
Invariant Graph Representations Learning via Redundant Information

Graph Neural Networks (GNNs) have achieved significant strides in learning from structured data,
driving significant advances in a wide range of applications [1]. Despite their success, a critical limitation
remains: most GNNs trained on one data distribution fail to generalize well to real-world data that may
undergo distribution shifts. Such shifts can occur due to factors such as changes in data collection environ-
ments or data generation processes [2]. Such distribution shifts can also spuriously correlate with target
labels, leading to substantial performance degradation when models are deployed in out-of-distribution
(OOD) real-world settings. Thus, OOD generalization is essential for the reliable deployment of GNNs.

(a) Step 1: The parameters θs and ϕs are updated
during training, while all other parameters remain
fixed.

(b) Step 2: The parameter β, ηc and ϕc are
updated during training, while the rest is kept
frozen.

Figure 1: Redundancy based invariant graph learn-
ing framework (RIG).

To address the challenge of OOD generalization, we study
the integration of invariant graph representation learning with
Partial Information Decomposition (PID) [3], an emerging
body of work from information theory that goes beyond clas-
sical measures like mutual information, conditional mutual
information, etc. PID specifically explains the structure of
multivariate information, disentangling the joint mutual in-
formation I(Y ;C, S) in invariant variable C and spurious vari-
able S variables about target Y into four non-negative terms:
uniqueness (in C or S), redundancy (common knowledge be-
tween C and S), and synergy (manifests only when C and S
are together). We seek to address the following research ques-
tion: Can decomposing the multivariate information between
spurious and invariant subgraphs assist in achieving improved
generalization in GNNs?

To this end, we propose a novel multi-level optimization
framework (RIG) that leverages redundant information be-
tween estimated invariant Ĝc and spurious Ĝs subgraphs to
achieve out-of-distribution (OOD) generalization on graphs.
For a graph distribution and causally aligned GNN model with rationale generator h, and classi-
fier fc, assuming |Gc| = sc ∀Gc, the proposed optimization objective is: (RIG) maxfc,h I(Y ; Ĝc) +

Red(Y :Ĝc, Ĝs) s.t. Ĝc ∈ argmax
Ĝp

c

I(Ĝp
c ; Ĝn

c | Y ). Here, Ĝp
c ∈ {Ĝp

c = h(Gp)} and Ĝn
c ∈ {Ĝn

c = h(Gn)} are

the estimated invariant subgraphs and Ĝs = G−h(G) is the estimated spurious subgraph. Solving the ob-
jective function, RIG is nontrivial, since it involves redundant information, and estimating Red(Y :Ĝc, Ĝs)
itself requires solving an additional optimization problem. To make this optimization problem tractable
in practice, we introduce an alternating optimization strategy that iteratively alternates between estimating
redundant information (step 1) and maximizing the objective (step 2) (see Fig. 1). This procedure helps
disentangle misleading information from invariant subgraphs, thereby enhancing OOD generalization.

{a, b} {0.8, 0.6} {0.8, 0.7} {0.8, 0.9} {0.7, 0.9}

ERM 77.36±0.80 74.64±1.70 50.77±3.40 42.09±2.23

GALA 83.25±0.88 81.43±0.59 76.51±1.93 64.44±4.83

RIG 82.73±0.63 81.80±0.93 77.59±1.19 65.50±5.35

Table 1: Test Accuracy (%) for Two-piece graph datasets
(Mean ± Std).

We perform comprehensive experiments on both syn-
thetic and real-world graph datasets to empirically val-
idate our theoretical insights and demonstrate the ef-
fectiveness of the proposed framework across 4 syn-
thetic and 7 real-world datasets, including Two-piece
graph, DrugOOD, and CMNIST. Table 1 shows that
our method outperforms the state-of-the-art objective
GALA [4] on 3 out of 4 Two-piece graph datasets.
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