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ABSTRACT

A central challenge in artificial intelligence is designing systems that replicate
expert cognition in domains where decisions require holistic data synthesis and
deliberative reasoning. While large language models (LLMs) have achieved re-
markable progress, their monolithic and sequential architectures impose cogni-
tive bottlenecks that limit their ability to reason over multi-modal evidence or
resolve competing hypotheses. Recent advances in multi-agent frameworks pro-
vide a new paradigm for overcoming these limitations by distributing reasoning
across specialized agents and enabling structured deliberation. We present TC-
MAGENT, a novel multi-agent architecture that operationalizes a distributed and
reflective reasoning workflow. Our framework introduces two key innovations:
(i) parallel evidence synthesis, where agents process heterogeneous inputs con-
currently to form a unified representation, and (ii) a collaborative deliberation
module, inspired by clinical peer review, in which agents adversarially refine hy-
potheses to surface trade-offs and converge on robust decisions. This process is
further enhanced by an experiential reflection mechanism that learns from his-
torical reasoning traces, enabling continual self-improvement. We validate TC-
MAGENT on a multi-modal clinical benchmark in Traditional Chinese Medicine
(TCM), a canonical domain where expert-level reasoning requires holistic integra-
tion of patient data and careful negotiation of conflicting principles. Experiments
demonstrate that TCMAGENT significantly outperforms strong LLM baselines
in safety, coherence, and interpretability of treatment recommendations. These
results provide the first empirical evidence that distributed, deliberative agen-
tic architectures can overcome the cognitive bottlenecks of monolithic models,
marking a step toward safer and more reliable AI in knowledge-intensive do-
mains. We release our code for reproduction in the anonymous repository here:
https://anonymous.4open.science/r/TCM-Agent-B5EF.

1 INTRODUCTION

A key frontier in artificial intelligence (AI) is developing systems that can replicate expert cognition
in domains requiring holistic data synthesis and deliberative reasoning. Such domains include clin-
ical medicine, legal analysis, and strategic planning, where decisions depend on integrating diverse
evidence and resolving competing principles. Current Large Language Models (LLMs), while pow-
erful, are fundamentally limited by their sequential and monolithic architectures (Van et al., 2024;
Zheng et al., 2024; Xiao et al., 2024; Luo et al., 2025; Cui et al., 2025; Ran et al., 2025). These
limitations make it difficult for LLMs to emulate the distributed, reflective workflows that underpin
real expert judgment. Traditional Chinese Medicine (TCM) presents a canonical example of this
challenge. As a medical system practiced for millennia, TCM’s efficacy hinges on holistic diagnosis
derived from heterogeneous patient data (Yue et al., 2024b; Ma et al., 2021; Wang et al., 2023). Its
global relevance, especially for chronic and complex conditions, underscores the need for compu-
tational frameworks capable of mastering this form of reasoning (Zhang et al., 2023; Zhuang et al.,
2025). Yet the core cognitive tasks of TCM—synthesizing multi-modal evidence and deliberating
over conflicting therapeutic principles—remain beyond the reach of conventional AI architectures
(Zhang et al., 2025).

Existing LLM-based approaches for TCM reflect this mismatch (Zhang et al., 2025; Wei et al.,
2024). Most adopt a conversational, sequential-input paradigm, where reasoning unfolds through
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Figure 1: Overview of our proposed TCMAGENT framework. A) illustrates the analysis module,
which take the input data and integrates the analysis. B) illustrates the diagnosis module. This
module make the diagnose and design treatment principle with help of outer TCM knowledge base.
C) illustrates the discussion module, where the debate happens. It incorporates a reflection module
to help refine final treatment recommendation.

iterative prompt-response loops (Yang et al., 2025; Zhang et al., 2023; Zhuang et al., 2025; Chen
et al., 2024). This fragments the clinical picture, preventing the holistic, single-pass assessments
performed by human practitioners. As conversations scale, context is lost and models cannot au-
tonomously synthesize a unified patient record, leading to inefficiency and diagnostic errors (Laban
et al., 2025; Yang et al., 2025). Moreover, monolithic LLMs lack mechanisms for structured, ad-
versarial deliberation, a cornerstone of sound judgment in high-stakes domains (Zhang et al., 2025;
Liu et al., 2025; Wang et al., 2025a). Clinical decision-making is not a static classification task but
a dynamic process of differential diagnosis, conflict resolution, and trade-off evaluation. Without
a formal structure for proposing, critiquing, and refining hypotheses, LLMs are prone to plausible
yet clinically flawed recommendations, a risk magnified by data scarcity in TCM (Yue et al., 2024b;
Ren et al., 2022).

The recent maturation of multi-agent frameworks offers a new architectural paradigm to overcome
these limitations. By distributing reasoning across specialized agents and enabling deliberative in-
teraction, multi-agent systems make it possible to move beyond the sequential bottlenecks of mono-
lithic models. To this end, we introduce TCMAGENT, a multi-agent framework that operationalizes
the cognitive workflow of expert TCM practitioners. Unlike prior multi-agent systems that focus
primarily on cooperative task decomposition or distributed planning, our framework introduces two
previously unexplored innovations. First, we implement parallel evidence synthesis, where spe-
cialized agents concurrently process the entire multi-modal patient record to build a unified, holistic
representation. Second, we design a collaborative deliberation module inspired by clinical peer
review (Pedersen & Dyrkolbotn, 2014). Here, agents representing distinct clinical perspectives en-
gage in a structured adversarial debate to challenge assumptions, surface trade-offs, and converge on
robust conclusions (Arnesen et al., 2024; Nguyen et al., 2025). This process is further enhanced by
an experiential reflection mechanism that allows the system to learn from its own reasoning traces,
a form of meta-learning absent in conventional agent frameworks.

We empirically validate our framework through extensive experiments on a multi-modal TCM clini-
cal dataset. Our results show that TCMAGENT consistently outperforms strong LLM baselines, sig-
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nificantly improving the safety, correctness, and completeness of generated treatment plans across
both proprietary and open-source models. Through systematic ablation studies, we isolate the im-
pact of our core architectural innovations. We demonstrate that knowledge-grounded inference is
critical for reducing factual errors and that the deliberative debate and reflection mechanisms are
essential for surfacing clinical trade-offs and mitigating risks. These findings provide strong em-
pirical evidence that by operationalizing a distributed and deliberative workflow, our framework
successfully overcomes the cognitive bottlenecks of conventional, monolithic approaches.

Our main contributions are as follows: (1) We propose TCMAGENT, a novel multi-agent ar-
chitecture that operationalizes a holistic and deliberative reasoning workflow, moving beyond the
sequential processing limitations of current models. (2) We introduce a collaborative deliberation
mechanism, where agents adversarially refine hypotheses to explicitly model clinical trade-offs, en-
hancing safety and interpretability. This is augmented by an experiential reflection module that
enables continual self-improvement by learning from past reasoning traces and outcomes. (3) We
provide the first empirical demonstration that a distributed and deliberative agentic architecture sig-
nificantly outperforms monolithic LLM baselines in a complex, knowledge-intensive medical do-
main, validating its effectiveness in improving clinical safety, coherence, and interpretability.

2 RELATED WORK

LLMs in TCM domain LLMs have shown significant promise in field of TCM, addressing chal-
lenges such as the integration of holistic diagnostic approaches and the interpretation of complex
medical texts (Chen et al., 2025; Kong et al., 2025). Recent studies demonstrate the potential of
LLMs in various TCM tasks including clinical diagnosis and treatment recommendation (Haoyu
et al., 2024; Yue et al., 2024b). Models such as HuaTuoGPT (Zhang et al., 2023; Chen et al., 2024),
JingFang (Yang et al., 2025) and and TCM-KLLaMA (Zhuang et al., 2025) have been trained on
huge volumes of TCM-specific corpora. These corpora are collected from real-world conversationss
between doctor and patient and then turned into format of Question-Answering (QA) for purpose
of instruction fine-tuning, achieving notable performance improvements (Zhang et al., 2023; Chen
et al., 2024). Despite these advancements, challenges remain in adapting LLMs to TCM. Studies
have pointed out issues such as data scarcity, model adaptability and the standardization of evalu-
ation metrics (Zhang et al., 2025). Furthermore, limitation of conversation-based methods restricts
model make a holistic decision given patient information (Laban et al., 2025; Liu et al., 2023). These
limitations underscore the need for more sophisticated approaches to fully harness the potential of
LLMs in the TCM domain.

LLM Agent for medical decision-making The integration of multi-agent systems with LLMs
has been explored to address complex medical tasks that require specialized knowledge and col-
laborative reasoning (Wang et al., 2025a;b; Tang et al., 2023). One notable example is the
ClinicalAgent system (Yue et al., 2024a), which utilizes a multi-agent architecture to per-
form clinical trial tasks. By combining GPT-4 (Achiam et al., 2023) with multi-agent architectures
and advanced reasoning technologies, ClinicalAgent demonstrates enhanced performance in
clinical trial outcome prediction, achieving a noticeable improvement of predictive performance.
Similiarly, Pandey et al. (2024) employs specialized LLM agents to automate prior authorization
tasks in healthcare. Their system breaks down complex tasks into manageable sub-tasks, improving
efficiency and accuracy in determining medical necessity. These studies highlight the effective-
ness of multi-agent systems in handling intricate medical decision-making processes. However, the
application of such systems to TCM remains limited, with few studies exploring the potential of
multi-agent LLMs in this domain

3 THE TCMAGENT FRAMEWORK

3.1 PROBLEM FORMULATION

The clinical reasoning process in Traditional Chinese Medicine (TCM) is a complex, multi-step in-
ference task over high-dimensional, heterogeneous data. We formalize this challenge as constructing
a mapping function F : P → T from a multi-modal patient space P to a composite treatment space
T . For any given patient i, the input pi ∈ P is a tuple of six modalities, pi = (p

(1)
i , . . . , p

(6)
i ), where
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each modality p
(k)
i resides in a distinct data space X (k). The input space is thus a Cartesian prod-

uct, P =
∏6

k=1 X (k), encompassing demographics, laboratory results, pathology reports, physical
examinations, imaging, and electronic medical records (EMRs).

The target output Ti ∈ T is a structured tuple comprising three interdependent components: herbal
medication (T med

i ), lifestyle interventions (T life
i ), and dietary guidelines (T diet

i ). The output space
is defined as T = Ymed × Y life × Ydiet. Our objective is to design an autonomous system F that
can reliably generate a clinically valid and personalized recommendation Ti for any input pi. The
central architectural challenge is to structure F such that it is not only context-aware for individual
patients but also faithful to the deep, structured knowledge inherent in TCM.

3.2 ARCHITECTURAL OVERVIEW

We introduce TCMAGENT, a multi-agent framework that operationalizes the clinical workflow
as a compositional sequence of three specialized modules: Distributed State Encoding (Fenc),
Knowledge-Grounded Inference (Finf), and Deliberative Recommendation Generation (Frec). The
global mapping F is thus a functional composition:

F = Frec ◦ Finf ◦ Fenc.

First, the Distributed State Encoding module leverages parallel agents to transform the raw, multi-
modal input pi into a unified patient representation Ri. Next, the Knowledge-Grounded Inference
module anchors this representation in a domain-specific knowledge base to produce a formal diag-
nosis Di and a guiding treatment principle Pi. Finally, the Deliberative Recommendation Genera-
tion module simulates a structured, adversarial debate to synthesize this information, weigh clinical
trade-offs, and generate the final recommendation Ti.

3.3 DISTRIBUTED STATE ENCODING MODULE

To address the challenge of heterogeneous and high-dimensional inputs, the encoding module
(Fenc) parallelizes information processing. It employs a set of modality-specific encoder agents,
{A(k)

enc}6k=1, each responsible for a single data stream. Each agent A(k)
enc : X (k) → R(k) functions

as a domain expert, mapping its assigned modality into a structured report space R(k). This process
occurs concurrently across all modalities:

∀k ∈ {1, . . . , 6}, R(k)
i = A(k)

enc (p
(k)
i ).

Each report R(k)
i contains distilled observations and preliminary interpretations. These distributed

analyses are subsequently integrated by an aggregation function gagg into a holistic patient state
representation Ri ∈ R:

Ri = gagg(R(1)
i , . . . ,R(6)

i ).

This architecture mitigates information bottlenecks and attentional bias associated with sequential
processing, ensuring a robust foundation for downstream reasoning.

3.4 KNOWLEDGE-GROUNDED INFERENCE MODULE

The inference module (Finf) translates the synthesized patient state Ri into an interpretable, clini-
cally actionable context. It begins with a diagnostic agent, Adiag : R → Ydiag, which identifies the
underlying TCM syndrome pattern, yielding a formal diagnosis Di = Adiag(Ri) that is explicitly
traceable to evidence in Ri.

To ensure reasoning is grounded in established medical knowledge, we employ a retrieval-
augmented mechanism. The diagnosis Di serves as a query to a vectorized TCM knowledge base K
to retrieve the top-k most relevant clinical precedents or guidelines, denoted Dret

i :

Dret
i = topk

dj∈K
(sim(embed(Di), embed(dj))) .

A principle agent, Aprinc : Ydiag ×Kk → Yprinc, then synthesizes the diagnosis Di and the retrieved
documents Dret

i to formulate a high-level therapeutic principle Pi. The module’s output is a unified
clinical context tuple, Ci = (Di,Pi), which serves as the scaffold for the final recommendation.
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Figure 2: Data Descriptions. (a) summarize the compliant of all patients. (b) shows the frequency
of patients across different gender and age. (c) demostrates the Top-5 frequent Physical Exam
findings.

3.5 DELIBERATIVE RECOMMENDATION GENERATION MODULE

The final recommendation is produced by the recommendation module (Frec) through a policy of
structured adversarial debate and case-based reasoning. We instantiate a debate between two agents
with opposing clinical dispositions: an ”aggressive” agent (Aagg) that proposes assertive interven-
tions and a ”conservative” agent (Acon) that raises cautionary counterpoints and prioritizes safety.
Over n rounds, these agents generate a deliberation trace H(n) = {(u(j)

agg, u
(j)
con)}nj=1, conditioned

on the clinical context Ci. A neutral judge agent, Ajudge, resolves the debate by synthesizing the
competing arguments into a final, balanced recommendation Ti.
This adversarial process makes clinical trade-offs explicit, enhancing safety and interpretability.
To further ground this reasoning, we incorporate a reflection mechanism that retrieves deliberation
traces Hhist from historical cases with similar clinical contexts. This retrieved experience provides a
contextual prior, enabling the judge to ensure consistency with established best practices:

Ti = Ajudge(Ci, H
(n),Hhist).

By learning from a memory of past reasoning processes, the framework continually refines its
decision-making policy, improving the reliability and robustness of its outputs.

4 EXPERIMENTS

4.1 SETUP.

Dataset In this study, we leverage data from ClinicalLab (Yan et al., 2024) with their permis-
sions, which contains 1,500 examples with features including patients’ medical histories, laboratory
examinations, physical examinations, imaging studies, demographic information, and pathological
assessments. Some statistical information of dataset is shown in Figure 2. Detail of dataset is shown
in Appendix C.1.

Baseline. To assess the generality of our approach, we evaluate TCMAGENT across
a diverse set of large language models (LLMs). The evaluation covers both propri-
etary models including GPT-4.1-mini (OpenAI, 2025), Gemini-2.0-flash (Comanici
et al., 2025), and Claude-3-haiku (Anthropic, 2024)—and open-source models—such as
GPT-OSS-20b (Agarwal et al., 2025), LLaMA-3.3-70b-instruct (Grattafiori et al., 2024),
and DeepSeek-v3 (Liu et al., 2024). In all cases, these LLMs also serve as the backbone for
TCMAGENT, enabling a fair comparison across different model families. In terms of input, since
our data consists of multi-dimension, we feed data to LLMs step-by-step in order to mimic clinical
scenario, but for TCMAGENT, we can directly feed data of all dimensions.

Evaluation. We leverage LLM-AS-JUDGE (Gu et al., 2024) to evaluate outcomes due to data
scarcity of evaluating agent framework in TCM domain. We adopt GPT-4.1-mini (OpenAI,
2025) with a sampling temperature set to 0, as the judge of evaluation. We use our designed metric
to evaluate the treatment recommendations from multiple dimensions. The overview of designed
metrics is shown in Appendix A.
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Table 1: Performance of TCMAGENT vs. Standalone LLMs. Results are averaged across three
recommendation types (Diet, Lifestyle, Medication). The highest score for each metric within a
model pair is in bold. Metrics shown are Relevance (Rel.), Coherence (Coh.), Completeness (Com-
plete.), Correctness (Cor.), Safety (Sa.), Complexity (Complex.), Actionability (Act.), and Termi-
nology (Ter.).

Model Rel. ↑ Coh. ↑ Complete. ↑ Cor. ↑ Sa. ↑ Complex. ↑ Act. ↑ Ter. ↑

Proprietary Models

GPT-4.1-mini
w/o TCMAgent 85.82 85.14 83.72 86.72 82.22 75.42 83.29 85.21
w/ TCMAgent 92.73 91.34 94.26 92.64 89.82 76.19 89.56 90.54

Claude-3-haiku
w/o TCMAgent 82.08 82.91 77.17 82.39 80.44 71.00 81.39 82.69
w/ TCMAgent 89.67 88.61 89.53 90.12 86.75 71.59 87.11 87.53

Gemini-2.0-flash
w/o TCMAgent 86.69 87.52 87.04 87.49 84.87 78.21 86.40 88.54
w/ TCMAgent 87.67 86.32 88.98 87.10 87.11 75.92 86.55 84.98

Open-Source Models

GPT-OSS-20b
w/o TCMAgent 80.01 79.31 79.32 80.97 83.11 50.81 74.58 80.17
w/ TCMAgent 91.80 89.68 92.28 91.73 92.53 50.93 88.45 90.80

LLaMA-3.3-70b
w/o TCMAgent 85.23 86.36 82.22 78.57 84.00 61.49 83.35 82.94
w/ TCMAgent 81.63 82.88 86.60 83.28 82.92 54.54 76.09 83.24

Deepseek-v3
w/o TCMAgent 80.84 80.12 78.85 82.29 82.44 58.37 74.95 82.93
w/ TCMAgent 93.38 91.47 93.42 93.91 94.50 61.81 89.28 94.13

4.2 MAIN RESULT

TCMAgent against LLMs. Table 1 provides a systematic comparison between closed-source
and open-source LLMs with and without the integration of TCMAGENT. First, we find that equip-
ping diverse backbone models with TCMAGENT generally leads to measurable performance gains
across multiple evaluation dimensions, including relevance, coherence, completeness, and safety,
though the scale of improvement varies depending on the model family. For example, in the case
of strong proprietary backbones such as GPT-4.1-mini and Claude-3-haiku, incorporating
TCMAGENT consistently elevates performance across nearly all criteria. This result is particularly
noteworthy because it indicates that even highly capable commercial models can still benefit from
the structured, multi-agent reasoning pipeline of TCMAGENT. In these settings, the framework
contributes additional layers of interpretability and safety, thereby complementing the raw linguistic
and generative capabilities of the backbone models.

Second, a different trend emerges in models like Gemini-2.0-flash, where the observed effect
of integration is more nuanced. Specifically, while the framework significantly improves complete-
ness and safety by enforcing knowledge-grounded reasoning and cross-agent validation, it intro-
duces a slight decline in coherence and termination quality. This trade-off suggests that, for some
already fluent and well-regularized models, the overhead of multi-agent debate and reflection may
affect the naturalness or conciseness of generated outputs, even as factual reliability improves. Such
a pattern points to the need for careful calibration between fluency-oriented and safety-oriented ob-
jectives when extending advanced commercial systems with multi-agent structures. Moreover, the
case of LLaMA-3.3-70b highlights a unique and somewhat unexpected outcome. Here, while
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completeness benefits from the structured workflow of TCMAGENT, other important metrics show
noticeable declines. This discrepancy suggests that certain open-sourced backbones may not align
well with the collaborative reasoning paradigm that TCMAGENT enforces, potentially due to dif-
ferences in pretraining corpora, alignment strategies, or decoding dynamics. Such findings under-
score the possibility that not all models derive uniform benefits from the same framework, and that
mismatches between agent design and model architecture may lead to performance degradation in
specific dimensions. The detailed result is shown in Section C.3
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Figure 3: Analysis result of TCMAGENT. All models shown in x-axis are incorporated with
TCMAGENT. Other than consistency, detected error and contraindication are the lower the better.
The result of treatment recommendation is averaged from result of Diet, Lifestyle and Medication.
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Figure 4: Debate Analysis. We evaluate the treat-
ment recommendations and the result on the fig-
ure is averaged.

TCMAgent analysis. Figure 3 presents the
performance of TCMAGENT under different
LLM backbones. We have several observations
from this figure: (1) In terms of consistency,
all models remain at a stable level across di-
agnose, treatment principle and treatment rec-
ommendations. For example, consistency score
of GPT-4.1-mini are close to one through-
out three stages. It indicates the outputs of
each module of TCMAGENT are logically con-
nected with each other. (2) Contraindication
tends to decrease from Diagnose stage to Treat-
ment Recommendation stage, with the largest
gains often appearing after the Principle stage
when safety checks are most explicit. It implies TCMAGENT increasingly enforces patient-specific
constraints as the plan crystallizes, yielding safer recommendations. (3) The trend of detected error
is fluctuating. For most models, the detected error would decrease in Principle stages compared to
Diagnose stage, but the error would increase in Treatment recommendation stage. It reveals that
within output from each module, there are some factual or logical errors. Such errors are hard to
solve during the process of workflow moving forward. Taken together, these observations imply that
TCMAGENT is capable of making patient safe. The logical connections between each module are
strong while there are some errors within output of each module. The completed result is presented
in Section C.3.
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Figure 5: Retrieval Analysis. We evaluate the
output of Treatment Principle.
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Figure 6: Reflection Analysis. We evaluate the
output of Treatment Principle.
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Impact of Retrieval The impact of incorporating retrieval is presented in the left panel of Figure 5.
We test the performance of TCMAGENT under backbone of GPT-4.1-mini, LLaMA3.3-70b
and Gemini-2.0-flash. We observe that enabling retrieval leads to a substantial reduction in
both Detected Error rate and Contraindication score. For example, the detected error and contraindi-
cation of GPT-4.1-mini drop from around 0.4 and 0.07 to around 0. It demonstrates that access
to a structured Knowledge Base enhances the system’s capacity to ground its reasoning in authori-
tative TCM knowledge. This grounding reduces the likelihood of generating factually incorrect or
clinically unsafe treatment plans. Moreover, the observed improvement holds consistently across
different backbone models of TCMAGENT, suggesting that the benefit stems from the retrieval
mechanism itself rather than from the characteristics of a specific LLM. Detailed result is shown in
Appendix C.3.

Impact of Reflection The effect of integrating the Reflection module is illustrated in the right
panel of Figure 6. We test the performance of TCMAGENT under backbone of GPT-4.1-mini,
LLaMA3.3-70b and Gemini-2.0-flash. We observe that incorporating reflection results in
a clear reduction of both Detected Error and Contraindication scores, indicating that re-examining
the debate process enables the system to identify and correct potential risks or inconsistencies that
may otherwise remain unresolved. This reduction highlights that reflection contributes not only to
mitigating local mistakes but also to strengthening the overall robustness of the reasoning trajectory.
Furthermore, the consistent improvement observed across different backbone models demonstrates
that the advantage of reflection is independent of any particular LLM architecture and instead derives
from the structured self-assessment mechanism itself. Detailed result is shown in Appendix C.3.
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Figure 7: Robust Analysis. We evaluate TCMA-
GENT with backbone of Gemini-2.0-flash
under different missing input modality. The result
is averaged. Lower the increase rate, lower sensi-
tivity.

Impact of Debate We investigate the
effect of debate in Figure 4. We test
the performance of TCMAGENT un-
der backbone of GPT-4.1-mini,
Claude-3-haiku-20240307 and
Gemini-2.0-flash. We study perfor-
mance of TCMAGENT under setting of: (1)
With Debate, (2) No Debate, (3) Use opinion
of Aggressive debator, (4) Use opinion of
Conservative debator. The overall trend is
that debate has the lowest detected error. For
example, GPT-4.1-mini achieve lowest
detected error at debate. It suggests debate
can help system avoid too risky treatment plan
for patients. Also, we observe that no-debate
achieves the second best performance in
general. It indicates that the inherently the
judge who is responsible for generating final
treatment recommendation, is conservative
about the treatment and thus less likely to
voilate conservative principle to produce
aggressive treatments, which would bring more
errors. Also we observe that unlike other two models, conservative debator performs worse than its
aggressive debator. It suggests that the conservative debator in Claude-3-haiku-20240307
may exhibit overly cautious tendencies, which paradoxically introduce errors by neglecting effective
therapeutic options or by generating vague, underspecified recommendations. Such an outcome
highlights that the benefit of debate does not stem solely from the presence of “conservative” voices,
but from the dynamic interaction between divergent perspectives and the subsequent adjudication
by the judge.

Robustness study We evaluate robustness of TCMAGENT under different missing input con-
ditions and the result is shown in Figure 7. We investigate the contraindication change, where
contraindication measures if treatment is risky to patient or not, of TCMAGENT with backbone
of Gemini-2.0-flash under absence of each input feature (demographics, physical exam, lab
exam, pathology, EMR, and imageological exam). In the figure, Lower the contraindication change,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

less sensitivity for our framework toward the input feature. Results demonstrate that TCMAGENT
exhibits differential sensitivity to various missing modalities. We observe that pathology and ima-
geological examinations prove most critical for patient safety. Then, Laboratory examination and
EMR data occupy intermediate positions. Demographic information shows the least impact. These
findings imply availability of pathology and imageological exam are most insightful for diagnosis
and treatment principle and thus can significantly improve reliability of treatment recommendations.
Higher robustness to missing demographics suggests this information contributes less critically to
safety-related decision making.
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Figure 8: Actionability Analysis. We evalu-
ate of actionability of TCMAGENT’s treatment
across different LLM backbones.
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Figure 9: Consistency Analysis. We evaluate
consistency of TCMAGENT’s treatment recom-
mendation with different LLM backbones.

Cross-backbone Analysis To evaluate cross-backbone consistency, which refers to the degree
to which different backbones produce similar outputs when given the same patient case, we ana-
lyze semantic similarity using Jaccard similarity coefficients with TGMAGENT with backbones of
four leading language models: Claude-3-Haiku, DeepSeek-V3, Gemini-2.0-Flash, and
GPT-4.1-Mini. The result is presented in Figure 9. The range of similarity score is from 0.14 to
0.19, which exhibits a weak alignment. This pattern indicates that TCMAgent with different back-
bones display diversity when it comes to treatment recommendations, which is similar to real-world
clinical scenario. Steps to calculate similarity score are presented in Section C.2

We further study the actionability of treatment across different backbones in Figure 8. Actionability
refers to the degree to which treatment recommendations are expressed with concrete, executable.
A consistent pattern appears across models: Diet recommendations achieve the highest actionabil-
ity, reflecting that backbones often include concrete food suggestions and prohibitions. Lifestyle
occupies the middle ground, where frequency and duration are sometimes specified but not as con-
sistently detailed. Medication shows the lowest scores, indicating that although herbal prescriptions
are proposed, they often lack precise dosage or administration instructions. This pattern suggests
that the relative executability of recommendations is a systemic trend rather than model-specific
noise. This implies that while TCMAGENT reliably generates actionable dietary and lifestyle guid-
ance across backbones, further refinement is needed to enhance the precision of medication-level
outputs, which remain weak in terms of clinical executability. Additional settings and analyses are
provided in Section C.2.

5 CONCLUSION

In this work, we introduce TCMAGENT a novel multi-agent system designed to advance clinical
decision-making in TCM. We highlight the challenges and limitations of current methods for TCM
clinical decision-making task. Our proposed framework leverages multi-agent system, featured with
debate mechanism, TCM knowledge retrieval and refection, to enhance TCM decision-making. We
believe TCMAGENT paves the way for research of more intelligent and efficient system in TCM
domain in the future.
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A METRICS OVERVIEW

Here is a full list of designed metrics we use in this work. In total, we design 11 metrics, as shown
in table 2. From top to bottom of the table, the first 8 metrics are used to compare treatment rec-
ommendations of TCMAGENT with those of baseline LLMs. The remaining 3 metrics are used to
evaluate diagnosis, treatment principle and treatment recommendation generated by TCMAGENT.

Metrics Description
Coherence Clarity, logical flow and ease of understanding
Relevance How well suggestions address patient’s condition and

needs
Completeness How comprehensive and detailed the recommendations

are
Correctness Alignment with Traditional Chinese Medicine principles

and knowledge
Safety Dosage safety of recommendation
Complexity Challenges arising from a patient taking multiple sugges-

tions
Actionability How well the recommendation is executable
Terminology Precision of terminology in recommendation
Detected Error Factual or logical errors
Consistency Logical connection with the previous module’s response
Contraindication Avoidance of patient-specific contraindications

Table 2: Overview of evaluation metrics.

Followings are more detailed descriptions:

Coherence (Coh): ranging from 0 to 100 and higher the better, evaluates the clarity, logical flow, and
readability of treatment recommendations, ensuring they are well-structured and easy to understand.

Relevance (Rel): ranging from 0 to 100 and higher the better, evaluates how well treatment recom-
mendations are tailored to the patient’s condition and individual needs, ensuring they are clinically
appropriate.

Completeness (Complete): ranging from 0 to 100 and higher the better, evaluates how comprehen-
sive and detailed the treatment recommendations are.

Correctness (Cor): ranging from 0 to 100 and higher the better, evaluates how well treatment recom-
mendations adhere to TCM principles and knowledge, ensuring that prescriptions are appropriate,
safe, and consistent with classical theory.

Safety (Sa): ranging from 0 to 100 and higher the better, evaluates whether treatment recommenda-
tions are dosage-safe and minimize risk to the patient.

Complexity (Complex): ranging from 0 to 100 and higher the better, evaluates the challenges and
burdens a patient faces when following multiple treatment suggestions simultaneously.

Actionability (Act): ranging from 0 to 100 and higher the better, evaluates how practical and feasible
the treatment recommendations are for patients, considering regimen complexity, clarity, and ease
of adherence.

Terminology (Ter): ranging from 0 to 100 and higher the better, evaluates the accuracy, precision,
and appropriateness of the language and terms used in treatment recommendations.

Detected Error (DE): ranging from 0 to ∞ and lower the better, evaluate the number of factual or
logical errors.

Consistency (Cons): ranging from 0 to 1 and higher the better, evaluate how well the current mod-
ule’s response logically connects with and is consistent with the response from the previous module.
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Contraindication (Cont): ranging from 0 to 1 and lower the better, evaluate how well the agent
avoids violating patient-specific contraindications.

B IMPLEMENTATION DETAILS

We mainly use LLM API (OpenAI, Anthropic and etc.) to develop TCMAGENT. The TCMA-
GENT system implements a multi-agent LLM framework using LangGraph orchestration, where the
core TCMAgentsGraph class coordinates specialized agents through a state-driven workflow for
Traditional Chinese Medicine diagnosis and treatment planning. The architecture features modular
analyst agents for different medical data types a central diagnostic synthesis agent, and adversar-
ial debate agents for balanced treatment recommendations across medication, diet, and lifestyle
plans. Data flows through structured interfaces that process multi-modal patient information from
JSON datasets, while maintaining context through AgentState and TreatmentDebateState objects
with comprehensive logging for reproducibility.

C EXPERIMENT DETAILS

C.1 DATASET DETAILS
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Figure 10: Top-5 frequent Lab test item
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Figure 11: Top-5 frequent Imageological test item

In TCM clinical practice, practitioners develop standardized diagnostic workflows based on their
expertise and accumulated experience (SUI et al., 2022; Ren et al., 2022; Matos et al., 2021).
These workflows typically comprise four components: Inspection, Auscultation and
Olfaction, Inquiry, and Palpation. Inspection involves evaluating the patient through
visual observation of specific body parts to detect pathological changes. Auscultation and Olfaction
encompass the assessment of body sounds and odors for diagnostic purposes. Inquiry refers to the
process of eliciting the patient’s subjective physiological and symptomatic experiences. Palpation
is performed using a belt-like pressure sensor and amplifier attached to the wrist to dynamically
measure the pulse waveform. Collectively, these procedures aim to provide practitioners with a
comprehensive understanding of the patient’s physiological condition. However, due to data format
and scarcity issue, we use a different diagnostic structure.

We use dataset from ClinicalLab (Yan et al., 2024) with permission to evaluate our proposed frame-
work and baselines. It contains 1,500 patient records. Following figures visualize some information
in the dataset. Figure 10 and Figure 11 showcase the Top-5 frequent tested item by lab exam and
imageological exam separately.

C.2 DETAILED EXPERIMENT SETTING

Cross-backbone Consistency. For our Traditional Chinese Medicine agent evaluation, we ap-
ply Jaccard similarity to measure agreement between different backbone’s treatment recommenda-
tions by extracting treatment elements from each language model’s output (medication plans, di-
etary recommendations, and lifestyle modifications), tokenizing these recommendations into sets
of keywords, then calculating pairwise consistency with Jaccard similarity. For models M =
{Claude,DeepSeek,Gemini,GPT} and casei, we calculate consistency as Consistencyi =
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Table 3: Actionability assessment results for TCM treatment recommendations. Higher scores indi-
cate greater actionability.

Model Medication Diet Lifestyle Overall
Claude-3-Haiku 0.592 0.934 0.722 0.749
DeepSeek-v3 0.973 0.999 0.973 0.982
Gemini-2.0-Flash 0.949 0.999 0.992 0.980
GPT-4.1-Mini 0.836 1.000 0.910 0.915

1

(|M|
2 )

∑
m1,m2∈M,m1 ̸=m2

J(R
(i)
m1 , R

(i)
m2), where R

(i)
m represents the set of recommendations from

model m for case i.

Cross-backbone Actionability. We quantify the actionability of AI-generated TCM recommen-
dations using a pattern-based slot-filling approach across three treatment domains: medication
plans, dietary recommendations, and lifestyle modifications. For medication actionability (AM ),
we detect dosage specifications and usage instructions, scoring as AM = (Sdose + Susage)/2.
Dietary actionability (AD) identifies specific food items and restrictions, computed as AD =
(Sfoods + Srestrict)/2. Lifestyle actionability (AL) extracts frequency ,duration , and timing infor-
mation , calculated as AL = (Sfreq + Sduration + Stiming)/3. The overall actionability score is
Actionability = (AM + AD + AL)/3, where each slot Si ∈ {0, 1} indicates binary presence of
actionable information, yielding scores in [0, 1] with higher values indicating more implementable
recommendations.

C.3 DETAILED EXPERIMENT RESULT
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(b) Treatment Principle

Figure 12: Cross-backbone analysis. We use jaccard similarity to measure the how similar TCMA-
GENT’s response toward same patient with different LLM backbones.

Figure 12 presents a cross-backbone analysis of TCMAGENT using Jaccard similarity to evaluate
how similarly different LLM backbones respond to the same patient. Panel (a) shows diagnosis,
where pairwise similarities range from 0.186 to 0.246, indicating modest overlap in diagnostic out-
puts across models. Panel (b) shows treatment principle, where similarities are slightly lower, be-
tween 0.168 and 0.224, suggesting that while backbones converge somewhat on diagnostic patterns,
their proposed treatment principles diverge more. Overall, the results highlight that TCMAGENT
maintains only moderate consistency across different LLM backbones, with greater variability ap-
pearing in treatment planning than in diagnosis.

Table 3 summarizes the actionability scores of treatment recommendations across medication,
diet, lifestyle, and overall domains for different LLM backbones integrated with TCMAGENT.
DeepSeek-v3 and Gemini-2.0-Flash achieve the highest scores overall, both exceeding
0.98 and showing strong performance across all domains. GPT-4.1-Mini performs well on
diet and lifestyle but is slightly weaker on medication, while Claude-3.0-Haiku lags behind
the other models, particularly in the medication and lifestyle categories. On average, the system
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achieves high actionability across domains, with diet recommendations being the most actionable
and medication the most challenging.

Table 4: Detailed result of TCMAGENT with different LLM backbones, other than consistency,
other metrics are the lower the better.

Diagnosis Principle Treatment
Model DE. ↓ Cons. ↑ Cont. ↓ DE. ↓ Cons. ↑ Cont. ↓ DE. ↓ Cons. ↑ Cont. ↓
GPT-4.1-mini 0.79 1.0 0.29 0.08 1.0 0.0 0.171 1.0 0.0
Claude-3-haiku 0.92 1.0 0.25 0.49 1.0 0.15 1.33 1.0 0.04
Gemini-2.0-flash 0.95 0.99 0.19 0.54 1.0 0.0 0.99 1.0 0.002
GPT-OSS-20b 1.86 1.0 0.005 1.98 1.0 0.002 1.79 1.0 0.005
LLaMA-3.3-70b 2.1 0.99 0.03 0.35 1.0 0.02 0.28 1.0 0.0
Deepseek-v3 0.79 1.0 0.29 0.47 1.0 0.07 0.82 1.0 0.001

Table 4 reports detailed results of TCMAGENT with different LLM backbones across the stages of
diagnosis, principle formulation, and treatment. Consistency remains close to 1.0 for all models,
indicating stable behavior regardless of backbone choice. However, detected error and contraindi-
cation rates vary: GPT-4.1-mini and Deepseek-v3 achieve the lowest error levels overall,
while Claude-3-haiku and Gemini-2.0-flash show moderate errors with occasional con-
traindications. In contrast, GPT-OSS-20b exhibits the highest error rates across all stages, and
LLaMA-3.3-70b displays particularly high errors in diagnosis but lower errors in principle and
treatment. These results highlight that while consistency is uniformly strong, the reliability and
safety of outputs depend substantially on the chosen backbone.

Table 5: Detailed result of TCMAGENT on treatment recommendation.

Medication Diet Lifestyle
Model DE↓ Cons↑ Cont↓ DE↓ Cons↑ Cont↓ DE↓ Cons↑ Cont↓
GPT-4.1-mini 0.4 1.0 0.0 0.11 1.0 0.0 0.003 1.0 0.0
Claude-3-haiku 1.66 1.0 0.09 1.38 1.0 0.010 0.94 1.0 0.015
Gemini-2.0-flash 1.47 0.99 0.003 1.15 1.0 0.002 0.37 1.0 0.002
GPT-OSS-20b 2.18 1.0 0.01 1.73 1.0 0.002 1.48 1.0 0.003
LLaMA-3.3-70b 0.44 1.0 0.02 0.02 1.0 0.0 0.2 0.99 0.0
Deepseek-v3 1.23 1.0 0.001 0.77 1.0 0.000 0.45 1.0 0.000

Table 5 reports detailed results of TCMAGENT on treatment recommendation, broken down into
medication, diet, and lifestyle. Across all backbones, consistency remains close to 1.0, indicating
stable recommendations. However, detected error and contraindication vary: GPT-4.1-mini
and LLaMA-3.3-70b achieve particularly low error and contraindication rates across modalities,
while Claude-3-haiku, Gemini-2.0-flash, and GPT-OSS-20b exhibit higher error rates,
especially in medication and diet. Deepseek-v3 performs moderately well with strong safety and
relatively low errors. These results highlight that although consistency is uniformly strong, backbone
choice impacts the reliability and safety of generated treatment recommendations.
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Table 6: Detailed result of Rreflection on treatment recommendation.

Medication Diet Lifestyle
Model DE↓ Cons↑ Cont↓ DE↓ Cons↑ Cont↓ DE↓ Cons↑ Cont↓
GPT-4.1-mini

TCMAgent 1.39 1.0 0.257 1.14 1.0 0.006 0.32 1.0 0.001
TCMAgent + Reflection 0.40 1.0 0.000 0.11 1.0 0.000 0.003 1.0 0.000

Gemini-2.0-flash
TCMAgent 2.18 0.99 0.090 2.04 1.0 0.025 1.72 1.0 0.001
TCMAgent + Reflection 1.47 1.0 0.003 1.15 1.0 0.002 0.37 1.0 0.002

LLaMA-3.3-70b
TCMAgent 2.3 1.0 0.1 2.07 1.0 0.007 1.09 1.0 0.001
TCMAgent + Reflection 0.44 1.0 0.02 0.02 1.0 0.0 0.2 0.99 0.0

Table 6 presents the impact of adding a reflection module to TCMAGENT across medication, diet,
and lifestyle recommendations. For all backbones, reflection substantially reduces detected errors
and contraindications while maintaining near-perfect consistency. For example, GPT-4.1-mini
shows a sharp drop in errors (from 1.39 to 0.40 in medication and from 1.14 to 0.11 in diet) with
contraindications eliminated. Similar improvements are observed for Gemini-2.0-flash and
LLaMA-3.3-70b, where reflection consistently lowers error rates and contraindications, most no-
tably reducing LLaMA’s medication errors from 2.3 to 0.44. These results demonstrate that reflec-
tion strengthens reliability and safety in treatment recommendations without compromising consis-
tency.

Table 7: DE and Contraindication results of Gemini, GPT, and Claude under different debate set-
tings.

Setting Domain Gemini-2.0-flash GPT-4.1-mini Claude-3-haiku
DE Contra DE Contra DE Contra

Debate Medication 1.471 0.0030 0.403 0.000 1.663 0.087
Debate Diet 1.146 0.0010 0.110 0.000 1.381 0.010
Debate Lifestyle 0.371 0.0010 0.003 0.000 0.941 0.015
No-debate Medication 1.650 0.190 0.710 0.040 2.000 0.150
No-debate Diet 1.250 0.000 0.190 0.000 1.140 0.010
No-debate Lifestyle 0.800 0.000 0.000 0.000 0.870 0.140
Aggressive Medication 2.510 0.350 1.960 0.380 1.780 0.330
Aggressive Diet 2.770 0.320 1.580 0.050 1.500 0.090
Aggressive Lifestyle 2.690 0.000 1.240 0.100 1.040 0.070
Conservative Medication 1.980 0.050 1.250 0.000 1.890 0.320
Conservative Diet 1.440 0.000 0.570 0.000 1.590 0.040
Conservative Lifestyle 0.830 0.060 0.100 0.020 1.020 0.150

Table 7 compares detected error (DE) and contraindication rates for Gemini-2.0-flash,
GPT-4.1-mini, and Claude-3-haiku under different debate settings across medication, diet,
and lifestyle domains. Overall, the debate setting consistently reduces both errors and contraindica-
tions relative to the no-debate baseline, with GPT showing the strongest improvements, achieving
near-zero contraindications across all domains. Gemini also benefits, particularly in lowering con-
traindications, though its error levels remain higher than GPT. Claude achieves moderate reductions
but still shows relatively elevated error rates. By contrast, the aggressive setting substantially in-
creases both errors and contraindications, while the conservative setting yields intermediate results.
These findings highlight that structured debate can enhance safety and reliability, whereas overly
aggressive strategies degrade performance.
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Table 8: Detailed investigation on Retrieval for treatment principle.

Principle
Model DE ↓ Cons ↑ Cont ↓
GPT-4.1-mini

w/o RAG 0.47 1.0 0.070
w/ RAG 0.08 1.0 0.000

Gemini-2.0-flash
w/o RAG 0.60 1.0 0.024
w/ RAG 0.54 1.0 0.014

LLaMA-3.3-70b
w/o RAG 1.03 1.0 0.09
w/ RAG 0.35 1.0 0.02

Table 8 examines the effect of retrieval on treatment principle generation across three backbones.
Consistency remains perfect at 1.0 in all cases, but retrieval substantially reduces both detected errors
and contraindications. For GPT-4.1-mini, errors drop from 0.47 to 0.08 and contraindications
are eliminated, while LLaMA-3.3-70b shows a marked improvement from 1.03 to 0.35 in errors
and from 0.09 to 0.02 in contraindications. Gemini-2.0-flash benefits less strongly, though
retrieval still lowers contraindications. These results demonstrate that retrieval integration enhances
reliability and safety without affecting consistency.
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D EXAMPLE OUTPUT OF TCMAGENT

In this section, we showcase the some examples of diagnosis, treatment principles, and treatment
recommendations generated by TCMAGENT.

Diagnosis and Treatment Principle

Retrieved Document: ⽅法，就是扶正的具体⽅法，⽽发汗、吐下等⽅
法，则是祛邪的具体⽅法。
（三）治疗原则
祖国医学认为：“治病必求于本”（《素问·阴阳应象⼤论》）。本，本质、本
原、根本、根源之渭。治病求本，就是在治疗疾病时，必须寻找出疾病的根
本原因，抓住疾病的本质，并针对疾病的根本原因进⾏治疗。它 是中医辨证
论治的⼀个根本原则，也是中医治疗中最基本的原则。阴平阳秘，精神乃
治，阴阳乖戾，疾病乃起。阴阳失调是⼈体失去⽣理状态⽽发⽣病理变化的
根本原因，治疗疾就是要解决阴阳失调̶̶偏胜偏衰的⽭盾，使之重归于新的动
态平衡。所以，治病求本，本者本于阴阳之谓，即治病必须追究疾病的根本
原因，审察疾病的阴阳逆从，⽽确定治疗⽅法。“故凡治病者，在必求于本，
或本于阴，或本于阳，知病之所由⽣⽽直取之，乃为善治。若不知根本，则
茫如望洋，⽆可问津矣”（《医⻔法律·申明内经法律》）。阴阳失衡是疾病
的根本⽭盾。治本的基本原则就是调整阴阳，“谨察阴阳之所在⽽调之，以平
为期”

Diagnosis: 
### Traditional Chinese Medicine (TCM) Diagnostic Reasoning:
**Pattern Identification:**: 
1. Liver Qi Stagnation Persistent localized pain and swelling in the breast 
region correspond with stagnation of Liver Qi, as the Breast and chest area 
are closely related to Liver and Stomach meridians. Pain and tenderness 
with poor mobility and hardness reflect Qi blockage. 
2. Blood Stasis: Hard texture, fixed mass with clear boundaries, and 
subacute nature of symptoms strongly indicate blood stasis (stagnant 
blood), preventing smooth flow and causing local accumulation and pain. 
**Etiology and Pathomechanism:  **
1.Initial Qi stagnation (often due to emotional stress or other internal 
imbalance) leads to disruption of smooth Liver channel flow. 
2. Liver Qi stagnation over time transforms into Liver Fire or localized heat, 
causing redness, swelling, and pain. 
3. Prolonged stagnation results in Blood stasis and phlegm accumulation, 
creating a palpable hard mass. 
4. Secondary bacterial infection (*Staphylococcus aureus*) corresponds 
with heat toxin and infectious inflammation.

Treatment Principle: 
The treatment principle for this patient should focus on addressing both the 
root (本) and the branch (标) of the disease process, following the 
fundamental TCM principle of “treating the root cause” (治病必求于本). The 
identified root causes are Liver Qi stagnation transforming into heat, blood 
stasis obstructing the collaterals, and mild Liver Yin deficiency. The branch 
manifestations include localized heat-toxin infection, damp-phlegm 
accumulation, and inflammatory swelling.
### Treatment Principle (治则): 
1. **Soothe and regulate Liver Qi**  
   - To relieve Liver Qi stagnation, restore smooth flow of Qi, and prevent 
further transformation into Heat and Blood Stasis. This addresses the 
fundamental blockage and disharmony of Liver function.
2. **Clear Heat and detoxify Toxin**  
   - To eliminate the localized heat toxin associated with *Staphylococcus 
aureus* infection, reduce redness and swelling, and resolve inflammatory 
manifestations.
3. **Invigorate Blood and resolve Blood Stasis**  
   - To promote blood circulation, break up blood stasis causing hardness 
and mass formation, and facilitate the dispersal of stagnant accumulations.
4. **Transform and eliminate Phlegm and Dampness**  
   - To remove turbid phlegm and dampness obstructing the channels and 
tissues, thus aiding in resolving the mixed echogenic lesion and fluid 
accumulation.

Treatment Recommendation
Medication: 
Core Modified Xiao Yao San:  
- Chai Hu (Bupleurum) 9g  
- Dang Gui (Angelica root) 9g  
- Bai Shao (White peony) 9g  
- Bai Zhu (Atractylodes) 6g  
- Fu Ling (Poria) 9g  

Heat-Clearing & Detoxifying Group:  
- Huang Qin (Scutellaria) 6g  
- Jin Yin Hua (Lonicera flower) 6g  
- Lian Qiao (Forsythia) 6g  

Blood-Invigorating & Stasis-Resolving Group:  
- Chuan Xiong (Ligusticum) 6g 
- Hong Hua (Saclower) 4g ; 
-  Tao Ren (Peach kernel, toasted) 4g  

Phlegm-Transforming & Dampness-Eliminating Group:  
- Ban Xia (Pinellia, prepared) 6g  
- Chen Pi (Citrus peel) 6g  
- Fu Ling (Poria) 9g (already included in core formula)  

Diet:
** Diet plan** :
-  Breakfast: Millet-oat porridge with a pinch of turmeric and ginger; cooked 
pear slices  
-  Mid-morning tea: Chrysanthemum–honeysuckle infusion (warm)  
-  Lunch: Steamed fish with garlic and fennel; sautéed dandelion greens; 
barley congee  
-  Afternoon snack: Small bowl of mung bean soup; goji-date tea  
-  Dinner: Chicken soup with lotus root and lily bulb; watercress salad lightly 
dressed with lemon zest and olive oil  
-  Evening: Black sesame–silken tofu pudding 

** Foods to Strictly Avoid **:
- Fried, greasy, overly spicy foods  
- Alcoholic or caceinated drinks  
- Excessive raw cold salads  
- Dairy products 

Lifestyle:
1. Gentle-to-Moderate Aerobic Movement (20–30 minutes per day, 5–6 
days/week)
  • Start with slow-paced walking or light cycling for 15–20 minutes.
  • Increase duration by 2–3 minutes each week until reaching 30 minutes.
  • Goal within 2–3 weeks: brisk walking or gentle swimming.
2. Qi Gong or Tai Chi (15 minutes daily)
  • Focus on Liver-meridian patterns (e.g., “White Crane Spreads Wings,” 
“Liver Clearing Circle”).
  • Integrate deep diaphragmatic breathing.
3. Meridian-Point Self-Massage (10 minutes morning and evening)
  • Light-to-moderate pressure on LR3 (Taichong) and LR14 (Qimen).
  • Include gentle breast-adjacent stroking toward the axilla.
4. Stress Management & Sleep Hygiene
  • Practice 5 minutes of seated mindfulness or guided imagery after Qi Gong.
  • Maintain a fixed bedtime and wake-up time to secure 7–8 hours of restful 
sleep.
5. Symptom Monitoring
  • Daily check of the breast lesion for changes in heat, redness, or pain.
  • Pause or scale back activity immediately if local signs worsen, and report 
promptly.

Figure 13: Example output of TCMAGENT.
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Diagnosis and Treatment Principle
Retrieved Document: 耗伤肾阴。据此清代医家叶天士提出了“务在先安未
受邪之地”的防治原则。在甘寒以养胃阴的方药中，加
入“咸寒”以养肾阴的药物，从而防止肾阴耗伤。

Diagnosis: 
### Pattern Analysis and TCM Diagnosis
1. **Chronic Nature and Clinical Presentation**  
- The very long duration and gradual progression indicate a **chronic 
internal imbalance**, excluding acute external pathogenic factors such as 
wind, heat, or toxic fire.
- The absence of inflammation signs (no redness, no heat, no nodules or 
fixed masses) excludes active **Phlegm-Heat** or **Blood Stasis heat 
signs**.
- Symmetrical breast enlargement without palpable masses or 
lymphadenopathy suggests systemic nature rather than localized tumor-like 
pathology.
2. **Main Pathogenic Patterns**
 **Liver Qi Stagnation transforming into Phlegm-Dampness**  
  - The breasts are closely related to the Liver channel in TCM. Stagnant Liver 
Qi, especially over many years, can generate **Phlegm and Dampness** 
due to disrupted Qi flow.  
  - This results in swelling/enlargement and tissue changes.  
 **Spleen Qi Deficiency with Damp Retention**  
  - The Spleen governs transport and transformation of fluids.  
  - Deficiency here leads to accumulation of Damp and Phlegm, worsening 
tissue swelling and inability to resolve stagnation.  
**Kidney and Liver Yin Deficiency**  
- Long-standing imbalance leads to depletion of Liver and Kidney Yin, which 

normally nourish and maintain tissue integrity, including breast tissue.  
  - Yin deficiency may cause structural weakness contributing to tissue 
sagging and persistent enlargement.

## Supporting Evidence from Reports
- **Physical Exam:** No masses, no inflammation, symmetrical 
enlargement with mild sagging — supportive of Qi/Blood deficiency and Liver 
Qi stagnation without Heat or stasis.  
- **Laboratory Data:** Normal blood counts, absence of 
infection/inflammation; dyslipidemia consistent with Spleen Qi deficiency 
and Damp retention pattern. 

Treatment Principle: 
1. **Soothing Liver Qi:**  
Liver Qi stagnation is the initial pathogenic factor causing Qi movement 
disturbance, leading to the formation of Phlegm and Dampness. Promoting 
the free flow of Liver Qi is fundamental to prevent further accumulation of 
pathological fluids and relieve tissue swelling.

2. **Resolving Phlegm-Dampness:**  
Phlegm and Dampness are the direct pathological substances contributing 
to tissue enlargement. Clearing and transforming these pathogenic factors 
is necessary to reduce swelling and improve local tissue status.

3. **Tonifying Spleen Qi:**  
The Spleen governs fluid metabolism and transformation. Spleen Qi 
deficiency leads to failure of Dampness distribution and removal, 
exacerbating fluid retention. Strengthening Spleen Qi improves transport 
and transformation functions, helping to drain Dampness and reduce 
Phlegm formation.

4. **Nourishing Liver and Kidney Yin:**  
Long-standing disease and chronic Qi stagnation have depleted Yin, leading 
to poor nourishment of breast tissue and structural support. Enriching Liver 
and Kidney Yin restores tissue integrity and prevents further degeneration.

5. **Supplementing Qi and Blood:**  
Mild Qi and Blood deficiency implies inadequate nourishment and support 
for tissues, manifesting clinically as tissue sagging and possibly diminished 
vitality. Tonifying Qi and Blood supports overall health and promotes 
recovery of tissue function.

Treatment Recommendation
Medication: 
Base to Soothe Liver Qi and Resolve Phlegm-Dampness (Xiao Yao San + Er 
Chen Tang blend)
- Chai Hu (Bupleuri Radix) 8g
- Bai Shao (Paeoniae Radix Alba) 10g
- Ban Xia (Pinelliae Rhizoma) 6g
- Chen Pi (Citri Reticulatae Pericarpium) 6g

Tonify Spleen Qi and Improve Fluid Metabolism
- Dang Shen (Codonopsis Radix) 10g
- Bai Zhu (Atractylodis Macrocephalae Rhizoma) 8g
- Fu Ling (Poria) 8g
- Huang Qi (Astragali Radix) 6g

Nourish Liver & Kidney Yin
- Shu Di Huang (Rehmanniae Radix Praeparata) 8g
- Mai Men Dong (Ophiopogonis Radix) 6g
- Nu Zhen Zi (Ligustri Lucidi Fructus) 6g

Diet:
1. Soothe Liver Qi and Promote Free Flow  
   • Include:  
     – Fresh green leafy vegetables (e.g., spinach, kale, watercress)  
     – Moderate mandarin peel (Chen Pi)  
   • Limit:  
     – Excessively sour fruits or strong aromatics  
2. Resolve Phlegm-Dampness  
   • Include:  
     – Diuretic grains: barley and coix seed (job’s tears)  
     – Bitter winter melon and moderate adzuki beans  
   • Limit:  
     – Heavy beans or excessive cold, “draining” foods  
3. Tonify Spleen Qi  
   • Include:  
     – Warmly cooked grains (millet, rice, oats) as porridges  
     – Root vegetables (pumpkin, sweet potato)  
     – Moderate lean protein (chicken, egg)  
   • Avoid:  
     – Raw salads, cold drinks 
4. Nourish Liver & Kidney Yin  
   • Include:  
     – Moistening foods: goji berries, black sesame seeds, lily bulbs, lotus 
seeds  
     – Hydrating fruits: pear and apple  
   • Avoid:  
     – Alcohol, spicy foods  

5. Supplement Qi and Blood  
   • Include:  
     – Red dates and longan fruit in soups/teas  
     – Angelica root (Dang Gui) and warm bone broth  
   • Avoid:  
     – Excessive caffeine or stimulants 

Lifestyle:
- Wake between 6:00–7:00 am; lights out by 10:00 pm.
- Every 2 hours, pause for 3–5 minutes of gentle stretching or breathing.
- Sip warm water or mild ginger tea throughout the day; avoid iced drinks.
- Take short, unpressured breathing breaks or 1–2 minutes of seated Qi 
gathering when feeling tense.

Figure 14: Example output of TCMAGENT.
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Diagnosis and Treatment Principle
Retrieved Document: 学预防疾病思想最突出的体现。“是故已病⽽后治，
所以为医家之法；未病⽽充治，所以明摄⽣之理”（《丹
溪⼼法》）。未病先防旨在提⾼抗病能⼒，防⽌病邪侵袭。
（⼆）未病先防的⽅法
1．调养⾝体，提⾼⼈体抗病能⼒
（1）调摄精神：精神情志活动是脏腑功能活动的体现。突然强烈的精神刺
激，或反复的、持续的刺激，
可以使⼈体⽓机紊乱，⽓⾎阴阳失调⽽发病，⽽在疾病的过程中，情志变动
⼜能使疾病恶化。因此，调养
精神就成为养⽣的第⼀要务了。
中医摄⽣⼗分重视精神调养，要求⼈们做到“恬淡虚⽆”。“恬”是安静；“淡”是
愉快；“虚”是虚怀若⾕，
虚⼰以待物；“⽆”⾜没有妄想和贪求，即具有较为⾼尚的情操，⽆私寡欲，
情舒畅，精神愉快，则⼈体的⽓
机调畅，⽓⾎和平，正⽓旺盛，就可以减少疾病的发⽣。
（2）锻炼⾝体：“⽣命在于运动”．⼈体通过运动，可使⽓机调畅，⽓⾎流
通，关节疏利，增强体质，提⾼
抗病⼒．不仅可以减少疾病的发⽣，促进健康⻓寿，⽽且对某些慢性病也有
⼀定的治疗作⽤。

Diagnosis: 
**Primary Pattern:**  
- **Wind-Heat invasion with Heat-toxin accumulation in the Lung**  
- **Phlegm-Heat obstructing the Lung**  
- **Heat toxin a?ecting the nutritive (ying) and possibly blood (xue) levels**  
- **Spleen Qi deficiency with impairment of fluid metabolism**  
- **Emerging disturbance of Shen (Mind) due to internal heat and phlegm-
heat blocking or damaging the Heart and Liver**

### Evidence and Reasoning from Provided Data:
1. **External Invasion of Pathogenic Factor (Wind-Heat):**  
- Clinical symptoms of fever (up to 40°C), cough with di?icult-to-expectorate 
phlegm, and pharyngeal congestion indicate an **external Wind-Heat 
pathogenic invasion a?ecting the Lung**.  
- Physical exam shows moist red lips and no dryness, corresponding to 
relatively preserved Yin fluids but active heat.  
2. **Heat-Toxin Accumulation and Phlegm-Heat Obstruction:**  
- Despite antibiotic treatment, recurrent fever and worsening headache and 
poor mental response indicate **internal heat-toxin transformation** and 
**phlegm-heat retention in the Lung**.  
- High inflammatory markers IL-6, SAA, and Procalcitonin reflect severe 
internal heat and toxicity, consistent with **Heat toxin accumulation** in 
TCM.  

Treatment Principle: 
1. **Clear Heat and Detoxify Toxic Heat**  
   - The primary pathology includes Wind-Heat invasion progressing into 
internal Heat-Toxin accumulation a?ecting Lung, Ying (nutritive), and Xue 
(blood) levels.  
   - The principle is to clear pathogenic Heat and resolve Toxic Fire to prevent 
deeper tissue damage and systemic impairment.

2. **Resolve Phlegm-Heat and Facilitate Lung Qi**  
   - Phlegm-Heat obstructing the Lung impairs respiration and fluid 
metabolism, contributing to cough with thick sputum and Lung Qi 
dysfunction.  
   - Treatment should clear phlegm-heat, transform and expel phlegm, and 
restore proper dispersing and descending function of Lung Qi.

3. **Nourish Yin and Cool Ying and Blood Levels**  
   - Heat toxin injures Yin fluids, especially at the Ying and Blood levels, 
causing disturbance of the Shen and mental symptoms.  
   - Treatment must nourish Yin (especially Lung and Kidney Yin), clear Ying-
level heat, cool blood, and calm the mind to stabilize Shen.

Treatment Recommendation
Medication: 
A. Base Formula:
   – Huang Qin 3g  
   – Jin Yin Hua 4g  
   – Lian Qiao 4g  
   – Ban Lan Gen 2g  
   – Xuan Shen 2g  

B. Phlegm-Heat Resolution  
   – Gua Lou Pi 3g  
   – Zhe Bei Mu 2g  
   – Qian Hu 2g  

C. Yin Nourishment & Cooling of Ying/Blood  
   – Sha Shen 4g  
   – Mai Men Dong 4g  
   – Sheng Di Huang 3g  

D. Spleen Qi Support & Fluid Metabolism  
   – Dang Shen 3g  
   – Bai Zhu 3g  
   – Fu Ling 3g 

Diet:
1. Warm Congee Base (to strengthen Spleen Qi)  
   • Plain white-rice congee with a small amount of lean chicken or fish (3–4 
tsp per meal)  
   • Stir in a few slivers of fresh ginger (1–2 very thin slices)  

2. Heat-Clearing, Yin-Nourishing Add-Ins (moderate and cooked)  
   • Pear & lotus-seed porridge: diced pear + soaked lotus seeds, simmered in 
congee for 10–15 min  
   • Steamed lily bulbs & Chinese yam: 1 Tbsp each, added to congee or a 
separate small bowl of porridge  
   • Goji berries & black sesame: 5–8 gojis + 1 tsp sesame seeds, stirred into 
warm porridge at end of cooking  

3. Phlegm-Heat Resolving Vegetables (cooked, not raw)  
   • Winter melon soup: diced winter melon + a few slices of radish, 
simmered with lean pork/fish  

Lifestyle:
Phase I (Days 1–2):
- Breathing & Qi-Fostering Exercise: Once daily, 10 minutes
  • Sit comfortably, inhale deeply through the nose expanding lower ribs, 
exhale slowly relaxing shoulders.
  • Gentle shoulder rolls (5 each direction).
- Indoor Gentle Movement: Throughout the day
  • Light stretching or slow playful movements in a warm, quiet room.
  • Avoid prolonged sitting or immobility.
- Rest: Schedule a rest period or nap after the exercise session.
- Sinus Care: Gentle warm-saline nasal spray once per day.

Phase II (From Day 3, as fever subsides and CNS symptoms improve):
- Breathing & Qi-Fostering Exercise: Twice daily, 10–15 minutes each
  • Repeat Phase I breathing routine; add gentle arm lifts to chest height.
  • Mindful pacing; pause if cough intensifies.
- Controlled Outdoor Walk: Once daily, 15–20 minutes
  • Choose a clean, shaded area during cooler parts of the day.
  • Keep pace slow; under adult supervision; stop if tired or overheated.
- Rest: Schedule a rest period or nap after each exercise session.
- Sinus Care: Progress to very gentle warm-saline irrigation followed by a 5-
minute warm compress over sinuses if tolerated.

Figure 15: Example output of TCMAGENT.
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E PROMPTS

In this section, we showcase the prompts we used. In particular, Figure 16– 20 showcase prompts
used in TCMAGENT. Figure 21– 30 showcases prompts for evaluation.

System: 

You are a helpful AI assistant, collaborating with other assistants. Use the provided tools to 

progress towards answering the question. If you are unable to fully answer, that's OK; another 

assistant with different tools If you or any other assistant has the <Type of data>: 

**ANALYSIS** or deliverable, prefix your response with <Type of data> ANALYSIS: 

**ANALYSIS** so the team knows to stop."

You have access to the following tools: {tool_names}. with analyzing <Data Name> of a patient. 

Your analysis should make use of knowledge of Traditional Chinese medincine. 

Instruction: 

Please write a comprehensive report of the analysis in order to gain a full view of patient's 

information to inform other doctors. Make sure to include as much detail as possible. Provide 

detailed and finegrained analysis and insights that may help doctor make decisions.

 

Prompt for Analyst

Figure 16: Prompt for Analyst.

Prompt for Diagnose
System:

You are a helpful AI assistant, collaborating with other assistants.

Instruction:

Your goal is to use Chinese medical knowledge to diagnose your patient comprehensively.

Key focus: 

- Consider each report thoroughly, focus on diagnose. Extract your evidence from each report.

- Pay attention to connection between report information I gave to you.

- I would give you following report information, use information I gave you to answer.

Basic information report: {basic_report}

Lab EXAM report: {laboratory_examination_report}

Physical EXAM report: {physical_examination_report}

Medical RECORD report: {medical_history_report}

Pathology EXAM report: {pathology_examination_report}

Imageological EXAM report: {imageological_examination_report}

Use this information to deliver your diagnostic result. 

Figure 17: Prompt for treatment principle.
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Prompt of Treatment Principle
System

You are a traditional Chinese medical doctor agent analyzing diagnose of patient and making 

treatment principal. Based on a comprehensive analysis by a team of analysts, here is a diagnose 

tailored for patient. This diagnose incorporates insights and knowledge of Traditional Chinese 

medicine. Your treatment principal should be an overview, not too specific and detailed. Leverage 

these insights to make an informed principal of treatment using Traditional Chinese medical 

knowledge.

Instruction

Use this diagnose as a foundation for generating your treatment principal.\n Diagnose: 

{diagnose}

Figure 18: Prompt for diagnose.

Prompt of Debate
As a doctor prefer conservative/aggressive treatment, your role is to make a 

medication/diet/lifestyle plan based on treatment principal and patient’s diagnose information 

as well as knowledge of traditional Chinese medicine.

Use these information to strengthen your arguments and challenge the opposing views. 

Specifically, respond directly to each point made by the aggressive analysts, countering with 

data-driven rebuttals and persuasive reasoning. Highlight where their caution might miss 

critical opportunities or where their assumptions may be overly aggressive. 

Here is the treatment principal:

{treatment_principal}

Here is the diagnose result of patient:

{diagnose}

Your task is to create a compelling case for the doctor's decision of medication/diet/lifestyle 

plan by questioning and critiquing the aggressive/conservative stances to demonstrate why 

your high-reward perspective offers the best path forward. 

Figure 19: Prompt for debate.
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Prompt for Judge
As a risk management judge and debate facilitator, your goal is to evaluate the debate between 

aggressive agent and conservative agent to determine the best diet decision for doctor.

Make sure you make a diet suggestion to patient. 

Guidlines for decision-making:

1. **Follow Principal of treatment**: Ensure your diet suggestion follows principal of 

treatment.

2. **Provide Rationale**: Support your recommendation with direct quotes and 

conterarguments from debate.

3. **Usage Knowledge of Traditional Chinese medicine**: Your decision should base on 

knowledge of traditional Chinese medicine. 

4. **Learn from Past information**: Make use of information such as treatment principal and 

diagnose **{past_memory_str}** to help me make diet suggestion.

Deliverables:

- A clear and reasonable medication suggestion.

- Detailed reasoning anchored in the debate and past reflections

---

**Analysts Debate History:**

{history}

---

Focus on reasonable insights and continuous improvement. Build on past lessons, critically 

evaluate all perspectives, and ensure each decision advances better outcomes.

Figure 20: Prompt for judge.

Prompt for Evaluating Detected Error

You are a Traditional Chinese Medicine expert evaluator.

Below is the agent's output:

{response}

Identify any factual inaccuracies or logical contradictions, with respect to Traditional Chinese 

Medicine, within this response.

Please answer with the number of errors detected and briefly describe them.

Please respond in the following format: 

<answer>NUMBER OF ERROR HERE</answer>

<reason>YOUR REASON HERE</reason>

Figure 21: Prompt for evaluating Detected Error
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You are an impartial evaluator with expertise in Traditional Chinese 

Medicine.

Patient information: 

{patient}

Recommendation: 

{Recommendation}

Based on the patient information, does this recommendation violate any contraindications, such as 

recommending herbs, medicines, or lifestyle 

advice that could be harmful or inappropriate for the patient?

Please answer with one of the following: 

- "No Violation" (meaning the suggestion respects all contraindications) 

- "Violation" (meaning there is at least one contraindication violation) 

If you answer "Violation," please briefly specify the issue.

Please respond in the following format: 

<answer>YOUR ANSWER HERE</answer>

Prompt for Evaluating Contraindication

Figure 22: Prompt for evaluating Contraindication

You are a Traditional Chinese Medicine expert evaluator. Here are all responses sequentially 
from the agent's pipeline:

Previous output: 
{prev_content}
Current output: 
{current_content}

Evaluate how well the all response logically connects and aligns with each other. Is the 
connection consistent and coherent according to Traditional Chinese Medicine principles?

Please answer: "Consistent", "Inconsistent", or "Uncertain".
Response in following format: 
<answer>YOUR RESULT HERE</answer>

Prompt for Evaluating Consistency

Figure 23: Prompt for evaluating Consistency

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to coherence. Coherence means the 

“clarity, logical flow, and ease of understanding of the recommendation.” Rate response of Agent and LLM in terms of coherenc e 

Make sure to use your knowledge of Traditional Chinese Medicine.

Response A (Agent): 

{agent_response}

Response B (LLM): 

{llm_response}

Rules: 

- Output score of agent response and llm response. 

- Your score should be in range of 0 to 100. 

- Rate carefully, first fully understand the definition of coherence and then begin to rate. 

Response in following format: 

<agent_score>YOUR AGENT SCORE HERE</agent_score>

<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Coherence

Figure 24: Prompt for evaluating Coherence

You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to relevance. Relevance means the 

“how well the suggestions address the patient's condition and needs.” Rate response of Agent and LLM in terms of relevance. Make 

sure to use your knowledge of Traditional Chinese Medicine.

Response A (Agent): 

{agent_response}

Response B (LLM): 

{llm_response}

Rules: 

- Output score of agent response and llm response. 

- Your score should be in range of 0 to 100. 

- Rate carefully, first fully understand the definition of relevance and then begin to rate. 

Response in following format: 

<agent_score>YOUR AGENT SCORE HERE</agent_score>

<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Relevance

Figure 25: Prompt for evaluating Relevance
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You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to completeness. Completeness means 

the “how comprehensive and detailed the suggestions are.” Rate response of Agent and LLM in terms of completeness. Make sure to 

use your knowledge of Traditional Chinese Medicine.

Response A (Agent): 

{agent_response}

Response B (LLM): 

{llm_response}

Rules: 

- Output score of agent response and llm response. 

- Your score should be in range of 0 to 100. 

- Rate carefully, first fully understand the definition of completeness and then begin to rate. 

Response in following format: 

<agent_score>YOUR AGENT SCORE HERE</agent_score>

<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Completeness

Figure 26: Prompt for evaluating Completeness

You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to complexity. Complexity means the 
“how challenges and burdens a patient faces when following multiple treatment suggestions simultaneously.” Rate response of Agent 
and LLM in terms of complexity. Make sure to use your knowledge of Traditional Chinese Medicine.

Response A (Agent): 
{agent_response}

Response B (LLM): 
{llm_response}

Rules: 
- Output score of agent response and llm response. 
- Your score should be in range of 0 to 100. 
- Rate carefully, first fully understand the definition of complexity
 and then begin to rate. 

Response in following format: 
<agent_score>YOUR AGENT SCORE HERE</agent_score>
<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Complexity

Figure 27: Prompt for evaluating Complexity
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You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to correctness. Correctness means the 
“accuracy and alignment with Traditional Chinese Medicine principles and knowledge.” Rate response of Agent and LLM in terms 
of correctness. Make sure to use your knowledge of Traditional Chinese Medicine.

Response A (Agent): 
{agent_response}

Response B (LLM): 
{llm_response}

Rules: 
- Output score of agent response and llm response. 
- Your score should be in range of 0 to 100. 
- Rate carefully, first fully understand the definition of correctness and then begin to rate. 

Response in following format: 
<agent_score>YOUR AGENT SCORE HERE</agent_score>
<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Correctness

Figure 28: Prompt for evaluating Correctness

You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to actionability. Actionability means the 
“how clear, practical, and feasible the treatment suggestions are for patients to understand and implement in real-world settings.” Rate 
response of Agent and LLM in terms of actionability. Make sure to use your knowledge of Traditional Chinese Medicine.

Response A (Agent): 
{agent_response}

Response B (LLM): 
{llm_response}

Rules: 
- Output score of agent response and llm response. 
- Your score should be in range of 0 to 100. 
- Rate carefully, first fully understand the definition of actionability
 and then begin to rate. 

Response in following format: 
<agent_score>YOUR AGENT SCORE HERE</agent_score>
<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Actionability

Figure 29: Prompt for evaluating Actionability
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You are an impartial evaluator with expertise in Traditional Chinese Medicine.

Patient information: {patient_input}

Compare the following LLM response and Agent response on recommendations with respect to terminology. Terminology  means 

the “accuracy and clarity of medical or TCM terms used in the recommendations, ensuring they follow standard conventions and are 

unambiguous.” Rate response of Agent and LLM in terms of terminology. Make sure to use your knowledge of Traditional Chinese 

Medicine.

Response A (Agent): 

{agent_response}

Response B (LLM): 

{llm_response}

Rules: 

- Output score of agent response and llm response. 

- Your score should be in range of 0 to 100. 

- Rate carefully, first fully understand the definition of terminology

 and then begin to rate. 

Response in following format: 

<agent_score>YOUR AGENT SCORE HERE</agent_score>

<llm_score>YOUR LLM SCORE HERE</llm_score>

Prompt for Evaluating Terminology

Figure 30: Prompt for evaluating Terminology

F USAGE OF LLM

LLM are used to aid or polish writing. LLM is used to polish the draft of paragraph. Then polished
paragraph will be further modified by authors.
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