, we use accuracy as the met-
ric. For CoL A, we use matthews correlation coeffi-
cient as the metric. For STS-B, we use pearson and
spearman correlation as the metrics. For SQuAD,
we use F1 score as the metric.

Expert Construction. For balanced K-Means,
we use an open-source implementation®. Besides
Parameter Clustering Split and Co-activation Graph
Split, we also implement Random Split as a naive
baseline, which uses an identity matrix as P. We
set the number of neurons in each expert to 32.
Correspondingly, the number of experts varies from
64 to 512 for different TS5 variants. With the same
expert size, the relative computation cost of routing
is the same as shown in Appendix.

Expert Selection. Besides Similarity Selection
and MLP Selection, we also implement Random
Selection, where we treat each expert as a col-
lection of vectors with d,,,,4.; dimension and ran-
domly select one of them as the expert represen-
tation. For Random Selection and Similarity Se-
lection, the computation complexity for routing
18 O(kd,,0de¢1).- For MLP Selection, we use a two-
layer feed-forward network as the architecture. The
input dimension is d,,qe1, the intermediate dimen-
sion is k, and the output dimension is k. The non-
linear activation function is tanh(-). Its computa-
tion complexity is O(kd,,oqe; + k2). Compared to
the computation complexity of FFNs of the origi-
nal model, O(d;,,0de - df ), the computation cost
of routers is ignorable because k is much smaller
than ds . For example, k is 128 and d s is 4096
for T5-Large. For the training of our MLP routers,
we adopt cross-entropy as the training objective
and use the Adam optimizer with the learning rate
of 1072, The batch size is set to 512 and the num-
ber of epochs is set to 10. We sample nearly 500
thousand input representations from the training
data and split them into the training and develop-

https://data.quora.com

*https://github.com/ndanielsen/
Same-Size-K-Means

Model SST-2 MNLI RACE
Small 90.9 82.4 44.7
Small-Distill 91.9 82.6 50.6
Base 94.0 86.4 71.7
Large 96.2 89.5 81.3
XLarge 96.9 90.5 85.6

Table 1: Original Performance of different models on
three downstream tasks. The model architecture is T5.

ment sets with the ratio of 9 : 1. Note that we only
use the activation information as supervision. The
training time of each FFN is about several minutes
on a single GPU.

4.2 MokEfication with Different Models

In this subsection, we evaluate MoEfication on dif-
ferent PLMs. We consider two factors: the model
size and whether the model is compressed. For
the model size, we use five variants of TS (Raffel
et al., 2020), from T5-Small to T5-XLarge. For
convenience, we directly use the scale names as
the abbreviations. To investigate the influence of
model compression, we compress T5-Large to T5-
Small by classic knowledge distillation (Hinton
et al., 2015). Specifically, the teacher model is
a fine-tuned T5-Large and the student model is a
pre-trained T5-Small. The distilled model is de-
noted by T5-Small-Distill. The expert construction
and selection methods used here are Co-activation
Graph Split and MLP Selection, which are proved
to be the best combination in Section 4.4.

We report the performance of these models on
three datasets, SST-2, MNLI, and RACE, in Ta-
ble 1. They are the representative datasets for
single-sentence classification, sentence-pair clas-
sification, and reading compression, respectively.
The original performance of PLMs grows as the
model size grows, and knowledge distillation im-
proves the performance of TS5-small.

We first calculate the activation statistics of dif-
ferent models by inputting the training data of each
dataset. The results are shown in Figure 3. From
the figure, we have three observations. (1) The acti-
vations of these models are sparse. Different from
the previous study on models trained with smaller
datasets, where the activation ratios are range from
10% to 50% (Geva et al., 2021)*, we find most
inputs activate less than 10% of the neurons. (2)
The activations of larger models are sparser than

*Since the activation ratios of a randomly-initialized model

are around 50%, we guess these models do not make full use
of their parameters.
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Figure 3: CDF of the ratio of activated neurons for each input with different models on three datasets.
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Figure 4: Relative performance of MoEfied models with different sizes on three datasets. Dynamically selecting
10% to 20% neurons can recover nearly 98% original performance for large models such as T5-XLarge.

those of smaller models. For example, 80% inputs
only activate less than 3% neurons in T5-XLarge
while 40% inputs activate more than 3% neurons
in T5-Small. (3) The sparsity is less related to dis-
tillation than the model size. The CDF curve of
T5-Small-Distill is close to that of T5-Small.

Then, we compare the performance of MoEfied
models with different sizes and ratios of selected
neurons and report the results in Figure 4. To mea-
sure the performance of MoEfication, we calculate
the relative performance of the MoEfied model to
the original model. From the figure, we have four
observations. (1) MoEfication works well with
all models on all three datasets. MoEfied models
save 80% computation cost of FENs while main-
taining over 95% original performance. (2) The
larger models can use fewer neurons to recover the
original performance. For example, T5-XLarge
achieves nearly 98% relative performance on SST-
2 and MNLI with 10% neurons while T5-Small
achieves the same results with 30% to 40% neu-
rons. This result is consistent with the activation
statistics, that is, larger models are sparser. We
can expect that MoEfication can work better with
super large models. (3) Difficult tasks require mod-
els to select more experts to maintain the perfor-

mance. From Table 1, we can see that the accuracy
of RACE is much lower than the other two tasks,
and hence we think RACE is more difficult. Cor-
respondingly, the relative performance with 10%
neurons on RACE is also lower than those on the
other tasks. (4) MoEfication works similarly on T5-
Small and T5-Small-Distill, which indicates that
MokEfication can work with knowledge distillation
for more efficient inference.

4.3 Parameter Calibration

In practice, there is still a gap between the per-
formance of MoEfied models and that of original
models because selected experts cannot cover all
positive neurons with a limited computation bud-
get. Hence, the outputs of MoEfied models will be
slightly different from those of original models. To
calibrate MoEfied models, we further fine-tune the
models on the training set, namely parameter cali-
bration. Considering that current routers are based
on the first layers of FFNs (W7 and b;), we only
optimize the second layers of FFNs (W3 and bs) to
ensure routers can also work well after fine-tuning.

We evaluate this method on several downstream
natural language understanding tasks with T5-
Large. The ratio of selected neurons is set to 20%,



| MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B RACE SQuADI1.1| Avg
Original | 89.5 944 917 87.1 962 88.0 59.4  91.2/909 813 932 | 87.2
MoEfied | 87.5 932 902 864 954 87.5 55,5 90.6/90.3  79.0 922 85.7 (-1.5)
+GT 89.1 941 914 864 963 88.3 58.8  90.9/90.8 80.8 932 86.9 (-0.3)
+Calib | 88.7 93.6 913 875 962 89.3 59.4  91.0/90.6 79.9 92.3 86.9 (-0.3)

Table 2: Results of T5-Large on GLUE benchmark and two QA datasets. The last row reports the differences
between the original model and MoE+Calib. MoEfied models with parameter calibration achieve comparable

performance to original models.

Construction \Selection \SST—Z MNLI RACE
- \ \ 96.2 89.5 81.3

Groundtruth 959 87.3 80.0
Random R.anfionj 65.9 36.3 29.2
Similarity 90.3 75.9 56.7
MLP 94.1 841 750
Groundtruth 95.5 88.8 80.9
Parameter Random 70.6 36.4 41.8
Clustering Similarity 86.7 66.3 63.6
MLP 959 875 787
Groundtruth 96.3 89.1 80.8
Co-Activation | Random 85.3 68.5 54.7
Graph Similarity 92.2 81.4 71.0
MLP 954 875 79.0

Table 3: Comparisons of different combinations of
expert construction and selection methods using T5-
Large. The first row is the original performance. The
best results in each group are underlined and the best
results on each dataset are in boldface.

which is sufficient for T5-Large as show in Figure 3.
We use a small learning rate of 10~7 for calibra-
tion. The other hyper-parameters remain the same
as fine-tuning. The results are shown in Table 2.
MokEfied refers to the combination of Co-activation
Graph Split and MLP Selection. MoEfied+GT
refers to the combination of Co-activation Graph
Split and Groundtruth Selection. MoEfied+Calib
is the calibrated version of MoEfied.

We observe that MoEfication introduces small
performance loss (about 1.5% on average) with an
80% reduction of the computation cost in FFNs.
Meanwhile, calibration can effectively deal with
the issue of the precision errors brought by MoEfi-
cation. For example, MoEfied+Calib improves
MoEfied by nearly 4% on CoLA and achieves the
same average performance as MoEfied+GT.

4.4 Comparisons of MoEfication Strategies

To find the most effective MoEfication strategy, we
evaluate different combinations of expert construc-
tion and selection methods. We use T5-Large and
also set the ratio of selected neurons to 20%. The

Model MLM Loss

MOoE Pre-training 3.09

Standard Pre-training  2.88 (-0.21)
+MokEfication 3.02 (-0.07)
+GT 2.95 (-0.14)

Table 4: Comparisons of MoE models pre-trained from
scratch and modified by MoEfication. We report the
MLM loss on the validation set. Standard pre-training
with MoEfication is better than pre-training a MoE
model from scratch.

results are shown in Table 3. From the table, we
have two observations:

(1) For expert construction, Co-activation Graph
Split is the best method according to the overall
performance. Compared to the other two meth-
ods, Co-activation Graph Split directly uses the
co-activation information to group the neurons ac-
tivating simultaneously into the same expert.

(2) For expert selection, the performance of
Groundtruth Selection is close to that of the origi-
nal model, which indicates that 20% parameters of
FFNs are sufficient to achieve good performance on
T5-Large. Meanwhile, MLP Selection is the best
expert selection method and can work well with
both Parameter Clustering Split and Co-activation
Graph Split.

4.5 MokEfication vs. MoE pre-training

In this subsection, we compare the performance
of two kinds of MoE models. The first one is
pre-trained from scratch. The second one is trans-
formed from a standard model by MoEfication. For
fair comparisons, we pre-train one MoE model and
one standard model with the same model size from
scratch using WikiText-103 (Merity et al., 2017).
The pre-training objective is masked language mod-
eling (MLM). The model architecture is the same
as T5-Small. For pre-training, we use the batch size
of 4096, the learning rate of 0.01, the maximum
sequence length of 512, and the Adam optimizer.
The number of experts is set to 64 and the router



© o

o =

e Qo
=N

Ideal balance

Ideal balance

I

Selection Frequency

4
=3

Expert of Layer 1 (sorted) Expert of Layer 2 (sorted)

Ideal balance

Ideal balance

Expert of Layer 3 (sorted) Expert of Layer 4 (sorted)

Ideal balance Ideal balance

Expert of Layer 5 (sorted)

Expert of Layer 6 (sorted)

Figure 5: Selection Frequency of 64 experts in each
encoder layer of MoEfied T5-Small. The frequency of
ideal balance selection is 0.2 while the distribution is
much unbalanced.

will select 32 of them for a single input.

We report the MLLM loss on the validation set in
Table 4. From the table, we have two observations.
(1) The loss of the standard pre-trained model is
lower than that of the pre-trained MoE model. We
guess that the optimization of MoE models is diffi-
cult than that of the standard models because of the
restricted selection of MoE models. (2) MoEfied
models achieve better performance than the pre-
trained MoE model. It indicates that pre-training a
standard model then conducting MoEfication can
be a better option than pre-training an MoE model
from scratch.

5 Analysis

In this section, we investigate the routing patterns
of MoEfied models and validate whether they are
consistent with those of MoE models trained from
scratch.

First, we count the selection frequency of each
expert. Previous work introduces training objec-
tives to ensure balance selection to make full use
of model parameters (Lepikhin et al., 2021; Fedus
et al., 2021). We report the results of the MoEfied
T5-Small with 20% experts on SST-2 in Figure 5.
From the figure, we observe that the frequency dis-
tribution of expert selection is much unbalanced’.
There are some commonly-used experts, whose fre-
quencies are higher than 80%. Meanwhile, there

SUnbalanced selection will not influence the computation
efficiency with current MoE implementations such as Fast-
MoE (He et al., 2021a).
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Figure 6: Input similarities between experts in the last
encoder layer of MoEfied T5-Small. For the most
selected experts, both the self-similarities and inter-
similarities are low. For the least selected experts, the
self-similarities are much higher than inter-similarities.

are also some long-tail experts whose frequencies
are lower than 10%.

Then, we calculate the self-similarities and inter-
similarities of inputs between experts by sampling
10, 000 inputs for each expert. We report the results
of the last layer in Figure 6. For the most selected
experts, which are selected by most inputs, the
self-similarities are close to the inter-similarities.
For the least selected experts, the self-similarities
are much higher than the inter-similarities, which
suggests that the inputs of each expert have obvious
cluster structure.

From these results, we can conclude the routing
patterns of MoEfied models: there are some gen-
eral experts, which can work for most inputs, and
some input-specific experts, which are seldom used
and may work in specific domains or tasks. This
observation may inspire future work on training
MoE models from scratch.

6 Conclusion

In this work, we propose MoEfication, a new model
acceleration technique, for large-scale Transformer
models. MoEfication utilizes the sparse activation
phenomenon in FFNs of Transformer to convert
a normal model to its MoE version with the same
parameters. Experimental results show that large
MoEfied models can achieve comparable perfor-
mance to the original models using only 10% to
20% computation cost of FFNs. By studying the
routing patterns of MoEfied models, we find that
there are general and input-specific experts, which
may inspire future work on training MoE models.
In the future, we plan to extend MoEfication to
other Transformer models, such as BERT and GPT,
and design better strategies for MoEfication. We
hope MokEfication can benefit the real-world appli-
cations of large PLMs with better efficiency.
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A Activation Statistics before
Fine-tuning

We count the activation statistics of PLMs be-
fore fine-tuning on the pre-training data containing
about 50, 000 input tokens. The results are shown
in Figure 7. We observe that PLMs before fine-
tuning also have the sparse activation phenomenon
and fine-tuning brings little change.
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Figure 7: CDF of the ratios of activated neurons for
each input with different models before fine-tuning.

Then, we compare the activations of pre-trained
models and those of fine-tuned models. We use
the average ratio of activated neurons as the index.
The results are shown in Table 5. We observe that
fine-tuning increases the average activation ratio
for most models. The reason may be that differ-
ent neurons start to learn the same task-specific
patterns during fine-tuning. Interestingly, the in-
crease on RACE is smaller than that on the other
datasets. Since RACE is more difficult than the
other datasets, there should be more task-specific
patterns in RACE and less neurons learn the same
patterns. Moreover, the pre-training task MLM re-
quires more patterns than RACE so the ratios of
MLM are lowest.

Small Base Large XLarge
MLM 418 285 217 1.52
SST-2 553 224 250 2.46
MNLI 559 325 244 2.45
RACE 494 3.08 198 1.79

Table 5: Average ratio of activated neurons for each
input. MLM represents the pre-trained models with
masked language modeling. SST-2, MNLI, RACE rep-
resent the fine-tuned models on each dataset.

B Results of Graph Partition

Co-activation Graph Split achieves good perfor-
mance in expert construction. Here, we study
whether the co-activation graph is suitable for parti-
tioning. We report the results of graph partition of
T5-Large on SST-2 in Figure 8. Smaller ratios of
edgecuts, which straddle partitions, mean that more
co-activation pairs are included in experts. We only
report the results of encoder layers because all ra-
tios of decoder layers are smaller than 0.001. From
this figure, we can see that the overall ratio is small
and these graphs are suitable for partitioning.
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Figure 8: Ratio of edgecuts in different layers.

C Accuracy of MLP Selection

MLP selection trains MLPs to fit the groundtruth
selection. In this part, we report the accuracy of
MLPs in T5-Large fine-tuned on SST-2. The results
are shown in Figure 9 and 10. The overall accuracy
of the encoder is about 0.8 and the overall accuracy
of the decoder is about 0.7.
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Figure 9: Accuracy of MLPs of encoder layers.

1.0

0.8
P
80.6
=1
30.4
<

0.2

0.0 5 10 15 20
Layer

Figure 10: Accuracy of MLPs of decoder layers.



D Relative Cost of Routing

In this work, we set the number of neurons in each
expert to 32. Then, the number of experts in each
layer k is %f. In most Transformer models, dy; =
4d04e1- The computation complexity of Similarity
Selection for each input is

d2
O(kdmodel) - O(M)~ (9)

8
The computation complexity of FFNs for each in-
put is

O(dmodel : dff) = O(4d2 ) (10)

model

Then, the relative cost of routing to that of FFNs is
constant for different models. It is also similar to
MLP Selection.
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