Under review as submission to TMLR

SETS: Leveraging Self-Verification and Self-Correction for
Improved Test-Time Scaling

Anonymous authors
Paper under double-blind review

Abstract

Recent advancements in Large Language Models (LLMs) have created new opportunities
to enhance performance on complex reasoning tasks by leveraging test-time computation.
However, existing scaling methods have key limitations: parallel methods like repeated
sampling are often inefficient and quickly saturate, while sequential methods like SELF-
REFINE struggle to improve after a few rounds. Although combining these approaches
shows promise, current methods require fine-tuned reward and revision models. This paper
proposes Self-Enhanced Test-Time Scaling (SETS), a simple yet effective approach that
overcomes these limitations by strategically combining parallel and sequential techniques and
fully leveraging LLMs’ self-improvement abilities. SETS exploits the inherent self-verification
and self-correction capabilities of LLMs, unifying sampling, verification, and correction
within a single framework. This facilitates efficient and scalable test-time computation for
enhanced performance on complex tasks without any model training. Our comprehensive
experimental results on challenging benchmarks spanning planning, reasoning, math, and
coding demonstrate that SETS achieves significant performance improvements and more
advantageous test-time scaling behavior than the alternatives.

1 Introduction

Large Language Models (LLMs) have revolutionized artificial intelligence by demonstrating remarkable
capabilities in planning, reasoning, coding, and problem-solving across diverse tasks (Team et al., |2024;
Touvron et al. [2023} [Achiam et al., [2023; |anthropic), [2024]). Their success stems not only from “training
scaling”, i.e., their ability to leverage vast datasets and computational resources during training (Kaplan
et al., [2020), but also from their ability to benefit from increased compute at test-time to better address
more challenging queries — commonly referred to as “test-time (inference) scaling” (Snell et al., 2024; [Wu
et al. [2024)).

Conventional test-time scaling approaches fall into two categories: parallel and sequential scaling. The parallel
scaling approaches such as repeated sampling (Brown et al., [2024]), involve generating multiple candidate
solutions and selecting the optimal one using techniques like majority voting or task-specific reward models.
While these parallel scaling approaches can be effective in certain scenarios, they have notable limitations.
The performance improvements from repeated sampling often quickly plateau as the amount of compute
increases (Brown et al.| [2024]). Also, the reliance on task-specific reward models (Christiano et al., 2017 [Snell
et al., 2024) adds significant training overhead, limiting both efficiency and scalability. The sequential scaling
approaches such as SELF-REFINE (Madaan et al.| [2024) iteratively revise the current response based on
the feedback until the response is verified as correct. As we improve the self-verification and self-correction
capabilities of LLMs, sequential scaling approaches become more effective. However, sequential scaling cannot
effectively scale up test-time compute to further improve the performance since the performance typically
saturates quickly as we increase the self-refinement iterations. Sequential scaling methods like SELF-REFINE
stop refining an answer once it is verified as correct, which limits them from scaling to an arbitrarily high
compute budget.

Under review as submission to TMLR

To effectively enable more optimal scaling for test-time compute with a canonical framework, we propose
an alternative approach that strategically combines the parallel and sequential scaling techniques without
training any additional models. Such strategies had been under-explored, likely due to the limited effectiveness
of self-correction in earlier generations of LLMs (Huang et al.). However, recent advancements in LLMs
have led to significantly improved self-verification and self-correction abilities (Team et al., |2024; |gem).
These improvements present an opportunity to rethink test-time scaling by moving beyond applying parallel
and sequential scaling independently, potentially achieving greater efficiency and generalizability in solving
complex tasks.

In this paper, we propose Self-Enhanced Test-Time Scaling (SETS) that combines both the parallel and
sequential scaling with Sampling, Self-Verify and Self-Correct operations to scale test-time compute. We show
that this approach yields more effective test-time compute scaling (i.e., achieving higher accuracy with less
compute) compared to notable alternatives such as repeated sampling and SELF-REFINE, as demonstrated
with recently-developed advanced LLMs. We evaluate SETS on five challenging benchmarks: NATURAL
PLAN (Zheng et al., 2024), LiveBench Reasoning (White et al., |2024), MATH 500 (Hendrycks et al., |2021)),
AIME 2024-2025 (aiml), and LiveCodeBench TestOutputPred (Jain et all 2024). In our experiments, SETS
offers a clear advantage in test-time scaling: it maintains higher effectiveness and experiences less fall-off in
performance gains, ultimately outperforming alternatives.

In summary, our contributions are as follows:

e We propose SETS, a simple yet effective method that improves the efficiency of test-time compute scaling
for LLMs by leveraging the inherent self-verification and self-correction capabilities of LLMs and combining
parallel and sequential scaling techniques.

o We perform extensive experiments to demonstrate that SETS outperforms parallel scaling methods like
repeated sampling and sequential scaling approaches like SELF-REFINE, achieving up to 10.9% accuracy
improvement on the planning, reasoning, math and coding benchmarks with both non-thinking and
thinking models. These results highlight SETS’s effectiveness for complex reasoning tasks.

e We conduct ablation studies to analyze the impact of key hyperparameters, such as the maximum number
of self-correction rounds and the temperature used during LLM inference, on the performance of SETS.
The results indicate that SETS is robust to these settings and achieves strong performance with minimal
hyperparameter tuning.

2 Related Work

Test-Time Scaling. Recent studies have explored leveraging additional test-time compute to enhance the
performance of LLMs (Welleck et al., |2024)). There are mainly two kinds of test-time scaling approaches:
parallel and sequential scaling (Balachandran et al., [2025)). Parallel scaling samples multiple responses
from the same model and then aggregates them to obtain a final result through different operators such as
majority voting or reward model scoring (Brown et al.l 2024)). Sequential scaling iteratively improves the
response utilizing the feedback of the same model until the response is verified as correct (Madaan et al.,
2024). When process-based verifier reward models are available, we can also scale test-time compute by
searching against the reward models (e.g., Beam Search and Look-ahead Search (Snell et al., [2024))). We
study test-time scaling without utilizing external reward models. We propose a simple yet effective method
that combines both parallel and sequential scaling to achieve better test-time scaling performance than those
conventional approaches that apply parallel or sequential scaling alone. While |Snell et al.| (2024) also explored
combining parallel sampling and sequential revisions to improve test-time scaling, their approach was limited
by the need to train task-specific verifiers and revision models. This dependency may not be practical in
real-world scenarios due to the high cost of collecting additional training data. Furthermore, our evaluation
is more comprehensive. Unlike [Snell et al.| (2024), which only tested their method on the MATH benchmark
with a single model (PaLM 2-S), our proposed method, SETS, is evaluated on six diverse and challenging
benchmarks spanning planning, reasoning, math, and coding. We also test with both “non-thinking” and
“thinking” models, which more thoroughly demonstrates the generalization and robustness of our approach.
For a more detailed comparison, please see Appendix [F]

Under review as submission to TMLR

Self-Verification. Verification or reward models play a crucial role in scaling inference compute. Traditional
approaches often involve training additional verifiers (Cobbe et al. [2021} [Li et al., |2022} [Lightman et al.,
2023; |[Liang et al., [2024). More recently, studies showed that LLMs possess the ability to self-verify their
outputs (Weng et al., 2023} [Song et al.| [2024; Zhao et al., [2025]). Our work builds on this insight, demonstrating
that scaling test-time compute can be significantly enhanced by leveraging LLMs’ self-verification performance,
particularly for complex reasoning tasks.

Self-Correction. Recent research showed that LLMs can refine their solutions to improve performance
using either external feedback (Gou et al.), self-feedback (Madaan et al., 2024; |Cook et al., |2024; |Ferraz
et al., 2024), or oracle evaluation (Lee et all |2025). However, Huang et al| observed that LLMs often
struggle to self-correct their responses without external feedback. |Qu et al.| (2024) proposed an iterative
fine-tuning procedure to teach the model to refine its response by recursively detecting and correcting its
previous mistakes where the model was trained on a collection of multi-turn data on the domain of math.
Our work shows that self-correction, guided by self-verification, can effectively scale test-time compute and
significantly improve performance on complex reasoning tasks for advanced LLMs.

Test-Time Scaling Laws and Model Sizes. The trade-off between model sizes and test-time compute
allocation is of paramount interest. [Wu et al.| (2024)) examined the trade-off between model sizes and generating
additional tokens using strategies such as greedy search, majority voting, and Best-of-N. It demonstrated that
a small model with advanced inference algorithms can outperform larger models given the same computation
budget. |Zhang et al.| (2024)) extended the study from scaling a single LLM to a mixture of multiple LLMs,
and proposed an algorithm to find the optimal compute allocation among the mixture, customized for a given
task. |Chen et al. (2024]) observed that in multiple-choice QA tasks, the scaling law based on majority vote
only holds for easy queries but not for hard queries. We also study how the scaling law behaves differently for
different models, as well as at different difficulty levels of the queries, when self-verification and self-correction
are utilized at test-time.

3 Method

We introduce Self-Enhanced Test-Time Scaling (SETS) framework, which aims to improve accuracy of
LLM-generated responses by strategically applying more compute at test time. We leverage the inherent
self-verification and self-correction capabilities of LLMs and combine parallel and sequential scaling techniques
to achieve better test-time scaling performance. We consider three core operations in the design: Sampling,
Self-Verify, and Self-Correct, as shown in Figure

Each operation is associated with its own prompt. We denote the prompt for Sampling as I,(x), the prompt
for Self-Verify as I,,(x,y), and the prompt for Self-Correct as I.(x, {y, Tk }}._o), where x is a query, y;, is a
proposed solution for x, and ry represent the feedback obtained from the self-verification process for x and
Y- Suppose F is an LLM that takes a prompt as input and outputs a response. Then, we have y ~ F(I,(x)),
r~ F(I,(x,y)) and y; 1 ~ F(le(X,{ys Tk }i—o)). The feedback r indicates whether the solution y is correct
or not. We define a judgement function J(r):

1 If y is self-verified as correct

J(r) = . (1)

0 Otherwise.

We adopt the rule-based approach to determine the value of J(r), e.g., if r contains the string “solution is
incorrect”, then J(r) = 0; otherwise, J(r) = 1.

SETS judiciously combines Sampling, Self-Verify, and Self-Correct operations to yield superior scaling of
test-time computation, as overviewed in Figure[[]and in Algorithm[I] SETS first samples m responses through
repeated sampling as the initial set of responses, denoted as y§,y3,...y%. For the i-th initial response y?,
SETS iteratively applies the Self-Verify and Self-Correct processes up to n times to improve the response
until it is self-verified as correct, resulting in the improved response y*. If it reaches the maximum number of
self-correction rounds and the response is still self-verified as incorrect, we use the response after n rounds
self-correction as y'. After applying the Self-Verify and Self-Correct process for each of the initial responses,

Under review as submission to TMLR

1 N

v o1
Self-Verify —Yo

2
X i . '
Self-Verify Self-Correct Self-Verify ——Y1 L.
Majority Vote
) ;
) X Yj) o
Self-Verify Self-Correct Self-Verify Y
T I
___________________ -l

/

Sampling

Sampling
Sampling
Iterate j (up to n) times

f Sampling \ Self-Verify / Self-Correct \

Please reason step by step to solve the following You are given a {TASK} and a {PROPOSED You are given a {TASK} and a set of
problem, and put your final answer within \boxed{} SOLUTION}. Your job is to verify if the {SOLUTION-ANALYSIS} pairs. Your
PROBLEI\’/I- Compute: 1-2+3-4+5- ... +99-100 ’ solution is correct. job is to derive a new solution.
LLM LLM LLM
Group the terms in pairs The solution needs to satisfy the following The initial solution has the issue of
(1-2)+(3-4)+-+(99-100), and each pair sums constraints: (a), (b), (c). The proposed violating (a). The revised solution
\ to —1. The final answer is \boxed{-50}. / solution is incorrect because it violates (a). K should be {new_solution}. /

Figure 1: Tlustration of the Self-Enhanced Test-Time Scaling (SETS) framework. SETS integrates the
Sampling, Self-Verify, and Self-Correct operations to efficiently scale test-time computation.

a new set of responses are obtained as y', ..., y™. Majority voting is then used to select the final solution y*.
Suppose we have an indicator function I(y = y’) to determine whether two responses y and y’ are equivalent
or not, then:

y*= argmax —) I(y'=y), (2)
ye{yl,...ym} M ;

where we break the tie randomly. The indicator function can be simple exact matching or using LLM-as-a-
Judge to determine the equivalence of two responses. In this work, we use the simple exact matching since
the benchmarks have a well-structured answer format.

SETS utilizes the LLM directly, integrating parallel and sequential scaling techniques to enhance the efficiency
of test-time compute scaling, especially when ample compute budget is available. The sequential scaling
method SELF-REFINE Madaan et al.| (2024) can be regarded as a special case of SETS (when m = 1).
However, SELF-REFINE cannot effectively scale up test-time compute since it terminates when the stopping
condition is met. Therefore, while SELF-REFINE is primarily effective in low-compute budget regimes, SETS
demonstrates strong performance in high-compute budget regimes as well. Our experiments across a wide
range of scenarios confirm this (see Section [1.3)).

4 Experiment

4.1 Scaling Laws for Test-Time Compute

We define test-time compute-optimal scaling as the strategy that selects hyperparameters 6 for a given
approach to maximize performance within a compute budget C' on a specific dataset D and LLM F:

0*(C|D,F) = arg max M(@O|D,F),st.H) < C, (3)

where © are candidate values of hyperparameters for the test-time strategy, H is the cost function that
maps hyperparameters 6 to the average amount of compute used for each input (e.g., average number of

Under review as submission to TMLR

Algorithm 1 SETS: Self-Enhanced Test-Time Scaling

Input: The query x, the LLM F, the Sampling prompt I, the Self-Verify prompt I,, the Self-Correct
prompt I, the number of samples m, the maximum number of rounds n, the judgement function J and
the indicator function I.

1: fort=1,...,m do

2 yh ~ F(Is(x)) {Sampling Operation}
3: forj=0,...,n—1do

4: ri o~ F(Lo(x, y%) {Self-Verify Operation}
5: if J_(r;-) =1 then

6: ' =Y;

7: Break {Self-Verified as Correct — Early Stop}
8: else ‘

9: Vi ~ FLe(x,{yh:Th o)) {Self-Correct Operation}
10: end if

11: if j =n —1 then

12 Y=Y,

13 end if

14: end for

15: end for

16: y* = argmaxycry1 ymy o 2oy Iy =) {Majority Voting}

Output: The final solution y*.

output tokens), and M is a performance metric such as accuracy. For example, 6 in the proposed method
SETS contains two variables m and n. We obtain the scaling law curve with the x-axis corresponding to
budget C' and the y-axis corresponding to performance M (0*(C|D, F)). To compute each point (z,y) on
the scaling curve, we first consider a specific cost « = H (). For this cost, we find the optimal performance
y = M(0*(z|D,F)) evaluating all hyperparameter configurations within ©. Finally, adjacent points are
connected to generate the scaling law curve.

4.2 Setup

Datasets. We experiment on six datasets that contain complex instructions and require advanced reasoning
for accurate responses: Trip Planning and Meeting Planning in NATURAL PLAN (Zheng et al. [2024),
LiveBench Reasoning (White et all 2024), MATH 500 (Hendrycks et all [2021), AIME 2024-2025 (aim),
and LiveCodeBench TestOutputPred (Jain et al.,|2024). The details of these benchmarks can be found in
Appendix [A] Since the ground truth answers across all tasks are well-structured and can be verified either by
exact match or rule-based checker, we do not need any model based evaluator to evaluate the accuracy of the
model-generated responses.

Prompts. We design tailored prompts for three key operations — Sampling, Self-Verify, and Self-Correct
(provided in Appendix to enable these operations using LLMs. We use existing templates if available or
create simple and direct prompts, to generalize across tasks and models as much as possible. For NATURAL
PLAN tasks, we use controlled generation with Langfun (Peng, 2023)) to obtain structured solutions to
improve accuracy for all methods (refer to Appendix [C| for details). We do zero-shot prompting for Self-Verify
and Self-Correct — using only instructions without including any few-shot examples.

Baselines. For fair comparison, we adopt the following baselines that don’t need additional model training
or external reward models. We use the same prompts for Sampling, Self-Verify, and Self-Correct described in
Appendix [B| for the baselines. BoN stands for Best-of-N (i.e. sample multiple responses and choose one using
some mechanisms as the final response).

e SELF-REFINE: One single initial solution is sampled and then is iteratively refined via Self-Verify and
Self-Correct processes up to n times to improve the response until it is self-verified as correct (Madaan

Under review as submission to TMLR

et al.| 2024)). Note that SELF-REFINE cannot arbitrarily scale up the test-time compute because it could
early stop as long as the solution is self-verified correctly. SETS addresses this limitation by integrating
parallel sampling, allowing for greater scalability.

¢« BoN+Majority Vote: We sample m solutions and then perform majority voting via exact matching on
the sampled solutions to select the most frequent solution (also referred as Self-Consistency (Wang et al.,
2022)). No self-verify or self-correction is involved.

e BoN+Self-Eval: Similar to BoN+Majority Vote, we sample m solutions and then query the LLM to
select the final solution with a multi-choice QA task prompt (described in Appendix [B.4]) as used in [Ren
et al.| (2023)).

e BoN+Self-Verify: We sample m solutions and self-verify each one, then perform a majority vote via
exact matching on the solutions verified as correct to select the final solution. If all sampled solutions are
verified as incorrect, we perform a majority vote on all sampled solutions. No self-correction is involved.

To summarize, our proposed method SETS integrates all three components of parallel Sampling, Self-Verify,
and Self-Correct, while the baselines are either missing 1 or 2 components, as shown in Table

Method Sampling Self-Verify Self-Correct
SELF-REFINE X

BoN+Majority vote X X
BoN+Self-Eval X X
BoN+Self-Verify X

SETS (ours)

Table 1: Comparison of different baselines with SETS

LLMs and Configs. Our primary experiments utilize proprietary models, which include both “non-thinking”

and “thinking” types. The non-thinking models include GEMINI-1.5-Pro-002, Claude-3.5-Sonnet-20241022
while the thinking models include GEMINI-2.5-Flash-Lite-Thinking and GEMINI-2.5-Flash-Preview-04-17.
For GEMINI-2.5-Flash-Lite, we set the thinking budget to 24,576 to turn on thinking. We use a temperature
of 0.7 to perform three operations Sampling, Self-Verify and Self-Correct for all models. For BoN+-Self-Eval,
we use a temperature of 0.7 for sampling multiple responses and then use a temperature of 0 for the final
self-evaluation step (i.e., selecting the best answer among the responses).

Hyperparameter Set (0). To find the maximum performance at a given compute budget, we search
across different hyperparameter settings (i.e., the set of candidate hyperparameters ©). For SELF-REFINE,
0 € © has one hyperparameter — the number of refinement iterations n and we set n € [1,10]. We don’t
consider larger n because the refinement process typically stops before 10 iterations. For BoN approaches,
0 € O has one hyperparameter — the number of samples m. We set a sufficiently large value for m so
that further increases do not yield significant accuracy improvements. For baselines BoN (Majority Vote or
Self-Eval), we set m € [1,100] for non-thinking models while setting m € [1,50] for thinking models. For
thinking models, the value of m is halved because their output length is generally much longer. For the
proposed method SETS, § € © has two hyperparameters — the number of samples m and the maximum
number of rounds n of Self-Verify and Self-Correct. We set m € [1,50] A n € [1,10] for non-thinking models
and set m € [1,25] An € [1,10] for thinking models to balance between the compute allocated to sampling
and self-improvement. For baseline BoN+Self-Verify, we define m € [1,50] for non-thinking models and set
m € [1,25] for thinking models. The maximum value of m for SETS and BoN+Self-Verify is halved compared
to BoN+Majority Vote and BoN+Self-Eval to ensure comparable maximum compute budgets across them.

Compute Cost Estimation. Since different operations (Sampling, Self-Verify, Self-Correct) use different
prompts and generate different lengths of responses, to make fair comparison, we focus on the average number

Under review as submission to TMLR

of output tokens to estimate the cost (as the price for output tokens is much higher than that for input
token&ED. We also provide the results in terms of the number of API calls in Appendix

4.3 Results

Trip Planning - GEMINI-1.5-Pro

0.91 —e— SETS (ours)

BoN+Majority Vote

{ —&— BoN+Self-Verify

BoN+Self-Eval

| —— SELF-REFINE) ,/_’/v

o
o0

e
N

Accuracy
\ ¢
\

0.61
4
0.5
103 104 10°
Average Number of Output Tokens
AIME 2024-2025 - GEMINI-1.5-Pro
0.351 p—e—e-o-ooca-sossees
e
g
£ 0.30+ ¢)
5 ¢
|9}
g e e .
0.251 P00 10000000000
0.20+
103 104 10°
Average Number of Output Tokens
LiveBench Reasoning - GEMINI-1.5-Pro
—o—o—o-ooo
0.601 - 006660
W
> ¢
@
5 0.55 990604
9
< /"
0.501 2
L7
0451 "~ ‘ ‘
103 104 10°

Average Number of Output Tokens

Meeting Planning - GEMINI-1.5-Pro

0.65 1 ot
r—-.’—
0.60 e
9 } ot?
g 0.551 A P
9 J o
< JOv
0.50 / ot
0.451
103 104 10°
Average Number of Output Tokens
MATH 500 - GEMINI-1.5-Pro
0.901 p— . e v ceeewm
0.891 o~ 2
0.88 oo B
80.87 = A
>
3 0.861
< 7
0.851
0.844
0.831 % :
103 104 10°
Average Number of Output Tokens
LiveCodeBench TestOutputPred - GEMINI-1.5-Pro
4. - e
0.754 /.“""
0.704

Accuracy
o
)]
wm

0.60

0.554

10° 104 10°
Average Number of Output Tokens

Figure 2: Scaling law curves where the x-axis is the average number of output tokens and y-axis is the
accuracy. Each point (z,y) in the curve corresponds to a hyperparameter setting § € ©. y is the optimal
performance at the cost budget x = H () (see Section for details). We subsample the points (up to
8 within every x-tick interval) to make the markers less crowded. SELF-REFINE would early stop if the
solution is self-verified correctly, so it can not scale up arbitrarily as shown in dotted line.

Improved Test-time Scaling with SETS. SETS consistently outperforms the baselines (Figure across
different benchmarks, yielding increased accuracy gains as the test-time compute increases for GEMINI-1.5-

Thttps://ai.google.dev/pricing, and https://www.anthropic.com/pricing

https://ai.google.dev/pricing
https://www.anthropic.com/pricing

Under review as submission to TMLR

Pro. For BoN with Majority Vote, the accuracy typically saturates quickly with the increase in the amount
of test-time compute. While BoN combined with Self-Verify or Self-Eval yields better results than BoN
with Majority Vote on some tasks, it does not show consistent improvement across all tasks. In contrast,
SETS utilizes both self-verification and self-correction, yielding accuracy improvements across all datasets.
These findings are consistent when using the number of API calls as the measure of compute cost (see

Appendix [D.1)).

1.00 Trip Planning - GEMINI-2.5-Flash Meeting Planning - GEMINI-2.5-Flash
) .- ———e e
o et 0.951 o
0.951 | S .
ol e 0.90 oA
> 0.901 > » 2
@ 8 f_____., __,
= 4 fos 4
S | > 0.85
&“ﬂ 0.85 —e— SETS (ours) g “
BoN+Majority Vote »
0.801 —o— BoN+Self-Verify 0.801
' BoN+Self-Eval
0.751 —— SELF-REFINE 0.754
104 105 106 10 10° 106
Average Number of Output Tokens Average Number of Output Tokens
AIME 2024-2025 - GEMINI-2.5-Flash-Lite-Thinking
0.74 PR—— MATH 500 - GEMINI-2.5-Flash-Lite-Thinking
4 0.965 1 —o-c0e-o
0.72+ o—d oo
0.9601 o
0.70 P aaanver
0.955 d
3 0.681 g e > o g
g (D o — —————— E 0.9501 f
S 0.66 2 = 7
< i £0.945 N
0.64 1 y
T 0.940 1 #
0.62
0.9351
0.60 4 -
104 10° 106 104 105 106
Average Number of Output Tokens Average Number of Output Tokens
LiveBench Reasoning - Claude-3.5-Sonnet LiveCodeBench TestOutputPred - Claude-3.5-Sonnet
- - - ————e
R] 0.85 re--e N
0.7001 P S S0ttt
0.675 p—ooosgden—o 0.84 /,
O o - f#
§0.650— § 0.834 ”
S 0.625 e s
g 0625 S 082l y
< < v
0.600 /
4 0.814 ook
0.5751 oo
0.5501 /s 0.801
103 104 105 103 10° 10°
Average Number of Output Tokens Average Number of Output Tokens

Figure 3: Scaling law curves with various LLMs (Gemini-2.5-Flash, GEMINI-2.5-Flash-Lite-Thinking and
Claude-3.5-Sonnet). The complete results for all datasets and LLMs are provided in Appendix

Impact of Different LLMs. Besides GEMINI-1.5-Pro, we also apply SETS with three other LLMs: Gemini-
2.5-Flash (thinking), Gemini-2.5-Flash-Lite (thinking), and Claude-3.5-Sonnet (non-thinking). Figure [3]shows
that for those LLMs, SETS still outperforms the baselines on most of the cases with a few exceptions. We
hypothesize that the performance of SETS is affected by the models’ self-verification and self-correction
capabilities. So we evaluate the accuracy of self-verification and self-correction individually to disentangle

Under review as submission to TMLR

their effects. To evaluate the self-verification performance, we ask the LLM to self-verify its own proposed
solution (sampled with temperature= 0) and evaluate whether we can use the verification result to detect
errors (treating the error as the positive class, we calculate the precision, recall, and F1 score). To evaluate the
self-correction performance, we ask the LLM to self-correct the proposed solution up to 2 rounds (using the
SELF-REFINE algorithm). The results are shown in Table[2] Comparing Figure and Table [2| we observe
that when the model has strong self-verification and self-correction performance, SETS can significantly
outperform the baselines. However, when the models’ self-verification and self-correction performance is weak,
SETS might not provide significant gains (e.g., Claude-3.5-Sonnet on LiveBench Reasoning). Appendix
shows that increasing the sample size for self-verification and applying majority voting can improve the
self-verification accuracy, which aligns with the findings in |Zhao et al.| (2025)).

Self-Verification Evaluation Self-Correction Evaluation
Dataset Model
Precision Recall F1 Score 1t Initial Accuracy Round 1 A1 Round 2 A 1
Claude-3.5-Sonnet 93.74 91.85 92.78 41.62 +4.50 +8.06
Trip Planning GEMINI-1.5-Pro 97.51 94.04 95.74 43.44 +6.94 +10.94
GEMINI-2.5-Flash 97.15 72.09 82.77 77.12 +10.25 +13.00
GEMINI-2.5-Flash-Lite-Thinking 99.66 55.59 71.37 37.31 +9.38 +12.13
Meeting Claude-3.5-Sonnet 78.69 80.17 79.42 53.60 +0.40 +2.10
Planning GEMINI-1.5-Pro 80.30 82.29 81.28 43.10 +4.50 +7.40
GEMINI-2.5-Flash 74.18 66.39 70.07 74.30 +10.20 +12.10
GEMINI-2.5-Flash-Lite-Thinking 79.72 83.20 81.42 50.50 +10.80 +14.90
. Claude-3.5-Sonnet 72.22 40.00 51.49 54.67 +1.33 +0.00
LiveBench GEMINI-1.5-P 7736 53.25 63.08 45.33 2.00 1.33
Reasoning .5-Pro . 53.25 . 5. +2. +1.
GEMINI-2.5-Flash 75.61 62.00 68.13 68.00 +11.33 +14.67
GEMINI-2.5-Flash-Lite-Thinking 90.48 52.78 66.67 69.33 +2.00 +8.67
Claude-3.5-Sonnet 61.54 20.00 30.19 72.80 +2.00 +2.00
MATH 500 GEMINI-1.5-Pro 68.12 61.84 64.83 83.20 +2.60 +4.00
GEMINI-2.5-Flash 14.94 56.10 23.59 94.80 -3.80 -1.80
GEMINI-2.5-Flash-Lite-Thinking 55.29 74.60 63.51 93.20 +1.20 +1.40
AIME Claude-3.5-Sonnet 94.74 35.29 51.43 10.00 +f].()() +0.00
2024-2025 GEMINI-1.5-Pro 89.19 71.74 79.52 23.33 -5.00 -1.67
GEMINI-2.5-Flash 29.63 38.10 33.33 73.33 +1.67 +0.00
GEMINI-2.5-Flash-Lite-Thinking 100.00 70.59 82.76 60.00 +6.67 +6.67
LiveCodeBench Claude-3.5-Sonnet 76.92 30.61 43.80 79.64 +1.13 +1.13
TestOutputPred GEMINI-1.5-Pro 89.17 68.29 77.35 53.17 +18.78 +22.17
GEMINI-2.5-Flash 16.33 45.71 24.06 95.25 +0.90 +1.13
GEMINI-2.5-Flash-Lite-Thinking 15.24 20.00 17.30 93.67 +0.45 +0.68

Table 2: Performance on self-verification and self-correction. Round k A means Round k accuracy minus
initial accuracy. All numbers are in terms of percentages. Bold numbers are superior results.

The Effect of Self-Correction Rounds. We study whether allocating more test-time compute to Self-
Verify and Self-Correct leads to better end-to-end accuracy given a fixed test-time compute budget. The
hyperparameter of the maximum number of rounds (n) in SETS controls the compute allocated to Self-Verify
and Self-Correct. Given a fixed compute budget, a larger number of rounds n suggests a smaller number of
samples m. Figure [4] shows that given a fixed compute budget, increasing the number of rounds of Self-Verify
and Self-Correct generally leads to accuracy gains, although the impact varies across tasks. For Trip Planning
and Meeting Planning, the accuracy increases as the number of rounds increases, but the returns diminish
after n = 4. Based on the results, we can set a sufficiently large value for m (e.g., m = 50) and set n = 4 for
SETS to achieve strong performance in practice.

The Effect of Temperature for SETS. We study how the temperature used for the three core operations
(Sampling, Self-Verify, and Self-Correct) affects the performance of SETS. We consider two configurations:
(1) using a temperature of 0.7 for all three operations (our default setting), and (2) using a temperature of
0.7 for Sampling, but a temperature of 0.0 (greedy decoding) for Self-Verify and Self-Correct. The results in
Figure [5| show that our default setting generally achieves better performance across different benchmarks.
This suggests that introducing a higher degree of randomness (temperature = 0.7) for the Self-Verify and

Under review as submission to TMLR

Trip Planning - GEMINI-1.5-Pro

0.751

Accuracy
o <
(o)} ~
o o

o
o
o

o
]
)

0.501

oo
e
i o

o7 Max Number of Rounds
—o— 5

PN Wb

10* 10° 106

Average Number of Output Tokens

Meeting Planning - GEMINI-1.5-Pro

0.6501
0.625
0.600+

cy

© 0.575+

Accur

O 0.550
0.525
0.500+
0.475

10° 10° 106
Average Number of Output Tokens

Figure 4: The effect of allocating more compute to self-verification and self-correction for SETS (controlled by
max number of rounds) given a fixed computational budget (measured by average number of output tokens).
The results for other datasets are provided in Appendix @

Self-Correct operations is beneficial. The increased temperature likely promotes a broader exploration of
alternative reasoning paths, which is crucial for handling complex reasoning tasks. This diversity in thought,
combined with the final majority voting mechanism, appears to be a key factor in improving the overall
performance and robustness of the SETS framework.

Trip Planning - GEMINI-1.5-Pro

0.75] ol
0.70 A
>
[}
© 0.65
] s
O -
< 0.60 4
0.551 —o— SETS (t=0.7, svt=0.7, sct=0.7)
SETS (t=0.7, svt=0.0, sct=0.0)
0.501 ‘ ‘
103 10* 10°
Average Number of Output Tokens
AIME 2024-2025 - GEMINI-1.5-Pro
0.351 e Sty e 4
o
©'0.30 ¢
5
|9
b4 ey
0.251 /
0.20
103 10 105

Average Number of Output Tokens

MATH 500 - GEMINI-1.5-Pro

0.90

0.89+

Accuracy
©
©
©

0.87

0.861

- —— ° -

p—e

-—— =

103

10 105
Average Number of Output Tokens

LiveCodeBench TestOutputPred - GEMINI-1.5-Pro

0.781
0.771
20.761

0.75+

Accura

0.74+

0.73+

0.724 ¢

103 10° 105
Average Number of Output Tokens

Figure 5: The effect of different temperature settings for SETS. t, svt and sct are temperature parameters for
the Sampling, Self-Verify and Self-Correct operations respectively. The results for other datasets are provided

in Appendix @

10

Under review as submission to TMLR

5 Conclusions

In this paper, we introduced Self-Enhanced Test-Time Scaling (SETS), a simple yet effective paradigm for
scaling test-time compute that capitalizes on the inherent self-verification and self-correction mechanisms
of LLMs. SETS uniquely integrates parallel and sequential scaling, distinguishing it from prior work that
often relies on specialized fine-tuning. Our experimental results reveal that SETS, by sampling a set of
initial responses and then iteratively refining them, surpasses baselines like purely repeated sampling or
SELF-REFINE. Importantly, SETS consistently delivers higher quality outputs and demonstrates increasing
returns as test-time computation increases across challenging planning, reasoning, math, and coding tasks.

Limitation. Our future work will focus on expanding the SETS framework by addressing its current
limitations and enhancing its core dependencies. A key priority is to improve the foundational self-critique
and self-correction capabilities of LLMs, as the efficacy of SETS is directly tied to these abilities. We
anticipate that as LLMs continue to advance, their capacity for self-improvement will likewise strengthen,
thus broadening the applicability and effectiveness of SETS. We also aim to enhance the efficiency of SETS for
low-resource settings and complement the framework with prompt optimization for models with weaker self-
correction skills. While this work concentrates on reasoning tasks with objectively verifiable answers, we plan
to extend its applicability to domains like summarization and tool use. This expansion will necessitate a move
from majority voting to more sophisticated aggregation strategies, such as Universal Self-Consistency (Chen
et al.} 2023). Finally, though our evaluation is currently confined to text-only datasets, the SETS framework
is designed for future extension to multi-modal benchmarks.

References

American invitational mathematics examination. https://artofproblemsolving.com/wiki/index.php/
AIME Problems_and_Solutions. AIME 2024 - 2025.

Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2308.08774, 2023.

anthropic. Claude 3.5 Sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024. [Online;
accessed Jun 20, 2024].

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John Langford,
Besmira Nushi, Vibhav Vineet, Yue Wu, et al. Inference-time scaling for complex tasks: Where we stand
and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. arXiv preprint
arXiv:2407.21787, 2024.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James Zou. Are
more llm calls all you need? towards the scaling properties of compound ai systems. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language model generation.
arXiv preprint arXiw:2311.17311, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

11

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://www.anthropic.com/news/claude-3-5-sonnet

Under review as submission to TMLR

Jonathan Cook, Tim Rocktéschel, Jakob Foerster, Dennis Aumiller, and Alex Wang. Ticking all the boxes:
Generated checklists improve 1lm evaluation and generation. arXiv preprint arXiv:2410.03608, 2024.

Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu,
Vivek Subramanian, Tagyoung Chung, Mohit Bansal, and Nanyun Peng. Llm self-correction with decrim:
Decompose, critique, and refine for enhanced following of instructions with multiple constraints. arXiv
preprint arXiv:2410.06458, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Nan Duan, Weizhu Chen, et al. Critic: Large language
models can self-correct with tool-interactive critiquing. In The Twelfth International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny
Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth International Conference
on Learning Representations.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large
language models for code. arXiv preprint arXiv:24083.07974, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Kuang-Huei Lee, Tan Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans, and Xinyun
Chen. Evolving deeper llm thinking. arXiv preprint arXiv:2501.09891, 2025.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making large
language models better reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336, 2022.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang, Yingbo Zhou, and Semih Yavuz. Improving llm reasoning
through scaling inference computation with collaborative verification. arXiv preprint arXiw:2410.05318,
2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050,
2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Adwvances in Neural Information Processing Systems, 36, 2024.

Daiyi Peng. Langfun, September 2023. URL https://github.com/google/langfun,

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching language
model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves selective
generation in large language models. In Proceedings on, pp. 49—64. PMLR, 2023.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind the gap:
Examining the self-improvement capabilities of large language models. arXiv preprint arXiv:2412.0267/,
2024.

12

https://github.com/google/langfun

Under review as submission to TMLR

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions
of tokens of context. arXiv preprint arXiv:24083.05530, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, 2022.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms for large
language models. arXiv preprint arXiv:2406.16838, 2024.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
Large language models are better reasoners with self-verification. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 25502575, 2023.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free llm benchmark. 2024.
URL |arXivpreprintarXiv:2406.19314/

Yangzhen Wu, Zhiging Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiw:2408.00724, 2024.

Kexun Zhang, Shang Zhou, Danqing Wang, William Yang Wang, and Lei Li. Scaling llm inference with
optimized sample compute allocation. arXiv preprint arXiv:2410.22480, 2024.

Eric Zhao, Pranjal Awasthi, and Sreenivas Gollapudi. Sample, scrutinize and scale: Effective inference-time
search by scaling verification. arXiv preprint arXiv:2502.01839, 2025.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on natural language
planning. arXiv preprint arXiv:2406.04520, 2024.

13

arXiv preprint arXiv:2406.19314

Under review as submission to TMLR

Appendix

In Appendix [A] we provide details about the datasets used in our experiments. Appendix [B] outlines the
prompts designed for Sampling, Self-Verify, Self-Correct, and Multi-choice QA. Appendix [C] details the
controlled generation process. Additional experimental results are presented in Appendix [D} Appendix [E]
includes detailed responses for the three core operations employed within SETS. Finally, Appendix [F] compares
the proposed SETS with the Combining Sequential/Parallel approach from |Snell et al.| (2024).

A Datasets

We perform experiments on six datasets: Trip Planning and Meeting Planning from the NATURAL PLAN
benchmark (Zheng et al.| [2024), the LiveBench Reasoning benchmark (White et al., [2024), the MATH
500 benchmark (Hendrycks et al., 2021), AIME 2024-2025 benchmark (aim), and the LiveCodeBench
TestOutputPred benchmark (Jain et al.| [2024)).

NATURAL PLAN provides 5 examples as few-shot exemplars for each task (i.e. the 5-shot setting). NATURAL
PLAN also provides a controlled variable (e.g. number of people, number of cities, number of days, etc) that
can indicate the difficulty level of each task. We utilize this controlled variable to understand the performance
of different methods on easy and hard subset of the NATURAL PLAN datasets. In Trip Planning and
Meeting Planning, the ground-truth solutions are long-form and contain multiple steps.

LiveBench Reasoning is a task from LiveBench, which is a benchmark for LLMs designed with test set
contamination and objective evaluation in mind. LiveBench Reasoning has three tasks: spatial, zebra_ puzzle
and web_of lies_ v2, each containing 50 test examples.

MATH 500 is a subset of 500 problems from the MATH benchmark (Hendrycks et al.| |2021)), which contains
12,500 challenging competition mathematics problems.

AIME 2024-2025 contains problems from the American Invitational Mathematics Examination (AIME) 2024
- 2025. AIME is a prestigious high school mathematics competition known for its challenging mathematical
problems.

LiveCodeBench TestOutputPred is a task from LiveCodeBench, which is a holistic and contamination-free
evaluation benchmark of LLMs for code. LiveCodeBench focuses on broader code-related capabilities, such as
self-repair, code execution, and test output prediction, beyond mere code generation. We use the test output
prediction dataset, which contains 442 examples.

We summarize the statistics of these datasets in Table [3

Task Type Benchmark Number of Test Examples
. Trip Planning 1600
Planning Meeting Planning 1000
Reasoning LiveBench Reasoning 150
MATH 500 500
MATH AIME 2024-2025 60
Coding LiveCodeBench TestOutputPred 442

Table 3: The statistics of the datasets used in the experiments.

14

Under review as submission to TMLR

B Prompts
In this section, we present the prompts used for Sampling, Self-Verify, and Self-Correct operations.

B.1 Sampling Prompt

For NATURAL PLAN benchmarks, we construct the sampling prompt by adding some additional instructions
to the original task description prompt.

Sampling Prompt for Trip Planning

{planning_ task_description_ with_ demos}
Please first list all the constraints in the problem and then output a final solution that satisfies all the
constraints.

Sampling Prompt for Meeting Planning

{planning_task description_ with_demos}
Please first list all the constraints and optimization goals in the problem and then output a final
solution that satisfies all the constraints and optimization goals.

For the MATH 500 and AIME 2024-2025 benchmarks, we construct the sampling prompt by adding some
additional instructions to elicit the LLM’s reasoning and ensure the final answer is boxed.

Sampling Prompt for MATH and AIME

You are an expert in solving math problems. Please reason step by step to solve the following problem,
and put your final answer within \boxed{}.

PROBLEM:

{problem}

For the LiveBench Reasoning and LiveCodeBench TestOutputPred benchmarks, we use the original prompt
provided by the benchmarks as the sampling prompt.

B.2 Self-Verify Prompt

For the NATURAL PLAN benchmarks, we use the following Self-Verify prompt:

Self-Verify Prompt for NATURAL PLAN

{planning task demos}

You are an expert at {task_type}. You are given a TASK of {task_type} request, and a PROPOSED
SOLUTION. Your job is to:

1. List all constraints in the TASK.

2. Verify if the PROPOSED SOLUTION satisfies each of the constraints with justifications.

3. Write a line of the form "The proposed solution is correct" or "The proposed solution is incorrect"
at the end of your response based on your analysis.

TASK:

{planning_ task_description_ without_ demos}

PROPOSED SOLUTION:

{solution}

Under review as submission to TMLR

For the MATH 500 and AIME 2024-2025 benchmarks, we use the following Self-Verify prompt:

Self-Verify Prompt for MATH and AIME

You are an expert in solving math problems. You are given a PROBLEM and a PROPOSED ANSWER.
Your job is to:

1. Identify all conditions and constraints in the PROBLEM for verifying the correctness of the
proposed answer.

2. Reason step by step to verify if the proposed answer satisfies each of the conditions and constraints.
3. Write a line of the form "The proposed answer is correct” or "The proposed answer is incorrect" at
the end of your response based on your analysis.

PROBLEM:

{problem}

PROPOSED ANSWER:

{answer}

For the LiveBench Reasoning benchmark, we use the following Self-Verify prompt:

Self-Verify Prompt for LiveBench Reasoning

You are an expert in solving problems that require reasoning. You are given a QUESTION and a
PROPOSED ANSWER. Your job is to:

1. Transform the PROPOSED ANSWER into a statement given the QUESTION and identify all
constraints in the QUESTION for verifying the statement.

2. Think step by step to verify if the statement satisfies each of the constraints.

3. Write a line of the form "The statement is correct" or "The statement is incorrect" at the end of
your response based on your analysis.

QUESTION:

{question}

PROPOSED ANSWER:

{answer}

For the LiveCodeBench TestOutputPred benchmark, we use the following Self-Verify prompt:

Self-Verify Prompt for LiveCodeBench TestOutputPred

You are an expert Python programmer. You will be given a question (problem specification) and a
PROSPOSED ANSWER (a Python program). Your job is to:

1. Identify all constraints in the Question for verifying the correctness of the PROPOSED ANSWER.
2. Think step by step to verify if the PROPOSED ANSWER satisfies each of the constraints.

3. Write a line of the form "The proposed answer is correct” or "The proposed answer is incorrect" at
the end of your response based on your analysis.

{problem}

PROPOSED ANSWER:

{answer}

16

Under review as submission to TMLR

B.3 Self-Correct Prompt
For the NATURAL PLAN benchmarks, we use the following Self-Correct prompt:

Self-Correct Prompt for NATURAL PLAN

{planning_ task__demos}
You are an expert at {task_type}. You are given a TASK of {task type} request. You are also given

a set of solution-analysis pairs. Your job is to outline your step-by-step thought process for deriving a
new solution.

TASK:

{planning_ task_description_ without_ demos}

{solution_ and_ analysis}

For the MATH 500 and AIME 2024-2025 benchmarks, we use the following Self-Correct prompt:

Self-Correct Prompt for MATH and AIME

You are an expert in solving math problems. You are given a PROBLEM and a set of answer-analysis
pairs. Your job is to reason step by step for getting a correct answer and put your final answer within

\boxed{}.

PROBLEM:

{problem}
{answer_and_ analysis}

For the LiveBench Reasoning benchmark, we use the following Self-Correct prompt:

Self-Correct Prompt for LiveBench Reasoning

You are an expert in solving problems that require reasoning. You are given a QUESTION and a set
of answer-analysis pairs. Your job is to outline your step-by-step thought process for getting a correct

answer.
QUESTION:

{question}
{answer__and_ analysis}
{answer__trigger}

For the LiveCodeBench TestOutputPred benchmark, we use the following Self-Correct prompt:

Self-Correct Prompt for LiveCodeBench TestOutputPred

You are a helpful programming assistant and an expert Python programmer. You are helping a user
to write a test case to help to check the correctness of the function. The user has written a input for
the testcase. The user has also provided a set of answer-analysis pairs. Your job is to outline your
step-by-step thought process to calculate the output of the testcase and write the whole assertion
statement in the markdown code block with the correct output.

{problem}

{answer__and_ analysis}

17

Under review as submission to TMLR

B.4 Multi-choice QA Task Prompt for Self-Evaluation

For the NATURAL PLAN benchmarks, we use the following multi-choice QA task prompt:

Multi-choice QA Task Prompt for NATURAL PLAN

{planning_ task__demos}

You are an expert at {task_type}. You are given a TASK of {task type} request. You are also given
a set of possible solutions. Your job is to outline your step-by-step thought process for selecting the
best solution.

TASK:

{planning_ task_description_ without_ demos}

{solution__choices}

The output should be in JSON format: {{'reason": "<your reasoning>", "solution_id": "<an integer
between 1 and {num_ solution_choices}>"}}

For the MATH 500 and AIME 2024-2025 benchmarks, we use the following multi-choice QA task prompt:

Multi-choice QA Task Prompt for MATH and AIME

You are an expert in solving math problems. You are given a PROBLEM and a set of possible answers.
Your job is to reason step by step for selecting the best answer.

PROBLEM:

{problem}

{answer__choices}

The output should be in JSON format: {{'reason": "<your reasoning>", "answer_id": "<an integer
between 1 and {num_ answer_ choices}>"}}

For the LiveBench Reasoning benchmark, we use the following multi-choice QA task prompt:

Multi-choice QA Task Prompt for LiveBench Reasoning

You are an expert in solving problems that require reasoning. You are given a QUESTION and a set
of possible answers. Your job is to outline your step-by-step thought process for selecting the best
answer.

QUESTION:

{question}

{answer__choices}

The output should be in JSON format: {{'reason": "<your reasoning>", "answer_id": "<an integer
between 1 and {num__answer__choices}>"}}

For the LiveCodeBench TestOutputPred benchmark, we use the following multi-choice QA task prompt:

Multi-choice QA Task Prompt for LiveCodeBench TestOutputPred

You are an expert in solving problems that require reasoning. You are given a Problem and a set
of possible answers. Your job is to outline your step-by-step thought process for selecting the best
answer.

{problem}

{answer__choices}

The output should be in JSON format: {{"reason": "<your reasoning>", "answer id": "<an integer
between 1 and {num_answer choices}>"}}

18

Under review as submission to TMLR

C Controlled Generation

For the NATURAL PLAN tasks, we use the controlled generation to output the solution in a structured
format to improve the accuracy with Langfun. We use the following prompt to make the LLM output the
final answer using the specified schema after chain-of-thought.

Langfun Chain-of-Thought Answer Trigger

Please think step by step to solve the task and then output a final solution using the specified schema.

We show the solution schema (Python class) definition for different datasets below.

1 class Step(pg.0Object):
"""One solution step."""

. city_name: Annotated[Optionall[str], "The city name."]

5 arrival_day: Annotated[Optionall[int], "The day you arrive in the city."]
6 departure_day: Annotated[

7 Optional[int], "The day you depart from the city."

s]

9 duration: Annotated[
10 Optional[int], "The number of days spent in the city."
11]

14 class Solution(pg.0Object):
15 """The solution."""
17 step_1: Step | None

19 step_k: Step | None

Listing 1: Trip Planning solution class

> class Step(pg.0bject):
"""One solution step."""

5 location: Annotated[Optional[str], "The meeting location."]

6 travel_time: Annotated[Optional[int], "The travel time in minutes."]

7 arrival_time: Annotated[Optionall[str], "The arrival time."]

s person: Annotated[Optionall[str], "The person to meet at the location."]
9 meeting_duration: Annotated[

10 Optionall[int], "The meeting duration in minutes."

11]

12 meeting_start_time: Annotated[Optional[str], "The meeting start time."]
13 meeting_end_time: Annotated[Optional[str], "The meeting end time."]

16 class Solution(pg.0Object):
17 """The solution."""
19 step_1: Step | None

21 step_k: Step | None

Listing 2: Meeting Planning solution class

19

Under review as submission to TMLR

D Additional Results

D.1 Cost Estimation using Number of API Calls

In this section, we show results when using the average number of API calls for measuring the computational
cost. Figure [0] shows the scaling law curves where the x-axis is the average number of APT calls and y-axis is
the accuracy. The findings are the same as those where we use average number of output tokens to measure

the cost.
Trip Planning - GEMINI-1.5-Pro
0.751
0.701 /xx~*”
> 0.65 1
o
o
3 0.601
g —e— SETS (ours)
0.55 —+— BoN+Majority Vote
0.504 —— BoN+Self-Verify
BoN+Self-Eval
0.454 —— SELF-REFINE
100 200 300 400
Average Number of API Calls
AIME 2024-2025 - GEMINI-1.5-Pro
R
0.354
-
0 e
9
£ 0.309 ¢/f
5
|9}
2
0.251
0.20+
100 200 300 400
Average Number of API Calls
LiveBench Reasoning - GEMINI-1.5-Pro
A
[
o
0.601 o seeeeee "
P i
>
@
5 0.551 ¥
9
= /
0.501 [
0.451
20 40 60 80 100 120 140 160

Average Number of API Calls

Meeting Planning - GEMINI-1.5-Pro

™ j_-’_‘-!——"'/-‘._‘_“" h
0.604 -
. &
€] - e 4
€ 0.551 5
= 24
o 4
O ¢
< ¢
0.501 |¢
JI
0.454
0 50 100 150 200 250 300 350
Average Number of API Calls
MATH 500 - GEMINI-1.5-Pro
0.901
-
0.89{ 4
AP A
[—
0.881 JOF. o g n.
9
@ 0.871 v
>
5 0.861
<<
0.851
0.84
0.834
20 40 60 80 100 120 140
Average Number of API Calls
LiveCodeBench TestOutputPred - GEMINI-1.5-Pro
’-.o.‘
0.751 I'
0.70+

Accuracy
o
[¢)}
wv

o
o
o

0.551

40 60 80 100 120 140 160

Average Number of API Calls

20

Figure 6: Scaling law curves where the x-axis is the average number of API calls and y-axis is the accuracy.
Each point (z,y) in the curve corresponds to a hyperparameter setting 6 € ©. y is the optimal performance
at the cost budget x = H(0) (refer to Section [4.1| for the details).

20

Under review as submission to TMLR

D.2 Impact of Different LLMs

We apply SETS with Claude-3.5-Sonnet, GEMINI-2.5-Flash-Lite-Thinking and GEMINI-2.5-Flash. The
results for these three models are shown in Figure[7] Figure [§] and Figure [0} respectively. The findings are the
same as those in Section SETS outperforms the baselines on most of the cases with a few exceptions.

The GEMINI-2.5-Flash and GEMINI-2.5-Flash-Lite-Thinking models might fail to follow the specified
instructions for Trip Planning and meeting planning, leading to incorrectly formatted responses. This
formatting issue prevents the successful parsing of answers, resulting in a “None” value. For methods that
use majority voting (SETS, BoN+Majority Vote, and BoN+Self-Verify), these “None” answers are excluded
from the vote. Our results suggest that when the underlying language model has poor instruction-following
abilities on a task, the proposed SETS method may not significantly outperform the baselines (e.g., using
GEMINI-2.5-Flash-Lite-Thinking on Trip Planning).

Trip Planning - Claude-3.5-Sonnet Meeting Planning - Claude-3.5-Sonnet
0.704 —*— SETS (ours) poted N
BoN+Majority Vote 0.62 o
0.651 —e— BoN+Self-Verify o
_ e
BoN+Self-Eval PO 0.601 4
2 0.60 > o >
o —— SELF-REFINE % g
— —_
> >
O 0.55 2453 O 0.584
0.501 / 0.561
0.451
0.54
0.40+ : : . : , ,
103 104 10° 103 104 10°
Average Number of Output Tokens Average Number of Output Tokens
MATH 500 - Claude-3.5-Sonnet AIME 2024-2025 - Claude-3.5-Sonnet
0.824 Lommm—e 0.250+ poo
o 0.225 1 e
0.80] v
- o .. 0.200 o
) Plo— O
© 0.781 ¢ ® -0 £o0i—0-0-0-00609
5 5 0.175
[u} v} 3
: 7 g
<0.76 —— 0.150 y
5 L/
0.741 ‘ 0.125 1 »
& 0.1001 e e
103 104 10° 103 104 10°
Average Number of Output Tokens Average Number of Output Tokens
LiveBench Reasoning - Claude-3.5-Sonnet LiveCodeBench TestOutputPred - Claude-3.5-Sonnet
- - e m———e
e 0.85 sanadilif N
0.700 006006000000
/»—-- —————
0.675 p—oososgdon o 0.841 s
por ‘
' - 4
3 0.650 § 0.831)
5 et 5
g 0625 S 0821 4
<< < v
0.600 /
4 0.811 ok
0.575 S|
0.5501 /4 0801
10° 10 10° 10° 104 10°
Average Number of Output Tokens Average Number of Output Tokens

Figure 7: Scaling law curves for Claude-3.5-Sonnet.

21

Under review as submission to TMLR

Trip Planning - GEMINI-2.5-Flash-Lite-Thinking

097 o SETS (ours)
0.8 BoN+Majority Vote & . appee
. —o— BoN+Self-Verify -
BoN+Self-Eval o« :
> 0.7 >
2 —— SELF-REFINE *
2 0.6
< g
0.5 /
0.4
10 105 106
Average Number of Output Tokens
MATH 500 - GEMINI-2.5-Flash-Lite-Thinking
0.965 —0-000-0
e - -
0.9601 o
6000600060000
0.955 S/
z ~ ¥
@ 0.950 /
=] — /
9 0.945 f ‘
<Y ”
0.9401 #
0.9351
104 105 106
Average Number of Output Tokens
LiveBench Reasoning - GEMINI-2.5-Flash-Lite-Thinking
0.901 Y e
&) ,&m
0.851 4 4o
~
> -~
@) - — e
o
5 0.80 »
) =AS
<
0.75 4
0.701 &
104 105 106

Average Number of Output Tokens

Meeting Planning - GEMINI-2.5-Flash-Lite-Thinking

0.85
0.801
0.751

>

@ 0.70

>

E 0.65
0.601

0.554

0.501

10°

105 106

Average Number of Output Tokens

AIME 2024-2025 - GEMINI-2.5-Flash-Lite-Thinking

0.74
0.724

0.70+

o

)

©
;

Accuracy
o
[«)]
)

0.64

0.621

0.604

——— e

e —— — B

—o—0—¢

104

10° 106

Average Number of Output Tokens

LiveCodeBench TestOutputPred - GEMINI-2.5-Flash-Lite-Thinking

0.960+

0.9554

<
©
o
o

Accuracy

0.9454

0.9404

105
Average Number of Output Tokens

104 106

Figure 8: Scaling law curves for Gemini-2.5-Flash-Lite-Thinking.

22

Under review as submission to TMLR

Trip Planning - GEMINI-2.5-Flash

1.00 oo oo
r :” o
0.951 P
5. 0.901 / g
o
e #
2 0.851
g : —e— SETS (ours)
BoN+Majority Vote
0.801 —+— BoN+Self-Verify
BoN+Self-Eval
0.751 —>— SELF-REFINE
104 105 106
Average Number of Output Tokens
MATH 500 - GEMINI-2.5-Flash
0.961 e seresssonts
0.951 » ~—o-oum—od
9
@ 0.941
>
3
< 0.931
0.924
0.914
104 10° 10°
Average Number of Output Tokens
LiveBench Reasoning - GEMINI-2.5-Flash
0.957 .
4 A ol “
0.901 [PP
’J &
' 4 »
5. 0.851 et
) —— S - -~ — e —————
E ¥
2 0.801 /
1%
<
0.751 #
0.701 /
10° 105 106

Average Number of Output Tokens

Meeting Planning - GEMINI-2.5-Flash

0.951 -
0.90 oA
> ” 2z
o L ea—t_%
5 0.851 s .
Q
<
0.801
e
0.751
10° 105 106
Average Number of Output Tokens
AIME 2024-2025 - GEMINI-2.5-Flash
B
0.8751
- B - PRI,
0.850 1 pooé
[
3 0.825
o p-o-é
3
5 0.800 e
< <4
0.775+
0.750 #
&
104 10° 106
Average Number of Output Tokens
LiveCodeBench TestOutputPred - GEMINI-2.5-Flash
0.985 aod
»
0.980 so-ar” 000
2 «r
a0.975 : :“ B b
©
5 0.970
g /
< 0.965 /r"“
0.960 4
0.955 y
»
10 105 106

Average Number of Output Tokens

Figure 9: Scaling law curves for Gemini-2.5-Flash.

23

Under review as submission to TMLR

D.3 Evaluating Self-Verification Performance

We study whether more self-verification samples will improve the self-verification performance. We ask the
LLM to self-verify its own proposed solution (sampled with temperature= 0) multiple times and define
the verification score as the fraction of times that the solution is verified as correct. We then use the
AUROC metric to measure the correlation between the verification score and the correctness of the proposed
solution, which can reflect the self-verification performance. The results in Figure [I0] show that increasing the
number of self-verification samples lead to better self-verification performance, but the performance typically
saturates quickly. These results justify the design of the proposed method SETS: adding the dimension of
the number of samples m allows the LLM to self-verify the same solution multiple times, which can improve
the self-verification performance.

Meeting Planning

Trip Planning

0.901
0.975+ ot 0.881 F_f;'r'«r—*"‘-___’-_
of &
0.9501 z
0.86 1 7
O
8 0.9251 o
5 Sosal 1
< 0.900 <=
0.8751 —+— GEMINI-1.5-Pro 0.82
—+— GEMINI-2.5-Flash 4
0.8501 Claude-3.5-Sonnet 0.804
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of Samples Number of Samples
MATH 500 AIME 2024-2025
__________ 0.901
0.90 o S
. 0.85 1
0.851 4 o
| 0.80 ot
L 0.801 4 %) o
2 2
50.751 5 0.75 . o
< < ! -
0.70 ¥
0.70 ¢
0.65
0.60 0.65
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of Samples Number of Samples
LiveBench Reasoning LiveCodeBench TestOutputPred
0.95 0.95 Sttt t——
y — W o
0.904 0.90 PO g
2
0.85 0.85 1
8 0807 P R B ¥V B
5 0.75/ — 5
< g < 0.751
0.704{ ¥
¢ 0.701
0.65
0.65
0.60 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of Samples Number of Samples

Figure 10: Evaluate the self-verification performance of different models as we increase the number of
self-verification samples.

24

Under review as submission to TMLR

D.4 The Effect of Self-Correction Rounds

In Figure we show the results for studying the effect of self-correction rounds on MATH 500, AIME
2024-2025, LiveBench Reasoning and LiveCodeBench TestOutputPred datasets. The findings are the same as
those in Section .3

MATH 500 - GEMINI-1.5-Pro

0.90
- - Ead
o
0.894
v/
>
@ 0.88] /
5 y Max Number of Rounds
g 4 —— 5
0.871 4
—— 3
2
0.86 1 J —— 1
103 10° 105
Average Number of Output Tokens
LiveBench Reasoning - GEMINI-1.5-Pro
0.6251 A -
0.600] 7
§0_575, '/
§ 0.5501 /,4/
< 0.525 i
0.500
0.4751
103 104 105

Average Number of Output Tokens

0.354

Accuracy

AIME 2024-2025 - GEMINI-1.5-Pro

o
]
o

10° 10° 106

Average Number of Output Tokens

LiveCodeBench TestOutputPred - GEMINI-1.5-Pro

10° 10°

Average Number of Output Tokens

Figure 11: The effect of allocating more compute to self-verification and self-correction for SETS (controlled
by Max Number of Rounds) given a fixed computational budget (measured by Average Number of Output

Tokens).

25

Under review as submission to TMLR

D.5 The Effect of Temperature for SETS

We study how the temperature used for the three core operations (Sampling, Self-Verify, and Self-Correct)
affects the performance of SETS. We consider two configurations: (1) using a temperature of 0.7 for all
three operations (our default setting), and (2) using a temperature of 0.7 for Sampling, but a temperature of
0.0 (greedy decoding) for Self-Verify and Self-Correct. The results on the Meeting Planning and LiveBench
Reasoning benchmarks are shown in Figure[I2] The findings are the same as those in Section [f:3} our default

setting generally achieves better performance across different benchmarks.

Meeting Planning - GEMINI-1.5-Pro

LiveBench Reasoning - GEMINI-1.5-Pro

0.650 W PR——
oo 0.625 -
0.625 1 ool
0.6001 . 0.600 1 >~
> Z >]
8 0.5751 p 3 0.575 y
] E
S 0.550 g 0.5501 J
< P 1 <
0.5251 J 0.5251 .
0.500 —e— SETS (t=0.7, svt=0.7, sct=0.7) 0.500
0.4751 SETS (t=0.7, svt=0.0, sct=0.0) 04750 o s
103 10 10° 10° 104 10°

Average Number of Output Tokens

Average Number of Output Tokens

Figure 12: The effect of different temperature settings for SETS. t, svt and sct are temperature parameters
for the Sampling, Self-Verify and Self-Correct operations respectively.

26

Under review as submission to TMLR

D.6 Performance under the Oracle Setting
Trip Planning - GEMINI-1.5-Pro Meeting Planning - GEMINI-1.5-Pro
0.9 * SETS+Oracle (ours) ¥ 091 P
—e— SETS (ours) e
0.8 BoN+Ora.cIle 081
BoN+Majority Vote Qeeeee-® "
> oo o® >
@ i, —° @ o
5 0.7 - e - 5 0.71 e
8] o™ 8 by soee®
< < " ooee®®
0.6 »/«"""" 0.6 e
» :—00'-—“
05 y 0.51 .
103 104 10° 103 104 10°
Average Number of Output Tokens Average Number of Output Tokens
AIME 2024-2025 - GEMINI-1.5-Pro
MATH 500 - GEMINI-1.5-Pro
. 0.6 T
0.96 . .
0.94 T 0.54
>0.92 i 3
S o
50.90 i . 3 0.41 o~ -
[} (V) —
g P < —0—0-0-0000-0-0-000F
0.88 [——
e 0.3 4
0.86 d Hr—m--o-o
0.84 0.2 Ve
10° 10* 10° 10 104 10°
Average Number of Output Tokens Average Number of Output Tokens
LiveBench Reasoning - GEMINI-1.5-Pro LiveCodeBench TestOutputPred - GEMINI-1.5-Pro
1.0 o o ok
0.9 W 0.9
> 0.8 >0.8.
g P E0.8 " e eeeees
3 0.71 a . e - —.
[¥] o -
< ———ooooe < 0.7
0.6 - -
el 0.6
0.51 - - —-
103 104 105 10° 104 10°

Figure

Average Number of Output Tokens

Average Number of Output Tokens

13: Scaling law curves under the oracle setting where the x-axis is the average number of output

tokens and y-axis is the accuracy. Each point (x,y) in the curve corresponds to a hyperparameter setting
6 € O. y is the optimal performance at the cost budget x = H(#) (see Section |4.1| for details). We subsample
the points (up to 8 within every x-tick interval) to make the markers less crowded.

We compare the proposed method SETS with the Best-of-N method under the oracle setting where the final
solution is selected using ground-truth reference. Note that this oracle setting is not feasible in practice as it
depends on ground-truth labels. We consider the following two oracle methods:

e BoN+Oracle: We first sample m solutions and then select the final solution using ground-truth
reference. If all sampled solutions are incorrect, we select the first sampled solution.

27

Under review as submission to TMLR

o SETS+Oracle: We select the final solution among the solutions generated by SETS (up to m-(n+1)
solutions). If all solutions generated by SETS are incorrect, we select the first sampled solution.

We perform experiments for GEMINI-1.5-Pro and the results are shown in Figure We can see that SETS
with oracle selection has a marked advantage over BoN with oracle selection on Trip Planning, Meeting
Planning and LiveCodeBench TestOutputPred while the advantage is less pronounced on the other tasks.
This may suggest that SETS is more effective on tasks with larger and more complex solution space. Notably,
on LiveCodeBench TestOutputPred, SETS outperforms the performance of BoN+Oracle that uses ground-
truth labels for solution selection. This indicates that when the LLM possesses strong self-verification and
self-correction capabilities, SETS provides an efficient way to scale test-time compute and thus enhance
overall accuracy.

D.7 The Impact of Task Difficulty

The NATURAL PLAN datasets provide a controlled variable (e.g., the number of people or the number
of cities) that indicates the difficulty level of each task. We utilize this controlled variable to study the
performance of SETS on the easy and hard tasks. For Trip Planning, we treat a task with no more than 6
cities as an easy task, and otherwise a hard task. For Meeting Planning, we treat a task with no greater than
5 people as an easy task, and otherwise a hard task. Figure [14] shows that SETS significantly outperforms
the baselines on both easy and hard tasks. On hard tasks, SETS also brings significant accuracy gains and
can achieve higher accuracy if more test-time compute is used.

Trip Planning (Hard) - GEMINI-1.5-Pro Trip Planning (Easy) - GEMINI-1.5-Pro
—e— SETS = R
(oulrs)l 0.954 " L
0.6 BoN+Majority Vote o0 &5
—o— BoN+Self-Verify o 0.90+ o i
20
0.5 BoN+Self-Eval o o woad — — —
g —»— SELF-REFINE : 0851
© - S ©
=1 i >
go4 S 0.80 ’
< e <
0.3 /,:” 0.75
0.2 . 0.70
103 104 105 106 10° 104 10°
Average Number of Output Tokens Average Number of Output Tokens
Meeting Planning (Hard) - GEMINI-1.5-Pro Meeting Planning (Easy) - GEMINI-1.5-Pro
- a—
0.451 —s— SETS (ours) —
0.401 BoN+Majority Vote 0.901 -
—o— BoN+Self-Verify s P ot POV
>‘0-35’ BoN+Self-Eval ~° - d p
rad # &'
$ 0.30] —— SELF-REFINE .~ @ 0-851 e
‘é sl / o § —
£ 025 I < 0.801 .
0.201 / ”M #
0.151 el 0.751
0.101 ‘ ‘ i ‘ ‘
103 104 10° 108 103 10* 10°
Average Number of Output Tokens Average Number of Output Tokens

Figure 14: Estimated scaling law curves for Hard and Easy tasks obtained with SETS vs. baselines.

28

Under review as submission to TMLR

D.8 Performance under fixed hyperparameters

We evaluate SETS and baseline methods using fixed hyperparameters. For BoN+Majority Vote and BoN+Self-
Eval, we set m = 100. For BoN+Self-Verify, we set m = 50. For SELF-REFINE, we set n = 5. For SETS, we
set m = 20 and n = 3. We repeat each experiment three times and report the mean and standard deviation
for all metrics. As shown in Tabled] SETS generally demonstrates significantly superior performance over the
Best-of-N (BoN) baselines when operating under comparable computational budgets, measured by the average
number of output tokens. While the SELF-REFINE method consumes considerably less computational
resources than SETS, its accuracy is substantially lower.

Dataset Method Accuracy (%) 1+ Avg. # Output Tokens Avg. # API Calls

BoN+Majority Vote 49.946.2 35218+21558 100£0

BoN+Self-Verify 60.64+9.7 44844410756 100£0

Trip Planning BoN+Self-Eval 40.841.2 60469+10 101+0
SELF-REFINE 59.540.0 423340 610

SETS (ours) 68.5+3.0 48364+10857 87+0

BoN+Majority Vote 48.84+2.3 56422423057 1000

Meeting BoN+Self-Verify 55.74+0.9 73323139 1000

Planning BoN+Self-Eval 40.7+0.5 83273+2 101+0
SELF-REFINE 54.14+0.0 474640 540

SETS (ours) 59.6+1.4 62899+9196 8640

BoN+Majority Vote 87.84+0.2 4702621 100£0

BoN+Self-Verify 88.71+0.1 46997+21 100£0

MATH 500 BoN+Self-Eval 75.9£0.8 47407+£1 101+0
SELF-REFINE 87.84+0.0 141240 310

SETS (ours) 89.34+0.1 253924147 5040

BoN+Majority Vote 32.24+1.0 829424221 1000

AIME BoN+Self-Verify 28.3+1.7 84469+130 1000

9024-2025 BoN+Self-Eval 8.9+3.5 83759+17 101+0
SELF-REFINE 23.340.0 5232+0 6+0

SETS (ours) 33.3+0.0 81446826 99+1

BoN+Majority Vote 52.2+1.4 45711+£172 100£0

LiveBench BoN+Self-Verify 58.7+1.2 502304120 100£0

Reasoning BoN+Self-Eval 47.3+4.4 46342+2 101+0
SELF-REFINE 48.01+0.0 152640 310

SETS (ours) 60.7+1.3 29954+119 6040

BoN+Majority Vote 54.3£0.2 16546+129 10040

LiveCodeBench BoN+Self-Verify 64.940.5 2978942 1000

TestOutputPred BoN+Self-Eval 68.8+1.1 17126423 101+0
SELF-REFINE 74.940.0 109540 340

SETS (ours) 77.840.2 20616+71 5940

Table 4: Performance under fixed hyper-parameters with GEMINI-1.5-Pro. We show the mean and standard
deviation of the metrics (mean+std). Bold numbers are superior results.

29

Under review as submission to TMLR

E Examples for Three Core Operations

In this section, we show the detailed responses for the three core operations (Sampling, Self-Verify, and
Self-Correct) employed within SETS on a problem from MATH 500 with GEMINI-1.5-Pro.

Problem and Ground Truth Answer

PROBLEM: What is the least positive integer multiple of 30 that can be written with only the digits
0 and 27
Ground Truth Answer: 2220

Sampling Response

Let n be the least positive integer multiple of 30 that can be written with only the digits 0 and 2.
Since n is a multiple of 30, it must be a multiple of 10, meaning its last digit must be 0. Also, since n
is a multiple of 30, it must be a multiple of 3, meaning the sum of its digits must be a multiple of 3.
Since n can only contain the digits 0 and 2, the sum of the digits must be a multiple of both 2 and 3.
The smallest possible number with only 0 and 2 as digits and ending in 0 is 20, which is not divisible
by 3. The next smallest number is 200, which is not divisible by 3. The next smallest number is 2020,
the sum of the digits is 2 + 0 + 2 + 0 = 4, which is not divisible by 3. The next smallest number is
2000, the sum of the digits is 2 + 0+ 0+ 0 = 2, which is not divisible by 3. The next smallest number
is 20020, the sum of digits is 2+ 0+ 0 4+ 2 4+ 0 = 4, not divisible by 3. The next smallest number is
20200, the sum of digits is 2+ 0+ 2 4+ 0 4+ 0 = 4, not divisible by 3. The next smallest number is
202020, the sum of digits is 2+ 0+ 2+ 0 4+ 2 + 0 = 6, which is divisible by 3. Since it ends in 0, it is
divisible by 10. So it is divisible by 30. 202020 = 30 - 6734 202020 + 30 = 6734 Therefore, the least
positive integer multiple of 30 that can be written with only the digits 0 and 2 is 202020.

Final Answer: The final answer is

Self-Verify Response

1. **Conditions and Constraints:**

* F*Multiple of 30:** The number must be divisible by both 3 and 10. * **Digits 0 and 2 only:**
The number can only contain the digits 0 and 2. * **Least positive integer:** We are looking for the
smallest positive integer satisfying the above conditions. * **Positive:** The number must be greater
than 0. * **Integer:** The number must be a whole number.

2. **Verification:**

* **Digits 0 and 2 only:** The proposed answer 202020 consists only of the digits 0 and 2. This
condition is satisfied. * **Positive:** 202020 is greater than 0. This condition is satisfied. * **Integer:**
202020 is a whole number. This condition is satisfied. * **Divisible by 10:** A number is divisible by
10 if its last digit is 0. The last digit of 202020 is 0. This condition is satisfied. * **Divisible by 3:**
A number is divisible by 3 if the sum of its digits is divisible by 3. The sum of the digits of 202020
is24+04+2+ 04+ 2+ 0= 6. Since 6 is divisible by 3, 202020 is divisible by 3. This condition is
satisfied. * **Least positive integer:** Let’s consider smaller numbers formed with Os and 2s. We
need a number divisible by 10, so it must end in 0.

* 20: Divisible by 10, but not by 3 (240=2). * 200: Divisible by 10, but not by 3 (24+0+0=2). * 2020:
Divisible by 10, but not by 3 (240+2+0=4). * 220: Divisible by 10, but not by 3 (2+2+0=4). * 2220:
Divisible by both 10 and 3 (2+2+42+0=6).

Since 2220 is smaller than 202020 and meets all the conditions, 202020 is not the *least* such integer.
The proposed answer is incorrect.

30

Under review as submission to TMLR

Self-Correct Response

1. **Divisibility by 30:** A number is divisible by 30 if it is divisible by both 2 and 3 and 5 (since 30
= 2*3*5). Since divisibility by 2 and 5 is guaranteed by divisibility by 10 (which means the number
ends in 0), we need a number ending in 0 where the sum of its digits is divisible by 3.

2. **Building the number:** We want the smallest positive integer, so we start constructing the
number with the fewest digits possible.
* *¥*0ne 2:%*F 20. Sum of digits is 2, not divisible by 3. * **Two 2s:** 220. Sum of digits is 4, not
divisible by 3. * **Three 2s:** 2220. Sum of digits is 6, which is divisible by 3.

3. **Verification:** 2220 is divisible by 10 (ends in 0) and by 3 (sum of digits is 6). Therefore, it is
divisible by 30. It only uses the digits 0 and 2.

F SETS vs. Combining Sequential /Parallel

Table |5| compares the proposed SETS with the Combining Sequential/Parallel approach from |Snell et al.
(2024)), highlighting their key differences.

Dimension Combining Sequential /Parallel SETS

Verification Train a task-specific reward model as | Use the LLM itself to verify the correct-
the verifier. ness of the answer.

Revision Train a revision model to predict new | Use the LLM itself to generate a new

answers using previous answers as con-
text. At test time, sample a sequence
of revisions from the model with four
previous answers as context.

answer based on previous answers and
their self-verification analyses.

Early Stopping in
Revision

Produce a fixed number of new answers
without early stopping.

The self-correction process will stop
when the answer is verified as a correct
one.

Final answer selec-
tion

Use the verifier to select the best answer
within each chain and across chains.

Apply majority voting on the new re-
sponses produced by each branch of Self-
Verify and Self-Correct iterations to get
the final answer.

Evaluation

Only evaluated on MATH with PaLM
2-S.

Evaluated on six challenging bench-
marks spanning planning, reasoning,
math, and coding with both non-
thinking and thinking models to demon-
strate the generalization.

Practicality

Hard to be used in practice since we
need to collect data to train the verifier
and revision model for each task.

Can be easily applied to different tasks
and unlock a lot of downstream applica-
tions.

Table 5: Comparison of the proposed SETS with the Combining Sequential/Parallel approach (Snell et al.|

2024).

31

	Introduction
	Related Work
	Method
	Experiment
	Scaling Laws for Test-Time Compute
	Setup
	Results

	Conclusions
	Datasets
	Prompts
	Sampling Prompt
	Self-Verify Prompt
	Self-Correct Prompt
	Multi-choice QA Task Prompt for Self-Evaluation

	Controlled Generation
	Additional Results
	Cost Estimation using Number of API Calls
	Impact of Different LLMs
	Evaluating Self-Verification Performance
	The Effect of Self-Correction Rounds
	The Effect of Temperature for SETS
	Performance under the Oracle Setting
	The Impact of Task Difficulty
	Performance under fixed hyperparameters

	Examples for Three Core Operations
	SETS vs. Combining Sequential/Parallel

