Invariant Graph Representations Learning via Redundant Information

Graph Neural Networks (GNNs) have achieved significant strides in learning from structured data,
driving significant advances in a wide range of applications [1]. Despite their success, a critical limitation
remains: most GNNs trained on one data distribution fail to generalize well to real-world data that may
undergo distribution shifts. Such shifts can occur due to factors such as changes in data collection environ-
ments or data generation processes [2]. Such distribution shifts can also spuriously correlate with target
labels, leading to substantial performance degradation when models are deployed in out-of-distribution
(OOD) real-world settings. Thus, OOD generalization is essential for the reliable deployment of GNNs.
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For a graph distribution and causally aligned GNN model with rationale generator h, and classi-
fier f., assuming |G.| = s. VG,, the proposed optimization objective is: (RIG) maxy, , 1(Y; Gc) +
Red(Y:G,, Gy) s.t. G. € argmax I(G2; G | Y). Here, G¥ € {G¥ = h(GP)} and G7 € {G" = h(G™)} are
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the estimated invariant subgraphs and Gy=G-— h(G) is the estimated spurious subgraph. Solving the ob-
jective function, RIG is nontrivial, since it involves redundant information, and estimating Red(Y:@c, @5)
itself requires solving an additional optimization problem. 7o make this optimization problem tractable
in practice, we introduce an alternating optimization strateqy that iteratively alternates between estimating
redundant information (step 1) and mazximizing the objective (step 2) (see Fig. 1). This procedure helps
disentangle misleading information from invariant subgraphs, thereby enhancing OOD generalization.

We perform comprehensive experiments on both syn-
thetic and real-world graph datasets to empirically val- {a, b} {0.8,0.6} {0.8,0.7} {0.8, 0.9} {0.7, 0.9}
idate our theoretical insights and demonstrate the ef- ERM 77.36+0.80 74.64+£1.70 50.77+3.40 42.09+2.23
fectiveness of the proposed framework across 4 syn- GALA 83.2540.88 81.4340.59 76.514+1.93 64.444+4.83
thetic and 7 real-world datasets, including Two-piece RIG  82.7340.63 81.8040.93 77.594+1.19 65.504+5.35
graph, DrugOOD, and CMNIST. Table 1 ShOW? t}.lat Table 1: Test Accuracy (%) for Two-piece graph datasets
our method outperforms the state-of-the-art objective (Mean + Sta).

GALA [4] on 3 out of 4 Two-piece graph datasets.
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