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ABSTRACT

Two core challenges of alignment are 1) scalable oversight and 2) accounting for
the dynamic nature of human values. While solutions like recursive reward mod-
eling address 1), they do not simultaneously account for 2). We sketch a roadmap
for a novel algorithmic framework that trains a superhuman reasoning model to
decompose complex tasks into subtasks that are still amenable to human-level
guidance. Our approach relies on what we call the part-to-complete generaliza-
tion hypothesis, which states that the alignment of subtask solutions generalizes
to the alignment of complete solutions. We advocate for the need to measure this
generalization and propose ways to improve it in the future.

1 INTRODUCTION

Alignment of artificial intelligence systems with human values represents one of the most critical
challenges in AI development. Various techniques have been developed to align AIs with human
values (Ji et al., 2023), with many approaches leveraging human feedback as a key mechanism to
judge AI behavior and outputs (Ouyang et al., 2022). Although far from perfect, these human-
feedback-based techniques have proven effective in scenarios where the tasks performed by the AI
remain at or below human intelligence and are relatively low risk, e.g. writing a summary.

However, as AIs eventually move beyond human intelligence, their solutions will become too com-
plex for humans to judge correctly or efficiently, rendering these techniques ineffective. This is
the so-called scalable oversight problem1 (Cao et al., 2024): How do you align a superhuman AI
with human values? This problem becomes especially important as AI agents are performing in-
creasingly higher risk tasks with consequences in the real world. Promising approaches to scalable
alignment leverage the idea of recursive reward modeling, where aligned weak AIs are used to align
stronger AIs (Leike et al., 2018). However, although the initial alignment is done by humans, as
this approach passes over the threshold of human intelligence, the human is removed from the loop
entirely: All future alignment is done by AI models without human intervention. As Shen et al.
(2024) argue, alignment cannot be a static process, as human values tend to change over time. In
order to preserve human agency, it is therefore necessary to keep humans in the loop, which existing
approaches do not account for.

In order to address this issue, we argue that the alignment algorithm must be built with inductive
biases that keep humans (or human-level AI as a proxy) at the core of the alignment algorithm.
In this paper, we present a roadmap for developing such an approach. First, we sketch our pro-
posed algorithm, which, inspired by Iterated Amplification (Christiano et al., 2018), decomposes
complex tasks into subtasks. By training a reasoning-based AI to create subtasks simple enough
for an aligned human-level AI to solve and judge, we can ensure that the resulting partial solutions
are aligned to human values. While in contrast to Iterated Amplification this approach removes
the need for decomposition by humans, it introduces the new assumption that the recomposition of
aligned partial solutions from subtasks generalizes to an aligned complete solution (illustrated in
Figure 1), which we term the part-to-complete generalization hypothesis. Similarly to other types
of alignment generalizations (e.g., weak-to-strong generalization (Burns et al., 2024)), we argue that
this assumption is likely to hold to some extent, but needs empirical validation and strengthening
through algorithmic innovations.

1Scalable oversight is often defined in more general terms as the difficulty of providing human oversight
efficiently. In this paper, we use the definition involving superintelligence, also known as superalignment.
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Well-aligned sub-tasks:
# Ask a single user for
# their preferred restaurants
def ask_preference(user):

# Find a restaurant that satisfies
# all users’ preferences
def identify_overlap(preferences):

# Confirm a reservation at the
# given restaurant
def book_table(restaurant):

Aligned composition:
prefs = {}
for u in users:

prefs[u] = ask_preference(u)
r = identify_overlap(prefs)
book_table(r)

Unaligned composition:
bookings = {}
for u in users:

prefs = ask_preference(u)
for r in prefs:

book_table(r)
r = identify_overlap(prefs)

Figure 1: Example of part-to-complete generalization in the dinner table reservation task, in which
an AI agent is tasked to book a restaurant that satisfies the preferences of all attendees. Partial
solutions to sub-tasks are assumed to be well-aligned in isolation. However, the alignment of the
complete solution depends on how the partial solutions are recomposed: While in the aligned com-
position the AI agent first identifies the overlap before booking a single restaurant, in the unsafe
composition, tables are booked individually before identifying an overlap, leading to many unneces-
sary reservations. In Section 5 we discuss strategies to steer the model toward aligned compositions.

2 BACKGROUND

Scalable Oversight The problem of scalable oversight of deep learning systems has been identified
as a major problem in AI safety (Amodei et al., 2016) long before large language models. In AI
debate (Irving et al., 2018), (superhuman) models play a zero-sum debate game to convince a human
judge that their evaluation of an outcome is better, relying on the assumption that it is easier to
convince the judge with true arguments. Iterated Amplification (IA) (Christiano et al., 2018) relies
on humans’ ability to safely decompose a complex task into smaller problems that can independently
be solved by weak AIs. While AI debate keeps humans in the loop during alignment, a distinct
advantage of IA is that it constructs strong AIs directly with integrated alignment, lowering the
chances of accidents or misuse. However, human task decomposition is hard to scale to complex
tasks, necessitating novel solutions. Recursive reward modeling (Leike et al., 2018), which describes
a family of techniques where a weaker AI model is used to assist a user in providing feedback to a
stronger AI model for training, removes humans from the loop entirely after the first iteration. In
contrast to previous techniques, our approach aspires to both keep humans in the loop and construct
strong AIs directly with integrated alignment.

Reasoning Models With the advent of OpenAI’s o1 (Jaech et al., 2024), reasoning models have
recently emerged as a new paradigm for training AIs that can solve complex tasks. Although the
exact mechanisms behind o1 are unknown, DeepSeek-R1 (Guo et al., 2025) is assumed to be the first
reproduction of o1. The model leverages a verifier on the generated solution to obtain a quality signal
for training via reinforcement learning. With only a modest amount of training data, DeepSeek-R1
learns to deploy a variety of reasoning capabilities, including planning, self-reflection, and self-
correction. This adds to the existing evidence that it is feasible to train reasoning models that learn
to decompose tasks into subtasks that can be solved by a human-level AI (Wen et al., 2024).

Alignment Generalization Recent work has explored various forms of generalization in AI align-
ment. Burns et al. (2024) demonstrate that aligning a strong AI with a weak AI reduces harmful-
ness while maintaining some capabilities, establishing the concept of weak-to-strong generalization.
However, Shin et al. (2024) find that this relies on training examples with both easy and hard pre-
dictive patterns. In parallel, Sun et al. (2024) observe a similar phenomenon with easy-to-hard gen-
eralization, where models trained on simple examples maintain alignment properties when tackling
more complex examples. These different forms of generalization suggest that alignment properties
can transfer across capability and complexity levels. A conceptual limitation of these approaches is
their assumption that the weak supervisor is able to provide non-trivial feedback on some examples,
which may not always be the case. In contrast, our approach trains a stronger AI to directly break
down the task into subtasks that are easy for a human-level AI to judge.
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3 PROPOSED FRAMEWORK

Inspired by IA (Christiano et al., 2018), our approach solves harder tasks through task decomposi-
tion, but addresses the scalability issues of IA. It assumes the existence of aligned human-level AIs
and of a correctness verifier. Figure 2 shows the algorithm in pseudo-code.

Our approach directly addresses two key challenges of alignment: 1) Scalable oversight: By decom-
posing them into subtask structures of respective complexity, this model is able to solve increasingly
complex tasks (Figure 2b) while still producing solutions that are aligned to human values. 2) Dy-
namic nature of human values: By enforcing that each subtask is solved by a human-level AI, we can
incorporate evolving human values by continuously updating the human-level AI proxy accordingly,
e.g., through RLHF (Christiano et al., 2017) (see Figure 2a).

4 MEASURING PART-TO-COMPLETE GENERALIZATION

Inputs: Human H, Human-level AI Hϕ, Plan-
ner Pθ , Dataset D of hard superhuman tasks Xi,
Dataset E of human-level tasks Yi, Verifier V

procedure scalable align(Pθ, Hϕ, H,D, E , V):
1. while True do
2. Hϕ ← align to human(H,Hϕ, E)
3. for Xi in D do
4. Pθ ← train planner(Pθ, Hϕ, Xi, V )

procedure align to human(H,Hϕ, E):
1. for Yi in E do
2. Hϕ ← align(Hϕ, H, Yi)
3. return Hϕ

(a) Alignment to evolving human values.

procedure train planner(Pθ, Hϕ, X, V ):
1. subtasks← Pθ.decompose(X)
2. partial solutions← []
3. partial rewards← []
4. for t in subtasks do:
5. s← Hϕ.solve(t)
6. r ← Hϕ.judge(s)
7. partial solutions.append(s)
8. partial rewards.append(r)
9. S ← Pθ.recompose(partial solutions)
10. R← V.verify(X,S)
11. Pθ ← RLFT(Pθ, R+ sum(partial rewards))
12. return Pθ

(b) Training the planner via task decomposition.

Figure 2: Our proposed approach (see Section 3) for maintaining human oversight in superalignment
through part-to-complete generalization. (a) On a regular basis, a human-level AI Hϕ is aligned
to humans H on human-level tasks E to account for the dynamic nature of human values. After
adapting the human-level AI, we train the superhuman planner model Pθ on superhuman tasks D.
(b) A reasoning model Pθ decomposes each task X into simpler subtasks. Each subtask is solved
and judged by the human-level aligned AI Hϕ. The reasoning model then recomposes the partial
solutions into a complete solution, which is verified for correctness using a rules-based verifier
V . The reasoning model is then updated using a reinforcement learning algorithm RLFT (e.g.,
PPO (Schulman et al., 2017)) based on the correctness reward R and partial alignment rewards. With
the part-to-complete generalization hypothesis, we expect the alignment of solutions to subtasks to
generalize to the complete solution.

Our framework targets tasks that a human-level AI is not able to judge the complete solution of, but
whose AI-generated partial solutions can be judged reasonably well by a human-level AI2, which
is used as alignment feedback for the reasoning model. However, the alignment of partial solutions
does not necessarily generalize to the alignment of the complete solution. Figure 1 illustrates this
challenge with a simple example of an AI agent booking a dinner table.

Our approach assumes what we term part-to-complete generalization, where despite a lack of feed-
back on complete solutions, the reasoning model learns to generate compositions of partial solutions
that are still aligned with human values. Analogous to the suspected mechanism in weak-to-strong
generalization (Burns et al., 2024), we hypothesize that the AI understands the intent of alignment of
partial solutions. However, the extent to which this holds is an empirical question that is not trivial
to answer; future research needs to study the extent of part-to-complete generalization for different
types of tasks and reasoning models. Using the sandwiching method for scalable oversight (Bowman
et al., 2022), we can evaluate the performance of our approach on risk-laden agentic domain-expert
tasks when receiving feedback on partial solutions from a non-expert (Zhou et al., 2024).

2We assume that the human-level AI is able to make value-consistent judgements across partial solutions.
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5 IMPROVING PART-TO-COMPLETE GENERALIZATION

Similarly to how Burns et al. (2024) propose methods that improve weak-to-strong generalization,
we expect that there are several ways to improve the part-to-complete generalization of reasoning
models.

(1) Restricted Composition Space One approach to improve part-to-complete generalization is to
restrict the space of possible compositions. By limiting compositions to specific structures like trees
or sequential processes, we can eliminate certain classes of safety violations by design. For example,
in our example of dinner reservation (Figure 1), limiting the depth of nested for-loops to one could
have prevented the unaligned complete solution.

(2) Balanced Subtask Complexity Another strategy is to carefully balance the complexity of gen-
erated subtasks. The planner should aim to create subtasks that require approximately human-level
intelligence to understand and verify, as simpler subtasks would push more complex logic into the
composition step itself. This balance ensures that the human-level AI can effectively judge each
component while minimizing the added complexity that emerges during composition.

(3) Solution Summarization A third approach involves generating high-level summaries of com-
plete solutions for human-level AI judgment. While the human-level AI may not comprehend all
implementation details, it can provide an imperfect evaluation of whether the summary adequately
reflects the intended composition of subtasks and maintains desired safety properties. Despite the
imperfect evaluation, the planner model may learn the true intent through weak-to-strong general-
ization.

6 DISCUSSION AND CONCLUSION

In their review of the alignment literature, Shen et al. (2024) list concrete challenges of alignment
that a promising roadmap for alignment should address. In this section, we discuss our framework
in light of these challenges.

By design, our framework directly addresses the challenge of scalable oversight. Rather than at-
tempting to verify increasingly complex behaviors as a whole, we maintain oversight by ensuring
that all solutions are composed of aligned partial solutions. This approach scales naturally with AI
capability: As the planner becomes more sophisticated, it can create more complex de- and recom-
positions of hard tasks while keeping individual subtasks at human-level difficulty. Moreover, our
approach increases robustness to specification gaming through multiple layers of oversight. By
decomposing complex tasks into human-verifiable subtasks, we make it harder for the system to
find and exploit loopholes, as each component must pass human-level AI verification. Furthermore,
the part-to-complete generalization property ensures that gaming the specification at the composi-
tion level would require simultaneously satisfying multiple independent human-aligned constraints,
making unintended solutions less likely. In contrast to previous scalable oversight solutions, our
framework is equipped to account for the dynamic nature of human values. Since oversight is
maintained through a human-level AI proxy, updates to human values can be incorporated by updat-
ing this proxy, which then influences both the verification of subtasks and the training of the planner.
This creates a dynamic feedback loop where changes in human values naturally propagate through
the system without requiring complete retraining. Finally, our framework provides several safe-
guards against existential risk. First, capability and alignment are developed simultaneously rather
than sequentially, preventing unaligned superhuman AI to be developed in the first place. Second,
the decomposition approach ensures that any potentially dangerous capabilities must be constructed
from human-verified components, making it harder to develop harmful behaviors unnoticed.

Although our framework addresses many key alignment challenges, significant work remains. While
it addresses the outer-alignment problem, it does not directly address the alignment of a model’s
internal objectives (inner alignment). Moreover, its success hinges on the extent of part-to-complete
generalization, which must be empirically validated across different domains and task complexities.
New methods to improve part-to-complete generalization need to be developed. These challenges,
while substantial, represent concrete research directions rather than fundamental limitations of the
approach, and we invite the community to join us in addressing them.
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Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen
(Ministry for Economic Affairs, Industry, Climate Action and Energy of the State of North Rhine-
Westphalia), as part of the KI.NRW-flagship project ”Zertifizierte KI” (Certified AI).

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
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