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ABSTRACT

Recently years have witnessed a rapid development of large language models
(LLMs). Despite the strong ability in many language-understanding tasks, the
heavy computational burden largely restricts the application of LLMs especially
when one needs to deploy them onto edge devices. In this paper, we propose a
quantization-aware low-rank adaptation (QA-LoRA) algorithm. The motivation
lies in the imbalanced numbers of parameters for quantization and adaptation, and
the solution is to use group-wise operators to increase the number of parameters
for quantization meanwhile decreasing that of adaptation. QA-LoRA is easily im-
plemented with a few lines of code, and it equips the original LoRA with two-fold
abilities: (i) during fine-tuning, the LLM’s weights are quantized (e.g., into INT4)
to reduce time and memory usage; (ii) after fine-tuning, the LLM and auxiliary
weights are naturally integrated into a quantized model without loss of accuracy.
We apply QA-LoRA to the LLaMA and LLaMA2 model families and validate its
effectiveness in different fine-tuning datasets and downstream scenarios. The code
is made available at https://github.com/yuhuixu1993/qa-lora.

1 INTRODUCTION

Recently, large language models (LLMs) (Brown et al., 2020; Scao et al., 2022; Zhang et al., 2022;
Touvron et al., 2023a; Chowdhery et al., 2022; OpenAI, 2023; Zeng et al., 2023) have shown un-
precedented performance across a wide range of language understanding tasks (Wei et al., 2022a)
and served as the foundation of state-of-the-art chat systems (Bubeck et al., 2023). The diversity of
real-world applications calls for a pipeline in which LLMs can be fine-tuned to fit different scenarios
and quantized to be deployed onto edge devices (e.g., mobile phones), and the key issue is to get rid
of the heavy computational burden brought by the large number of parameters of LLMs.

There are two lines of research for this purpose. The first one is parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019; Li & Liang, 2021; Liu et al., 2021; He et al., 2022; Hu et al., 2021)
which introduced a small number of learnable parameters while keeping most pre-trained param-
eters unchanged. Among them, low-rank adaptation (LoRA) (Hu et al., 2021), a popular PEFT
algorithm, proposed to fine-tune low-rank matrices to complement the pre-trained weights. Despite
the comparable performance to full-parameter fine-tuning, the memory usage of LoRA is still large,
especially when the base LLM is large (e.g., LLaMA-65B). The second one studies parameter quan-
tization (Yao et al., 2022; Dettmers et al., 2022; Wei et al., 2022b; Frantar et al., 2023; Lin et al.,
2023; Xiao et al., 2023; Dettmers et al., 2023b) where the trained weights are quantized into low-bit
integers or floating point numbers. Although these methods can alleviate the computational burden,
they often report unsatisfying accuracy especially when the quantization bit width is low.

Hence, it is an important topic to integrate PEFT with quantization. A naive solution is to perform
post-training quantization (PTQ) after PEFT, but it reports unsatisfying accuracy especially when
the quantization bit width is low. Advanced methods exist, but they are either computationally ex-
pensive in the fine-tuning stage (Liu et al., 2023) or unable to maintain the quantized property after
fine-tuning (Dettmers et al., 2023a). In this paper, we propose a simple yet effective method for
quantization-aware low-rank adaptation (QA-LoRA). Our idea is based on the imbalanced numbers
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Figure 1: The comparison of 5-shot MMLU accuracy (%) with different quantization bit widths
based on the LLaMA model family. QLoRA (NF4 & FP16) refers to the original QLoRA models
with pre-trained weights in INT4 and adapter weights in FP16, and QLoRA (INT4) refers to per-
forming post-training quantization (into INT4) upon the merged QLoRA models. All models are
fine-tuned on the Alpaca dataset. Full results are provided in Table 1.

of parameters for quantization and adaptation. Specifically, each column of the pre-trained weight
matrix is accompanied by only one pair of scaling and zero parameters but many more LoRA pa-
rameters. This imbalance not only results in large quantization errors (which harm the LLM’s accu-
racy), but also makes it difficult to integrate the auxiliary weights into the main model. QA-LoRA
addresses the issue by introducing group-wise operators to increase the number of parameters for
low-bit quantization (each group is quantized individually) and decrease that of LoRA (each group
shares the adaptation parameters). QA-LoRA enjoys two-fold benefits: (i) an efficient fine-tuning
stage thanks to the LLM’s weights being quantized into low-bit integers; (ii) a lightweight, fine-
tuned model without the need for PTQ which often incurs loss of accuracy.

We evaluate QA-LoRA on the LLaMA and LLAMA2 model families (Touvron et al., 2023a;b) and
validate it on various language understanding benchmarks. Figure 1 shows the comparison of 5-shot
accuracy on the MMLU benchmark between QA-LoRA and the direct baseline, QLoRA (Dettmers
et al., 2023a). QA-LoRA consistently outperforms QLoRA with PTQ on top of LLMs of different
scales (the advantage becomes more significant when the quantization bit width is lower) and is
on par with QLoRA without PTQ. Note that during inference, QA-LoRA has exactly the same
complexity as QLoRA with PTQ and is much more efficient than QLoRA without PTQ. Hence,
QA-LoRA is an effective and off-the-shelf method for joint quantization and adaptation of LLMs.

2 RELATED WORK

Large language models (LLMs) (Devlin et al., 2019; Brown et al., 2020; Zhao et al., 2023a; Hadi
et al., 2023; Yu et al., 2023) have emerged as a dominant paradigm in natural language processing.
It achieved the state-of-the-art on various tasks (Zhao et al., 2023b; Zhou et al., 2023; Wang et al.,
2023) and served as the fundamental of chat systems (OpenAI, 2023). However, their deployment
in real-world scenarios is hindered by the high computational and memory requirements during
inference (Chang et al., 2023). To tackle this issue, various methods have been proposed, including
distillation (Liu et al., 2023), quantization (Yao et al., 2022; Dettmers et al., 2022; Wei et al., 2022b;
Frantar et al., 2023; Lin et al., 2023; Xiao et al., 2023), pruning (Frantar & Alistarh, 2023; Ma et al.,
2023; Sun et al., 2023), etc. (Weng, 2023). This paper mainly focuses on the quantization of LLMs.

Fine-tuning LLMs with adapters. Parameter efficient fine-tuning (PEFT) is an important topic for
LLMs. One of the most popular approaches is low-rank adaptation (LoRA) (Hu et al., 2021; Valipour
et al., 2022), where the key insight is to decompose the adapter weights into the multiplication of two
low-rank (and thus parameter-efficient) matrices. LoRA has claimed comparable performance to full
fine-tuning while using much fewer learnable parameters. Meanwhile, there are also other branches
of adapters for LLMs such as the series adapter (Houlsby et al., 2019) and parallel adapter (He et al.,
2022). Please refer to (Mangrulkar et al., 2022; Hu et al., 2023) for a review of these adapters.

Quantization of LLMs. Quantization is a compression technique that reduces the bit width of
the parameters and/or activations of LLMs to improve their efficiency and scalability (Xiao et al.,
2023; Dettmers et al., 2022; 2023a). Existing methods mostly focused on preserving or restoring
the accuracy of quantized LLMs during the inference stage (Zhu et al., 2023), where the key is to
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reduce the memory footprint and computational costs without re-training the LLMs. One of the
main challenges is to handle the outliers in the parameter distribution (Xiao et al., 2023), which can
cause significant errors when quantized. To address this issue, some methods proposed to use either
adaptive or dynamic quantization schemes that adjust the quantization range or precision according
to the parameters (Xiao et al., 2023; Dettmers et al., 2022). Other methods used sophisticated group-
ing or clustering techniques to partition the parameters into different groups and applied different
quantization strategies for each group (Park et al., 2022; Yao et al., 2022; Wu et al., 2023).

Joint adaptation and quantization. This paper aims to achieve the objectives of both parameter-
efficient adaptation and computation-efficient tuning and deployment, which can further improve
the efficiency and scalability of LLMs as well as mitigate the negative impact of quantization er-
rors. However, this also poses additional challenges, such as propagating gradients through discrete
values and optimizing the quantization parameters. To overcome these challenges, lossy quantiza-
tion methods proposed to use stochastic rounding (Shen et al., 2020) or learned rounding (Esser
et al., 2019) to approximate the gradients and update the parameters, but applying these methods to
LLMs is often difficult. Other methods proposed to use switchback layers (Wortsman et al., 2023)
or mixed-precision inference (Dettmers et al., 2023a) to alternate between quantized and full/half-
precision values, which often result in low inference speed.

To the best of our knowledge, the most related work is QLoRA (Dettmers et al., 2023a) which
squeezed the pre-trained weights into NF4 and added LoRA. However, QLoRA added the adaption
weights back to pre-trained weights and turned them into FP16 again, and thus the deployed model
is still slow. We solve this problem with the proposed QA-LoRA approach.

3 THE PROPOSED APPROACH

3.1 BASELINE: LOW-RANK ADAPTATION AND LOW-BIT QUANTIZATION

We follow the notation system used in LoRA (Hu et al., 2021) which assumed pre-trained weights
to form a matrix W and the features form a vector x. The definition is easily applied to a wide range
of scenarios and extended into x is a set of vectors (e.g., a feature matrix). Let the size of W be
Din × Dout and x has the length of Din, and thus the computation is easily written as y = W⊤x
where y is the output vector with a length of Dout.

The key idea of LoRA is to introduce a pair of matrices, A and B, to supplement W. A and B have
sizes of Din × Dint and Dint × Dout, respectively, so that their multiplication, AB, has the same
size as W. The intermediate dimensionality is often small (i.e., Dint ≪ min{Din, Dout}), making
AB a low-rank matrix compared to W. During fine-tuning, we compute y = W⊤x+ s · (AB)⊤x,
where s is the coefficient for weight tuning, and W is fixed while A and B can be adjusted, arriving
at the goal of parameter-efficient fine-tuning. After fine-tuning, the computation is reformulated into
y = (W + s ·AB)⊤x, where W is replaced by W′ = W + s ·AB for fast inference.

Another effective way to reduce computational costs lies in low-bit quantization. We only consider
the quantization of weights throughout this paper. In particular, we apply a simple method named
min-max quantization. Mathematically, given the bit width N and a pre-trained weight matrix W,
we compute the minimum and maximum values across all elements of W, denoted as min(W) and
max(W), respectively. Then, W is quantized into W̃ by computing

W̃ = α · Ŵ + β
.
= α ·

⌊
W − β

α

⌉
+ β, (1)

where α = (max(W) − min(W))/(2N − 1) and β = min(W) are called the scaling and zero
factors, respectively; ⌊·⌉ denotes the integer rounding operation. All elements in Ŵ are in the set of
{0, 1, . . . , 2N −1} and thus stored as B-bit integers. The computation, y = W⊤x, is approximated

as y = W̃⊤x = α·
⌊
W−β

α

⌉⊤
x+βx. The quantization brings two-fold benefits, namely, the storage

of W is reduced (e.g., from FP16 to INT4) and the computation of W⊤x becomes faster. The cost
is that W̃ is an approximation of W, which may harm the accuracy of language understanding.

To reduce the quantization loss between W and W̃, an effective strategy is to perform an individual
quantization for each column of W. Let W = [wi,j ]Din×Dout , where i ∈ {1, . . . , Din} and j ∈
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Figure 2: An illustration of the goal of QA-LoRA. Compared to prior adaptation methods, LoRA and
QLoRA, our approach is computationally efficient in both the fine-tuning and inference stages. More
importantly, it does not suffer an accuracy loss because post-training quantization is not required.
We display INT4 quantization in the figure, but QA-LoRA is generalized to INT3 and INT2.

{1, . . . , Dout} are iterative variables. Let αj and βj be the scaling and zero factors computed on

the j-th column, wj . Hence, Equation 1 is updated as W̃ = [w̃j ]Dout =
[
αj ·

⌊
wj−βj

αj

⌉
+ βj

]
Dout

,

and the computation is rewritten as y = W̃⊤x =

[
αj ·

⌊
wj−βj

αj

⌉⊤
x+ βjx

]
Dout

. Compared to

the original (holistic) quantization, the computational cost is unchanged while the storage cost of
the scaling and zero factors increases from 2 to 2Dout floating point numbers. This is negligible
compared to the reduced cost of storing the full-precision W.

3.2 OBJECTIVE: EFFICIENT ADAPTATION AND DEPLOYMENT

As shown in Figure 2, we aim to achieve two goals. First, during the fine-tuning stage, the pre-
trained weights W are quantized into low-bit representation so that LLMs can be fine-tuned on as
few GPUs as possible. Second, after the fine-tuning stage, the fine-tuned and merged weights W′

are still in a quantized form so that LLMs can be deployed with computational efficiency.

We note that QLoRA (Dettmers et al., 2023a), a recently proposed variant of LoRA, achieved the
first goal. The idea is to quantize W from FP16 to NF4 (a highly squeezed type of floating point
numbers) during the fine-tuning stage. We learn from QLoRA that joint optimization of quantization
and adaptation is tractable because the accuracy loss between W and W̃ is compensated by the low-
rank weights, s ·AB. After fine-tuning, the side weights s ·AB must be added back to W̃, making
the final weights W′ in FP16 again. Indeed, one can perform post-training quantization (PTQ)
upon W′, but this strategy can cause a significant loss in accuracy especially when the bit width is
low. Please refer to the experiments for details. Additionally, there is no operator-level optimization
for NF4 yet, making it difficult to accelerate the fine-tuning and inference stages. In brief, the only
benefit brought by QLoRA is the reduced memory cost for fine-tuning.

3.3 SOLUTION: GROUP-WISE QUANTIZATION WITH LOW-RANK ADAPTATION

From the above analysis, the key to achieving the second goal lies in that W̃ (i.e., the quantized W)
and s ·AB can be merged without using high-precision numbers (e.g., FP16). We first note that this
is impossible in the original setting, i.e., W is quantized into W̃ in a column-wise manner while
both A and B are unconstrained.

We write down the condition using the mathematical language. Since W′ = W̃ + s · AB, we
have w′

i,j = w̃i,j + s ·
∑

k ai,kbk,j for all (i, j). Here, for any j, all w̃i,j are represented using
the same set of scaling and zero factors, i.e., there exist αj and βj so that w̃i,j = αj × ŵi,j + βj ,
ŵi,j ∈ {0, 1, . . . , 2N−1}. After each w̃i,j is added by s·

∑
k ai,kbk,j (abbreviated as ci,j), if we want

to keep the property for quantization, we must guarantee that for any j, all possible values of ci,j
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Algorithm 1 QA-LoRA Pseudocode in the PyTorch-like style

# D_in, D_out, D_int: the input, output, and low-rank adaptation dimensions
# L: the quantization group numbers of weights W (D_in // L is the group size)
# s: the coefficient for adaptation; N: the bit width of quantization

QA = nn.AvgPool1d(D in//L)
lora_A = nn.Parameter(torch.empty((D_int, L)))
lora_B = nn.Parameter(torch.empty((D_out, D_int)))

def qalora_forward(x, W, lora_A, lora_B):
W_tilde = pre_quantization(W, alpha, beta)
result = x @ W_tilde
result += (QA(x)*(D in//L)) @ lora_A.transpose(0,1) @ lora_B.transpose(0,1) * s
return result

def pre_quantization(W, alpha, beta):
W_hat = torch.round(W / alpha) + beta
return alpha * (W_hat - beta)

def merge_with_quantization(beta, lora_A, lora_B):
beta_new = beta - s * (lora_B @ lora_A).transpose(0,1) / alpha
return beta_new

form an arithmetic set with the common difference being αj
1. This is intractable in continuous and

gradient-based optimization unless we ask that ci,j is a constant, i.e., c1,j = . . . = ci,j = . . . , cDin,j

for any j. This is equivalent to set all row vectors of A to be same, i.e., a1 ≡ . . . ≡ ai ≡ . . . ≡ aDin
,

where ≡ denotes element-wise equivalence between two vectors.

The above strategy, while tractable, leads to a significant accuracy drop in practice. In particular,
with all rows of A being the same vector, we have rank(A) = 1 and thus rank(AB) = 1, whereas
the rank of AB is correlated to the ability of fine-tuning W̃ in new data (Hu et al., 2021; Valipour
et al., 2022; Dettmers et al., 2023a). To address this issue, a straightforward idea is to relax the
constraints for both quantization and adaptation.

We partition each column of W into L groups where, for ease of implementation, we set L to be a
divisor of Din. Instead of quantizing each column of W entirely, we use an individual pair of scaling
and zero factors for quantization, i.e., the l-th group of factors, αl,j and βl,j , are computed for Din/L
elements in the j-th column. Correspondingly, we only require the row vectors of A within the same
group to have the same value. In our implementation, this is achieved by doing summation within
each group of the input vector, x. This parameter-free operation reduces the dimension of x from
Din to L, hence we can set A to be a L×Dint matrix without further constraints.

The proposed approach is named quantization-aware low-rank adaptation (QA-LoRA). It is im-
plemented by inserting/modifying a few lines of code beyond QLoRA, as shown in Algorithm 12.
Compared to LoRA, QA-LoRA enjoys advantages in time and memory consumption. Compared to
QLoRA, QA-LoRA requires extra storage for L×Dout pairs of scaling and zero factors but reduces
the number of parameters of A from Din × Dint to L × Dint – since we often set L ≪ Din, the
above change is negligible. Additionally, QA-LoRA is much faster in inference because it merges
s ·AB into W̃ while keeping the merged matrix W′ quantized in low bits.

The insight of QA-LoRA: balance. QA-LoRA is very similar to a variant of QLoRA in which
NF4 quantization is replaced by INT43). In this version, the number of parameters for quantization
(Dout pairs of scaling and zero factors) is much smaller than that for adaptation (Din×Dint+Dint×
Dout parameters), i.e., there is a significant imbalance here. We introduce group-wise operations,
increasing the number of parameters for quantization from Dout to L×Dout, meanwhile decreasing
that for adaptation from Din ×Dint +Dint ×Dout to L×Dint +Dint ×Dout. As we shall see in
experiments, a moderate L can achieve satisfying accuracy of language understanding meanwhile
preserving computational efficiency.

1The exact conditions are two-fold. For any j, there exists a new zero factor β′
j and a set of integers ci,j so

that ci,j = αj × ĉi,j + β′
j . Additionally, the difference between the minimum and maximum of ŵi,j + ĉi,j is

not greater than 2B − 1 so that the summed weights can still be quantized into B-bit integers.
2The merge with quantization function is called after the training procedure for merging weights.
3We implemented this version of QLoRA, and it reports very similar (±0.5%) accuracy compared to the

original QLoRA in the few-shot experiments for MMLU.
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Table 1: 0-shot and 5-shot accuracy (%) on the Massive Multitask Language Understanding
(MMLU) dataset (Hendrycks et al., 2021). Each block is based on the same foundation model
specified at the first row. We organize all results using the fine-tuning dataset (Alpaca or Flan-v2)
and the bit width of quantization. The bit width of ‘4 + 16’ refers to the original QLoRA where the
final version for inference is in FP16. Some important numbers are plotted in Figures 4–7 (please
see Appendix B).

Method Dataset #Bits MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA-7B – 16 32.4 26.6 31.4 37.2 32.1 33.3 29.8 37.8 38.0 34.6
QLoRA Alpaca 4+16 38.1 31.1 41.6 46.9 39.4 36.1 31.9 42.0 44.5 38.4
QLoRA w/ GPTQ Alpaca 4 35.7 30.9 38.0 44.0 37.1 33.8 31.3 37.4 42.2 36.0
PEQA Alpaca 4 – – – – – 34.9 28.9 37.5 40.1 34.8
QA-LoRA Alpaca 4 36.9 31.4 40.3 44.9 38.3 36.6 32.4 44.8 44.9 39.4
QLoRA w/ GPTQ Alpaca 3 31.5 28.9 31.8 36.8 32.2 31.6 30.1 35.6 39.8 34.0
QA-LoRA Alpaca 3 36.0 34.1 42.0 42.3 38.3 35.6 30.5 41.5 42.7 37.4
QLoRA w/ GPTQ Alpaca 2 24.1 22.1 22.5 23.7 23.2 23.4 26.2 26.4 28.4 25.8
QA-LoRA Alpaca 2 26.4 25.5 25.6 28.7 26.5 27.3 26.1 26.1 30.3 27.5
QLoRA FLAN v2 4+16 40.9 32.5 47.8 49.5 42.6 41.4 35.0 49.8 52.0 44.3
QLoRA w/ GPTQ FLAN v2 4 39.7 32.5 46.4 48.1 41.6 36.5 33.7 46.9 50.3 41.4
QA-LoRA FLAN v2 4 44.0 35.3 52.3 52.6 45.9 43.9 38.0 54.3 53.0 47.0
QLoRA w/ GPTQ FLAN v2 3 36.7 30.2 38.4 40.1 36.5 32.2 31.7 42.7 42.8 36.9
QA-LoRA FLAN v2 3 41.4 35.1 52.0 50.2 44.4 41.3 36.0 52.8 50.2 44.7
QLoRA w/ GPTQ FLAN v2 2 24.1 22.5 22.3 23.8 23.3 23.9 25.3 26.2 25.3 25.0
QA-LoRA FLAN v2 2 34.1 30.0 37.2 39.8 35.2 31.8 38.1 34.5 38.5 33.2
LLaMA-13B – 16 40.6 36.7 48.9 48.0 43.3 44.0 35.9 53.2 52.9 46.3
QLoRA Alpaca 4+16 45.2 38.3 55.0 54.6 48.1 46.0 37.3 55.8 55.1 48.4
QLoRA w/ GPTQ Alpaca 4 44.7 38.0 54.4 54.0 47.6 45.4 37.4 55.7 54.3 48.0
PEQA Alpaca 4 – – – – – 43.0 37.7 53.6 49.0 45.0
QA-LoRA Alpaca 4 44.3 38.0 55.1 55.5 47.9 48.4 38.3 54.9 55.2 49.2
QLoRA w/ GPTQ Alpaca 3 43.5 36.2 52.3 52.6 45.9 43.6 36.1 53.0 52.7 46.1
QA-LoRA Alpaca 3 43.9 37.3 53.1 54.3 46.9 44.3 38.8 53.4 53.8 47.3
QLoRA w/ GPTQ Alpaca 2 27.7 27.6 31.8 29.7 29.0 29.0 27.1 33.4 34.8 30.9
QA-LoRA Alpaca 2 35.7 33.3 40.9 42.0 37.8 35.6 30.6 39.9 41.7 36.9
QLoRA FLAN v2 4+16 48.0 39.2 58.2 56.7 50.3 49.9 40.1 60.2 57.9 51.9
QLoRA w/ GPTQ FLAN v2 4 47.6 39.6 57.6 56.0 50.0 49.4 40.9 59.7 57.6 51.7
QA-LoRA FLAN v2 4 47.7 41.4 59.6 57.2 51.1 50.0 41.5 60.5 58.4 52.4
QLoRA w/ GPTQ FLAN v2 3 46.6 37.9 55.9 55.7 48.9 46.5 38.2 57.2 56.1 49.3
QA-LoRA FLAN v2 3 47.4 39.4 57.7 56.0 49.9 49.3 40.0 60.0 57.5 51.5
QLoRA w/ GPTQ FLAN v2 2 36.2 30.3 40.8 44.1 37.8 36.6 32.0 43.8 44.2 38.9
QA-LoRA FLAN v2 2 40.8 36.4 39.3 50.1 43.9 40.9 36.1 50.7 46.7 44.1
LLaMA-33B – 16 51.0 42.7 63.3 60.4 54.1 56.2 45.9 67.1 63.9 58.2
QLoRA Alpaca 4+16 52.2 44.9 64.3 61.8 55.5 55.4 46.0 66.4 63.6 57.7
QLoRA w/ GPTQ Alpaca 4 51.7 44.7 63.4 61.0 54.9 53.9 46.6 66.3 62.9 57.1
QA-LoRA Alpaca 4 51.6 44.9 65.0 61.8 55.4 55.8 46.4 67.0 64.0 58.1
QLoRA w/ GPTQ Alpaca 3 49.5 43.3 63.1 61.0 53.8 53.3 45.0 64.1 61.4 55.8
QA-LoRA Alpaca 3 50.6 44.6 64.0 61.2 54.7 54.3 45.8 65.2 62.6 56.8
QLoRA w/ GPTQ Alpaca 2 32.0 31.6 35.8 32.8 32.9 37.5 34.9 45.3 44.9 40.4
QA-LoRA Alpaca 2 38.4 38.2 50.7 49.7 43.6 44.2 38.8 53.9 52.3 47.0
QLoRA FLAN v2 4+16 56.3 46.5 68.6 64.6 58.8 57.2 48.6 69.8 65.2 60.0
QLoRA w/ GPTQ FLAN v2 4 54.9 46.4 68.2 63.6 58.0 57.4 48.6 69.2 64.9 59.8
QA-LoRA FLAN v2 4 54.2 47.0 69.7 65.5 58.7 57.9 48.8 71.0 65.5 60.6
QLoRA w/ GPTQ FLAN v2 3 54.0 44.3 65.8 62.7 56.5 55.7 47.4 67.9 64.0 58.5
QA-LoRA FLAN v2 3 53.1 45.0 66.9 63.0 56.7 56.8 46.9 68.9 63.7 58.9
QLoRA w/ GPTQ FLAN v2 2 37.9 35.0 47.6 42.9 40.6 42.8 37.0 54.3 51.5 46.1
QA-LoRA FLAN v2 2 49.4 40.4 59.8 56.5 51.4 49.6 42.7 60.7 57.8 52.4
LLaMA-65B – 16 56.4 45.2 68.0 64.1 58.3 61.4 51.9 73.6 67.6 63.4
QLoRA Alpaca 4+16 55.5 49.3 70.4 66.9 60.1 60.3 52.7 72.9 67.4 63.1
QLoRA w/ GPTQ Alpaca 4 54.8 48.9 69.8 66.1 59.4 60.4 52.5 73.0 67.2 63.0
QA-LoRA Alpaca 4 57.1 48.2 70.7 64.9 60.0 60.8 50.5 72.5 66.7 62.5
QLoRA w/ GPTQ Alpaca 3 57.4 47.9 67.2 65.1 59.3 59.6 50.0 70.6 66.1 61.4
QA-LoRA Alpaca 3 57.6 48.4 69.3 65.4 60.0 59.3 49.6 71.9 66.0 61.5
QLoRA w/ GPTQ Alpaca 2 43.9 38.0 42.6 51.1 46.2 47.3 40.8 58.9 57.0 50.7
QA-LoRA Alpaca 2 48.6 42.5 60.7 58.6 52.2 51.3 43.4 63.4 60.7 54.4
QLoRA FLAN v2 4+16 58.8 52.5 74.0 67.4 62.8 59.8 52.9 75.0 69.6 63.9
QLoRA w/ GPTQ FLAN v2 4 57.8 51.9 73.5 67.8 62.3 59.2 52.5 75.0 69.3 63.5
QA-LoRA FLAN v2 4 64.1 52.6 74.8 69.1 65.1 57.6 51.1 73.9 67.4 62.1
QLoRA w/ GPTQ FLAN v2 3 58.5 50.2 71.5 66.9 61.5 59.9 51.7 73.4 67.9 63.0
QA-LoRA FLAN v2 3 57.5 49.5 72.4 66.9 61.2 61.7 51.1 73.8 68.4 63.6
QLoRA w/ GPTQ FLAN v2 2 47.9 43.1 60.1 56.0 51.4 52.6 43.8 62.8 58.5 54.3
QA-LoRA FLAN v2 2 55.9 44.6 65.6 63.4 57.1 55.5 46.8 67.3 63.2 58.0
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4 EXPERIMENTS

4.1 SETTINGS

Foundation models. We establish QA-LoRA upon the LLaMA (Touvron et al., 2023a) and
LLaMa2 (Touvron et al., 2023b) families. In particular, we fine-tune the 7B, 13B, 33B, and 65B
models of LLaMA and the 7B and 13B models of LLaMA2.

Evaluation metrics. Following QLoRA (Dettmers et al., 2023a), we evaluate both the zero-
shot and few-shot performance of the LLMs on Massively Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al., 2021). It consists of 57 language tasks including human-
ities, STEM, social science, etc. We use the official MMLU evaluation script and prompts4. We
further assess the zero-shot common sense reasoning ability on tasks covering HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2019), ARC (Clark et al.,
2018), BoolQ (Clark et al., 2019), and OpenBookQA (Mihaylov et al., 2018). We adopt lm-eval-
harness (Gao et al., 2021) to produce the Common Sense QA results.

Quantization. We adopt GPTQ (Frantar et al., 2023) in the quantization step, and our approach
is open to other PTQ methods such as (Lin et al., 2023; Dettmers et al., 2023b). We use the same
settings to quantize the QLoRA fine-tuned models and pre-trained LLaMA models. In the main
experiments, we conduct a group-wise asymmetric quantization (with a group size of 32). We set
the act-order variable to be false and the true-sequential variable to be true.

Datasets and training details. We choose Alpaca (Taori et al., 2023) and FLAN v2 (Longpre et al.,
2023) as our fine-tuning datasets. Alpaca contains 52K instruction-following data generated from
text-davinci-003 (GPT 3.5) (Wang et al., 2022). FLAN v2 is a collection of 1,836 tasks combining
the mixture with CoT, Muffin, T0-SF, and NIV2. To save the tuning cost, we randomly sample a
320K subset from the FLAN v2 collection. Following QLoRA (Dettmers et al., 2023a), we use a
paged AdamW optimizer, a maximum gradient norm of 0.3, and a batch size of 16 in the tuning
period. We choose the constant learning rate schedule and set the learning rate to be 2 × 10−5 for
the 7B and 13B models and 1× 10−5 for the 33B and 65B models. The number of fine-tuning steps
is 10K for Alpaca and 20K for FLAN v2. All experiments are conducted on Tesla V100 GPUs. We
use one GPU for the 7B, 13B, and 33B models and two GPUs for the 65B models.

4.2 MAIN RESULTS AND EFFICIENCY

Comparison against recent competitors on LLaMA for MMLU. We first apply QA-LoRA to
fine-tune the LLaMA models for MMLU. Table 1 summarizes the results with respect to different
model sizes, fine-tuning datasets, and bit widths. Besides the base LLaMA models, we also compare
QA-LoRA against QLoRA (Dettmers et al., 2023a), the most related work, and PEQA (Kim et al.,
2023), a recent quantization method that does not use LoRA. We report both the original QLoRA
(the inference stage involves FP16 computation) and the variant after GPTQ (for fair comparison).
QA-LoRA consistently outperforms both competitors (QLoRA w/ GPTQ and PEQA) in either 0-
shot and 5-shot accuracy. The advantage is more significant when the model size is small (e.g.,
7B and 13B) or the bit width is small (e.g., INT3 or even INT2 is used), demonstrating that QA-
LoRA is a strong solution in the scenarios that require computational efficiency. In some cases, the
INT4 version of QA-LoRA performs even better than the original version of QLoRA meanwhile
the inference speed is much faster (see the next paragraph). We further demonstrate some examples
of QA-LoRA in Appendix A, where one can see the qualitative comparison and QA-LoRA beyond
QLoRA w/ GPTQ. QA-LoRA mainly benefits from the quantization-aware adaptation; otherwise,
the post-training quantization will not be compensated, resulting in unstable results.

Application to large models. As shown in Table 1, in large models (e.g., 33B and 65B), QA-
LoRA still achieves improvement over the baseline, QLoRA with GPTQ. Upon these results, we
discuss the need for QA-LoRA in large models in the following aspects. (1) QA-LoRA reduces the
computational costs of fine-tuning large models, e.g., using QA-LoRA, only 1 and 2 V100 GPUs
are needed for fine-tuning the 33B and 65B models. (2) When larger models are used, there can be
increasing needs for low-bit (e.g., INT3 and INT2) quantization, especially when the large models
are to be deployed to edge devices. QA-LoRA shows significant advantages in such scenarios.

4https://github.com/hendrycks/test
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Table 2: The numbers of learnable parameters and time costs of QLoRA and QA-LoRA during the
fine-tuning stage. All results are reported on Alpaca with one Tesla-V100 GPU (the 65B model uses
two chips). The number of fine-tuning steps is 10K.

LLaMA-7B LLaMA-13B LLaMA-33B LLaMA-65B
Method #Params Time(h) #Params Time(h) #Params Time(h) #Params Time(h)

QLoRA 160M 40.0 250M 73.1 488M 148.6 800M 284.5
QA-LoRA 89M 21.5 140M 29.5 272M 51.2 447M 100.5
QA-LoRA 178M 21.8 280M 30.1 544M 52.2 894M 103.5

Table 3: 0-shot commonsense QA accuracy (%) with respect to different quantization bit widths.

Method #Bits HellaSwag PIQA WinoGrande ARC-e ARC-c BoolQ OBQA Avg.

LLaMA-7B 16 56.3 78.2 67.1 67.3 38.2 72.9 28.4 58.3
QLoRA 4+16 61.8 78.1 68.4 75.8 43.6 73.7 32.8 62.0
LLaMA-7B + GPTQ 4 54.5 76.5 66.9 66.1 36.9 70.9 27.4 57.0
QLoRA w/ GPTQ 4 57.4 77.6 66.2 70.9 41.8 73.5 31.2 59.8
QA-LoRA 4 58.6 78.0 66.9 71.2 43.9 79.9 34.0 61.8
QLoRA w/ GPTQ 3 52.2 75.2 64.1 65.8 37.2 70.4 27.2 56.0
QA-LoRA 3 57.6 76.2 66.5 70.2 43.1 76.3 30.6 60.1
QLoRA w/ GPTQ 2 31.9 58.2 52.4 32.3 20.7 60.6 14.6 38.7
QA-LoRA 2 49.8 70.2 58.5 55.4 33.9 73.7 32.8 53.7

Table 4: 0-shot and 5-shot MMLU accuracy (%) based on the LLaMA2 model family.

MMLU (0-shot) MMLU (5-shot)
Method Data #Bits Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.
LLaMA2-7B – 16 38.9 32.9 46.6 44.9 40.7 43.0 36.4 51.4 52.2 45.5
QA-LoRA Alpaca 4 41.1 35.4 50.2 50.1 43.9 42.1 34.4 49.1 50.3 43.9
QA-LoRA FLAN v2 4 47.4 39.5 58.9 57.3 50.5 48.4 41.4 59.4 58.6 51.7
LLaMA2-13B – 16 48.1 42.7 60.5 59.5 52.3 53.3 44.1 63.3 61.0 55.3
QA-LoRA Alpaca 4 48.2 41.7 60.4 58.7 51.9 48.0 43.0 59.7 57.4 51.7
QA-LoRA FLAN v2 4 50.7 44.1 63.8 62.0 54.8 52.9 44.8 65.9 64.0 56.6

The efficiency of QA-LoRA. A clear advantage of QA-LoRA lies in its computational efficiency.
Table 2 compares QA-LoRA to QLoRA in terms of the learnable parameters and training time during
the fine-tuning stage.

The reason behind the fewer amounts of parameters, compared to QLoRA, lies in the reduction of
the dimensionality of A. Compared to LoRA and QLoRA where A has Din × Dint parameters,
QA-LoRA reduces the number to L ×Dint where L is the group size and L ≪ Din. This reduces
the number of parameters in QA-LoRA by around 1/2 (originally, A and B have similar numbers
of parameters). QA-LoRA achieves higher fine-tuning accuracy with fewer parameters.

Regarding the time cost of fine-tuning, it is not largely impacted by the parameters because the
amount of LoRA parameters is much smaller than that of the LLM itself (e.g., 89M or 160M vs.
7B). To verify this point, we double Dint which also doubles the number of parameters, surpassing
that of QLoRA, but QA-LoRA is still much faster than QLoRA (see the table below). The signif-
icant advantage of QA-LoRA in training time mainly comes from the use of INT4 quantization.
Compared to NF4 quantization used by QLoRA, INT4 operators have been optimized by CUDA
and are much faster in execution. Additionally, during the inference stage, QA-LoRA is also more
than 50% faster than QLoRA because the fine-tuned model (after weight integration) is still in INT4,
unlike QLoRA that converts it back to FP16.

Commonsense QA results. We also evaluate QA-LoRA for 0-shot commonsense QA based on
LLaMA-7B. Results are summarized in Table 3. Similar to the MMLU results, the 4-bit QA-LoRA
is comparable with the mixed-precision QLoRA and outperforms the post-quantized QLoRA by
an average of 2.0%. The advantage becomes more significant in low-bit scenarios, e.g., the 2-bit
QA-LoRA reports a remarkable accuracy gain of 15.0% over the 2-bit post-quantized QLoRA.
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On LLaMA2 models. We further validate the effectiveness of our method on LLaMA2 (Touvron
et al., 2023b). As shown in Table 4, we fine-tune the 7B and 13B models of LLaMA2 and test them
on MMLU. Compared to the original FP16 models, the INT4 models fine-tuned with FLAN v2
are consistently better, while those with Alpaca report slightly lower accuracy. These experiments
validate that QA-LoRA is generalized to other pre-trained model families.

Table 5: 0-shot and 5-shot MMLU accuracy (%) on different fine-tuning datasets.

Base Model Method #Bits Self-instruct Longform Chip2 Alpaca Flan v2
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

LLaMA-7B
QLoRA 4+16 – 36.4 – 32.1 – 34.5 – 38.8 – 44.5

QLoRA w/ GPTQ 4 – 35.4 – 29.3 – 33.6 – 36.0 – 41.4
QA-LoRA 4 32.5 34.4 29.3 33.6 30.4 32.2 38.3 39.4 45.9 47.0

LLaMA-13B
QLoRA 4+16 – 39.0 – 43.2 – 41.6 – 48.4 – 51.9

QLoRA w/ GPTQ 4 – 38.4 – 42.8 – 41.3 – 48.0 – 51.7
QA-LoRA 4 44.4 46.1 39.9 43.3 42.4 45.8 47.9 49.2 51.1 52.4

4.3 ABLATIVE STUDIES

Impact of the quantization group size. We investigate different settings of L, the hyper-parameter
that controls the numbers of parameters for both quantization and low-rank adaptation. Results are
reported in Table 6 (see Appendix B), where group size (i.e., Din/L is displayed instead of L). Re-
call that a larger L (corresponding to a smaller group size) implies a larger number of parameters,
i.e., a smaller quantization loss, and a larger number of adaptation parameters. Meanwhile, it also
requires a larger number of storage and computation, though negligible as long as L ≫ 1. One can
observe that a larger L (e.g., group size is 32) often leads to higher accuracy, and the advantage be-
comes more significant when the quantization bit width is small, implying that a larger quantization
loss needs to be compensated by a larger number of parameters.

Impact of Dint. We diagnose the performance with respect to Dint in Table 7 (see Appendix B).
We find that the MMLU accuracy is not largely impacted by the value of Dint unless it is too small.

160k 240k 320k 400k 480k
25

30

35

40

45

50

55

QA-LoRA (2-bit)

QA-LoRA (4-bit)

Figure 3: 5-shot MMLU accuracy (%) of
QA-LoRA when the LLaMA-7B model is
fine-tuned on subsets of FLAN v2 with dif-
ferent sizes.

Impact of fine-tuning datasets. We also eval-
uate QA-LoRA on more datasets such as Self-
instruct (Wang et al., 2022), Longform (Köksal
et al., 2023), and Chip2 (LAION, 2023). Results are
summarized in Table 5. Compared to Alpaca and
FLAN v2, these datasets are relatively small, and
thus the fine-tuned models report a bit weaker ac-
curacy on MMLU. Note that, with LLaMA-13B as
the foundation model, QA-LoRA consistently out-
performs QLoRA with mixed precision, meanwhile
being much faster in the inference stage.

Impact of the size of fine-tuning datasets. Lastly,
we evaluate QA-LoRA on different subsets of FLAN
v2. The dataset size varies from 160K, 240K, 320K,
400K, and 480K. LLaMA-7B is used as the founda-
tion model. As shown in Figure 3, low-bit quanti-
zation asks for more data, yet 320K is sufficient for
both the INT2 and INT4 variants of QA-LoRA.

5 CONCLUSION

In this paper, we propose QA-LoRA as an efficient method that introduces quantization awareness
into the low-rank adaptation of LLMs. At the core of QA-LoRA lies the group-wise operations for
both quantization and low-rank adaptation, and the key insight comes from balancing the numbers of
parameters of both sides. QA-LoRA is easily implemented, generalized across various foundation
models and language understanding tasks, and computationally efficient in both fine-tuning and
inference stages. Extensive experiments on LLaMA validate the effectiveness of QA-LoRA.
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A QUALITATIVE STUDIES

In this section, we show a few examples of dialog. We compare our method, QA-LoRA, to the
direct competitor, QLoRA, under different quantization bit widths. All QLoRA models are post-
processed with GPTQ as described in the main text. We highlight inaccurate answers in blue and
totally unacceptable answers in red.

Overall, QLoRA with GPTQ shows unstable behaviors across different cases. For example, in the
second case, it crashes in 4-bit and 2-bit quantization but works well in 3-bit quantization. This
mainly owes to the uncontrollable quantization loss in post-processing and such loss cannot be
amended by any of the subsequent stages.

Instruction: Suggest five ways to budget your expenses.
QLoRA (4-bit): 1. Write down all of your current expenses. 2. Estimate your future expenses.
3. Cut down on non-essential spending. 4. Rate your expenses according to their importance.
5. Categorize your expenses to make it easier to.
Ours (4-bit): 1. Plan a monthly budget and stick to it. 2. Track your spending. 3. Narrow
down your wants and priorities. 4. Cut expenses by shopping around. 5. Eat at home as much
as possible.
————
QLoRA (3-bit): 1. Gather and document your financial information (income, expenses, and
assets) 2. Estimate your cash flow (income, expenses, and assets) 3. Allocate your cash flow to
the needed/wanted category. 4. Monitor your spending
Ours (3-bit): To budget expenses, one should: (1) keep track of spending; (2) have a spending
plan; (3) set weekly goals; (4) only use cash; and (5) try to overspend one area to cover an-
other.
————
QLoRA (2-bit): the maximum number of times 2026 #03289-012-052112. 03289-
0222500032815-0451 2291-253222.
Ours (2-bit): 1. Plan a monthly budget and stick to it. 2. Track your spending. 3. Narrow
down your wants and priorities. 4. Cut expenses by shopping around. 5. Eat at home as much
as possible.

Instruction: How do you respond to a negative comment on social media?
QLoRA (4-bit): I’m sorry you feel that way.
Ours (4-bit): Negative comments on social media can be hard to respond to, but I would first
try to understand where the person is coming from and why they are saying what they are
saying. I would then strive to reply in a way that does not further escalate the discussion, but
instead responds with a mature.
————
QLoRA (3-bit): I would first thank the person for taking the time to share their thoughts. I
would then say that I value their opinion and that I am here to listen and learn. I would then
go on to explain why I feel the way I do and invite them to an open discussion.
Ours (3-bit): I response to a negative comment on social media by thanking the person for
their feedback, clarifying if they are basing their comment off of a bad experience, and inviting
them to contact me directly so we can work through any issues or concerns they may have.
————
QLoRA (2-bit): Demostimeta for the Parts of the Their work of for the parts of Their work of
For the parts of3.4.2004 G Mach Rack 2002-2004 G 2.
Ours (2-bit): Negative comments on social media can be hard to respond to, but I would first
try to understand where the person is coming from and why they are saying what they are
saying. I would then strive to reply in a way that does not further escalate the discussion, but
instead responds with a mature.

Instruction: Categorize the following fruits according to color. Input: Apple, Banana, Avo-
cado, Peach.
QLoRA (4-bit): of the same color: Red (Apple, Banana), Green (Avocado, Peach) Other: Yel-
low (Peach).
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Ours (4-bit): Apple - Red. Banana - Yellow. Avocado - Green. Peach - Pink.
————
QLoRA (3-bit): is yellow is green is black is white.
Ours (3-bit): - Apple (Red)- Banana (Yellow)- Avocado (Green)- Peach (Pink).
————
QLoRA (2-bit): Apple, mash up, and avocado.
Ours (2-bit): Apple - Red. Banana - Yellow. Avocado - Green. Peach - Pink.

Instruction: Generate an HTML page that contains the text \”Welcome to my page\”.
QLoRA (4-bit): \n\n<html>\n <head>\n <title>Welcome to my page</title>\n
</head>\n <body>\n <h1>Welcome to my page</h1>\n </body>\n</html>\n.
Ours (4-bit): Welcome to my page.\n<html>\n<body>\n<p>Welcome to my
page.</p>\n</body>\n</html>\n.
————
QLoRA (3-bit): <html>\n <head>\n <title>My Page</title>\n </head>\n <body>\n
<p>Welcome to my page!</p>\n </body>\n</html> \n package org.michael.
Ours (3-bit): <HTML>\n <P>Welcome to my page</P>\n <P>Lorem Ipsum is simply
placeholder text.</P>\n</HTML>\n\n Note that this response may also contain other
elements such as stylesheets and script, if they were defined in the task.
————
QLoRA (2-bit): The page has the text \”Welcome to my page\” as it.\n\n28. A reint: a
28!313473-020-520. The\n313473-020/2
Ours (2-bit): Welcome to my page.\n<html>\n<body>\n<p>Welcome to my
page.</p>\n</body>\n</html>\n.

Instruction: Create a dialogue between two people having a conversation about going to the
beach.
QLoRA (4-bit): of course, I’m in! what time were you thinking of meeting up? I was thinking
of going around noon. sounds good, I’ll see you then!
Ours (4-bit): .... (beach conversations A and B)\n.... B: Going to the beach sounds like a
blast! A: It does, isn’t it? B: Yep! A: so what are we doing? B: Planning a full itinerary.
————
QLoRA (3-bit): ”Person 1: ”I’m so excited to go to the beach! The sun, sand, and water are
all so soothing. I can’t wait to get there and dive in!” Person 2: ”Me too! I can’t wait to
experience that feeling of being”.
Ours (3-bit): ”So which beach should we go to, Fiji or Bora Bora?”\n, ”Fiji has more coral
reefs, Bora Bora has more beaches, right?”\n, ”Yeah, Bora Bora also has the world’s most”
————
QLoRA (2-bit): Such as a user 31 is 4 0-5 Gigs Sector 4 (22.12.2018) - [P] / f / Beyond there
is a lot of and.
Ours (2-bit): .... (beach conversations A and B)\n.... B: Going to the beach sounds like a
blast! A: It does, isn’t it? B: Yep! A: so what are we doing? B: Planning a full itinerary.

B ADDITIONAL EXPERIMENTAL RESULTS

We plot some important results in Table 1 in Figures 4–7 to ease the readers to compare the our
model with the baseline, QLoRA. Note that Figure 5 is identical to Figure 1.

We also provide the diagnosis on the L (group size) and Dint (the hidden dimensionality of adapta-
tion) hyper-parameters in Tables 6 and 7.
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Figure 4: The comparison of 0-shot MMLU accuracy (%) with different quantization bit widths
based on the LLaMA model family on the Alpaca dataset. Full results are provided in Table 1.
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Figure 5: The comparison of 5-shot MMLU accuracy (%) with different quantization bit widths
based on the LLaMA model family on the Alpaca dataset. Full results are provided in Table 1.

QLoRA (4-bit & 16-bit)

QLoRA (4-bit) QA-LoRA (4-bit) QLoRA (3-bit) QA-LoRA (3-bit) QLoRA (2-bit) QA-LoRA (2-bit)

(a) QLoRA vs QA-LoRA in 4-bit (b) QLoRA vs QA-LoRA in 3-bit (c) QLoRA vs QA-LoRA in 2-bit

42.6

50.3

58.8

62.8

41.6

50.0

58.0

62.3

45.9

51.1

58.7

65.1

30

40

50

60

LLaMA-7B LLaMA-13B LLaMA-33B LLaMA-65B

36.5

48.9

56.5

61.5

44.4

49.9

56.7

61.2

30

40

50

60

LLaMA-7B LLaMA-13B LLaMA-33B LLaMA-65B

23.3

37.8
40.6

51.4

35.2

43.9

51.4

57.1

20

30

40

50

60

LLaMA-7B LLaMA-13B LLaMA-33B LLaMA-65B

Figure 6: The comparison of 0-shot MMLU accuracy (%) with different quantization bit widths
based on the LLaMA model family on the FLAN v2 dataset. Full results are provided in Table 1.
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Figure 7: The comparison of 5-shot MMLU accuracy (%) with different quantization bit widths
based on the LLaMA model family on the FLAN v2 dataset. Full results are provided in Table 1.
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Table 6: 0-shot and 5-shot MMLU accuracy (%) on with respect to different group settings.

MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

Base Model Group Size #Bits (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

LLaMA-7B

128 4 37.3 31.8 39.3 43.7 38.0 36.5 32.1 41.7 44.0 38.4
64 4 37.5 30.6 41.3 45.4 38.6 36.5 32.6 43.4 45.0 39.1
32 4 38.1 31.1 41.6 46.9 39.4 36.1 31.9 42.0 44.5 38.4
128 2 24.0 26.7 24.8 25.2 25.0 25.0 29.0 27.9 26.1 26.7
64 2 25.1 26.9 24.7 27.0 25.8 25.0 27.2 25.2 27.3 26.0
32 2 26.4 25.5 25.6 28.7 26.5 27.3 26.1 26.1 30.3 27.5

LLaMA-13B

128 4 43.4 39.6 55.5 53.9 47.6 46.5 38.0 55.8 54.5 48.6
64 4 43.4 39.3 55.8 53.6 47.6 47.8 39.3 55.7 54.8 49.3
32 4 44.3 38.0 55.1 55.5 47.9 48.4 38.3 54.9 55.2 49.2
128 2 28.5 28.4 30.6 29.8 29.2 29.2 30.6 32.8 32.4 31.0
64 2 30.7 31.5 38.1 36.0 33.7 32.3 30.3 37.0 38.3 34.3
32 2 35.7 33.3 40.9 42.0 37.8 35.6 30.6 39.9 41.7 36.9

Table 7: 0-shot and 5-shot MMLU accuracy (%) by fine-tuning LLaMA-7B on the Alpaca dataset,
with respect to different Dint settings.

MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

Base Model Dint #Bits (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

LLaMA-7B

1 4 35.6 31.5 39.0 43.6 37.3 35.1 31.4 43.1 44.0 38.1
2 4 36.5 31.7 41.4 45.8 38.7 35.1 30.7 43.4 44.8 38.2
4 4 37.3 32.5 41.0 45.7 39.0 36.6 32.3 44.8 44.3 39.3
8 4 36.1 31.8 44.6 44.5 39.0 38.2 32.0 42.1 46.5 39.6

16 4 37.2 32.3 41.3 45.5 39.0 36.8 31.8 45.2 45.4 39.5
32 4 37.6 32.3 41.6 45.9 39.3 36.0 32.1 45.0 45.2 39.3
64 4 37.7 31.9 41.7 45.1 39.0 36.4 31.8 45.0 44.8 39.2
128 4 37.2 32.4 41.9 45.8 39.2 36.3 32.1 44.9 44.8 39.3
1 2 27.4 24.4 25.4 27.4 26.3 27.1 25.4 26.0 28.2 26.7
2 2 25.9 25.7 24.4 28.0 26.0 26.4 24.7 26.6 28.8 26.6
4 2 26.7 25.7 25.3 28.6 26.6 26.2 25.0 26.6 29.3 26.7
8 2 25.4 25.0 25.4 27.3 25.8 26.0 24.9 27.0 29.3 26.8

16 2 25.5 24.7 24.5 28.7 25.9 26.5 24.7 26.0 29.5 26.7
32 2 26.2 24.6 25.4 28.0 25.9 25.7 25.0 26.3 29.3 26.5
64 2 26.4 23.7 24.0 26.4 25.3 27.5 26.3 26.4 28.5 27.2
128 4 26.1 24.2 25.3 27.5 25.8 27.2 25.3 26.0 28.6 26.8
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C MODEL SIZE

We report the sizes of the final models of QLoRA and QA-LoRA in Table 8. Please note that
there are two ways for post-processing in QLoRA, i.e., the unmerged (W̃ and s · AB are stored
individually, which saves memory but the inference is slow) and merged (s · AB is added to W̃,
which is faster in inference but requires large memory because the matrix must be stored in FP16).
QA-LoRA enjoys both low memory usage and a fast inference speed. A side note: In 33B and 65B
models, setting L = 32 in QA-LoRA results in slightly larger model sizes compared to QLoRA, but
one can set L = 128 which causes a negligible accuracy drop.

Note that the final model size of QA-LoRA is exactly the size of W′ (or equivalently, W̃) because
s · AB is merged into W̃ after adaptation. Take the 7B model with L = 32 as an example. The
baseline, the unmerged version of QLoRA, is sized 4.6G, in which W̃ is sized 4.0G and A and B
combined is sized 0.6G. QA-LoRA increases the first amount to 4.3G and eliminates the second
amount.

Table 8: The sizes (in GB) of the final models of QLoRA and QA-LoRA.
QLoRA QLoRA QA-LoRA QA-LoRA

Model (unmerged) (merged) (B = 4, L = 32) (B = 4, L = 128)
LLaMA-7B 4.6 13.5 4.3 3.7
LLaMA-13B 8.1 24.4 8.1 6.9
LLaMA-33B 18.9 55.5 20.0 17.5
LLaMA-65B 36.1 122.3 39.0 34.7
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