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Abstract

Transformer-based pre-trained language mod-001
els achieve superior performance on most NLP002
tasks due to large parameter capacity, but also003
lead to huge computation cost. Fortunately, we004
observe that most inputs only activate a tiny ra-005
tio of neurons of large Transformer-based pre-006
trained models during inference. Hence, we007
propose to convert a model into its mixture-008
of-experts (MoE) version with the same pa-009
rameters, namely MoEfication, which acceler-010
ates large-model inference by conditional com-011
putation based on the sparse activation phe-012
nomenon. Specifically, MoEfication consists013
of two phases: (1) splitting the parameters of014
feed-forward neural networks (FFNs) into mul-015
tiple parts as experts, and (2) building expert016
routers to decide which experts will be used017
for each input. Experimental results show that018
MoEfication can save 80% computation cost019
of FFNs while maintaining over 95% origi-020
nal performance for different models, includ-021
ing models with different sizes (up to 3 billion022
parameters) and distilled models, on various023
downstream tasks. Moreover, we find that the024
MoEfied model achieves better performance025
than the MoE model pre-trained from scratch026
with the same model size. We will release all027
the code and models of this paper.028

1 Introduction029

Recent years have witnessed an exponential in-030

crease in the size of Transformer-based pre-trained031

language models (PLMs) (Han et al., 2021). From032

BERT (Devlin et al., 2019) in 2018 to GPT-033

3 (Brown et al., 2021) in 2020, the number of pa-034

rameters has already increased by nearly 600 times.035

Moreover, the exploration of larger models is con-036

tinuing. The increasing model size significantly037

improves the model performance on a variety of038

downstream NLP tasks (Raffel et al., 2020; He039

et al., 2021b), but also comes with huge computa-040

tion cost, which limits the potential applications of041
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Figure 1: Results of a fine-tuned T5-Large (Raffel et al.,
2020) on SST-2. (a) Relative performance compared to
the original performance with different reduction ratios
of FFNs. Large pruning ratios significantly degrade
the performance. (b) Cumulative distribution function
(CDF) of the ratio of activated neurons for each input.
SST-2’s training set is used as inputs. 90% inputs only
activate less than 5% neurons of FFNs.

large-scale PLMs. Hence, it is essential to explore 042

novel techniques to make PLMs more efficient. 043

The computation of Transformer mainly consists 044

of two parts: attention networks and feed-forward 045

networks (FFNs). Much effort has been made to re- 046

duce the cost of attention networks (Beltagy et al., 047

2020; Kitaev et al., 2020; Tay et al., 2020) while 048

little has been made for FFNs. Previous work on 049

the acceleration of FFNs usually uses general prun- 050

ing algorithms and ignores the characteristics of 051

FFNs (Li et al., 2020; Xu et al., 2021). Hence, large 052

pruning ratios will lead to poor results as shown 053

in Figure 1. In this work, we explore to further 054

accelerate FFNs beyond model pruning. 055

Fortunately, according to our observation on 056

FFNs in Transformer models, we find a phe- 057

nomenon of sparse activation, i.e., only a tiny 058

fraction of neurons are activated for a single input. 059

As shown in Figure 1, when we perform inference 060

on a fine-tuned T5-Large model with 700-million 061

parameters, 90% inputs only activate less than 5% 062

neurons1. Hence, we can omit the computation of 063

1T5 uses ReLU as the activation function. We treat the
neurons having positive outputs as activated neurons.
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inactive neurons to reduce the cost. Meanwhile,064

most neurons will be eventually activated by some065

inputs. As a result, model pruning is not applicable066

and will significantly degrade the performance. In-067

stead of model pruning, we explore efficient FFNs068

based on conditional computation (Bengio, 2013),069

which selectively activates parts of the network ac-070

cording to input. This mechanism naturally exists071

in the FFNs of pre-trained Transformers.072

Inspired by the sparse activation phenomenon,073

we propose to convert a large-scale PLM into its074

mixture-of-experts (MoE) version with the same075

parameters for efficient conditional computation076

in inference, namely MoEfication. Different from077

previous work on MoE Transformers that typically078

breeds models into multiple experts (Lepikhin et al.,079

2021; Fedus et al., 2021), MoEfication aims to080

split existing models into multiple experts while081

keeping the model size unchanged. We expect an082

MoEfied model will improve the model efficiency083

and maintain the performance of the original model084

by dynamically selecting experts.085

MoEfication consists of two phrases. (1) Expert086

Construction: Split a whole feed-forward layer087

into multiple experts. The goal is to group those088

neurons that are often activated simultaneously into089

the same expert network. To achieve this goal, we090

build a co-activation graph based on the activation091

results and divide this graph into several subgraphs092

as experts by graph partition. (2) Expert Selection:093

Select those experts that contain as many activated094

neurons as possible for each input to approximate095

to the original results. To reach this target, we096

first find the best selections based on the activation097

results and then use them to train shallow neural098

networks as expert routers.099

In the experiments, we validate the effectiveness100

of MoEfication on two typical kinds of downstream101

tasks, including GLUE and QA benchmarks (Wang102

et al., 2019; Rajpurkar et al., 2016; Lai et al., 2017),103

using T5 with different sizes (Raffel et al., 2020).104

Experimental results show that MoEfication can105

save 80% computation cost of FFNs while main-106

taining over 95% original performance for both107

conventional models (the number of parameters108

varies from 60 millions to 3 billions) and distilled109

models. Besides, we find that the MoEfied model110

achieves better performance than the MoE model111

pre-trained from scratch with the same model size.112

Then, we study the routing patterns of MoEfied113

models and hope these findings can help future114

work on the design and training of MoE models. 115

2 Related Work 116

Model Acceleration for PLMs. Model accelera- 117

tion aims to reduce the time and space complex- 118

ity of PLMs for faster inference and deployment 119

on resource-constrained devices. There are sev- 120

eral techniques for model acceleration, including 121

knowledge distillation (Sanh et al., 2019; Sun et al., 122

2019; Jiao et al., 2020), model pruning (Voita et al., 123

2019; Michel et al., 2019; Zhang et al., 2021), 124

model quantization (Zafrir et al., 2019; Zhang et al., 125

2020), and dynamic inference (Xin et al., 2020; 126

Li et al., 2021). Among these techniques, model 127

pruning and dynamic inference explore to omit un- 128

necessary computation for acceleration, which is 129

similar to the target of MoEfication. Different from 130

model pruning, which omits redundant parame- 131

ters, MoEfication keeps the original model size and 132

dynamically selects parts of parameters at a time. 133

For dynamic inference, previous work focuses on 134

how to dynamically drop layers to accelerate infer- 135

ence (Huang et al., 2018; Wu et al., 2020; Li et al., 136

2021). In this manner, the output of each layer is ex- 137

pected to be able to predict labels, and hence it will 138

introduce additional training objectives and predic- 139

tion strategies. In contrast, MoEfication simplifies 140

models in a finer granularity, and does not change 141

the process of training and inference. In summary, 142

MoEfication can be regarded as a novel direction 143

diagonal with the above-mentioned approaches. 144

Large-scale PLMs with MoE. Jacobs et al. 145

(1991) propose mixture-of-experts to build a sys- 146

tem composed of many separate networks, which 147

learn to handle a subset of the training examples in- 148

dependently. When deep neural networks achieve 149

great success (Hinton et al., 2012; Krizhevsky et al., 150

2012; Goodfellow et al., 2013), Bengio (2013) 151

thinks the model size is a key factor and MoE 152

is an important technique to scaling model com- 153

putation and proposes the idea of “conditional 154

computation”. The first large-scale MoE lan- 155

guage model is proposed by Shazeer et al. (2017), 156

which adds an MoE layer between two LSTM lay- 157

ers and independently assigns tokens to combi- 158

nations of experts. Recently, GShard (Lepikhin 159

et al., 2021), Switch-Transformer (Fedus et al., 160

2021), BASELayer (Lewis et al., 2021), and Hash- 161

Layer (Roller et al., 2021) study how to build large- 162

scale Transformer-based models with MoE and op- 163

timal training strategies, which can fully utilize the 164
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Figure 2: An example of the sparse activation phenomenon and MoEfication. (a) shows the computation process
of an FFN for a given input. (b) shows the unused elements and neurons for this input. (c) shows how to construct
experts. (d) shows how the MoEfied model handles this input efficiently.

model capacity. Different from them, we utilize the165

naturally-existing sparse activation phenomenon166

to convert a model into its MoE version for better167

efficiency during inference.168

3 Method169

In this section, we will introduce the general idea of170

MoEfication and divide it into two phases: expert171

construction and expert selection.172

3.1 Overall Framework173

MoEfication aims to utilize the sparse activation174

phenomenon in the FFNs of Transformers to reduce175

the computation cost.176

We first formally describe the sparse activation177

phenomenon. The FFNs of Transformers are two-178

layer fully connected networks, which process an179

input representation x ∈ Rdmodel by180

h = xW1 + b1,

F (x) = σ(h)W2 + b2,
(1)181

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel182

are the weight matrices, b1 ∈ Rdff and b2 ∈183

Rdmodel are the bias vectors, and σ(·) is a non-linear184

activation function, which prefers to retain positive185

values and discard negative ones. In this work,186

we study the activation function ReLU (Nair and187

Hinton, 2010), which is used by the original Trans-188

former (Vaswani et al., 2017) and some widely-189

used Transformer-based PLMs (Sun et al., 2020;190

Raffel et al., 2020).191

As shown in Figure 1, there are many inactive192

(zero) values in the intermediate output σ(h). The193

computation of these values can be omitted for194

acceleration. Meanwhile, different inputs will acti-195

vate different neurons. Hence, we explore to select196

the possiblely-activated neurons of h before the197

FFN computation instead of model pruning.198

We show an example in Figure 2. In this FFN, 199

dmodel is 2, dff is 4, and the bias vectors are omit- 200

ted for simplification. For a given input representa- 201

tion x, there are two positive values in h. Hence, 202

we only need to compute part of the FFN, i.e., a 203

2 × 2 submatrix of W1 and a 2 × 2 submatrix of 204

W2, to obtain the same output F (x). Correspond- 205

ingly, we can MoEfy the original FFN to have an 206

MoE layer with two experts and select the one on 207

the right-hand side for this input x. 208

For MoEfication, we first split the FFN into sev- 209

eral independent parts, namely expert construction, 210

and then design a router to select suitable experts 211

for each input, namely expert selection. 212

3.2 Expert Construction 213

In this subsection, we introduce how to split an 214

FFN into several parts. The core idea is to group 215

together the neurons that are often activated simul- 216

taneously. In this way, for each input, we can select 217

a small number of experts to cover all its activated 218

neurons. To achieve better parallel computation 219

performance, we set the size of each expert to be 220

the same. If the number of experts is k, the input 221

and output dimension of experts is still dmodel and 222

their intermediate dimension is de =
dff
k . Then, 223

the parameters of i-th expert are denoted by 224

W i
1 ∈ Rdmodel×de , bi1 ∈ Rde ,W i

2 ∈ Rde×dmodel . (2) 225

Given the result of splitting, we construct the cor- 226

responding permutation of intermediate neurons by 227( 1 2 ... dff
f(1) f(2) ... f(dff )

)
, where f(n) is the mapping 228

function from the original neuron index to the per- 229

muted neuron index. We compute f(n) by 230

f(n) = (e(n)− 1)de + |{m|m ≤ n, e(m) = e(n)}|, (3) 231

where e(n) is the expert index of the n-th neuron, 232

which varies from 1 to k, and |{m|m ≤ n, e(m) = 233
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e(n)}| is the index of the n-th neuron in the expert.234

Then, we use its permutation matrix P ∈ Rdff×dff235

to permute the rows or columns of parameters and236

have the following split:237

[W 1
1 ,W

2
1 , . . . ,W

k
1 ] = W1P ,

b11 ⊕ b21 ⊕ . . .⊕ bk1 = b1P ,

[(W 1
2 )

T , (W 2
2 )

T , . . . , (W k
2 )

T ] = (P TW2)
T ,

(4)238

where ⊕ represents the vertical concatenation.239

Note that the permutation will not influence the240

output representation:241

σ(h)W2 + b2 = σ(h)PP TW2 + b2,

= σ(hP )P TW2 + b2,

= σ(xW1P + b1P )P TW2 + b2.

(5)242

In this work, we propose two methods to split an243

FFN into k parts.244

Parameter Clustering Split. To take the pa-245

rameter information into consideration, we treat246

the columns of W1 as a collection of vectors with247

dmodel dimension. Based on the intuition that the248

neurons with similar vectors will be activated simul-249

taneously, we apply balanced K-Means (Malinen250

and Fränti, 2014) to the vector collection to obtain251

k clusters to construct the mapping function.252

Co-Activation Graph Split. To directly use253

the information of co-activation, we construct a254

co-activation graph by counting co-activations of255

PLMs for the samples of the training set. Each256

neuron will be represented by a node in the graph,257

and the edge weight between two nodes are their258

co-activation values. The co-activation value is259

computed by260

co-activation(n,m) =
∑
x

h(x)
n h(x)

m 1
h
(x)
n >0,h

(x)
m >0

, (6)261

where h(x)
n , h(x)

m are the n-th and them-th neurons262

of h for the input x and 1
h
(x)
n >0,h

(x)
m >0

indicates263

h
(x)
n and h

(x)
m are activated simultaneously. Then,264

we apply graph partitioning algorithms (Karypis265

and Kumar, 1998) to the co-activation graph to266

obtain the split, where the internal connections for267

each group will be strong. It means that the neurons268

splitted into the same group are often activated269

simultaneously for the training samples.270

3.3 Expert Selection271

In this subsection, we introduce how to create a272

router for expert selection. An MoEfied FFN pro-273

cessed an input x by274

Fm(x) =
∑
i∈S

σ(xW i
1 + bi1)W

i
2 + b2, (7)275

where S is the set of the selected experts. If all ex- 276

perts are selected, we have Fm(x) = F (x). Con- 277

sidering that σ(xW i
1+bi1)W

i
2 equals to 0 for most 278

experts, we try to select n experts, where n < k, 279

minimize ||Fm(x)− F (x)||2. The selection meth- 280

ods will assign a score si to each expert for the 281

given input x and select the experts with the n 282

highest scores by 283

S = argmax
A⊂{1,2,...,k},|A|=n

∑
i∈A

si. (8) 284

Groundtruth Selection for the intermediate 285

output σ(h). We can obtain the groundtruth se- 286

lection, which minimizes ||
∑

i∈S σ(xW
i
1 + bi1)− 287

σ(h)||2, by a greedy algorithm. We calculate 288

the sum of positive values in each expert as si 289

and select experts using Equation 8. This selec- 290

tion should approximate to the lower bound of 291

||Fm(x) − F (x)||2. Correspondingly, its perfor- 292

mance will approximate to the ideal performance of 293

an MoEfied model. Meanwhile, it is intractable to 294

directly optimize ||Fm(x)−F (x)||2 because there 295

are too many possible combinations of experts. 296

Similarity Selection. To utilize the parameter 297

information, we average all columns of W i
1 and 298

use it as the expert representation. Given an input 299

x, we calculate the cosine similarity between the 300

expert representation and x as si. 301

MLP Selection. We train a multi-layer percep- 302

tron (MLP), which takes the x as input and predicts 303

the sum of positive values in each expert. Then, 304

we use the prediction as si. This method tries to 305

approximate to the performance of groundtruth se- 306

lection. 307

4 Experiment 308

4.1 Experimental Setups 309

Models and Hyperparameters We use four vari- 310

ants of T5 (Raffel et al., 2020), which are the 311

60-million-parameter T5-Small, the 200-million- 312

parameter T5-Base, the 700-million-parameter T5- 313

Large, and the 3-billion-parameter T5-XLarge. The 314

non-linear activation function is ReLU (Nair and 315

Hinton, 2010). We use Adam as the optimizer and 316

a learning rate of 10−6 for fine-tuning on down- 317

stream tasks. The batch size is set to 64 and the 318

number of epochs is set to 3. 319

Datasets. We use several natural language un- 320

derstanding datasets to evaluate our models. For 321

text classification, we use GLUE benchmark (Wang 322

et al., 2019), including MNLI-matched (Williams 323
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et al., 2018), QNLI (Rajpurkar et al., 2016),324

QQP2, RTE (Dagan et al., 2006), SST-2 (Socher325

et al., 2013), MRPC (Dolan and Brockett, 2005),326

CoLA (Warstadt et al., 2019), and STS-B (Gi-327

ampiccolo et al., 2007). For reading comprehen-328

sion, we use SQuAD (Rajpurkar et al., 2016) and329

RACE (Lai et al., 2017), which are the representa-330

tive datasets for span extraction and multi-choice331

QA, respectively. We report the results on their332

development sets. For MNLI, QNLI, QQP, RTE,333

SST-2, MRPC, RACE, we use accuracy as the met-334

ric. For CoLA, we use matthews correlation coeffi-335

cient as the metric. For STS-B, we use pearson and336

spearman correlation as the metrics. For SQuAD,337

we use F1 score as the metric.338

Expert Construction. For balanced K-Means,339

we use an open-source implementation3. Besides340

Parameter Clustering Split and Co-activation Graph341

Split, we also implement Random Split as a naive342

baseline, which uses an identity matrix as P . We343

set the number of neurons in each expert to 32.344

Correspondingly, the number of experts varies from345

64 to 512 for different T5 variants. With the same346

expert size, the relative computation cost of routing347

is the same as shown in Appendix.348

Expert Selection. Besides Similarity Selection349

and MLP Selection, we also implement Random350

Selection, where we treat each expert as a col-351

lection of vectors with dmodel dimension and ran-352

domly select one of them as the expert represen-353

tation. For Random Selection and Similarity Se-354

lection, the computation complexity for routing355

is O(kdmodel). For MLP Selection, we use a two-356

layer feed-forward network as the architecture. The357

input dimension is dmodel, the intermediate dimen-358

sion is k, and the output dimension is k. The non-359

linear activation function is tanh(·). Its computa-360

tion complexity is O(kdmodel + k2). Compared to361

the computation complexity of FFNs of the origi-362

nal model, O(dmodel · dff ), the computation cost363

of routers is ignorable because k is much smaller364

than dff . For example, k is 128 and dff is 4096365

for T5-Large. For the training of our MLP routers,366

we adopt cross-entropy as the training objective367

and use the Adam optimizer with the learning rate368

of 10−2. The batch size is set to 512 and the num-369

ber of epochs is set to 10. We sample nearly 500370

thousand input representations from the training371

data and split them into the training and develop-372

2https://data.quora.com
3https://github.com/ndanielsen/

Same-Size-K-Means

Model SST-2 MNLI RACE

Small 90.9 82.4 44.7
Small-Distill 91.9 82.6 50.6
Base 94.0 86.4 71.7
Large 96.2 89.5 81.3
XLarge 96.9 90.5 85.6

Table 1: Original Performance of different models on
three downstream tasks. The model architecture is T5.

ment sets with the ratio of 9 : 1. Note that we only 373

use the activation information as supervision. The 374

training time of each FFN is about several minutes 375

on a single GPU. 376

4.2 MoEfication with Different Models 377

In this subsection, we evaluate MoEfication on dif- 378

ferent PLMs. We consider two factors: the model 379

size and whether the model is compressed. For 380

the model size, we use five variants of T5 (Raffel 381

et al., 2020), from T5-Small to T5-XLarge. For 382

convenience, we directly use the scale names as 383

the abbreviations. To investigate the influence of 384

model compression, we compress T5-Large to T5- 385

Small by classic knowledge distillation (Hinton 386

et al., 2015). Specifically, the teacher model is 387

a fine-tuned T5-Large and the student model is a 388

pre-trained T5-Small. The distilled model is de- 389

noted by T5-Small-Distill. The expert construction 390

and selection methods used here are Co-activation 391

Graph Split and MLP Selection, which are proved 392

to be the best combination in Section 4.4. 393

We report the performance of these models on 394

three datasets, SST-2, MNLI, and RACE, in Ta- 395

ble 1. They are the representative datasets for 396

single-sentence classification, sentence-pair clas- 397

sification, and reading compression, respectively. 398

The original performance of PLMs grows as the 399

model size grows, and knowledge distillation im- 400

proves the performance of T5-small. 401

We first calculate the activation statistics of dif- 402

ferent models by inputting the training data of each 403

dataset. The results are shown in Figure 3. From 404

the figure, we have three observations. (1) The acti- 405

vations of these models are sparse. Different from 406

the previous study on models trained with smaller 407

datasets, where the activation ratios are range from 408

10% to 50% (Geva et al., 2021)4, we find most 409

inputs activate less than 10% of the neurons. (2) 410

The activations of larger models are sparser than 411

4Since the activation ratios of a randomly-initialized model
are around 50%, we guess these models do not make full use
of their parameters.
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(a) SST-2 (b) MNLI (c) RACE

Figure 3: CDF of the ratio of activated neurons for each input with different models on three datasets.

(a) SST-2 (b) MNLI (c) RACE

Figure 4: Relative performance of MoEfied models with different sizes on three datasets. Dynamically selecting
10% to 20% neurons can recover nearly 98% original performance for large models such as T5-XLarge.

those of smaller models. For example, 80% inputs412

only activate less than 3% neurons in T5-XLarge413

while 40% inputs activate more than 3% neurons414

in T5-Small. (3) The sparsity is less related to dis-415

tillation than the model size. The CDF curve of416

T5-Small-Distill is close to that of T5-Small.417

Then, we compare the performance of MoEfied418

models with different sizes and ratios of selected419

neurons and report the results in Figure 4. To mea-420

sure the performance of MoEfication, we calculate421

the relative performance of the MoEfied model to422

the original model. From the figure, we have four423

observations. (1) MoEfication works well with424

all models on all three datasets. MoEfied models425

save 80% computation cost of FFNs while main-426

taining over 95% original performance. (2) The427

larger models can use fewer neurons to recover the428

original performance. For example, T5-XLarge429

achieves nearly 98% relative performance on SST-430

2 and MNLI with 10% neurons while T5-Small431

achieves the same results with 30% to 40% neu-432

rons. This result is consistent with the activation433

statistics, that is, larger models are sparser. We434

can expect that MoEfication can work better with435

super large models. (3) Difficult tasks require mod-436

els to select more experts to maintain the perfor-437

mance. From Table 1, we can see that the accuracy 438

of RACE is much lower than the other two tasks, 439

and hence we think RACE is more difficult. Cor- 440

respondingly, the relative performance with 10% 441

neurons on RACE is also lower than those on the 442

other tasks. (4) MoEfication works similarly on T5- 443

Small and T5-Small-Distill, which indicates that 444

MoEfication can work with knowledge distillation 445

for more efficient inference. 446

4.3 Parameter Calibration 447

In practice, there is still a gap between the per- 448

formance of MoEfied models and that of original 449

models because selected experts cannot cover all 450

positive neurons with a limited computation bud- 451

get. Hence, the outputs of MoEfied models will be 452

slightly different from those of original models. To 453

calibrate MoEfied models, we further fine-tune the 454

models on the training set, namely parameter cali- 455

bration. Considering that current routers are based 456

on the first layers of FFNs (W1 and b1), we only 457

optimize the second layers of FFNs (W2 and b2) to 458

ensure routers can also work well after fine-tuning. 459

We evaluate this method on several downstream 460

natural language understanding tasks with T5- 461

Large. The ratio of selected neurons is set to 20%, 462
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MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B RACE SQuAD 1.1 Avg.

Original 89.5 94.4 91.7 87.1 96.2 88.0 59.4 91.2/90.9 81.3 93.2 87.2

MoEfied 87.5 93.2 90.2 86.4 95.4 87.5 55.5 90.6/90.3 79.0 92.2 85.7 (-1.5)
+GT 89.1 94.1 91.4 86.4 96.3 88.3 58.8 90.9/90.8 80.8 93.2 86.9 (-0.3)
+Calib 88.7 93.6 91.3 87.5 96.2 89.3 59.4 91.0/90.6 79.9 92.3 86.9 (-0.3)

Table 2: Results of T5-Large on GLUE benchmark and two QA datasets. The last row reports the differences
between the original model and MoE+Calib. MoEfied models with parameter calibration achieve comparable
performance to original models.

Construction Selection SST-2 MNLI RACE

- - 96.2 89.5 81.3

Random

Groundtruth 95.9 87.3 80.0
Random 65.9 36.3 29.2
Similarity 90.3 75.9 56.7
MLP 94.1 84.1 75.0

Groundtruth 95.5 88.8 80.9
Parameter Random 70.6 36.4 41.8
Clustering Similarity 86.7 66.3 63.6

MLP 95.9 87.5 78.7

Groundtruth 96.3 89.1 80.8
Co-Activation Random 85.3 68.5 54.7
Graph Similarity 92.2 81.4 71.0

MLP 95.4 87.5 79.0

Table 3: Comparisons of different combinations of
expert construction and selection methods using T5-
Large. The first row is the original performance. The
best results in each group are underlined and the best
results on each dataset are in boldface.

which is sufficient for T5-Large as show in Figure 3.463

We use a small learning rate of 10−7 for calibra-464

tion. The other hyper-parameters remain the same465

as fine-tuning. The results are shown in Table 2.466

MoEfied refers to the combination of Co-activation467

Graph Split and MLP Selection. MoEfied+GT468

refers to the combination of Co-activation Graph469

Split and Groundtruth Selection. MoEfied+Calib470

is the calibrated version of MoEfied.471

We observe that MoEfication introduces small472

performance loss (about 1.5% on average) with an473

80% reduction of the computation cost in FFNs.474

Meanwhile, calibration can effectively deal with475

the issue of the precision errors brought by MoEfi-476

cation. For example, MoEfied+Calib improves477

MoEfied by nearly 4% on CoLA and achieves the478

same average performance as MoEfied+GT.479

4.4 Comparisons of MoEfication Strategies480

To find the most effective MoEfication strategy, we481

evaluate different combinations of expert construc-482

tion and selection methods. We use T5-Large and483

also set the ratio of selected neurons to 20%. The484

Model MLM Loss

MoE Pre-training 3.09

Standard Pre-training 2.88 (-0.21)
+MoEfication 3.02 (-0.07)
+GT 2.95 (-0.14)

Table 4: Comparisons of MoE models pre-trained from
scratch and modified by MoEfication. We report the
MLM loss on the validation set. Standard pre-training
with MoEfication is better than pre-training a MoE
model from scratch.

results are shown in Table 3. From the table, we 485

have two observations: 486

(1) For expert construction, Co-activation Graph 487

Split is the best method according to the overall 488

performance. Compared to the other two meth- 489

ods, Co-activation Graph Split directly uses the 490

co-activation information to group the neurons ac- 491

tivating simultaneously into the same expert. 492

(2) For expert selection, the performance of 493

Groundtruth Selection is close to that of the origi- 494

nal model, which indicates that 20% parameters of 495

FFNs are sufficient to achieve good performance on 496

T5-Large. Meanwhile, MLP Selection is the best 497

expert selection method and can work well with 498

both Parameter Clustering Split and Co-activation 499

Graph Split. 500

4.5 MoEfication vs. MoE pre-training 501

In this subsection, we compare the performance 502

of two kinds of MoE models. The first one is 503

pre-trained from scratch. The second one is trans- 504

formed from a standard model by MoEfication. For 505

fair comparisons, we pre-train one MoE model and 506

one standard model with the same model size from 507

scratch using WikiText-103 (Merity et al., 2017). 508

The pre-training objective is masked language mod- 509

eling (MLM). The model architecture is the same 510

as T5-Small. For pre-training, we use the batch size 511

of 4096, the learning rate of 0.01, the maximum 512

sequence length of 512, and the Adam optimizer. 513

The number of experts is set to 64 and the router 514
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Figure 5: Selection Frequency of 64 experts in each
encoder layer of MoEfied T5-Small. The frequency of
ideal balance selection is 0.2 while the distribution is
much unbalanced.

will select 32 of them for a single input.515

We report the MLM loss on the validation set in516

Table 4. From the table, we have two observations.517

(1) The loss of the standard pre-trained model is518

lower than that of the pre-trained MoE model. We519

guess that the optimization of MoE models is diffi-520

cult than that of the standard models because of the521

restricted selection of MoE models. (2) MoEfied522

models achieve better performance than the pre-523

trained MoE model. It indicates that pre-training a524

standard model then conducting MoEfication can525

be a better option than pre-training an MoE model526

from scratch.527

5 Analysis528

In this section, we investigate the routing patterns529

of MoEfied models and validate whether they are530

consistent with those of MoE models trained from531

scratch.532

First, we count the selection frequency of each533

expert. Previous work introduces training objec-534

tives to ensure balance selection to make full use535

of model parameters (Lepikhin et al., 2021; Fedus536

et al., 2021). We report the results of the MoEfied537

T5-Small with 20% experts on SST-2 in Figure 5.538

From the figure, we observe that the frequency dis-539

tribution of expert selection is much unbalanced5.540

There are some commonly-used experts, whose fre-541

quencies are higher than 80%. Meanwhile, there542

5Unbalanced selection will not influence the computation
efficiency with current MoE implementations such as Fast-
MoE (He et al., 2021a).

(a) The 8 most selected experts

<latexit sha1_base64="uQ9s3lDgnZCE7dAlzOw8in4mOBU=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmItFgQ3YNRkqijSUmvBIgZHa4wITZR2buGsiGP7DxV2wsNMbW1s6/cXgUCp5kkpNz7p2Zc7xICo2O822l1tY3NrfS25md3b39A/vwqKbDWHGo8lCGquExDVIEUEWBEhqRAuZ7Eure8Hbq1x9AaREGFRxH0PZZPxA9wRkaqWOftxBGmOTYBa0MgBapH2qk5j7gCF0KowgU6knHzjp5Zwa6StwFyZIFyh37q9UNeexDgFwyrZuuE2E7YQoFlzDJtGINEeND1oemoQHzQbeTWZ4JPTNKl/ZCZU6AdKb+3kiYr/XY98ykz3Cgl72p+J/XjLFXbCciiGKEgM8f6sWSYkin5dCuUCa3HBvCuBLmr5QPmGKmC6UzpgR3OfIqqV3m3UL+6r6QLd0s6kiTE3JKcsQl16RE7kiZVAknj+SZvJI368l6sd6tj/loylrsHJM/sD5/AP3jnAo=</latexit>

(b) The 8 least selected experts
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Figure 6: Input similarities between experts in the last
encoder layer of MoEfied T5-Small. For the most
selected experts, both the self-similarities and inter-
similarities are low. For the least selected experts, the
self-similarities are much higher than inter-similarities.

are also some long-tail experts whose frequencies 543

are lower than 10%. 544

Then, we calculate the self-similarities and inter- 545

similarities of inputs between experts by sampling 546

10, 000 inputs for each expert. We report the results 547

of the last layer in Figure 6. For the most selected 548

experts, which are selected by most inputs, the 549

self-similarities are close to the inter-similarities. 550

For the least selected experts, the self-similarities 551

are much higher than the inter-similarities, which 552

suggests that the inputs of each expert have obvious 553

cluster structure. 554

From these results, we can conclude the routing 555

patterns of MoEfied models: there are some gen- 556

eral experts, which can work for most inputs, and 557

some input-specific experts, which are seldom used 558

and may work in specific domains or tasks. This 559

observation may inspire future work on training 560

MoE models from scratch. 561

6 Conclusion 562

In this work, we propose MoEfication, a new model 563

acceleration technique, for large-scale Transformer 564

models. MoEfication utilizes the sparse activation 565

phenomenon in FFNs of Transformer to convert 566

a normal model to its MoE version with the same 567

parameters. Experimental results show that large 568

MoEfied models can achieve comparable perfor- 569

mance to the original models using only 10% to 570

20% computation cost of FFNs. By studying the 571

routing patterns of MoEfied models, we find that 572

there are general and input-specific experts, which 573

may inspire future work on training MoE models. 574

In the future, we plan to extend MoEfication to 575

other Transformer models, such as BERT and GPT, 576

and design better strategies for MoEfication. We 577

hope MoEfication can benefit the real-world appli- 578

cations of large PLMs with better efficiency. 579
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A Activation Statistics before790

Fine-tuning791

We count the activation statistics of PLMs be-792

fore fine-tuning on the pre-training data containing793

about 50, 000 input tokens. The results are shown794

in Figure 7. We observe that PLMs before fine-795

tuning also have the sparse activation phenomenon796

and fine-tuning brings little change.797
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Figure 7: CDF of the ratios of activated neurons for
each input with different models before fine-tuning.

Then, we compare the activations of pre-trained798

models and those of fine-tuned models. We use799

the average ratio of activated neurons as the index.800

The results are shown in Table 5. We observe that801

fine-tuning increases the average activation ratio802

for most models. The reason may be that differ-803

ent neurons start to learn the same task-specific804

patterns during fine-tuning. Interestingly, the in-805

crease on RACE is smaller than that on the other806

datasets. Since RACE is more difficult than the807

other datasets, there should be more task-specific808

patterns in RACE and less neurons learn the same809

patterns. Moreover, the pre-training task MLM re-810

quires more patterns than RACE so the ratios of811

MLM are lowest.812

Small Base Large XLarge

MLM 4.18 2.85 2.17 1.52

SST-2 5.53 2.24 2.50 2.46
MNLI 5.59 3.25 2.44 2.45
RACE 4.94 3.08 1.98 1.79

Table 5: Average ratio of activated neurons for each
input. MLM represents the pre-trained models with
masked language modeling. SST-2, MNLI, RACE rep-
resent the fine-tuned models on each dataset.

B Results of Graph Partition 813

Co-activation Graph Split achieves good perfor- 814

mance in expert construction. Here, we study 815

whether the co-activation graph is suitable for parti- 816

tioning. We report the results of graph partition of 817

T5-Large on SST-2 in Figure 8. Smaller ratios of 818

edgecuts, which straddle partitions, mean that more 819

co-activation pairs are included in experts. We only 820

report the results of encoder layers because all ra- 821

tios of decoder layers are smaller than 0.001. From 822

this figure, we can see that the overall ratio is small 823

and these graphs are suitable for partitioning. 824
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Figure 8: Ratio of edgecuts in different layers.

C Accuracy of MLP Selection 825

MLP selection trains MLPs to fit the groundtruth 826

selection. In this part, we report the accuracy of 827

MLPs in T5-Large fine-tuned on SST-2. The results 828

are shown in Figure 9 and 10. The overall accuracy 829

of the encoder is about 0.8 and the overall accuracy 830

of the decoder is about 0.7. 831

0 5 10 15 20
Layer

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Figure 9: Accuracy of MLPs of encoder layers.
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Figure 10: Accuracy of MLPs of decoder layers.

11



D Relative Cost of Routing832

In this work, we set the number of neurons in each833

expert to 32. Then, the number of experts in each834

layer k is dff
32 . In most Transformer models, dff =835

4dmodel. The computation complexity of Similarity836

Selection for each input is837

O(kdmodel) = O(
d2model

8
). (9)838

The computation complexity of FFNs for each in-839

put is840

O(dmodel · dff ) = O(4d2model). (10)841

Then, the relative cost of routing to that of FFNs is842

constant for different models. It is also similar to843

MLP Selection.844
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