
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMBIGRAPH-VIS: A CURATED MULTIMODAL
OLYMPIAD BENCHMARK FOR DISCRETE MATHE-
MATICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Progress on math-reasoning benchmarks such as GSM8K and MATH500 has
eroded their ability to discriminate among models with diverse capabilities,
motivating harder tests that separate capabilities more sharply. We introduce
CombiGraph-Vis, an Olympiad-style benchmark of 1,135 short-answer, multiple-
choice, and yes/no problems drawn from the first and second rounds of the Ira-
nian Informatics Olympiad, with 35% multimodal items containing images. The
benchmark focuses on discrete mathematics with a computer-science accent, com-
binatorics, algorithmic techniques, and graph theory, along with probability, dis-
crete and computational geometry, combinatorial game theory, formal languages
and automata, conceptual data structures, and logic-driven puzzles. To make the
benchmark more functioning, we include corrected official solutions, fixed via an
agentic pipeline with human oversight, plus clear, classroom-style rewrites using
Gemini 2.5 Pro that elaborate on terse reasoning. Our evaluation suite covers stan-
dard accuracy across formats and includes protocols for test-time scaling and self-
verification spanning model families from Google, OpenAI. On single-sample ac-
curacy, models range from 16.15% (gemma-3-4b-it) to 78.00% (gpt-5), demon-
strating strong separation compared to saturated benchmarks. We release all data,
corrected solutions, classroom-style rewrites, evaluation code, and synthetic tech-
nique labels under an open-source license to facilitate advances in multimodal
algorithmic reasoning. We share all of our code and data publicly in the paper’s
Github repository: https://github.com/combigraphviz2025/combigraph-viz

1 INTRODUCTION

Mathematical reasoning benchmarks like GSM8K(Cobbe et al., 2021) and MATH(Hendrycks et al.,
2021) now show ceiling effects, with leading models achieving 95-96% accuracy. This progress,
while substantial, has reduced the discriminative power of these benchmarks for distinguishing capa-
bilities among frontier systems. Existing multimodal mathematical benchmarks like MathVista(Lu
et al., 2024) and MathV(Wang et al., 2024) provide broad domain coverage but often lack the depth
needed to assess discrete mathematical reasoning skills. Competition-level datasets present comple-
mentary limitations: CHAMP(Mao et al., 2024) offers detailed annotations but covers a broad range
of mathematical topics without focused depth in discrete domains and only contains 270 samples.
OMNI-MATH(Gao et al., 2024) adapts proof-based competition problems for final-answer evalua-
tion, where proof-based problems (originally designed to assess reasoning processes) are evaluated
by final answers alone, bypassing their intended assessment focus(Mahdavi et al., 2025).

Discrete mathematical reasoning, spanning combinatorics, logical deduction, graph theory, and al-
gorithmic techniques, remains underrepresented in current multimodal benchmarks. These problems
require mathematical insight that goes beyond pattern matching: determining optimal arrangements
in combinatorial puzzles, identifying structural properties in graph diagrams, and solving logical
constraints across visual representations. To address this gap, we introduce CombiGraph-Vis, a
multimodal benchmark of 1,135 discrete mathematics problems designed to evaluate reasoning ca-
pabilities across combinatorics, logic, graph theory, and algorithmic techniques and closely related
areas.

1

https://github.com/combigraphviz2025/combigraph-viz

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

gpt-5

gemini-2_5-pro

gpt-5-mini

gemini-2_5-fla
sh

gpt-5-nano

gemini-2_5-fla
sh-lite

gemma-3-27b-it
gpt-4o

gemma-3-12b-it

gpt-4o-mini

gemma-3-4b-it
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

All (n=1135)

avg@8
pass@8
maj@8
all-pass@8

Figure 1: Per-model evaluation across all 1135 problems in our dataset. For each model, four
horizontal tracks show avg@8, pass@8, maj@8, and all-pass@8.

CombiGraph-Vis sources problems from Iranian Informatics Olympiad competitions (both first and
second rounds), which concentrate on discrete mathematics across four core domains: combinatorics
and counting principles, logical and puzzle reasoning, graph theory, and algorithmic techniques.
These problems also include probability, geometry, and game theory components. The problems are
concise yet sophisticated, often requiring case analysis, invariant identification, logical deduction,
and combinatorial constructions. Importantly, 35% include essential visual components (graphs,
grids, geometric figures, logical diagrams) whose structure is integral to the solution, yielding short,
verifiable answers across multiple formats(He et al., 2024; Wu et al., 2023; Lu et al., 2024).

To ensure reliability, we systematically correct and enhance the original solutions through auto-
mated error detection, cross-validation, and expert review, followed by clear explanatory rewrites.
We provide technique categories across key areas of discrete mathematics to enable detailed anal-
ysis. All problems are translated from Persian to English with careful attention to preserving both
textual and visual content integrity. Evaluation across leading model families reveals substantial
performance gaps, with single-sample accuracy ranging from 16.15% (gemma-3-4b-it) to 78.00%
(gpt-5) as indicated in Figure 1. Performance varies significantly across problem formats and visual
vs. text-only conditions. This work contributes a discrete mathematics benchmark with verified
solutions, systematic evaluation revealing model limitations, and complete open-source release.

2 RELATED WORK

Mathematical Reasoning Benchmarks. GSM8K introduced 8,500 grade school math word prob-
lems with verification-based training, demonstrating that step-by-step solutions improve both ac-
curacy and reliability(Cobbe et al., 2021). MATH scaled this approach to high school competi-
tion mathematics with 12,500 problems across algebra, geometry, number theory, and other do-
mains(Hendrycks et al., 2021). Methodological advances complemented these datasets: chain-
of-thought prompting enabled explicit reasoning steps(Wei et al., 2022), while self-consistency
enhanced reliability through majority voting over multiple solution paths(Wang et al., 2023).
Competition-focused datasets followed with CHAMP providing 270 problems with rich concept-
level annotations(Mao et al., 2024) and OMNI-MATH aggregating 4,428 Olympiad-style problems
from international competitions across over 33 mathematical sub-domains(Gao et al., 2024).

Visual Mathematical Reasoning. Visual mathematical reasoning benchmarks address problems
where images contain essential information for solving mathematical questions. Domain-specific

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

approaches include GeoQA with 5,010 geometric problems requiring diagram interpretation(Chen
et al., 2021) and Conic10K with 10,861 conic section problems providing formal symbolic repre-
sentations(Wu et al., 2023). Comprehensive collections followed: MathVista combines 6,141 visual
math problems from 28 existing datasets spanning geometry, statistics, and algebraic reasoning(Lu
et al., 2024), MATH-V curates 3,040 competition problems requiring visual context understanding
across 16 mathematical disciplines(Wang et al., 2024), and OlympiadBench extends beyond math-
ematics with 8,476 bilingual multimodal problems covering both mathematics and physics from
international competitions(He et al., 2024).

General Multimodal Reasoning. General multimodal reasoning benchmarks evaluate capabili-
ties beyond mathematical domains. MMMU targets expert-level understanding with 11,500 col-
lege questions spanning art, business, science, health, humanities, and social science(Yue et al.,
2024b), while MMBench provides systematic evaluation across 20 ability dimensions with 3,000+
multiple-choice questions(Li et al., 2024). Knowledge-intensive approaches include A-OKVQA
with 25,000 questions requiring both visual understanding and world knowledge(Schwenk et al.,
2022) and CLEVR-Math with 10,000 synthetic questions testing systematic combination of arith-
metic operations in visual contexts(Liu et al., 2022).

Evaluation Methods and Robustness. Advanced evaluation methods examine solution quality and
reasoning stability beyond final answer accuracy. We-Math introduces a diagnostic framework that
decomposes 15,000 mathematical problems by knowledge concepts and evaluates models across
four categories: insufficient knowledge, inadequate generalization, complete mastery, and rote mem-
orization(Qiao et al., 2025). DynaMath focuses on robustness evaluation by generating multiple
variants of each seed problem, creating 501 base problems with over 5,000 variations to test con-
sistency across input perturbations(Zou et al., 2025), while MPBench provides a meta-evaluation
framework for visual mathematical reasoning, testing models’ abilities in step checking, solution
aggregation, and guided step selection across 1,000 competition problems(Pan et al., 2025).

Solution Assessment. Evaluating open-ended mathematical solutions presents unique challenges
requiring specialized assessment frameworks. HARP compiles 3,000 short-answer competition
problems from prestigious contests, providing multiple human solution strategies and reference an-
swers to enable comprehensive evaluation(Yue et al., 2024a), while U-MATH targets university-level
mathematical reasoning with 1,100 problems spanning calculus, linear algebra, and advanced top-
ics, introducing a meta-evaluation framework that assesses the quality of LLM-based grading sys-
tems(Chernyshev et al., 2025). CombiGraph-Vis combines these threads: discrete math problems
with images, short checkable answers, and detailed solution steps. It emphasizes combinatorics,
logic, graph theory, and algorithmic techniques, and pairs verified solutions with evaluation that
reports results by format and modality.

3 COMBIGRAPH-VIS DATASET

Discrete mathematical reasoning requires analyzing combinatorial structures, proving graph prop-
erties, and constructing algorithmic solutions: capabilities that current models struggle with.
CombiGraph-Vis addresses these evaluation needs with 1,135 competition-level problems sourced
from Iranian Informatics Olympiad rounds; it covers 13 domains from basic counting principles to
advanced topics like combinatorial game theory and computational geometry. The benchmark pro-
vides three problem formats: 884 short-answer problems requiring precise mathematical responses,
157 multiple-choice problems testing conceptual understanding, and 94 binary problems demanding
logical conclusions (see Table 1 for detailed statistics). Visual components appear in 406 problems
(36%), featuring graphs, grids, diagrams, and puzzle boards. Structural interpretation is essential
for solving these problems. Each problem includes verified solutions and systematic technique cat-
egorization across combinatorics, graph theory, algorithmic reasoning, and logical puzzle solving,
enabling detailed analysis of model capabilities in discrete mathematical domains.

3.1 DATA COLLECTION

Building a multimodal discrete mathematics benchmark from competition sources requires careful
handling of changing formats over time. The Iranian National Olympiad in Informatics changed
format significantly between the 5th and 34th competitions, shifting from mainly multiple-choice

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Category Count % of Total With Images
All Problems 1,135 100.0 406 (35.8%)
Short-answer 884 77.9 321 (36.3%)
Multiple-choice 157 13.8 49 (31.2%)
Yes/No 94 8.3 36 (38.3%)

Table 1: CombiGraph-Vis dataset statistics.

problems to include short-answer and yes/no formats. We collected problems from first rounds
(competitions 534) and selected second rounds (24th, 25th, 26th, 30th, 32nd) that contained our
target problem types. Competition PDFs provided the primary source material, with Opedia.ir used
for validation and filling gaps.

Adapting Persian materials for international use involved several challenges. Translation alone was
insufficient: many problems had interconnected contexts requiring shared definitions or multi-part
scenarios. Contextual field annotation solved this by preserving problem dependencies while en-
abling standalone evaluation (see Figure 3 for an illustration). Visual elements needed quality
assessment and recreation when Persian text or poor resolution made them inaccessible. During
curation, we discovered that many originally multiple-choice problems actually functioned indepen-
dently of their provided options. An agentic classification workflow now distinguishes ”standalone”
problems from genuinely ”choice-dependent” ones, expanding format options. Figure 2 illustrates
this distinction with representative examples from our dataset.

3.2 DATA CURATION PROCESS USING AGENTIC WORKFLOWS

We applied agentic workflows with human-in-the-loop to fix existing errors in the dataset during
the data curation phase. Our initial analysis identified three distinct error categories with different
patterns requiring specialized detection approaches:

1. Conversion errors from automated PDF parsing, including issues with mathematical no-
tation, formatting artifacts, and character encoding problems;

2. Translator/annotator errors ranging from typos to semantic mistranslations that compro-
mised problem clarity;

3. Original source errors from OCR processes, which occurred frequently as many archived
competition PDFs came from OCR conversion of paper documents rather than original
digital files.

3.2.1 FIRST PHASE: PROBLEM VALIDATION

We developed a two-phase filtering process using agentic workflows to detect mistakes in problems
and solutions. Our first phase uses an agentic workflow that generates validation reports through
three specialized critics (Figure 4). Each critic has access to the problem context (if any): problem
text, English solution, original Persian problem and solution, answer choices, correct option, and
final answer.

The three critics operated as:

1. Typo/Clarity Critic compares English translations with original Persian text to identify
typos and clarity issues;

2. Logical Soundness Critic verifies reasoning consistency and computational accuracy;
3. Final Answer Match checks whether the final answer derived in the solution text matches

the stored final answer entry.

We run this workflow three times independently for each problem to generate three validation re-
ports. We then use an aggregator stage that applies majority voting to synthesize the three reports
into structured JSON output with multiple diagnostic fields. Complete implementation details for
the first phase are provided in Algorithm 2 (Appendix A). For filtering purposes, we use the Overall
Error Severity score using a 5-point scale which is defined as follows:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Choice-Dependent Problem

A calculating machine has an internal memory called M . This machine can calculate an expres-
sion by performing the following instructions:

• Add X: Adds the value of X to the value of M and stores the result in M .
• Mul X: Multiplies the value of X by the value of M and stores the result in M .

In the above instructions, X can be an integer or a variable. Assume the initial value of M is
zero.
Example: The following instructions, from left to right, calculate the expression ax + 5: Add
a, Mul x, Add 5.
Which of the following expressions cannot be calculated by this machine?

1. ax2 + bx+ c

2. (a+ b)xy + ya

3. (ax+ by)(a+ b)

4. 3x5 + 1

5. All these expressions can be calculated

Standalone Problem (Originally Multiple-Choice)

We have written numbers 1 to 78 clockwise on a circle. We select the number 1 as the current
number and repeat the following operations until only one number remains on the circle:

• If the current number is x, remove it from the circle, add one unit to the x next numbers
clockwise on the circle, and select the number after that (two places clockwise from the
removed number) as the current number.

Note that if the number of remaining numbers on the circle is less than 3, one or more numbers
might have more than one unit added to them.
What is the remainder when the number that finally remains on the circle is divided by 5?

Original choices:

1. 0

2. 1

3. 2

4. 3

5. 4

(now used as short-answer format)

Figure 2: Examples of choice-dependent vs. standalone problems. The first requires analyzing
provided options to determine impossibility, while the second has a unique numerical answer inde-
pendent of choices.

• 1 (No issues): Clear and correct overall
• 2 (Minor issues): Small problems with no impact on meaning
• 3 (Moderate issues): Multiple clarity problems or one significant issue
• 4 (Major issues): Significant contradictions or error patterns that likely invalidate the so-

lution
• 5 (Critical failure): Pervasive issues or fatal flaws making the pair unusable

We checked the generated reports for a handful of cases and detected systematic patterns where prob-
lems flagged with ”major issues” typically contained only minor typos, while those marked ”critical

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Context-Dependent Problem

Context: Consider the following definition for the next three questions: An m× n table where
each cell contains an integer is called a ’counting table’ if the absolute difference of the numbers
written in any two adjacent (row-wise or column-wise) cells is exactly one. As an example, the
table below is a 2× 3 counting table.

2 3 2
3 2 1

Question: A counting m × n table, with all its cells filled, is given. We want to reveal the
numbers in a minimum number of its cells (their numbers become known to us) so that we can
deduce the numbers in the remaining cells. In what range does this minimum lie?

1. 1 or 2
2. [3,m+ n− 1]

3. [mn
2 ,m+ n]

4. [mn
2 ,mn− 1]

5. Exactly mn

Figure 3: Example of a context-dependent problem requiring shared definitions from a multi-part
scenario. The contextual field preserves the counting table definition needed to understand the ques-
tion.

Figure 4: Agentic validation pipeline for quality assurance. The process consists of two main phases:
Report Generation with three specialized critics (Typo/Clarity, Logical Soundness, Answer Verifi-
cation) running in parallel, followed by Report Aggregation that synthesizes multiple validation
reports through majority voting to produce final quality assessments.

failure” often had single correctable errors. We filtered all cases with severity scores above 1 for
the second validation and error correction phase, accepting this conservative threshold to minimize
false negatives while managing the high false positive rate we observed.

3.2.2 SECOND PHASE: AUTOMATED ERROR RESOLUTION

Many problems flagged in the first phase came from common parsing errors and misunderstanding
brief solutions by the model, not actual errors from the original sources. We found recurring prob-
lems: equation parsing errors (e.g. binomial notation converted to fractions), translation mistakes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(choice permutations, typos), and false positives where models struggled with the concise original
solutions.

We developed an error resolution workflow that categorizes errors using patterns identified from
first-phase validation logs. By analyzing validation reports, we distinguished between errors intro-
duced by our pipeline versus those present in original sources. Algorithm 1 shows the high-level
stages of the workflow. The workflow handles three error types with different approaches: pipeline
errors (parsing/conversion problems) receive direct fixes for notation and formatting issues; poten-
tial source errors trigger a solution expansion phase where we rewrite the original brief solution
into detailed, step-by-step explanations under the assumption that the final answer is correct; and
image-understanding issues are escalated to human review.

Algorithm 1 Error Resolution Workflow
Require: Problem data d, validation reports from first phase
Ensure: Fixed problem data or human intervention report

1: Load and aggregate validation findings
2: Classify error type: pipeline, source, or image-understanding
3: if pipeline error then
4: Apply targeted fixes (notation, formatting, choices)
5: else if source error then
6: Engage with solution for deeper analysis
7: Reclassify with expanded context
8: else if image-understanding issue then
9: Escalate to human review

10: end if
11: if automated fix required then
12: repeat
13: Plan surgical edits with constraints
14: Apply fixes and validate with 5 consecutive successes
15: until quality threshold met or budget exceeded
16: end if
17: return fixed data or human intervention report

We observed that most original source errors occurred in the solutions rather than in problem state-
ments or final answers. To address this, our solution expansion approach rewrites brief original
solutions into detailed, step-by-step explanations while assuming the correctness of the final an-
swers. For automated fixes, we only edit data classified as having ”Minor, Fixable Issues” using
predefined criteria in our prompts - where the mathematical approach is sound but contains local-
ized errors like typos, calculation mistakes, or unclear presentation. We avoid editing cases with
”Major Logical Flaws” where the core method is fundamentally incorrect. The workflow can edit
all data fields (problems, solutions, answers) while preserving image file names and paths. The
workflow validates fixes through an automated iterative process: a validator stage checks each pro-
posed fix against the original detected issues using the problem information (stem, solution, context,
final answer) and outputs from previous stages, and the system requires the same fix to pass valida-
tion 5 consecutive times before accepting changes. This is because each stage is an LLM call and it
has non-deterministic behavior and repeated calls can lead to different outputs, hence, repeating the
same validation stage in a loop makes it more reliable. If any validation fails, the success counter
resets and the system generates a new fix plan. After the workflow completes, cases that do not
require human intervention are reviewed by a human who accepts or rejects the automatic fix and
manually corrects any remaining issues. Cases flagged as requiring human intervention are manu-
ally fixed by the human reviewer. Complete implementation details are provided in Algorithms 3
and 4 (Appendix A).

3.2.3 TECHNIQUE LABELS AND TAXONOMY

To enable fine-grained analysis of mathematical reasoning capabilities, we applied technique label-
ing based on the official Iranian Informatics Olympiad curriculum. Each problem receives hierar-
chical labels following a three-level taxonomy: Topic → Sub-topic → Sub-sub-topic (e.g., Com-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

binatorics → Counting Foundations → Stars & bars). We use a single prompt that assigns labels
based on techniques that explicitly appear in solution steps. The taxonomy covers 13 major topics
spanning discrete mathematics with 89 distinct sub-sub-topic labels that capture precise mathemat-
ical approaches used in solutions. This fine-grained labeling enables researchers to analyze model
performance across specific techniques, identify capability gaps, and design targeted evaluation pro-
tocols. The complete hierarchical taxonomy and labeling prompt are provided in Appendix C.

4 TASK FORMATS AND VERIFICATION PROTOCOL

We evaluate models by generating eight solutions per problem using a chain-of-thought prompt that
instructs models to produce step-by-step reasoning and wrap the final answer in \boxed{} format
(Appendix C.2). For choice-dependent multiple-choice problems, we include the answer choices
in the prompt to ensure the model selects from the provided options. To parse the the final answer
from the model’s output, we use a simple regex pattern that matches the \boxed{} format. If all
of the choices for that specific problem were numerical/algebraic expressions, we used the Math-
VerifyKydlek & Gandenberger (2024) library to check if the extracted answer is equivalent to the
final answer. In case the generated solution didn’t follow the instruction and didn’t wrap the final
answer in \boxed{}, or the choices were not numerical/algebraic expressions, we offloaded the
task to an LLM (Gemini 2.5 Flash) to extract the final answer. In the prompt, we asked the model to
extract the final answer’s raw value, and the matching choice (if any) and the standardized form of
the final answer (in case the choices were not numerical/algebraic expressions and the final answer
matched one of the choices). We then checked if the extracted answer is equal to the final answer or
the extracted choice is equal to the correct option.

5 RESULTS

Across all evaluation settings, we observe clear separations between model families, with top-tier
models achieving strong but far from saturated accuracy, mid-tier models trailing substantially, and
lightweight/open-weight models far behind. Accuracy drops on image-tagged items compared to
text-only items, revealing persistent gaps in visual mathematical understanding. Multiple-choice
behavior shows a pronounced discrepancy between standalone and among-choices accuracy, indi-
cating that models are often lured by wrong answers deliberately crafted in competition settings.

Overall Performance Top-level results are summarized in Table 2 (cf. Figure 1). Top-tier models
reach single-sample averages around 75–78% while mid-tier and lightweight/open-weight models
lag by 20–40+ points depending on the evaluation setting. This broad dispersion persists across
formats and modalities, confirming that CombiGraph-Vis is not saturated: even the strongest models
leave substantial headroom while weaker models remain far from ceiling. The per-model tracks
(avg@8, pass@8, maj@8, all-pass@8) further reinforce clear separations among model families.

Table 2: avg@8 reported across evaluations settings. Best performance in each slice is highlighted.
Images Multiple-Choice

Model All Yes None Standalone Choice-Dep. Yes/No Second Round

gemini-2 5-flash 63.4 50.9 70.3 63.4 56.9 74.1 50.4
gemini-2 5-flash-lite 50.8 33.8 60.2 49.1 50.6 66.4 30.2
gemini-2 5-pro 75.8 66.9 80.8 75.7 72.9 81.9 71.6
gemma-3-12b-it 23.2 17.5 26.3 21.2 31.1 28.3 13.7
gemma-3-27b-it 27.5 20.1 31.6 25.0 38.5 32.4 12.6
gemma-3-4b-it 16.1 12.1 18.4 13.6 15.9 40.6 9.7
gpt-4o 27.6 20.4 31.6 24.5 31.4 49.9 15.9
gpt-4o-mini 22.5 16.9 25.5 18.9 25.2 50.8 14.6
gpt-5 78.0 68.2 83.5 77.7 81.2 75.7 75.6
gpt-5-mini 65.4 53.9 71.8 67.8 69.0 37.4 59.9
gpt-5-nano 58.9 43.5 67.5 61.1 55.4 44.4 46.3

Modality Gap Table 2 shows consistent drops on image-tagged items relative to text-only prob-
lems. For top-tier models, the gap from no-image to image conditions is typically 14–16 percentage
points (e.g., 83.5%→ 68.2% and 80.8%→ 66.9%), and for mid-tier models it can approach 20

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

points. This indicates that parsing and reasoning over structured visualsgraphs, grids, geometric
diagramsremain central bottlenecks, materially impacting overall accuracy.

Standalone vs Among-Choices on MC (short-answer setting) As discuseed, we convert MC
problems to short-answer by removing options. For each problem and model we compute: (i)
Standalone avg@8 = mean correctness over 8 samples; and (ii) Among-Choices avg@8 = mean
fraction of samples whose final answer lies among the original (now-hidden) options (not necessarily
correct).

Table 3: Standalone vs Among-Choices (avg@8). ∆ = (Among-Choices − Standalone) in percent-
age points.

Model Standalone (%) Among-Choices (%) ∆ (pp)

gpt-5 77.7 92.0 14.3
gemini-2 5-pro 75.8 90.0 14.3
gpt-5-mini 67.8 85.4 17.6
gemini-2 5-flash 63.5 83.7 20.3
gpt-5-nano 61.1 82.9 21.8
gemini-2 5-flash-lite 49.2 73.1 23.9
gemma-3-27b-it 25.0 70.4 45.5
gpt-4o 24.6 64.1 39.6
gemma-3-12b-it 21.3 65.4 44.2
gpt-4o-mini 19.0 60.4 41.5
gemma-3-4b-it 13.6 57.5 43.9

These large ∆ values indicate that models consistently produce answers that coincide with some
provided choice but not necessarily the correct one. In competition settings, answer options are de-
liberately constructed to include plausible distractors; the systematic gap between Among-Choices
and Standalone accuracy thus reveals a susceptibility to these traps. In other words, option exposure
often steers models toward distractor recognition rather than robust derivation, whereas the stan-
dalone format demands genuine solution construction. Moreover, the large ∆ values provide strong
support for the adoption of our evaluation suite as an RL environment, since the model can poten-
tially learn to avoid the deliberately crafted distractors, an ability that is prerequisite for performing
well in competition-level reasoning.

Topic-Level Performance Per-topic accuracies highlight both broad strengths and persistent
weaknesses. Top-tier models are strong in combinatorics, number reasoning, and invariants/mono-
variants, and they show competitive results in computational geometry; probability is especially high
for some models (see Table 4). In contrast, graph-theoretic subdomains (e.g., connectivity, match-
ings) and formal languages expose larger spreads across models, with mid-tier and lightweight/open-
weight models struggling markedly. The dispersion suggests that discrete, structure-sensitive rea-
soning is not uniformly mastered across mathematical domains.

Table 4: Per-model accuracy by topic (%). Best score per topic is highlighted.

Model Com
bin

ato
ric

s

Log
ica

l &
Pu

zz
le

Algo
rit

hm
s &

DS

Grap
h

Num
be

r

Com
b.

Gam
e

Pr
ob

ab
ili

ty

Com
p.

Geo
metr

y

In
va

ria
nts

Fo
rm

al
Lan

g

gemini-2 5-flash 70.1 56.8 55.0 53.3 76.9 55.2 89.8 56.8 63.8 37.5
gemini-2 5-flash-lite 57.9 44.4 43.1 36.8 68.2 36.6 82.8 39.8 57.5 28.1
gemini-2 5-pro 82.1 69.4 67.5 70.2 85.8 69.5 91.4 73.9 87.5 65.6
gemma-3-12b-it 26.5 18.0 16.7 17.8 32.6 27.7 54.7 14.8 18.8 12.5
gemma-3-27b-it 30.7 23.6 22.7 19.3 36.0 25.0 62.5 11.4 17.5 25.0
gemma-3-4b-it 15.3 15.6 14.5 10.9 23.1 20.7 16.4 19.3 10.0 12.5
gpt-4o 29.3 23.4 24.5 25.2 32.1 25.3 55.5 27.3 13.8 15.6
gpt-4o-mini 23.8 18.6 18.1 17.5 30.1 23.2 51.6 23.9 13.8 15.6
gpt-5 81.6 73.4 73.1 76.3 86.6 61.6 77.3 79.5 95.0 100.0
gpt-5-mini 70.5 57.1 59.7 64.3 74.4 48.8 77.3 50.0 86.3 81.3
gpt-5-nano 65.5 51.9 49.6 52.4 73.2 39.9 78.3 42.5 81.3 78.1

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

Together, our findings indicate that CombiGraph-Vis yields strong separations across model fami-
lies, exposes enduring multimodal reasoning deficits, and stresses the difference between distractor-
sensitive recognition and derivation-based solution. We leverage these observations in the Discus-
sion to analyze error modes and to outline methodological directions for building models that can
reliably solve complex, multimodal discrete mathematics problems.

7 LLM USAGE DESCRIPTION

We used LLMs such as gpt-5 and Gemini 2.5 Pro to polish writing, fix grammatical errors and latex
alignment issues.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P. Xing, and Liang Lin.
Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
arXiv preprint arXiv:2105.14517, 2021. URL https://arxiv.org/abs/2105.14517.

Konstantin Chernyshev, Vitaliy Polshkov, Vlad Stepanov, Alex Myasnikov, Ekaterina Artemova,
Alexei Miasnikov, and Sergei Tilga. U-math: A university-level benchmark for evaluating math-
ematical skills in large language models. In Ofir Arviv, Miruna Clinciu, Kaustubh Dhole, Rotem
Dror, Sebastian Gehrmann, Eliya Habba, Itay Itzhak, Simon Mille, Yotam Perlitz, Enrico Santus,
João Sedoc, Michal Shmueli Scheuer, Gabriel Stanovsky, and Oyvind Tafjord (eds.), Proceedings
of the Fourth Workshop on Generation, Evaluation and Metrics (GEM2), pp. 974–1001, Vienna,
Austria and virtual meeting, July 2025. Association for Computational Linguistics. ISBN 979-8-
89176-261-9. URL https://aclanthology.org/2025.gem-1.77/.

Karl Cobbe, Vlad Lyzhov, Mohammad Bavarian, Michael Kossakowski, Heewoo Chen, Alethea
Power, Lukasz Kaiser, and John Schulman. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.org/abs/2110.14168.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, et al. Omni-math: A universal olympiad level
mathematic benchmark for large language models. In International Conference on Learning
Representations (ICLR) OpenReview, 2024. URL https://openreview.net/forum?
id=yaqPf0KAlN.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scien-
tific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.
acl-long.211/.

Dan Hendrycks et al. Measuring mathematical problem solving with the math dataset. In Inter-
national Conference on Learning Representations (ICLR) OpenReview, 2021. URL https:
//openreview.net/forum?id=7Bywt2mQsCe.

Hynek Kydlek and Greg Gandenberger. Math-verify: A python library for mathematical expression
verification, 2024. URL https://github.com/huggingface/Math-Verify. Version
0.8.0.

Jie Li et al. Mmbench: Is your multi-modal model an all-around player? In Computer Vision –
ECCV 2024, 2024.

... Liu et al. Clevr-math: A dataset for compositional language, visual and mathematical reasoning.
arXiv preprint arXiv:2208.05358, 2022. URL https://arxiv.org/abs/2208.05358.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=KUNzEQMWU7. ICLR
2024 (oral).

Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira
Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant G. Honavar. Brains vs. bytes: Evalu-
ating llm proficiency in olympiad mathematics. In arXiv preprint arXiv:2501.xxxxx, 2025. URL
https://openreview.net/forum?id=V4RIJxt02s.

Yujun Mao, Yoon Kim, and Yilun Zhou. Champ: A competition-level dataset for fine-grained
analyses of LLMs’ mathematical reasoning capabilities. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024,
pp. 13256–13274, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.785. URL https://aclanthology.org/2024.
findings-acl.785/.

11

https://arxiv.org/abs/2105.14517
https://aclanthology.org/2025.gem-1.77/
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://github.com/huggingface/Math-Verify
https://arxiv.org/abs/2208.05358
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=V4RIJxt02s
https://aclanthology.org/2024.findings-acl.785/
https://aclanthology.org/2024.findings-acl.785/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

xu Zhao Pan, Pengfei Zhou, Jiaxin Ai, Wangbo Zhao, Kai Wang, Xiaojiang Peng, Wenqi Shao,
Hongxun Yao, and Kaipeng Zhang. Mpbench: A comprehensive multimodal reasoning bench-
mark for process errors identification. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Lin-
guistics: ACL 2025, pp. 21586–21606, Vienna, Austria, July 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1112. URL
https://aclanthology.org/2025.findings-acl.1112/.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Jiapeng Wang,
Zhuoma GongQue, Shanglin Lei, YiFan Zhang, Zhe Wei, Miaoxuan Zhang, Runfeng Qiao, Xiao
Zong, Yida Xu, Peiqing Yang, Zhimin Bao, Muxi Diao, Chen Li, and Honggang Zhang. We-math:
Does your large multimodal model achieve human-like mathematical reasoning? In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), 2025.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge. In Computer
Vision – ECCV 2022, pp. 146–162. Springer, 2022.

Ke Wang et al. Measuring multimodal mathematical reasoning with math-vision
dataset. In NeurIPS 2024 Datasets and Benchmarks Track, 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/hash/
1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_
Benchmarks.html.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-
guage models. In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

Haoyi Wu, Wenyang Hui, Yezeng Chen, Weiqi Wu, Kewei Tu, and Yi Zhou. Conic10k: A chal-
lenging math problem understanding and reasoning dataset. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 6444–6458, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.427. URL https://aclanthology.org/2023.
findings-emnlp.427/.

Albert S Yue, Lovish Madaan, Ted Moskovitz, DJ Strouse, and Aaditya K Singh. Harp: A challeng-
ing human-annotated math reasoning benchmark. arXiv preprint arXiv:2412.08819, 2024a. URL
https://arxiv.org/abs/2412.08819.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9556–9567, June 2024b.

Chen Zou, Yixuan Song, Zhen Hu, Yitong Liao, Chunyuan Li, Xun Yang, and Yizhou Wang. Dyna-
math: A dynamic visual benchmark for evaluating mathematical reasoning robustness of vision
language models. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025. URL https://openreview.net/forum?id=VOAMTA8jKu.

12

https://aclanthology.org/2025.findings-acl.1112/
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2023.findings-emnlp.427/
https://aclanthology.org/2023.findings-emnlp.427/
https://arxiv.org/abs/2412.08819
https://openreview.net/forum?id=VOAMTA8jKu

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

Algorithm 2 Problem Validation Workflow (First Phase)
Require: Problem datum d = (problem, choices, english solution, context, correct option, an-

swer value, crawled persian markdown, svg sources)
Ensure: problem validation data

1: reports← []
2: for i← 1 to 3 do
3: typo report← TypoClarityCritic(d)
4: logic report← LogicalSoundnessCritic(d)
5: answer report← AnswerVerificationCritic(d)
6: combined report← ReportCollector(typo report, logic report, answer report)
7: Append(reports, combined report)
8: end for
9: joined reports← JoinReportChunks(reports)

10: validation result← FinalAggregator(joined reports)
11: return validation result

Algorithm 3 Error Detection and Classification
Require: Problem datum d = (problem, choices, english solution, context, correct option, an-

swer value, crawled persian markdown, svg sources)
Ensure: Classification result agg with fix requirements

1: findings md← BuildFindingsText(LoadValidationData(d.id))
2: reports← []
3: for i← 1 to 3 do
4: r ← IssueDetector(d, findings md)
5: Append(reports, r)
6: end for
7: reports md← JoinIssueReportChunks(reports)
8: agg← IssueAggregator(reports md, d)
9: if agg.is original source error then

10: engagement md← SolutionEngager(d, agg.aggregated report md)
11: src cls← IssueDetectorWithEngagement(d, engagement md)
12: src cls md← FormatToMarkdown(src cls)
13: agg ← EngagementReportSynthesizer(agg.aggregated report md, engagement md,

src cls md)
14: if agg.requires human intervention then
15: return ComposeHumanInterventionReport(agg)
16: end if
17: else if agg.is image understanding issue then
18: return ComposeHumanInterventionReport(agg)
19: end if
20: return agg ▷ Classification result for automated fixing

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4 Automated Error Resolution and Fixing
Require: Problem datum d, classification result agg from Algorithm 3
Ensure: Fixed problem data or human intervention report

1: fix plan md← FixPlanner(agg.aggregated report md, d)
2: fixed← Fixer(fix plan md, d)
3: ctx← UpdateContextWithFixes(fixed)
4: fixed md← FormatFixedData(ctx.fixed problem data)
5: successes← 0
6: for t← 1 to 20 do
7: result← Validator(agg.aggregated report md, fix plan md, d, fixed md)
8: if result.is fixed then
9: successes← successes +1

10: if successes ≥ 5 then
11: break
12: end if
13: else
14: successes← 0
15: fix plan md← RePlanner(agg.aggregated report md, result.reasoning, fix plan md, d)
16: fixed← Fixer(fix plan md, d)
17: ctx← UpdateContextWithFixes(fixed)
18: fixed md← FormatFixedData(ctx.fixed problem data)
19: end if
20: end for
21: return ComposeAutoFixOutput(d, agg, fix plan md, fixed md)

B PROMPT SPECIFICATIONS

B.1 PROBLEM VALIDATION PROMPTS

B.1.1 TYPOCLARITYCRITIC

TypoClarityCritic Prompt

You are a meticulous editor and proofreader, specializing in
technical and mathematical content. Your sole task is to review a
given math problem and its solution for **critical surface-level
errors that fatally impact its meaning or solvability.** If
available, you will ALSO be provided with inline SVG XMLs as text
under the placeholder {svg_sources}; you may use their textual
content (e.g., embedded <text> labels) as additional context.

Focus ONLY on the following types of fatal errors:
- **Semantically Significant Typos:** Look for spelling mistakes,

incorrect variable names (e.g., ’x’ used in one place, ’X’ in
another), sign/symbol errors (e.g., ’=’ vs ’’, ’<’ vs ’’),
misplaced decimals, or unit/notation inconsistencies **that change
the mathematical meaning**. A typo in a variable/symbol is
critical; a typo in a descriptive word is not, unless it creates
ambiguity that affects meaning.

- **Explicit Grammar Errors (Meaning-Changing):** Unambiguous
grammatical mistakes that alter conditions or conclusions (e.g.,
missing "not", wrong quantifier, singular/plural mismatch that
changes scope, misplaced "only"). Do not flag
awkward-but-understandable text.

- **Meaning-Altering Translation Errors:** Mistranslations that
invert or distort meaning (e.g., "at least" vs "at most", omission
of "distinct", "positive" vs "non-negative").

Crucially, you must IGNORE the following:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

- Minor grammatical errors that do not change the meaning.
- Awkward but understandable phrasing or style.
- Missing or introduced labels/notation for clarity (e.g., A/B

labels, introducing variables) unless they create a direct
contradiction.

- References that belong to problem-solution matching (e.g., claims
of different problem, domain or method differences) these are out
of scope for this stage.

- Mathematical rigor, depth of explanation, or solution correctness.

We are not looking for a perfectly written text. We are looking for a
functionally correct text. Only flag an issue if it prevents a
reasonably skilled person from understanding and solving the
problem correctly.

DO NOT:
- Solve the problem.
- Verify the mathematical logic.
- Check if the final answer is correct.

You will be provided with the problem, its potential choices, the
provided solution, and possibly a Persian version of the solution
for reference.

Problem Data:
- **Problem:**
‘‘‘
{problem}
‘‘‘

- **Choices:**
‘‘‘
{choices}
‘‘‘

- **Provided English Solution:**
‘‘‘
{english_solution}
‘‘‘

- **Provided Persian Solution (for reference, may be empty):**
‘‘‘
{persian_solution}
‘‘‘

- **Context (if any):**
‘‘‘
{context}
‘‘‘

Optional SVG XMLs (if provided):
‘‘‘
{svg_sources}
‘‘‘

Important Note on "Context": The ‘Context‘ field, when present,
contains a shared introduction or definitions for a set of related
problems. It is a critical part of the problem statement. You must
also review the context for any typos, grammatical errors, or
translation issues.

CRITICAL: Text-Only Analysis: Base your analysis EXCLUSIVELY on
the text content. DO NOT use image analysis to detect
typos/translation errors. Focus only on the written problem
statement, solution text, and the content inside the provided SVG
XMLs (if any).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Decision rules (apply all):
- Evidence requirement: For every flagged issue, quote the exact text

snippet(s) that demonstrate the error.
- Meaning-change threshold: Only flag if the typo/grammar/translation

issue plausibly changes the mathematical meaning or solvability.
- Notation consistency: Inconsistent variable names/symbols (e.g.,

’a’ vs ’’, ’x’ vs ’X’) are errors only if they create ambiguity or
contradiction in meaning.

- Scope fence: Do not report missing labels, domain mismatches,
method selection, or any problem-solution matching concerns; these
belong to a different stage.

- Ambiguity rule: When uncertain, do not flag as fatal. Note the
ambiguity and rate severity 2.

Review the texts and produce a report in markdown format.

Output format (respond ONLY with Markdown; no JSON, no code
fences, no extra commentary). Use exactly these sections:

Summary
- 1 2 sentences describing whether there are meaning-changing surface

errors (typo/grammar/translation).

Findings
- Comprehensive bullet list of ALL meaning-changing

typo/grammar/translation errors you identified (do not omit any).
For each finding, include:

- The minimal quoted snippet(s) that show the error
- A one-line justification of how the error changes

meaning/solvability (alignment with this stages goal)

Categories
- Bullet list of applicable categories: typo, grammar_error,

translation_error, other

Severity
- Rate the overall severity of issues on a scale from 1 (no issues)

to 5 (worst case). Use this scale:
- 1: No issues text is clear and correct at the surface level
- 2: Minor issues small/ambiguous issues; no impact on meaning or

correctness
- 3: Moderate issues multiple issues causing intermittent

ambiguity; meaning mostly intact
- 4: Major issues severe ambiguity/errors that likely change

meaning or solvability
- 5: Critical failure pervasive meaning-changing errors make the

problem/solution unusable

B.1.2 LOGICALSOUNDNESSCRITIC

LogicalSoundnessCritic Prompt

You are a data integrity specialist. Your task is to check two simple
things about the problem-solution pair. Your stage goal is ONLY to
determine whether the solution is seemingly trying to solve the
same stated problem, and whether the solution explicitly mentions
that the original problem was changed. You must NOT assess
solution correctness, judge the method, or evaluate completeness.

Your Goal:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1. **Same Problem Check**: Does the solution appear to be attempting
to solve the same problem stated, or does it seem to solve a
completely different problem?

2. **Problem Substitution Check**: Does the solution explicitly
mention that the original problem was wrong/changed during the
exam?

For Goal 1 - Heuristics to detect different problems:
- Solution discusses completely different mathematical domain (e.g.,

problem about geometry, solution about number theory)
- Solution addresses fundamentally different question type (e.g.,

problem asks for proof, solution provides numerical calculation
for unrelated quantity)

- Solution starts with completely different input parameters with no
connection to stated problem

- Solutions final answer targets a different object/type than what
the problem asks for

- Solution relies on constraints or assumptions not present in, or
contradicting, the problem/context text

What to IGNORE for Goal 1:
- Solution is incomplete, brief, or poorly explained
- Solution uses different approach or method than expected
- Solution shows intermediate calculations or introduces helpful

notation
- Solution quality, mathematical rigor, or level of detail

For Goal 2 - Look for explicit statements like:
- "The original problem was incorrect/changed"
- "This problem was modified from the exam version"
- "The exam had an error, so this version solves the corrected

problem"

What to IGNORE for Goal 2:
- Hints or implications without explicit mention of change/error
- General comments about difficulty, ambiguity, or author preference
- Any inference based on images

Text sources you may use:
- The written problem statement and solution text
- The ‘Context‘ field (if present)
- The inline SVG XMLs (if provided) available under the placeholder

‘{svg_sources}‘ treat them strictly as text (e.g., read <text>
labels), not as images

CRITICAL: Text-Only Analysis: Base your analysis EXCLUSIVELY on
textual sources above. DO NOT use image analysis.

You will find the complete problem data in the preceding messages of
this conversation, including any typo/clarity analysis.

Decision rules (apply all):
- Burden of proof: Declare "different problem" only if at least two

independent, text-based indicators are present. If evidence is
single, weak, or ambiguous, classify as "same problem" and note
uncertainties.

- Evidence requirement: Support each indicator with direct text
quotes/snippets from the problem/solution (and, if helpful, from
‘{svg_sources}‘).

- Derived numbers are allowed: Numbers not in the problem but
plausibly derived from stated inputs are normal and must not be
used as evidence of mismatch.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

- Notation neutrality: Symbols/labels introduced by the solution (A,
B, x1, x2) are not evidence of mismatch unless they contradict
named entities or constraints explicitly defined in text.

- Answer-target check: If the problem asks for X but the solutions
final target is Y (different type/object), count as one indicator.

- Constraint alignment: If the solution assumes constraints that
contradict explicitly stated problem/context constraints, count as
one indicator.

- Ambiguity rule: When uncertain, default to "same problem" (severity
2) and list the uncertainties explicitly.

Produce a report in markdown format.

Output format (respond ONLY with Markdown; no JSON, no code
fences, no extra commentary). Use exactly these sections and
structure:

Summary
- 1 2 sentences stating whether the solution matches the problem and

whether substitution is explicitly mentioned.

Findings
- If none, write: None
- Otherwise, for each finding, use this exact template (leave one

blank line between findings):
- Finding ID: F1
- Goal: same_problem_check | substitution_check
- Indicators: [indicator_1, indicator_2, ...]
- Choose from: domain_mismatch, question_type_mismatch,

input_param_mismatch, answer_target_mismatch,
constraint_contradiction, explicit_substitution_statement

- Evidence:
- Problem: "exact quoted snippet from problem"
- Solution: "exact quoted snippet from solution"

- Alignment: One sentence explaining how this finding supports the
stage goal (same_problem_check or substitution_check)

- Category: mismatch | other

Categories
- List only those that apply: mismatch, other

Severity
- One integer 15 using this scale:
- 1: Matches; no credible indicators
- 2: Mostly matches; minor/ambiguous inconsistencies
- 3: Partial match; one credible indicator
- 4: Likely different problem; two credible indicators
- 5: Clearly different problem; multiple strong indicators or

explicit substitution statement

B.1.3 ANSWERVERIFICATIONCRITIC

AnswerVerificationCritic Prompt

You are a data verification agent. Your job is to perform a simple
but crucial cross-check of the provided data for a math problem.

Your Goal:
- Compare the final answer derived in the **Provided English

Solution** with the official answer recorded in the database
fields (‘correct_option‘ and ‘answer_value‘).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

- Identify any discrepancies.

Example Scenarios to Catch:
- The solution text concludes that "the answer is 12," but the

‘answer_value‘ is 15.
- The solution text says "Option 3 is correct," but the

‘correct_option‘ is 2.
- The problem is a yes/no question, and the solution proves "yes,"

but the ‘answer_value‘ is "no."

You will find the complete problem data (problem statement, choices,
solution, context, images etc.) in the preceding messages of this
conversation. Your task is to analyze that information. Use the
images (if any) associated with the problem and solution. Use them
to understand the context of any text that refers to them.

Note on "Context": The ‘Context‘ field may contain definitions
that clarify the nature of the expected answer (e.g., whether it
should be an integer, a set, etc.). Keep this in mind during your
verification.

Analyze the ‘Provided English Solution‘ to determine the answer it
produces, and compare it against the ‘Correct Option Field‘ and
‘Answer Value Field‘. Produce a report in markdown format, stating
clearly whether there is a mismatch or if the data is consistent.

Output format (respond ONLY with Markdown; no JSON, no code fences,
no extra commentary). Use exactly these sections:

Summary
- 1 2 sentences stating "Consistent" or describing the mismatch and

where it occurred.

Findings
- Comprehensive bullet list that explicitly identifies the answer

extracted from the solution text, the databases
‘correct_option‘/‘answer_value‘, and any mismatch. Include minimal
quotes where helpful.

Categories
- Bullet list of applicable categories: mismatch, other

Severity
- Rate the overall severity of verification issues on a scale from 1

(no issues) to 5 (worst case). Use this scale:
- 1: No issues solution and database are consistent
- 2: Minor issues small ambiguity; likely consistent
- 3: Moderate issues some ambiguity or partial mismatch
- 4: Major issues clear mismatch affecting correctness
- 5: Critical failure fundamental inconsistency; recorded answer

and solution contradict

B.1.4 FINALAGGREGATOR

FinalAggregator Prompt

You are a senior analyst and judge. Your task is to synthesize
multiple critique reports into a final, structured JSON conclusion
that details every unique, validated finding.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Input:
You will receive a single markdown string containing the

concatenated, synthesized reports from each review iteration.

‘‘‘
{aggregated_report_md}
‘‘‘

Your Goal:
1. **Synthesize Unique Findings:** Read all reports and identify

every distinct issue mentioned. Cluster semantically equivalent
issues across reports into a single candidate finding.

2. **Majority Vote Inclusion:** For each candidate finding, count how
many distinct critic reports support it. Include a finding in the
final output only if it is supported by a majority of critic
reports (ceil(N/2) where N is the number of critic reports
considered). Discard singletons.

3. **Extract Details for Each Finding:** For each included finding,
determine its specific ‘location‘ (e.g., "Solution, paragraph 3"),
its ‘category‘, and a specific ‘severity‘ score (1-5) for that
issue alone.

4. **Determine Overall Severity:** Judge the final ‘overall_severity‘
based on the number, nature, and severity of all included
findings. A single critical issue might warrant a 5, but a pattern
of many moderate issues could also indicate a deeply flawed
problem. Use the following scale for your final judgment:
- 1: No issues The problem/solution pair appears clear and

correct overall.
- 2: Minor issues One or two small problems with no impact on

meaning or correctness.
- 3: Moderate issues Multiple problems hindering clarity, or one

significant issue.
- 4: Major issues Several significant contradictions or a pattern

of errors that likely invalidates the solution.
- 5: Critical failure Pervasive issues, or a single fatal flaw,

make the pair unusable.
5. **Write Summary Comment:** Provide a high-level, 2-3 sentence

‘summary_comment‘ of the findings.
6. **Set Final Flag:** Set ‘is_issue_detected‘ to ‘true‘ if your list

of findings is not empty.

Adjudication Rubric:
- Validate each critic claim against text: For every claim, cite

exact text snippets (problem/solution). Ignore image-based claims.
- Label each claim: Validated, Refuted, or Inconclusive. Include a

brief reason.
- Conflict resolution: When critics disagree, prefer claims with

stronger, directly quoted textual evidence. Discard claims lacking
such evidence or relying on images.

- Majority vote rule: Cluster similar claims across critic reports.
For each clustered issue, compute support_count = number of
distinct critic reports that raise it. Include only if
support_count ceil(N/2). Exclude singletons.

- Output policy: Only include majority-supported, Validated findings
in ‘aggregated_findings‘. Briefly summarize Refuted/Inconclusive
or non-majority claims in ‘summary_comment‘ as adjudication notes.

- Overall severity: Judge holistically from the included findings
(count, breadth, severity); do not use max-only.

- Ambiguity bias: If no claim can be validated with direct text
evidence, set ‘is_issue_detected‘ to false and ‘overall_severity‘
to 1, and explain uncertainty in ‘summary_comment‘.

Output Instructions:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Produce a single, valid JSON object that conforms strictly to the
schema below. Do NOT add any extra text, markdown formatting, or
explanations outside of the JSON object.

JSON Schema for Output:
‘‘‘json
{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "ProblemValidationOutput",
"type": "object",
"properties": {
"overall_severity": {
"type": "integer",
"minimum": 1,
"maximum": 5,
"description": "A final judgment on the overall severity,

considering all findings. Scale: 1=None, 2=Minor, 3=Moderate,
4=Major, 5=Critical."

},
"summary_comment": {
"type": "string",
"description": "A high-level, 2-3 sentence summary of the overall

findings."
},
"aggregated_findings": {
"type": "array",
"description": "A list of unique, validated issues found in the

problem/solution pair.",
"items": {
"type": "object",
"properties": {
"description": {
"type": "string",
"description": "A detailed description of the unique issue,

synthesized from all critic reports."
},
"location": {
"type": "string",
"description": "The specific location of the issue (e.g.,

’Problem Statement, paragraph 2’, ’Solution, equation
3’)."

},
"category": {
"type": "string",
"description": "The category of the issue (one of

’mismatch’, ’typo’, ’clarity’)."
},
"severity": {
"type": "integer",
"minimum": 1,
"maximum": 5,
"description": "The severity of this specific issue, from 1

(minor) to 5 (critical)."
}

},
"required": ["description", "location", "category", "severity"]

}
},
"is_issue_detected": {
"type": "boolean",
"description": "True if any substantive issue is validated,

otherwise false."
}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

},
"required": [
"overall_severity",
"summary_comment",
"aggregated_findings",
"is_issue_detected"

]
}
‘‘‘

B.2 ERROR RESOLUTION PROMPTS

B.2.1 ISSUEDETECTOR

IssueDetector Prompt

Role: You are an expert forensic analyst for a multi-stage data
processing pipeline. Your task is to analyze the provided data,
identify the root cause of discrepancies based on the known
pipeline, and classify the error.

How to Determine the True Final Answer

Before classifying an error, you must determine the ground truth for
the final answer by following this strict hierarchy. This is the
most critical part of your analysis.

1. **Find the Stated Answer Key:** First, check the
‘crawled_persian_markdown‘ for an explicit statement of the
correct option, like "Option X is correct" (‘ X ł ł‘).

2. **The Stated Answer is the Target:**
* If an explicit option is stated, find its corresponding

value from the Persian ‘choices‘ list. This value is the
intended correct answer (the ground truth).

* If the mathematical proof derives a different value, this
indicates a **fixable flaw (e.g., a typo, calculation error, or
encoding issue) within the proof**. Your task is to assume the
stated answer is correct and identify the flaw in the proof.

3. **Use the Proof as the Fallback:**
* If and only if the Persian source is ambiguous (e.g., "Option ?

is correct"), you must then rely on the mathematical derivation
in the proof to determine the true answer value.

4. **Map the True Value to Our Choices:** Once you have the absolute
true answer *value* (determined from either the stated key or the
proof), find the corresponding option number in **our English
‘choices‘**. This step is crucial to handle cases where the
options were reordered during translation.

To make the best judgment, you must understand how the data was
created and where errors can be introduced.

CRITICAL: Understand the Data Pipeline to Find the Error Source:
To identify the source of an error, you must first understand how the

data was created. Here is the exact procedure we followed:

1. **PDF to Markdown Parsing:** We started with the original Persian
exam PDFs and used an automated tool to parse them into markdown.
This process sometimes introduces errors, like misinterpreting
LaTeX (‘\binom‘ as ‘\frac‘) or failing to extract an image. The
‘persian_solution‘ field is the direct output of this step.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2. **LLM Translation:** The parsed Persian markdown was then
translated into English using a Large Language Model. This step
can introduce its own errors, especially with Right-to-Left (RTL)
language nuances. For example, the order of items in a list (‘7,
10, 11‘) might be incorrectly reversed (‘11, 10, 7‘). The
‘english_solution‘, ‘problem‘, and ‘choices‘ fields are the output
of this step.

3. **Image Separation:** We manually separated images from the parsed
text. It’s possible an image was missed or mismatched during this
step.

Ground Truth:
You have access to ‘crawled_persian_markdown‘. This is the ultimate

source of truth for what the official source published. However,
the official source may omit the full solution: sometimes it
provides only hints, and sometimes it includes only the problem
with no solution. In such cases, downstream English content may
come from a trusted alternative (e.g., official PDF extraction).
Therefore:

- Use ‘crawled_persian_markdown‘ as the authoritative reference for
the official problem statement and any content it does include.

- Absence of a solution in ‘crawled_persian_markdown‘ does NOT imply
an error in the English solution by itself; In these cases, we
have extracted the solution from the official PDF, which adds the
possibility of mistakes in the english solution. Evaluate
consistency using all provided references.

Your Root Cause Analysis Procedure

To accurately identify the error, you must follow this exact two-step
procedure. Do not skip steps or classify an error until you have
traced its origin according to this hierarchy of suspicion.

Step 1: Verify Translation Fidelity (Check for Pipeline Errors)
Your first and most important task is to meticulously compare the

English text fields (‘problem‘, ‘context‘, ‘choices‘,
‘english_solution‘) against the ‘crawled_persian_markdown‘ (the
ground truth).

* **Outcome:** If you find any discrepancya mistranslated equation,
a reversed list, a sentence that doesn’t matchthe root cause is a
Pipeline Error. You must select the appropriate
‘Mistranslation...‘ or related category and set the ‘Pipeline
Step‘ to ‘LLM Translation‘ or ‘PDF to Markdown Parsing‘. **In this
case, you must not proceed to Step 2.**

Step 2: Analyze the Source (Check for Source Errors)
If, and only if, you have confirmed that the English data is a

faithful and accurate translation of the
‘crawled_persian_markdown‘, should you then analyze the Persian
source for internal flaws.

* **Outcome:** If you find a demonstrable mathematical error, a
typo, or a notational abuse *within the Persian source itself*,
the root cause is an **Original Source Error**. You must select
the ‘OriginalSourceError‘ category and set the ‘Pipeline Step‘ to
‘External Source‘.

Common Error Patterns Stemming from this Pipeline:

* **‘MistranslationEquation‘:** **(Cause: Step 1 or 2)**. A
mathematical variable, expression, or equation was parsed
incorrectly or went missing during PDF extraction (e.g., ‘\binom‘

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

became ‘\frac‘) or was mistranslated by the LLM. Compare the
English version to both Persian versions to pinpoint the source.

* **‘MistranslationOrderingRTL‘:** **(Cause: Step 2)**. The order of
items in a list, question, or choices was reversed or scrambled
during the Persian-to-English translation. This is a classic RTL
vs. LTR issue.

* **‘MistranslationAnswerKey‘:** **(Cause: Step 2 & manual
intervention)**. The original problem had an issue (e.g., the
correct answer value was not in the choices). We may have manually
added the correct value to the English ‘choices‘, but the
LLM-translated ‘english_solution‘ text might still incorrectly
state that the answer isn’t available.

* **‘ManualErrorIncorrectGuess‘:** **(Cause: Manual intervention)**.
The original Persian source marked the correct option with a ’?’
or it was ambiguous. A human manually filled in the
‘correct_option‘ and ‘answer_value‘. **Analyze the solution’s
mathematical reasoning in the ‘crawled_persian_markdown‘. If this
logic contradicts the manually entered answer, this is the correct
category.** This is the only situation that allows for the final
answer to be programmatically changed.

* **‘MissingImage‘:** **(Cause: Step 1 or 3)**. An image referenced
in the text is missing. Compare the ‘english_solution‘ to the
‘crawled_persian_markdown‘ to see if an image reference is present
in the source but absent in the final version.

* **‘ImageUnderstandingIssue‘:** **(External Cause)**. The error is
not in the text, but in the model’s inability to correctly
interpret an image’s content. The text across all versions is
likely consistent.

* **‘OriginalSourceError‘:** **(External Cause)**. The logical flaw
exists in the official source material itself. **To claim this
category, you must provide a mathematical counter-example or proof
demonstrating the error.** You cannot claim an error simply
because the source is vague, concise, or contains an unproven
claim (the benefit of the doubt always goes to the source). This
category includes typos, abuse of notation (e.g., wrong indexing,
undefined variables), or demonstrable mathematical mistakes in the
proof.

* **‘NoDiscernibleError‘:** **(Cause: Upstream Validator False
Positive)**. A meticulous comparison of the ‘english_solution‘,
‘persian_solution‘, and ‘crawled_persian_markdown‘ shows they are
all consistent and logically sound. The error is likely a false
positive from the initial upstream validation workflow. Use this
category if you can find no fault in the data.

Your Task:
1. Meticulously compare the three data versions

(‘crawled_persian_markdown‘, ‘persian_solution‘,
‘english_solution‘) to trace where the error was introduced.

2. Enumerate all distinct issues you find (do not stop at the "most
likely" one). For each issue:
- Assign the exact category from the list below.
- Write a detailed, plausible scenario that references the

specific pipeline step that caused it.
- Add a confidence tag: ‘High‘, ‘Medium‘, or ‘Low‘.
- Group repeated occurrences of the same category under a single

issue entry, and list all occurrences with precise
locations/snippets.

- Rate the impact severity as ‘Critical‘, ‘Major‘, or ‘Minor‘.
Order the issues by severity (Critical Major Minor). There is no

cap on the number of issues; include minor typos/notation
issues as well.

Input Data:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

- Crawled Persian Markdown (Source of Truth):
{crawled_persian_markdown}

- Our Parsed Persian Markdown: {persian_solution}
- English Problem: {problem}
- Context: {context}
- English Choices: {choices}
- English Solution: {english_solution}
- SVG XMLs (if any):
‘‘‘
{svg_sources}
‘‘‘

Note on SVGs: The SVG XML snippets are provided as auxiliary aids to
clarify equations or diagram content. The equivalent rendered PNG
images are already embedded in the problem/solution/context. Use
SVGs only to improve understanding; do not output or modify them.

Note on Context: The ‘context‘ field contains introductory text or
diagrams that are essential for understanding the problem but are
not part of the formal question. Treat it as part of the overall
problem definition.

Output Instructions:
For each distinct issue you identify, format your analysis using the

following markdown structure. If you find multiple issues, repeat
this block for each one, separated by a horizontal rule (‘---‘).
List issues in descending order of severity.

Category: [Exact category name]
Severity: [Critical | Major | Minor]
Confidence: [High | Medium | Low]
Pipeline Step: [PDF to Markdown Parsing | LLM Translation | Image

Separation | Manual Intervention | External Source]
Explanation: [Detailed plausible scenario of how/why this issue

occurred]
Occurrences:
- [Document: crawled_persian_markdown | persian_solution |

english_solution | choices | problem] [location/snippet] [what
is wrong vs expected]

- [add more bullets for each occurrence]

B.2.2 ISSUEAGGREGATOR

IssueAggregator Prompt

Role: You are a lead forensic analyst responsible for
synthesizing reports from multiple junior analysts. You have
received several ‘IssueDetectionReport‘s for the same problem.
Your task is to review them all and produce one final,
authoritative report.

How to Determine the True Final Answer

Before classifying an error, you must determine the ground truth for
the final answer by following this strict hierarchy. This is the
most critical part of your analysis.

1. **Find the Stated Answer Key:** First, check the
‘crawled_persian_markdown‘ for an explicit statement of the
correct option, like "Option X is correct" (‘ X ł ł‘).

2. **The Stated Answer is the Target:**

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

* If an explicit option is stated, find its corresponding
value from the Persian ‘choices‘ list. This value is the
intended correct answer (the ground truth).

* If the mathematical proof derives a different value, this
indicates a **fixable flaw (e.g., a typo, calculation error, or
encoding issue) within the proof**. Your task is to assume the
stated answer is correct and identify the flaw in the proof.

3. **Use the Proof as the Fallback:**
* If and only if the Persian source is ambiguous (e.g., "Option ?

is correct"), you must then rely on the mathematical derivation
in the proof to determine the true answer value.

4. **Map the True Value to Our Choices:** Once you have the absolute
true answer *value* (determined from either the stated key or the
proof), find the corresponding option number in **our English
‘choices‘**. This step is crucial to handle cases where the
options were reordered during translation.

CRITICAL: Understand the Data Pipeline to Evaluate the Reports:
To make the best judgment, you must understand how the data was

created and where errors can be introduced.

1. **PDF to Markdown Parsing:** We started with original Persian exam
PDFs and used a tool to parse them into markdown
(‘persian_solution‘). This step can cause LaTeX errors or miss
images.

2. **LLM Translation:** The parsed markdown was then translated into
English (‘english_solution‘, ‘problem‘, etc.). This step can cause
Right-to-Left (RTL) ordering issues or other mistranslations.

3. **Image Separation & JSON Formatting:** Manual steps that could
also introduce errors.

4. **Ground Truth:** The ‘crawled_persian_markdown‘ reflects what the
official source published. It may omit full solutions; sometimes
only hints or only the problem are present. Treat it as
authoritative for what it contains, but absence of a solution
there does not, by itself, invalidate an English solution obtained
from trusted official PDFs. In these cases, we have extracted the
solution from the official PDF, which adds the possibility of
mistakes in the english solution.

Common Error Patterns Stemming from this Pipeline:

* ‘MistranslationEquation‘: Caused by Step 1 or 2.
* ‘MistranslationOrderingRTL‘: Caused by Step 2.
* ‘MistranslationAnswerKey‘: Caused by Step 2 & manual fixes.
* ‘ManualErrorIncorrectGuess‘: **(Cause: Manual intervention)**. The

original Persian source marked the correct option with a ’?’ or it
was ambiguous. A human manually filled in the ‘correct_option‘ and
‘answer_value‘. **Analyze the solution’s mathematical reasoning in
the ‘crawled_persian_markdown‘. If this logic contradicts the
manually entered answer, this is the correct category.** This is
the only situation that allows for the final answer to be
programmatically changed.

* ‘MissingImage‘: Caused by Step 1 or 3.
* ‘ImageUnderstandingIssue‘: External issue with the image

understanding capability of the model.
* ‘OriginalSourceError‘: **(External Cause)**. The logical flaw

exists in the official source material itself. **To claim this
category, you must provide a mathematical counter-example or proof
demonstrating the error.** You cannot claim an error simply
because the source is vague, concise, or contains an unproven
claim (the benefit of the doubt always goes to the source). This
category includes typos, abuse of notation (e.g., wrong indexing,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

undefined variables), or demonstrable mathematical mistakes in the
proof.

* ‘NoDiscernibleError‘: The upstream validation was likely a false
positive.

The Hierarchy of Suspicion: Your Guiding Principle

Your primary goal as the lead analyst is to determine the true origin
of any reported error. You must follow this hierarchy, assuming
that errors are more likely to come from our automated processes
than from the original source material.

1. **Highest Suspention: Our Pipeline (Extraction & Translation)**
* This is the most likely source of error. Before considering any

other cause, you must first rule out errors from PDF parsing or
LLM translation.

* **Evidence:** A discrepancy between the English fields
(‘problem‘, ‘solution‘, etc.) and the
‘crawled_persian_markdown‘.

* **Your Action:** If a pipeline error is confirmed, it is the
primary cause. The goal is to make our data consistent with the
source.

2. **Medium Suspicion: Minor Flaws in the Source Solution**
* If, and only if, you have confirmed the English data is a

faithful translation, then consider minor errors in the source
solution itself.

* **Evidence:** The source proof contains typos, bad phrasing, or
non-standard notation but is otherwise logically sound.

* **Your Action:** Acknowledge the minor source flaw. This can be
fixed automatically.

3. **Lowest Suspicion: Flaws in the Source Problem Statement or Final
Answer**
* This is extremely rare. Assume the original problem statement

and stated final answer are correct unless there is
overwhelming and unambiguous evidence of an error (e.g., a
completely unintelligible typo).

Handling Combined Errors:
If you find evidence of both a minor source error AND a subsequent

translation error, your final report must prioritize fixing the
source concept first, then addressing the translation based on
that corrected concept.

Your Task:
1. Review all provided detection reports below. Note the categories,

explanations, and confidence scores from each analyst.
2. Aggregate ALL distinct issues across reports; do not stop at the

most likely one.
3. For each aggregated issue, provide: Category; Severity \[Critical

| Major | Minor\]; Confidence \[High | Medium | Low\]; Pipeline
Step; and grouped Occurrences (per-location bullets).

4. Order issues by Severity (Critical Major Minor), then by
Confidence.

5. Choose ONE overall ‘final_category‘ (the dominant issue for
executive labeling) and list all remaining categories in
‘secondary_categories‘.

6. Set control flags from the entire merged set of issues (not only
from ‘final_category‘).

7. Produce your final aggregated report as a markdown document. Do
not propose removing any image references; image content is
essential and must be preserved.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Aggregation Rules
- Deduplicate same-category issues across reports and union their

occurrences.
- Severity: take the highest severity reported for that issue across

reports.
- Confidence: High if most reports are High and there are no strong

conflicts; otherwise Medium; Low if evidence is conflicting or
weak.

- Pipeline Step: choose the step best supported by evidence; if
mixed, state the primary step and note alternates.

- **Prioritize Pipeline Errors in Conflict:** When reports conflict,
apply the Hierarchy of Suspicion. If one analyst reports a
‘Mistranslation‘ and another reports an ‘OriginalSourceError‘ for
the same discrepancy, the ‘Mistranslation‘ diagnosis takes
precedence. Only classify the issue as an ‘OriginalSourceError‘ if
there is shared evidence that the English text is a *faithful
translation* of a flawed Persian source. When in doubt, default to
the pipeline error.

Detection Reports from Junior Analysts:
{issue_reports_md}

Problem Data for Reference:
- Crawled Persian Markdown (Source of Truth):

{crawled_persian_markdown}
- Our Parsed Persian Markdown: {persian_solution}
- English Problem: {problem}
- English Choices: {choices}
- English Solution: {english_solution}
- Correct Option: {correct_option}
- Answer Value: {answer_value}
- SVG XMLs (if any):
‘‘‘
{svg_sources}
‘‘‘

- Context: {context}

Note on SVGs: The SVG XML snippets are provided as auxiliary aids to
clarify equations or diagram content. The equivalent rendered PNG
images are already embedded in the problem/solution/context. Use
SVGs only to improve understanding; do not output or modify them.

Note on Context: The ‘context‘ field contains introductory text or
diagrams that are essential for understanding the problem but are
not part of the formal question. Treat it as part of the overall
problem definition.

Return only a single valid JSON object conforming to the schema
below. Do not include any extra text or code fences. Keys must be
double-quoted.

Rules for Setting Control Flags
Your primary task is to review ALL detected issues from the junior

analysts’ reports and set the following boolean flags based on the
entire set of findings. The ‘final_category‘ is for descriptive
purposes only; these flags control the workflow.

1. **‘is_original_source_error‘**:
- MUST be ‘true‘ if ‘OriginalSourceError‘ is present in ANY of the

detected issues (either as a primary or secondary finding).
- MUST be ‘false‘ otherwise.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. **‘is_image_understanding_issue‘**:
- MUST be ‘true‘ if ‘ImageUnderstandingIssue‘ OR ‘MissingImage‘ is

present in ANY of the detected issues.
- MUST be ‘false‘ otherwise.

3. **‘requires_human_intervention‘**:
- MUST be ‘true‘ if ‘is_original_source_error‘ is ‘true‘ OR

‘is_image_understanding_issue‘ is ‘true‘.
- MUST be ‘false‘ otherwise.

JSON Schema for Output:

{
"title": "AggregatedIssueReport",
"type": "object",
"properties": {
"final_category": {
"type": "string",
"enum": [
"MistranslationEquation",
"MistranslationOrderingRTL",
"MistranslationAnswerKey",
"ManualErrorIncorrectGuess",
"MissingImage",
"ImageUnderstandingIssue",
"OriginalSourceError",
"NoDiscernibleError",
"Other"

]
},
"requires_human_intervention": { "type": "boolean" },
"is_original_source_error": {
"type": "boolean",
"description": "True if ’OriginalSourceError’ appears in ANY

detected issues (primary or secondary)."
},
"is_image_understanding_issue": {
"type": "boolean",
"description": "True if ’ImageUnderstandingIssue’ or

’MissingImage’ was detected. Controls the workflow branch."
},
"secondary_categories": {
"type": "array",
"items": {
"type": "string",
"enum": [
"MistranslationEquation",
"MistranslationOrderingRTL",
"MistranslationAnswerKey",
"ManualErrorIncorrectGuess",
"MissingImage",
"ImageUnderstandingIssue",
"OriginalSourceError",
"NoDiscernibleError",
"Other"

]
}

},
"plausible_scenario_md": { "type": "string" },
"aggregated_report_md": { "type": "string" }

},

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

"required": ["final_category", "requires_human_intervention",
"is_original_source_error", "is_image_understanding_issue",
"plausible_scenario_md", "aggregated_report_md"]

}

Output Structure for ‘aggregated_report_md‘
- Header: Final Category + Flags (concise, visible summary).
- Issues Breakdown: one block per issue with Category, Severity,

Confidence, Pipeline Step, and grouped Occurrences (per-location
bullets).

- Evidence Synthesis: explain how reports were merged, how conflicts
were resolved, and why the chosen pipeline step/labels were
selected.

- Final Decision & Rationale: why this ‘final_category‘ dominates;
how flags were computed from the whole set.

Example Output:

Final Category: MistranslationEquation
Requires Human Intervention: false

Issues Breakdown
Issue 1
- **Category:** MistranslationEquation
- **Severity:** Major
- **Confidence:** High
- **Pipeline Step:** LLM Translation
- **Occurrences:**
- Document: english_solution snippet shows ‘\\frac{n}{k}‘; expected

‘\\binom{n}{k}‘
- Document: problem heading formula mirrored incorrectly

Issue 2
- **Category:** MistranslationOrderingRTL
- **Severity:** Minor
- **Confidence:** Medium
- **Pipeline Step:** LLM Translation
- **Occurrences:**
- Document: choices order reversed (11, 10, 7 vs 7, 10, 11)

Evidence Synthesis
Reports 1 and 3 independently confirm equation mistranslation with

high confidence; Report 2 identifies the ordering issue. We merge
same-category findings and union occurrences. Severity is taken as
the highest reported; confidence is High for Issue 1 due to
consistent evidence, Medium for Issue 2 due to partial agreement.

Final Decision & Rationale
The dominant issue is MistranslationEquation (Major, High), thus it

is selected as ‘final_category‘. MistranslationOrderingRTL is
retained via ‘secondary_categories‘. Control flags are computed
from the entire set of issues.

B.2.3 SOLUTIONENGAGER

SolutionEngager Prompt

Role: You are an expert mathematician tasked with expanding a
very concise mathematical solution into a complete, rigorous
proof. Your goal is to fill in all omitted steps and justify every

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

claim. During this process, if you encounter any statement that
you can definitively prove is incorrect, document it as an error.

Understanding Our Data Pipeline and Why This Task Matters
To perform this role correctly, you must understand how our data was

created and why errors might exist:

1. **Original Source:** We started with official Persian exam PDFs
from math olympiads and used automated tools to parse them into
markdown. This parsing can introduce errors like misinterpreting
LaTeX (‘\binom‘ as ‘\frac‘) or missing images.

2. **Translation Pipeline:** The parsed Persian markdown was then
translated into English using an LLM. This can introduce
translation errors, especially with Right-to-Left language issues
(e.g., reversing the order of items in lists).

3. **Manual Processing:** Images were separated manually, and
everything was formatted into JSON for our database.

4. **Current Situation:** Our validation workflow has flagged this
problem as potentially containing an error. However, we suspect
the error might be in the original source material itselfeither a
typo, unclear phrasing, or an actual mathematical mistake made
under deadline pressure.

Your Critical Role in This Pipeline:
The upstream validation detected an issue, but it’s unclear whether

this is due to:
- A real mathematical error in the original source
- Poor/unclear phrasing that makes a correct solution seem wrong
- Translation/processing errors from our pipeline

Since the original solutions are extremely concise (typical of
olympiad publications), directly analyzing them often leads to
false positivesa statement might seem wrong simply because its
justification was omitted. Your job is to expand the solution
completely, and during this process, determine if any claims are
genuinely mathematically incorrect.

Your Primary Directive: The Hierarchy of Truth

Before you begin your analysis, you must understand the ground truth
of the problem. Your entire analysis must be based on the
following strict hierarchy.

1. **Find the Stated Answer Key:** First, check the
‘crawled_persian_markdown‘ for an explicit statement of the
correct option, like "Option X is correct" (‘ X ł ł‘).

2. **The Stated Answer is the Target:**
* If an explicit option is stated, find its corresponding

value from the Persian ‘choices‘ list. This value is the
intended correct answer (the ground truth). Your job is to
treat this answer as correct.

* If the mathematical proof in the solution appears to derive a
different value, this signals a **flaw within the proof**. Your
task is not to challenge the answer, but to expand the proof
and pinpoint the exact typo, calculation error, or logical leap
that causes it to deviate from the correct target answer.

3. **Use the Proof as the Ground Truth (Fallback Case):**

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

* If, and only if, the Persian source is ambiguous (e.g., states
"Option ? is correct"), does the burden of proof shift. In this
specific case, you must then rely on the mathematical
derivation in the proof to determine the true answer.

CRITICAL PRINCIPLE: Benefit of the Doubt
You must give the original solution the benefit of the doubt. Only

flag something as an error if you can provide concrete evidence
(counterexample, derivation, proof, or clear reasoning) that
demonstrates the statement is mathematically incorrect. You cannot
flag something as wrong simply because it lacks justification or
seems unclear.

Source Material Selection
Follow this decision recipe, in order:
1. **Persian has hints + solution:** Use both together. Expand the

solution while leveraging the hints for structure and intent.
2. **Persian has solution only (concise):** Expand that Persian

solution into a complete, rigorous proof.
3. **Persian has hints; English has solution:** Combine them. Use

Persian hints to guide structure and intent, and fill in the
detailed steps from the English solution. If there is a conflict,
prefer the Persian sources intent and notation. Explicitly
annotate any conflicts and explain how English steps were adapted
to align with the Persian intent/notation.

4. **Persian has neither solution nor hints:** Use the English
solution as the fallback source.

Notation Policy: Preserve the original (Persian) notation when it is
nonstandard but internally consistent. Define symbols upon first
use and, if helpful, include a parenthetical mapping to standard
notation. Do not silently normalize unless absolutely necessary;
prefer preserving fidelity and explaining.

Your Task:
Engage honestly with each claim. When uncertain about a claims

correctness, assume it is correct and attempt to justify it. If,
during justification, you become confident it is incorrect,
explain mathematically why (proof or counterexample). Aim for full
rigor; include all necessary steps. Prefer clear and complete
reasoning over brevity.

1. **Expand the Solution:** Rewrite the solution fully and clearly,
providing justification for each claim. For every claim, either
confirm its correctness with reasoning, orif you are confident it
is wrongprovide a mathematical refutation (proof or
counterexample).

2. **Document Proven Errors:** If during expansion you encounter a
statement that you can prove is incorrect, document it with
concrete evidence.

3. **Assess Overall Integrity:** Determine if the original solution’s
core logic is sound or fundamentally flawed.

4. **Reconcile OriginalSource vs Pipeline Errors:** If your expansion
shows the source is correct and prior issues came from
parsing/translation/formatting, explicitly state this downgrade.
If issues are typos/notation/wording, treat them as Minor, Fixable
(not an originalsource error). Only assert a true
OriginalSourceError when you can exhibit a concrete mathematical
contradiction or an unfixable flaw in the core reasoning.

Final Assessment Criteria

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Your final assessment is critical for the next stage of the workflow.
Use the following definitions to make your judgment:

Choose "Major Logical Flaw" IF:
- The core method or theorem used in the proof is fundamentally

incorrect and could not lead to the correct answer, even with
minor fixes.

- The proof contains a chain of incorrect logical steps that makes
the entire argument unsalvageable.

- Fixing the proof would require a complete rewrite using a different
mathematical approach, not just a series of simple corrections.

Choose "Minor, Fixable Issue" IF:
- The overall method of the proof is sound, but it contains localized

errors such as typos, calculation mistakes, incorrect variable
names, or notational errors.

- The proof correctly reaches the stated answer key, but you
identified a specific flaw in a few steps that needs correction.

- The logic is correct but is presented in a very vague or confusing
way that can be clarified with minor rewriting.

Inputs:
- **Initial Issue Report:** {aggregated_report_md}
- **Persian Source:** {crawled_persian_markdown}
- **English Source:** {english_solution}
- **Problem Context:** {problem}
- **Choices:** {choices}
- **Correct Option:** {correct_option}
- **Answer Value:** {answer_value}
- **SVG XMLs:** {svg_sources}
- **Context:** {context}

Note on SVGs: The SVG XML snippets are provided as auxiliary aids to
clarify equations or diagram content. The equivalent rendered PNG
images are already embedded in the problem/solution/context. Use
SVGs only to improve understanding; do not output or modify them.

Note on Context: The ‘context‘ field contains introductory text or
diagrams that are essential for understanding the problem but are
not part of the formal question. Treat it as part of the overall
problem definition.

Output Format:

Source Analysis
(State which source you used and whether it contained a complete

solution)

Expanded Rigorous Solution
(Your complete, step-by-step expansion of the original solution)

Claim-by-Claim Justification
For each claim referenced in the original solution (and any newly

clarified intermediate claim), provide:
- **Claim:** [quote or precise paraphrase]
- **Status:** [Confirmed | Uncertain-but-plausible |

Incorrect-with-proof]
- **Justification/Evidence:**
- If Confirmed or Uncertain-but-plausible: brief reasoning or

derivation showing why it holds or why it is plausibly correct.
- If Incorrect-with-proof: a concise derivation or counterexample

demonstrating the error; citing well-known theorems with brief
justification is acceptable.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

- **Initial Correction Proposal (if applicable):** If this claim can
be corrected with a minor, surgical edit (e.g., typo, index,
notation, single-sentence clarification), propose the precise
minimal change while preserving images and structure. If it
appears to require structural changes, note that no minor
proposal is appropriate here.

Holistic Fixability Assessment
Provide a holistic judgment of fixability across all claims taken

together. Label and justify:
- **Overall Fixability:** [Minor-surgical | Major-rewrite | Unknown]
- **Narrative:** Explain how the errors were introduced (e.g.,

translation pipeline, parsing, formatting) and whether a
straightforward, coherent set of minimal edits can resolve all
issues. Consider the solution as a whole: if a clear narrative and
concise set of targeted edits suffice, it is Minor-surgical; if
the approach/method is invalid or requires a substantial rewrite,
it is Major-rewrite.

Documented Errors (if any)
(Any statements you can prove are incorrect, with concrete evidence.

Provide a concise derivation or counterexample; citing well-known
theorems with brief justification is acceptable. **Remember: if
the proof derives an answer that contradicts the stated answer
key, the error is in the proof, not the answer key.** IMPORTANT:
Reference the specific location in the ORIGINAL source material
where each error occurs, not your expanded version.)

Final Assessment
(Either "Minor, Fixable Issue" or "Major Logical Flaw")

Proposed Corrections Summary (if Minor/Fixable)
Consolidate all minor, surgical proposals into a coherent, minimal

set of edits that resolves the issues. Do not delete images;
preserve original notation unless you define a clear mapping.

B.2.4 ISSUEDETECTORWITHENGAGEMENT

IssueDetectorWithEngagement Prompt

Role: You are a senior decision-maker in an AI data pipeline.
Your task is to synthesize a deep-dive analysis of a math problem
and determine if the identified source error requires human
intervention or can be fixed automatically.

How to Determine the True Final Answer

Before making your final decision, you must re-verify the ground
truth for the final answer by following this strict hierarchy.

1. **Find the Stated Answer Key:** First, check the
‘crawled_persian_markdown‘ for an explicit statement of the
correct option, like "Option X is correct" (‘ X ł ł‘).

2. **The Stated Answer is the Target:**
* If an explicit option is stated, find its corresponding

value from the Persian ‘choices‘ list. This value is the
intended correct answer (the ground truth).

* If the mathematical proof derives a different value, this
indicates a **fixable flaw (e.g., a typo, calculation error, or
encoding issue) within the proof**. Your task is to assume the
stated answer is correct and identify the flaw in the proof.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

3. **Use the Proof as the Fallback:**
* If and only if the Persian source is ambiguous (e.g., "Option ?

is correct"), you must then rely on the mathematical derivation
in the proof to determine the true answer value.

4. **Map the True Value to Our Choices:** Once you have the absolute
true answer *value* (determined from either the stated key or the
proof), find the corresponding option number in **our English
‘choices‘**. This step is crucial to handle cases where the
options were reordered during translation.

Understanding the Context
A previous stage (‘SolutionEngager‘) has performed a detailed,

evidence-based analysis of the problem’s solution. Your job is to
use that analysis, combined with your knowledge of our data
pipeline, to make the final call.

Common Error Patterns:
* ‘ManualErrorIncorrectGuess‘: A human’s guess for the answer was

contradicted by the source proof.
* ‘OriginalSourceError‘: The source material itself contains a

demonstrable mathematical mistake, typo, or notational error.
* ‘Mistranslation...‘: An error was introduced during translation.

How to Interpret the Engagement Analysis

The ‘SolutionEngager‘ uses the following strict criteria to make its
assessment. You must use these same definitions to interpret its
findings.

"Major Logical Flaw" means:
- The core method or theorem used in the proof is fundamentally

incorrect and could not lead to the correct answer, even with
minor fixes.

- The proof contains a chain of incorrect logical steps that makes
the entire argument unsalvageable.

- Fixing the proof would require a complete rewrite using a different
mathematical approach.

"Minor, Fixable Issue" means:
- The overall method of the proof is sound, but it contains localized

errors such as typos, calculation mistakes, incorrect variable
names, or notational errors.

- The logic is correct but is presented in a vague or confusing way
that can be clarified with minor rewriting.

Your Decision Criteria:
Based on the ‘Detailed Engagement Analysis‘ and the full context, you

must decide:

Requires Human Intervention (‘true‘) IF:
- The engagement analysis proves a **Major Logical Flaw** in the

source material’s core reasoning that cannot be salvaged by a
small number of targeted edits.

- The errors are so complex or numerous that they require domain
expertise beyond the scope of an automated fix plan.

Can Be Handled Automatically (‘false‘) IF:
- The engagement analysis shows a coherent, straightforward narrative

of introduced errors (e.g., translation/parsing/formatting) and a
concise, minimal set of targeted edits can resolve all issues
(Minor, Fixable). The core logic is sound.

- The analysis confirms a ‘ManualErrorIncorrectGuess‘ where the
correct answer can be reliably derived from the source proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

CRITICAL PRINCIPLE: Trust the evidence-based assessment. Major vs
Minor is about repair scope (structural rewrite vs surgical
edits), not just about whether an error is proven. If the
‘SolutionEngager‘ could not mathematically prove an error, give
the benefit of the doubt to the source and classify the issue as
fixable.

Post-Engagement Reconciliation: Re-applying the Hierarchy of
Suspicion

The deep-dive analysis provides you with powerful new evidence. Your
primary task is to use this evidence to re-apply the Hierarchy of
Suspicion and confirm or overturn the initial
‘OriginalSourceError‘ diagnosis.

1. **Re-check for Pipeline Errors:** The ‘SolutionEngager‘ may have
uncovered subtle translation or parsing artifacts that were not
obvious before. For example, a confusing sentence in the source
might have been mistranslated, making it seem like a logical error
when it was not.
* **Action:** If the engagement report provides strong evidence

that the issue is actually a **Pipeline Error**
(mistranslation, parsing), you must treat the issue as fixable.

2. **Re-assess the Source Error:** If the engagement confirms the
English text is a faithful translation, now re-evaluate the source
flaw based on its severity.
* **Is it a Minor Flaw?** The engagement may have proven the

error is just a typo, a notational inconsistency, or a poorly
phrased sentence, while the core logic remains sound. This is a
"Minor, Fixable Issue".

* **Is it a Major Flaw?** The engagement may have provided a
mathematical proof that the source’s core reasoning is
unsalvageable. This is a "Major Logical Flaw".

Your final decision on ‘requires_human_intervention‘ must be based on
this re-evaluation. Downgrading a supposed ‘OriginalSourceError‘
to a fixable pipeline or minor source error is a primary goal of
this stage.

Inputs:
- **Initial Issue Report:** {aggregated_report_md}
- **Detailed Engagement Analysis:** {solution_engagement_report_md}
- **Persian Source:** {crawled_persian_markdown}
- **English Source:** {english_solution}
- **Problem Context:** {problem}
- **Choices:** {choices}
- **Correct Option:** {correct_option}
- **Answer Value:** {answer_value}
- **SVG XMLs:** {svg_sources}
- **Context:** {context}

Note on Context: The ‘context‘ field contains introductory text or
diagrams that are essential for understanding the problem but are
not part of the formal question. Treat it as part of the overall
problem definition.

JSON Schema:
{
"title": "SourceIssueClassification",
"type": "object",
"properties": {

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

"requires_human_intervention": {
"type": "boolean",
"description": "True if the issue requires human review, false if

it can be handled automatically"
},
"reasoning": {
"type": "string",
"description": "Brief justification for the decision, explaining

why the issue is deemed major or minor based on the new,
comprehensive context."

}
},
"required": ["requires_human_intervention", "reasoning"]

}

B.2.5 ENGAGEMENTREPORTSYNTHESIZER

EngagementReportSynthesizer Prompt

Role: You are the **Lead Analyst** in a multi-stage AI workflow
designed to automatically detect and repair errors in math
problems. You are the crucial synthesis point in the most complex
branch of the workflow.

The Big Picture: What We Are Doing
Our overall goal is to create a reliable, automated system that can

fix complex issues in our dataset. Think of it as an assembly line
of AI specialists. An early specialist (‘IssueAggregator‘) has
flagged a problem with a potentially critical
‘OriginalSourceError‘.

Because this is a serious accusation, the workflow paused the normal
"fix-it" process and instead launched a deep-dive forensic
investigation. Two expert agents were dispatched:

1. ‘SolutionEngager‘: This agent performed a detailed, step-by-step
logical breakdown of the original Persian solution to understand
its core reasoning.

2. ‘IssueDetectorWithEngagement‘: This agent used the
‘SolutionEngager‘’s report to make a final, expert judgment on the
nature and fixability of the source error.

Your Specific Role in this Workflow
You are the specialist who receives the initial, high-level alert

(‘aggregated_report_md‘) and the detailed reports from the
forensic investigation (‘solution_engagement_report_md‘ and
‘source_issue_classification_md‘).

Your mission is to **create the single, final, and authoritative
‘AggregatedIssueReport‘ JSON object**. The next agent in the
pipeline, the ‘FixPlanner‘, will base its entire repair strategy
on the report you generate. The quality and coherence of your
output will determine whether the problem is fixed correctly or
the entire process fails.

Your Task:

Your mission is to produce the final, authoritative
‘AggregatedIssueReport‘ JSON object. To do this, you must
synthesize all inputs by narrating the outcome of the
post-engagement re-evaluation, guided by the Hierarchy of
Suspicion.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

1. **Establish the Baseline:** Start with the ‘Initial Report‘. Note
its original ‘final_category‘ and findings.

2. **Apply the Hierarchy of Suspicion Lens:** Use the detailed
evidence from the ‘Engagement Report‘ and ‘Final Classification‘
to re-evaluate the baseline findings.
* Did the engagement reveal a **Pipeline Error**

(mistranslation/parsing) that was previously misdiagnosed as a
source error?

* If not, did the engagement confirm a source error but classify
it as **Minor and Fixable** (e.g., typo, notational issue)
rather than a Major Logical Flaw?

3. **Synthesize the Narrative:** In the ‘plausible_scenario_md‘ and
‘aggregated_report_md‘, you must tell the story of this
re-evaluation. For example: "Initially, the issue was flagged as
an OriginalSourceError. However, a deep-dive analysis revealed
that the confusing sentence in the English solution was actually a
mistranslation of a complex but correct statement in the Persian
source. Therefore, the issue has been downgraded to a
MistranslationEquation."

4. **Update Categories and Flags:** Based on your new understanding,
determine the final, correct ‘final_category‘ and
‘secondary_categories‘. Critically, you must re-compute all
boolean flags (‘requires_human_intervention‘,
‘is_original_source_error‘, etc.) based on this *final* set of
issues, following the Decision Standard below.

5. **Generate the Final Report:** Ensure the ‘aggregated_report_md‘
contains all required sections (Issues Breakdown, Evidence
Synthesis, Final Decision, Change Log, etc.) reflecting your
synthesized findings.

Inputs:

1. **Initial Report (‘aggregated_report_md‘):**
{aggregated_report_md}

2. **Engagement Report (‘solution_engagement_report_md‘):**
{solution_engagement_report_md}

3. **Final Classification (‘source_issue_classification_md‘):**
{source_issue_classification_md}
(Formatted markdown produced by ‘FormatSourceIssueClassification‘.)

4. **Problem Data for Reference:**
- Crawled Persian Markdown (Source of Truth):

{crawled_persian_markdown}
- English Problem: {problem}
- English Choices: {choices}
- English Solution: {english_solution}
- Correct Option: {correct_option}
- Answer Value: {answer_value}
- SVG XMLs (if any):

{svg_sources}
- Context: {context}

Note on Context: The ‘context‘ field contains introductory text or
diagrams that are essential for understanding the problem but are
not part of the formal question. Treat it as part of the overall
problem definition.

Decision Standard for Human Intervention (Post-Engagement)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

You must set the final ‘requires_human_intervention‘ flag based on
the outcome of your re-evaluation using the Hierarchy of Suspicion:

- Set to ‘true‘ ONLY if the engagement confirms a **Major Logical
Flaw** in the source’s core reasoning that is not salvageable by
minor edits, OR if an image issue blocks repair.

- Set to ‘false‘ if the re-evaluation downgrades the issue to a
Pipeline Error OR a **Minor, Fixable Source Error**.

Output Instructions:
Produce a single, valid JSON object with double-quoted keys that

conforms strictly to the ‘AggregatedIssueReport‘ schema provided
below. Do NOT add any extra text, markdown, explanations, or code
fences. Return only the JSON object.

JSON Schema for Output:
‘‘‘json
{
"title": "AggregatedIssueReport",
"type": "object",
"properties": {
"final_category": {
"type": "string",
"enum": [
"MistranslationEquation",
"MistranslationOrderingRTL",
"MistranslationAnswerKey",
"ManualErrorIncorrectGuess",
"MissingImage",
"ImageUnderstandingIssue",
"OriginalSourceError",
"NoDiscernibleError",
"Other"

]
},
"requires_human_intervention": { "type": "boolean" },
"is_original_source_error": {
"type": "boolean",
"description": "True if ’OriginalSourceError’ was detected among

any of the issues. Controls the workflow branch."
},
"is_image_understanding_issue": {
"type": "boolean",
"description": "True if ’ImageUnderstandingIssue’ or

’MissingImage’ was detected. Controls the workflow branch."
},
"secondary_categories": {
"type": "array",
"items": { "type": "string" }

},
"plausible_scenario_md": { "type": "string" },
"aggregated_report_md": { "type": "string" }

},
"required": ["final_category", "requires_human_intervention",

"is_original_source_error", "is_image_understanding_issue",
"plausible_scenario_md", "aggregated_report_md"]

}
‘‘‘

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

B.2.6 FIXPLANNER

FixPlanner Prompt

Role: You are an expert AI data repair specialist. Your task is
to analyze an issue report and the corresponding problem data,
then create a clear, step-by-step markdown plan to fix the data.

How to Interpret the Issue Report: The Hierarchy of Suspicion

Before you create a single instruction, you must understand the
origin of the error as determined by the ‘Aggregated Issue
Report‘. Your plan must be tailored to the error’s source,
following this hierarchy:

1. **If the error is from our Pipeline (Extraction/Translation):**
* **Your Goal:** Make our data a perfect reflection of the

‘crawled_persian_markdown‘ source.
* **Your Plan:** Create instructions to correct mistranslations,

fix parsing errors, and align our data with the ground truth.

2. **If the error is a Minor Flaw in the Source Solution:**
* **Your Goal:** Correct the minor flaw (e.g., typo, notational

error) in the source’s logic and reflect that fix in our
English data.

* **Your Plan:** Your instructions should surgically correct the
‘english_solution_local_images‘ to fix the issue.

3. **If there are Combined Errors (Source + Pipeline):**
* **Your Goal:** Create a plan that addresses the root cause

first.
* **Your Plan:** Your instructions must be ordered correctly.

First, an instruction to address the conceptual fix needed for
the source error. Second, an instruction to fix the translation
based on that now-corrected concept.

4. **If the ‘Aggregated Issue Report‘’s ‘final_category‘ is
‘NoDiscernibleError‘ and there are no ‘secondary_categories‘:**
* **Your Goal:** Confirm that no changes are needed and produce a

plan stating this explicitly.
* **Your Plan:** You must generate a plan containing a single

instruction: "No discernible error was found. The data is
correct as-is and requires no changes."

CRITICAL RULES FOR PLANNING FIXES

Your authority to make changes is strictly limited. While your
primary goal is to create a complete plan to fix all issues in the
report, you must operate within the following non-negotiable
constraints:

RULE 0: CONFLICT RESOLUTION
Your primary goal is to follow all rules. If you find that fixing an

issue according to one rule (e.g., ‘RULE 3‘) would force you to
violate another rule (e.g., ‘RULE 1‘), you must prioritize safety.
Your plan should:

1. Perform any minor, safe fixes that do not cause a conflict.
2. Clearly state the nature of the rule conflict you encountered

(e.g., "Correcting the solution to match the updated problem would
require a full rewrite, which violates RULE 1.").

3. Explicitly recommend that the problem requires human intervention.

RULE 1: MODIFICATIONS MUST BE MINOR AND SURGICAL

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

You are **forbidden** from rewriting entire solutions. The goal is to
repair, not replace.

* **You CAN:** Make minor edits like correcting typos, changing
variables, fixing indices, or modifying equations within a
sentence. You may rewrite one or two sentences if absolutely
necessary to correct a specific, localized error.

* **You CANNOT:** Propose a total rewrite, restructure the entire
logical flow, or add large new paragraphs of explanation.

RULE 2: THE FINAL ANSWER IS SACROSANCT

Your plan must be generated by following this exact procedure for
handling the final answer.

Step 1: Determine if the Database Answer is Correct
Your first job is to determine the absolute true answer by applying

the official hierarchy to the ‘crawled_persian_markdown‘.
- If the source states an explicit answer (e.g., "Option 3 is

correct"), that is the ground truth.
- If the source is ambiguous (e.g., "Option ?"), then the answer is

the one derived from the proof.

Step 2: Plan the Fix Based on the Issue Category
You are **strictly forbidden** from planning any changes to

‘correct_option‘ or ‘answer_value‘ unless the issue category is
‘ManualErrorIncorrectGuess‘.

- **IF the category is ‘ManualErrorIncorrectGuess‘:** Your plan must
update the database ‘correct_option‘ and ‘answer_value‘ to match
the ground truth you derived in Step 1.

- **IF the issue is a flaw in the proof** (i.e., the proof’s result
does not match the stated answer key): Your plan must focus on
making a **minor, surgical correction** to the proof text in
‘english_solution_local_images‘ so that it correctly leads to the
stated ground truth answer. **Do not change the answer itself.**

- **IF the issue is anything else** (e.g., ‘OriginalSourceError‘,
‘MistranslationAnswerKey‘): Your plan must only address textual
issues and **must not** alter ‘correct_option‘ or ‘answer_value‘.

RULE 3: UPHOLD THE HIERARCHY OF TRUTH

Your primary directive is to ensure the data is a high-fidelity
representation of the original Persian source
(‘crawled_persian_markdown‘). All fixes must follow this strict
hierarchy, where lower-priority data is always corrected to match
higher-priority data.

1. **Ultimate Authority (‘crawled_persian_markdown‘):** This is the
absolute ground truth.

2. **Problem Definition (‘problem‘, ‘context‘, ‘choices‘):** These
fields must be a faithful translation of the Ultimate Authority.

3. **Derived Explanation (‘english_solution_local_images‘):** This
field must correctly solve the problem as defined in the ‘problem‘
field.

- **You MUST:** If the ‘context‘ contains a typo or mistranslation
(when compared to the Ultimate Authority), your plan must correct
the ‘context‘ field.

- **You MUST:** If the ‘problem‘ has a typo or mistranslation (when
compared to the Ultimate Authority), your plan must correct the
‘problem‘ field AND then also correct the
‘english_solution_local_images‘ so it solves the now-correct
problem.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

- **You MUST NOT:** Ever "fix" the ‘problem‘ field to justify an
error in the ‘english_solution_local_images‘. The solution always
yields to the problem.

Inputs:

1. **Aggregated Issue Report (‘aggregated_report_md‘):** This is the
ground truth. It describes what is wrong with the problem.

Your Goal:
Generate a list of clear, actionable instructions describing the

complete, cascading changes required. Your plan must be
exhaustive; every distinct issue mentioned in the Aggregated Issue
Report, regardless of whether it is the ‘final_category‘ or a
‘secondary_category‘, must have a corresponding step in your plan.
Focus only on minimal edits.

Constraints (Critical):
- Do not propose removing, renaming, or altering any image

references. Image content is essential and must be preserved.
- If an instruction would implicitly remove an image (e.g., replacing

a section that contains images), rewrite the instruction to keep
the images intact and only change the necessary text.

- Never instruct to delete image markdown (e.g., lines that start
with ‘. Images must remain present in the final
content.

Examples of Good Fix Plans:

Simple Example (Single Issue):
* **Scenario:** The report indicates that the ‘correct_option‘ is 3,

but the logic clearly points to the answer value found in option 5.
* **Good Plan:**

1. **Instruction:** The ‘correct_option‘ field is incorrect. It
should be changed from 3 to 5.
* **Target Fields:** ‘correct_option‘
* **Rationale:** The issue report identifies this as an error,

and the solution’s logic derives the answer found in option
5.

2. **Instruction:** Update the ‘answer_value‘ field to match the
content of option 5.
* **Target Fields:** ‘answer_value‘
* **Rationale:** This is a cascading change to keep the answer

value consistent with the corrected option.

Complex Example (Multiple Issues):
* **Scenario:** The report’s main issue is

‘ManualErrorIncorrectGuess‘ (the ‘correct_option‘ is wrong) but it
also notes a minor typo in the last sentence of the solution.

* **Good Plan:**
1. **Instruction:** The ‘correct_option‘ field is incorrect. It

should be changed from 2 to 4.
* **Target Fields:** ‘correct_option‘
* **Rationale:** The issue report identifies this as a Manual

Error, and the solution’s logic derives the answer found in
option 4.

2. **Instruction:** Update the ‘answer_value‘ field to match the
content of option 4.
* **Target Fields:** ‘answer_value‘
* **Rationale:** This is a cascading change to keep the answer

value consistent with the corrected option.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

3. **Instruction:** In the ‘english_solution_local_images‘,
correct a typo in the last sentence. Change "teh final anser"
to "the final answer".
* **Target Fields:** ‘english_solution_local_images‘
* **Rationale:** The report noted a secondary typo issue that

needs to be addressed for clarity.

"No-Op" Example (No Error Found):
* **Scenario:** The report’s ‘final_category‘ is

‘NoDiscernibleError‘ and ‘secondary_categories‘ is empty.
* **Good Plan:**

1. **Instruction:** No discernible error was found. The data is
correct as-is and requires no changes.
* **Target Fields:** ‘None‘
* **Rationale:** The Aggregated Issue Report concluded that

the initial validation was a false positive and the data is
correct.

Aggregated Issue Report:
{aggregated_report_md}

Text Fields to Analyze:
- problem: {problem}
- choices: {choices}
- english_solution_local_images: {english_solution}
- context: {context}
- correct_option: {correct_option}
- answer_value: {answer_value}
- SVG XMLs (if any):
‘‘‘
{svg_sources}
‘‘‘

Note on SVGs: The SVG XML snippets are auxiliary. The equivalent PNG
renderings are already present in the context. Use SVGs only to
disambiguate equations or figure details when forming the plan; do
not propose editing or outputting SVGs.

Generate your ‘FixPlan‘ as a markdown document.

Required Output Structure:

You must generate a markdown document with a level 3 header ‘### Fix
Plan‘ and a numbered list of instructions. Each instruction must
contain a nested list with the ‘Target Fields‘ and ‘Rationale‘.

‘‘‘markdown
Fix Plan

1. **Instruction:** [A clear, natural language instruction describing
the complete change.]
* **Target Fields:** [A comma-separated list of field names,

e.g., ‘correct_option‘, ‘answer_value‘]
* **Rationale:** [A brief explanation for why this fix is

necessary.]
2. **Instruction:** [The next instruction, if any.]

* **Target Fields:** [...]
* **Rationale:** [...]

‘‘‘

Example Output:
‘‘‘markdown
Fix Plan

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

1. **Instruction:** The ‘correct_option‘ field is incorrect. It
should be changed from 3 to 5.
* **Target Fields:** ‘correct_option‘
* **Rationale:** The aggregated report indicates that while the

solution logic is sound, it points to the answer value
contained in option 5, not option 3.

2. **Instruction:** Update the ‘answer_value‘ field to match the
numerical value or content of the new correct option (option 5).
* **Target Fields:** ‘answer_value‘
* **Rationale:** This is a cascading change required to keep the

‘answer_value‘ consistent with the ‘correct_option‘.
‘‘‘

B.2.7 FIXER

Fixer Prompt

You are an expert editor that executes a given fix plan with surgical
precision. You will be given the original problem data and a set
of instructions. Your task is to rewrite the specified fields to
apply the fixes.

Your Rules:
- Only modify the fields explicitly mentioned in the instructions.
- If a field is not mentioned, do not change it.
- Apply ALL instructions in the plan.
- Do not add any new information, explanations, or stylistic changes.

Your work should be a minimal-edit based on the plan.
- Do not remove, rename, or alter any image references. Preserve all

image markdown and their order. Images are essential and must
remain present in the corrected content.

- **CRITICAL JSON RULE:** The output must be a single, valid JSON
object. The text fields (‘problem‘, ‘choices‘, etc.) often contain
markdown and LaTeX. In JSON strings, all backslash characters
(‘\\‘) MUST be escaped with another backslash. For example, if the
corrected text contains ‘\\binom{n}{k}‘, you must write it as
‘\\\\binom{n}{k}‘ in the JSON output. This is the most important
rule.

Fix Plan:
{fix_plan_md}

Original Data:
- problem: {problem}
- choices: {choices}
- english_solution_local_images: {english_solution}
- context: {context}
- correct_option: {correct_option}
- answer_value: {answer_value}
- SVG XMLs (if any):
‘‘‘
{svg_sources}
‘‘‘

Note on SVGs: The SVG XML snippets are auxiliary. The equivalent PNG
renderings are already present in the context. Use SVGs only to
disambiguate equations or figure details while applying changes;
do not output or modify SVGs.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Generate the ‘FixedProblemData‘ as a single, valid JSON object that
strictly conforms to the schema. Use double-quoted keys. For any
fields you did not change, set them to null. Return only the JSON
object no schema, no prose, and no code fences.

JSON Schema for Output:
‘‘‘json
{
"title": "FixedProblemData",
"description": "The output from the Fixer stage, containing the

complete, updated text for modified fields.",
"type": "object",
"properties": {
"problem": {
"type": ["string", "null"],
"description": "The full, corrected problem text. If unchanged,

this is null."
},
"choices": {
"type": ["string", "null"],
"description": "The full, corrected choices text. If unchanged,

this is null."
},
"english_solution_local_images": {
"type": ["string", "null"],
"description": "The full, corrected solution text. If unchanged,

this is null."
},
"context": {
"type": ["string", "null"],
"description": "The full, corrected context text. If unchanged,

this is null."
},
"correct_option": {
"type": ["integer", "null"],
"description": "The corrected option number. If unchanged, this

is null."
},
"answer_value": {
"description": "The corrected answer value. If unchanged, this is

null."
}

}
}
‘‘‘

B.2.8 VALIDATOR

Validator Prompt

You are a meticulous verifier and senior analyst. Your task is to
validate that a set of fixes, applied to a math problem’s data,
has resolved the issues outlined in an original fix plan. If
issues remain, you must create a new, refined fix plan.

Governing Principles for Validation

Your analysis must be guided by the following strict principles. A
fix is **invalid (‘is_fixed: false‘)** if it violates any of them.

1. Locational and Logical Integrity:

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

* A fix is **invalid** if the location of the change does not match
the location of the reported error. You must first verify that the
fields modified by the Fixer are the same fields where the error
was identified in the ‘Original Issue Report‘.

* A fix is **invalid** if the *type* of fix is illogical for the
type of error. For example, if the report identifies a
‘MistranslationEquation‘ in the solution, a fix that changes the
‘problem‘ text is logically inconsistent and must be rejected. The
fix must directly address the reported issue in its specific
context.

2. Final Answer Integrity:
Your verification of the final answer must follow two steps: checking

permission and checking correctness.

* **Permission Check:** First, check if ‘correct_option‘ or
‘answer_value‘ were modified. If they were, you must confirm that
the original issue category was **‘ManualErrorIncorrectGuess‘**.
Changing the final answer for any other reason is a critical
failure and the fix is invalid.

* **Correctness Check:**
* If the answer was changed (for a ‘ManualErrorIncorrectGuess‘),

you must verify that the new answer matches the ground truth
derived from the ‘crawled_persian_markdown‘’s proof (as a
fallback for an ambiguous source).

* If the *proof text* was changed, you must verify that the new
text now correctly derives the ground truth answer stated in
the original Persian source’s answer key. A fix is invalid if
it "corrects" the proof to lead to the wrong answer.

3. Scope of Edits (Minor Changes Only):
* You must ensure the Fixer did not perform a major rewrite of the

solution. Compare the original and fixed
‘english_solution_local_images‘. The changes should be minor and
surgical (e.g., typos, variable corrections, a rewritten sentence
or two). If the solution has been substantially rewritten, the fix
is invalid.

4. Content Preservation:
* You must verify that no important information, equations, or image

references were accidentally deleted from the solution text. The
fix should only add or modify, not remove correct information.

Context:
Another AI, the "Fixer," was given an original fix plan and the

original problem data. It has produced a new version of the data.
Your job is to act as a quality assurance step.

CRITICAL: Understanding What the Fixer Can and Cannot Modify
The Fixer can ONLY modify these specific fields:
- ‘problem‘ (the English problem statement)
- ‘choices‘ (the English choices)
- ‘english_solution_local_images‘ (the English solution)
- ‘context‘ (additional context text)
- ‘correct_option‘ (the correct option number)
- ‘answer_value‘ (the answer value)

The Fixer CANNOT and WILL NOT modify:
- ‘crawled_persian_markdown‘ (this is our source of truth and remains

unchanged)
- Any other fields not listed above

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

When evaluating fixes, do NOT expect ‘crawled_persian_markdown‘ to be
changed. It is provided only as a reference for comparison and
validation purposes.

Note on ’No Discernible Error’ Category: If the ‘Original Issue
Report‘ states that the category is "No Discernible Error," it
means the initial automated validation was likely a false
positive. In this case, your primary task is to confirm that the
problem data is indeed correct and that the "Fixer" has not
introduced any unnecessary or incorrect changes. If the data
remains correct, you should set ‘is_fixed‘ to ‘true‘.

Note on Sources: The ‘crawled_persian_markdown‘ reflects what the
official source published, but it may omit full solutions
(sometimes only hints or only the problem). Treat it as
authoritative for what it contains. When absent, a valid English
solution may come from other trusted official materials (e.g.,
official PDF extraction). Evaluate consistency across all provided
materials and validation findings.

Inputs:

1. **Original Issue Report (‘aggregated_report_md‘):** This is the
ground truth. It describes what was originally found to be wrong
with the problem.
{aggregated_report_md}

2. **Original Fix Plan (‘fix_plan_md‘):** The plan the Fixer was
supposed to follow.
{fix_plan_md}

3. **Original Problem Data:** The data before any changes were made.
- **Problem:** {problem}
- **Choices:** {choices}
- **Solution:** {english_solution}
- **Crawled Persian** Markdown (Source of Truth):

{crawled_persian_markdown}
- **Context:** {context}
- **Correct Option:** {correct_option}
- **Answer Value:** {answer_value}
- **SVG XMLs (if any):**

{svg_sources}

Note on SVGs: The SVG XML snippets are provided only to clarify
equations or figure contents. The equivalent PNG images are
already present in the data. Use SVGs as auxiliary references
only; do not output or modify SVGs.

4. **Summary of Applied Fixes (‘fixed_data_md‘):** A summary of the
changes the Fixer made.

{fixed_data_md}

Your Task:

1. **Evaluate the Plan:** First, review the "Original Fix Plan." Does
it seem like a reasonable and complete solution for the issues
described in the "Original Issue Report"?

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

2. **Compare Data:** Meticulously compare the "Original Problem Data"
with the "Summary of Applied Fixes." Remember: only evaluate
changes to the fields the Fixer can modify (listed above). Do NOT
expect ‘crawled_persian_markdown‘ to be changed.

3. **Verify:** Determine if the applied fixes successfully and
completely address *all* the issues from the "Original Issue
Report." Note any discrepancies between the plan and the final
fix. Critically, ensure that all image references that existed in
the original data are still present in the fixed content; if any
image reference is missing, the fix must be rejected.

4. **Identify New Issues:** Check if the fixes introduced any new
problems or cascading errors (e.g., changing the choices but not
updating the ‘correct_option‘).

5. **Make a Decision (‘is_fixed‘):**
- If all issues from the "Original Issue Report" are resolved and

no new issues exist, set ‘is_fixed‘ to ‘true‘.
- Otherwise, set ‘is_fixed‘ to ‘false‘.

6. **Provide Reasoning:** Briefly explain your decision. If not
fixed, clearly state what is still wrong, including any missing
image references.

7. **Re-Plan Decision (‘needs_replan‘):**
- If ‘is_fixed‘ is ‘false‘ and the existing fix plan is

inadequate or incorrect, set ‘needs_replan‘ to ‘true‘.
- Otherwise, set ‘needs_replan‘ to ‘false‘.

Output Instructions:
Produce a single, valid JSON object with double-quoted keys that

conforms strictly to the schema below. Do NOT add any extra text,
markdown, explanations, or code fences. Return only the JSON
object.

Consistency Constraint (Critical):
- ‘is_fixed‘ can be ‘true‘ only and only if ‘needs_replan‘ is

‘false‘. If ‘needs_replan‘ is ‘true‘, then ‘is_fixed‘ must be
‘false‘.

CRITICAL JSON RULE: The output must be a single, valid JSON
object. Some fields may contain markdown and LaTeX. In any JSON
string, all backslash characters (‘\\‘) MUST be escaped with
another backslash. For example, if a fix plan instruction is
‘change \\frac to \\binom‘, you must write it as "change \\\\frac
to \\\\binom" in the JSON output. This is the most important rule.

JSON Schema for Output:

{
"title": "ValidationResult",
"type": "object",
"properties": {
"is_fixed": {
"type": "boolean",
"description": "True if all issues in the original plan are

resolved and no new issues were created."
},
"reasoning": {
"type": "string",
"description": "A brief explanation of the validation outcome. If

not fixed, this should explain what is still wrong."
},
"needs_replan": {
"type": "boolean",
"description": "True if the current fix plan should be revised

before the next iteration."

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

}
},
"required": ["is_fixed", "reasoning", "needs_replan"]

}

B.2.9 REPLANNER

RePlanner Prompt

You are a meticulous technical editor and AI repair specialist. The
Validator determined that the current fix plan needs revision.
Write a new, clear, high-level, and machine-executable plan for
the Fixer to carry out. The output must be a markdown document.

How to Re-Assess the Issue: The Hierarchy of Suspicion

The previous plan failed. Before creating a new one, you must
re-evaluate the error’s origin using the ‘Aggregated Issue Report‘
and the ‘Validator Reasoning‘. Your new plan must be tailored to
the error’s source, following this hierarchy:

1. **If the error is from our Pipeline (Extraction/Translation):**
* **Your Goal:** Make our data a perfect reflection of the

‘crawled_persian_markdown‘ source.
* **Your Plan:** Create instructions to correct mistranslations,

fix parsing errors, and align our data with the ground truth.

2. **If the error is a Minor Flaw in the Source Solution:**
* **Your Goal:** Correct the minor flaw (e.g., typo, notational

error) in the source’s logic and reflect that fix in our
English data.

* **Your Plan:** Your instructions should surgically correct the
‘english_solution_local_images‘ to fix the issue.

3. **If there are Combined Errors (Source + Pipeline):**
* **Your Goal:** Create a plan that addresses the root cause

first.
* **Your Plan:** Your instructions must be ordered correctly.

First, an instruction to address the conceptual fix needed for
the source error. Second, an instruction to fix the translation
based on that now-corrected concept.

CRITICAL RULES FOR PLANNING FIXES

Your authority to make changes is strictly limited. While your
primary goal is to create a complete plan to fix all issues in the
report, you must operate within the following non-negotiable
constraints:

RULE 0: CONFLICT RESOLUTION
Your primary goal is to follow all rules. If you find that fixing an

issue according to one rule (e.g., ‘RULE 3‘) would force you to
violate another rule (e.g., ‘RULE 1‘), you must prioritize safety.
Your plan should:

1. Perform any minor, safe fixes that do not cause a conflict.
2. Clearly state the nature of the rule conflict you encountered

(e.g., "Correcting the solution to match the updated problem would
require a full rewrite, which violates RULE 1.").

3. Explicitly recommend that the problem requires human intervention.

RULE 1: MODIFICATIONS MUST BE MINOR AND SURGICAL

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

You are **forbidden** from rewriting entire solutions. The goal is to
repair, not replace.

* **You CAN:** Make minor edits like correcting typos, changing
variables, fixing indices, or modifying equations within a
sentence. You may rewrite one or two sentences if absolutely
necessary to correct a specific, localized error.

* **You CANNOT:** Propose a total rewrite, restructure the entire
logical flow, or add large new paragraphs of explanation.

RULE 2: THE FINAL ANSWER IS SACROSANCT

You are **strictly forbidden** from planning any changes to
‘correct_option‘ or ‘answer_value‘ unless the aggregated issue
report’s final category is exactly **‘ManualErrorIncorrectGuess‘**.

* **IF the category is ‘ManualErrorIncorrectGuess‘:** Your plan’s
objective is to derive the correct answer from the mathematical
proof in the ‘crawled_persian_markdown‘ and update
‘correct_option‘ and ‘answer_value‘ to match that derived truth.

* **IF the category is ‘OriginalSourceError‘:** You **must not**
change ‘correct_option‘ or ‘answer_value‘. Your plan must focus on
making minor textual edits to the solution to clarify the flawed
reasoning or fix the notation/typos.

* **IF the category is ‘MistranslationAnswerKey‘:** Your plan must
only remove the sentence stating the answer is not in the
choices. Do not change ‘correct_option‘ or ‘answer_value‘.

RULE 3: UPHOLD THE HIERARCHY OF TRUTH

Your primary directive is to ensure the data is a high-fidelity
representation of the original Persian source
(‘crawled_persian_markdown‘). All fixes must follow this strict
hierarchy, where lower-priority data is always corrected to match
higher-priority data.

1. **Ultimate Authority (‘crawled_persian_markdown‘):** This is the
absolute ground truth.

2. **Problem Definition (‘problem‘, ‘context‘, ‘choices‘):** These
fields must be a faithful translation of the Ultimate Authority.

3. **Derived Explanation (‘english_solution_local_images‘):** This
field must correctly solve the problem as defined in the ‘problem‘
field.

- **You MUST:** If the ‘context‘ contains a typo or mistranslation
(when compared to the Ultimate Authority), your plan must correct
the ‘context‘ field.

- **You MUST:** If the ‘problem‘ has a typo or mistranslation (when
compared to the Ultimate Authority), your plan must correct the
‘problem‘ field AND then also correct the
‘english_solution_local_images‘ so it solves the now-correct
problem.

- **You MUST NOT:** Ever "fix" the ‘problem‘ field to justify an
error in the ‘english_solution_local_images‘. The solution always
yields to the problem.

Any plan that violates these rules is invalid and will be rejected.

Inputs:
- Aggregated Issue Report (markdown):
{aggregated_report_md}

- Validator Reasoning (why previous plan failed):
{validator_reasoning}

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

- Existing Fix Plan (to revise):
{fix_plan_md}

Text Fields to Analyze:
- problem: {problem}
- choices: {choices}
- english_solution_local_images: {english_solution}
- context: {context}
- correct_option: {correct_option}
- answer_value: {answer_value}
- SVG XMLs (if any):
‘‘‘
{svg_sources}
‘‘‘

Constraints (Critical):
- Do not propose removing, renaming, or altering any image

references. Image content is essential and must be preserved.
- If an instruction would implicitly remove an image, rewrite it to

keep images intact and only change necessary text.
- Never instruct to delete image markdown (e.g., lines that start

with ‘.

Required Output Structure:
‘‘‘markdown
Fix Plan

1. **Instruction:** [...]
* **Target Fields:** [...]
* **Rationale:** [...]

2. **Instruction:** [...]
* **Target Fields:** [...]
* **Rationale:** [...]

‘‘‘

C COMPLETE TECHNIQUE TAXONOMY

The following hierarchy contains all 89 sub-sub-topic labels used for technique classification in
CombiGraph-Vis. Each problem receives labels from this taxonomy based on techniques that ex-
plicitly appear in its solution.

C.1 TECHNIQUE LABELING PROMPT

Technique Labeler Prompt

Task

Given a ‘{problem}‘, its ‘{solution}‘, and optional ‘{context}‘,
determine which techniques were **actually used** in the solution
and output them as a **list** of labels. Each label must strictly
follow the three-level path:

‘Topic -> Sub-topic -> Sub-sub-topic‘

Only use items from the **Reference Topic Hierarchy** below. Pick the
most specific sub-sub-topic(s) that apply.

Inputs

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

* **Problem:** ‘{problem}‘
* **Solution:** ‘{solution}‘
* **Context (optional):** ‘{context}‘

What Context Means (read carefully)

* **Definition:** ‘{context}‘ is any preliminary text that defines
the setting, objects, constraints, notations, or assumptions that
the problem and solution rely on (e.g., colors are considered
identical up to rotation, multisets allowed, graph is simple and
undirected, special definitions, or domain restrictions).

* **Usage Rule:** Treat ‘{context}‘ as part of the problem setup. If
‘{context}‘ narrows, extends, or clarifies the setting, **apply it
when deciding techniques** (e.g., combinations with repetition
becomes applicable if ‘{context}‘ allows multisets).

* **Conflict Rule:** If ‘{context}‘ conflicts with generic
assumptions, **prefer ‘{context}‘** unless the solution explicitly
overrides it.

Decision Rules (strict)

1. **Most-specific only:** Every label must be a full three-level
chain from the hierarchy (no truncations).

2. **Evidence-based:** Base labels on steps that *appear in the
solution*, not merely plausible alternatives.

3. **Context-aware:** Incorporate ‘{context}‘ constraints/definitions
when identifying techniques.

4. **Multi-technique:** Include all materially used techniques. Mark
exactly one label as primary.

5. **Ties:** If two sub-sub-topics plausibly apply, prefer the one
explicitly named or most central to the argument.

6. **Out-of-scope moves:** If the solution uses ideas not present in
the hierarchy, add one extra array item with ‘"topic": "OTHER"‘
and a short ‘"justification"‘ describing the idea. Do **not**
invent new hierarchy items.

Output Format (JSON)

Return **only** a JSON **array**. Each element is an object of this
shape:

‘‘‘json
[
{
"topic": "",
"sub_topic": "",
"sub_sub_topic": "",
"primary": true,
"justification": "13 sentences citing the exact step(s) in the

solution (and any relevant context) that evidence this
technique."

}
]
‘‘‘

* Include **exactly one** element with ‘"primary": true‘. All others
must have ‘"primary": false‘.

* If there are no valid hierarchy techniques, return an array with a
single ‘"OTHER"‘ item as described in Rule 6.

Worked Micro-Examples

Example A (single technique)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Solution step: We count integer solutions to $x_1+\dots+x_k=n$ using
stars and bars.
Output:

‘‘‘json
[
{
"topic": "Combinatorics",
"sub_topic": "Counting Foundations",
"sub_sub_topic": "Stars & bars",
"primary": true,
"justification": "Applies the balls-into-bins formula to count

nonnegative integer solutions to a sum."
}

]
‘‘‘

Example B (multiple techniques)
Solution steps: Apply InclusionExclusion to avoid overcounting then

use linearity of expectation to bound the count.
Output:

‘‘‘json
[
{
"topic": "Combinatorics",
"sub_topic": "Advanced Counting",
"sub_sub_topic": "InclusionExclusion (e.g., derangements)",
"primary": true,
"justification": "Main count constructed via inclusionexclusion to

correct overcounting."
},
{
"topic": "Combinatorics",
"sub_topic": "Probabilistic Method (intro)",
"sub_sub_topic": "Linearity-of-expectation tricks",
"primary": false,
"justification": "Uses expectation linearity to bound the count

after inclusionexclusion."
}

]
‘‘‘

Reference Topic Hierarchy (choose **only** from these leaves)

Combinatorics

* **Counting Foundations**

* Sum/Product/Complement rules
* Bijections (one-to-one counting)
* Permutations & arrangements (with/without repetition; circular)
* Combinations (with/without repetition; multisets)
* Stars & bars (integer-solution counting)
* Binomial theorem; lattice paths; basic identities

* **Advanced Counting**

* InclusionExclusion (e.g., derangements)
* Double counting
* **Recurrences & Generating Ideas**

* Linear recurrences (characteristic equations)
* Classic sequences (Fibonacci, Catalan)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

* Light generating functions (ordinary/exponential)
* **Symmetry Counting**

* Burnsides lemma
* Plya enumeration (intro)

* **Invariants & Monovariants**

* Parity/modular invariants
* Coloring/weighting arguments
* Termination via monovariants

* **Probabilistic Method (intro)**

* Linearity-of-expectation tricks
* Existence proofs via expectation

Graph Theory

* **Basics**

* Definitions & representations (adjacency list/matrix)
* Degree/handshaking; degree & *graphic* sequences
* Isomorphism; traversals (BFS/DFS); paths, cycles, distance

* **Trees**

* Properties; rooted/binary trees
* DFS/BFS trees
* Spanning trees & counting

* **Connectivity**

* Connectedness; cut vertices/bridges
* k-connectivity; blocks (biconnected components)

* **Directed Graphs**

* Strongly connected components
* Tournaments

* **Cycles & Trails**

* Eulerian trails/tours
* Hamiltonian paths/cycles

* **Matchings & Covers**

* Bipartite matchings; Halls marriage theorem
* Matchings in general graphs; independence number
* Vertex/edge covers (and relations in bipartite graphs)

* **Planarity & Coloring**

* Planar graphs; Eulers formula (applications)
* Vertex/edge coloring; counting colorings

Combinatorial Game Theory

* **Modeling & State Analysis**

* Game graphs; win/lose/draw states
* DP for state evaluation; kernels; strategy existence proofs

* **Canonical Examples**

* Nim; partisan games; Hex; Shannon switching game

Probability (Elementary)

* **Core Concepts**

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

* Sample spaces & events; basic probability
* Conditional probability; independence; Bernoulli trials

* **Expectation**

* Random variables; linearity of expectation
* Indicator variables

Number Theory (Contest Essentials)

* **Divisibility & GCD/LCM**

* Euclidean algorithm; Bzouts identity
* **Primes & Congruences**

* Modular arithmetic; Fermats little theorem; CRT
* **Counting Toolbox**

* Multiplicative functions (n), (n), (n); multiplicativity
* Fast exponentiation; modular inverses
* Counting by gcd/lcm; CRT-based counts

Formal Languages & Automata (CS touch-in)

* **Languages**

* Alphabets, strings, languages
* **Machines**

* DFA & NFA; pushdown automata; Turing machines

Algorithmic Techniques (non-coding)

* **Greedy**

* Exchange arguments; counterexample design
* **Dynamic Programming**

* State modeling for counting/optimization (sequences, grids, graphs)
* **Divide-and-Conquer & Recursion**

* Recurrences; correctness ideas
* **Search**

* Backtracking & pruning; BFS/DFS as search patterns
* **Classic Tricks**

* Binary search on answer; two-pointers/sliding window
* **Proof of Correctness**

* Invariants; loop/phase arguments

Conceptual Data Structures (no code)

* **Linear Containers**

* Stack, queue, deque
* **Priority & Set Structures**

* Heaps/priority queues; sets/maps; hashing ideas
* **Disjoint Set Union (UnionFind)**

* Connectivity; cycle detection
* **Graph Representations**

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

* Adjacency list vs matrix; trade-offs

Strings & Combinatorics on Words

* **Structural Properties**

* Prefix/suffix/border; periodicity
* Palindromes

* **Counting & Constraints**

* Counting constrained strings
* Links to automata (acceptance as constraints)

Discrete and Computational Geometry

* **Primitives**

* Orientation test (cross-product sign)
* Line/segment intersection

* **Polygons & Lattice**

* Polygon area (shoelace)
* Lattice points; Picks theorem

* **Convexity**

* Convex-hull intuition and uses

Logical & Puzzle Reasoning

* **Logic & Proof Moves**

* Propositional logic; contradiction/contrapositive
* **Puzzle Tactics**

* Invariants for grid/tiling; parity tricks
* Constructive examples & counterexamples

Inequalities & Algebraic Tools

* **Core Inequalities**

* AMGM ; CauchySchwarz (incl. Titus lemma)
* Rearrangement inequality

* **Summation Tricks**

* Telescoping; bounding techniques

General Proof Strategies

* **Mathematical Induction**

* Weak vs. Strong induction
* Structural induction (on trees, graphs, etc.)
* Formulating & strengthening the inductive hypothesis
* Infinite descent / Minimal counterexample

* **Pigeonhole Principle (PHP)**

* Simple form (n+1 pigeons in n holes)
* Generalized/Strong form (\$\lceil N/k \rceil\$ items)
* Applications in geometry, number theory, and graphs

* **Extremal Principle**

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

* Core idea (Max/Min argument)
* Proving existence or properties of extremal objects

* **Coloring & Invariant Arguments**

* Coloring proofs (e.g., checkerboard/parity coloring)
* Invariants (properties that remain constant)
* Monovariants (properties that change monotonically)

C.2 SOLUTION GENERATION PROMPT

Solution Generation Prompt

Olympiad Problem Solution Instructions

You are tasked with solving a mathematical olympiad-level problem.
Provide a complete, rigorous, and mathematically accurate solution
that meets the standards expected in competitive mathematics.

Input Components

Context: {context}
- This provides background information, definitions, and preliminary

setup for the problem
- Pay careful attention to any special notation, constraints, or

conditions defined here

Problem: {problem}
- This is the main question to be solved
- Identify exactly what is being asked and what the final answer

should be

Choices: {choices}
- If present, these are the multiple choice options
- Your final answer must match one of these choices exactly

Solution Standards

Your solution must demonstrate:

1. **Complete Mathematical Rigor**: Every step must be mathematically
justified with proper reasoning

2. **Clear Logical Flow**: Present arguments in a logical sequence
that builds toward the solution

3. **Precise Definitions**: Use mathematical terminology accurately
and define any non-standard notation

4. **Thorough Analysis**: Consider all relevant cases and address
potential edge cases

5. **Computational Accuracy**: All calculations must be correct and
verifiable

6. **Proof Completeness**: If proving a statement, ensure the proof
covers all necessary cases and is gap-free

Solution Structure

1. **Problem Analysis**: Begin by clearly restating what needs to be
found and identifying key constraints

2. **Approach Strategy**: Explain your solution method and why it’s
appropriate

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

3. **Detailed Working**: Show all mathematical steps with clear
justifications

4. **Verification**: When possible, verify your answer through
alternative methods or checking edge cases

5. **Final Answer**: Present the final answer clearly

Mathematical Notation Requirements

- Use correct LaTeX notation for all equations and mathematical
symbols

- Use ‘\\(‘ and ‘\\)‘ for inline mathematics
- Use ‘\\[‘ and ‘\\]‘ for display mathematics (block equations)
- Do not use any unicode characters - stick to proper LaTeX formatting
- Show intermediate steps clearly with proper mathematical formatting

Answer Format Requirements

- Wrap your final numerical answer, expression, or choice in:
‘\boxed{your_answer}‘

- For multiple choice questions, include both the choice number and
description if applicable

- Ensure the boxed answer directly addresses what the problem asks for
- If the answer is a mathematical expression, present it in its

simplest form

Mathematical Communication

- Use proper mathematical terminology and maintain precision in
language

- Distinguish clearly between "implies," "if and only if," "for all,"
etc.

- Explain the reasoning behind each major step
- Present arguments in a logical sequence that builds toward the

solution
- Consider all relevant cases and address potential edge cases

Solve the given problem following these guidelines.

C.3 HIERARCHICAL TAXONOMY

C.4 COMBINATORICS

Counting Foundations

• Sum/Product/Complement rules

• Bijections (one-to-one counting)

• Permutations & arrangements (with/without repetition; circular)

• Combinations (with/without repetition; multisets)

• Stars & bars (integer-solution counting)

• Binomial theorem; lattice paths; basic identities

Advanced Counting

• InclusionExclusion (e.g., derangements)

• Double counting

Recurrences & Generating Ideas

• Linear recurrences (characteristic equations)

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

• Classic sequences (Fibonacci, Catalan)
• Light generating functions (ordinary/exponential)

Symmetry Counting

• Burnside’s lemma
• Plya enumeration (intro)

Invariants & Monovariants

• Parity/modular invariants
• Coloring/weighting arguments
• Termination via monovariants

Probabilistic Method (intro)

• Linearity-of-expectation tricks
• Existence proofs via expectation

C.5 GRAPH THEORY

Basics

• Definitions & representations (adjacency list/matrix)
• Degree/handshaking; degree & graphic sequences
• Isomorphism; traversals (BFS/DFS); paths, cycles, distance

Trees

• Properties; rooted/binary trees
• DFS/BFS trees
• Spanning trees & counting

Connectivity

• Connectedness; cut vertices/bridges
• k-connectivity; blocks (biconnected components)

Directed Graphs

• Strongly connected components
• Tournaments

Cycles & Trails

• Eulerian trails/tours
• Hamiltonian paths/cycles

Matchings & Covers

• Bipartite matchings; Hall’s marriage theorem
• Matchings in general graphs; independence number
• Vertex/edge covers (and relations in bipartite graphs)

Planarity & Coloring

• Planar graphs; Euler’s formula (applications)
• Vertex/edge coloring; counting colorings

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

C.6 COMBINATORIAL GAME THEORY

Modeling & State Analysis

• Game graphs; win/lose/draw states

• DP for state evaluation; kernels; strategy existence proofs

Canonical Examples

• Nim; partisan games; Hex; Shannon switching game

C.7 PROBABILITY (ELEMENTARY)

Core Concepts

• Sample spaces & events; basic probability

• Conditional probability; independence; Bernoulli trials

Expectation

• Random variables; linearity of expectation

• Indicator variables

C.8 NUMBER THEORY (CONTEST ESSENTIALS)

Divisibility & GCD/LCM

• Euclidean algorithm; Bzout’s identity

Primes & Congruences

• Modular arithmetic; Fermat’s little theorem; CRT

Counting Toolbox

• Multiplicative functions (n), (n), (n); multiplicativity

• Fast exponentiation; modular inverses

• Counting by gcd/lcm; CRT-based counts

C.9 FORMAL LANGUAGES & AUTOMATA (CS TOUCH-IN)

Languages

• Alphabets, strings, languages

Machines

• DFA & NFA; pushdown automata; Turing machines

C.10 ALGORITHMIC TECHNIQUES (NON-CODING)

Greedy

• Exchange arguments; counterexample design

Dynamic Programming

• State modeling for counting/optimization (sequences, grids, graphs)

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Divide-and-Conquer & Recursion

• Recurrences; correctness ideas

Search

• Backtracking & pruning; BFS/DFS as search patterns

Classic Tricks

• Binary search on answer; two-pointers/sliding window

Proof of Correctness

• Invariants; loop/phase arguments

C.11 CONCEPTUAL DATA STRUCTURES (NO CODE)

Linear Containers

• Stack, queue, deque

Priority & Set Structures

• Heaps/priority queues; sets/maps; hashing ideas

Disjoint Set Union (UnionFind)

• Connectivity; cycle detection

Graph Representations

• Adjacency list vs matrix; trade-offs

C.12 STRINGS & COMBINATORICS ON WORDS

Structural Properties

• Prefix/suffix/border; periodicity
• Palindromes

Counting & Constraints

• Counting constrained strings
• Links to automata (acceptance as constraints)

C.13 DISCRETE AND COMPUTATIONAL GEOMETRY

Primitives

• Orientation test (cross-product sign)
• Line/segment intersection

Polygons & Lattice

• Polygon area (shoelace)
• Lattice points; Pick’s theorem

Convexity

• Convex-hull intuition and uses

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

C.14 LOGICAL & PUZZLE REASONING

Logic & Proof Moves

• Propositional logic; contradiction/contrapositive

Puzzle Tactics

• Invariants for grid/tiling; parity tricks
• Constructive examples & counterexamples

C.15 INEQUALITIES & ALGEBRAIC TOOLS

Core Inequalities

• AMGM; CauchySchwarz (incl. Titu’s lemma)
• Rearrangement inequality

Summation Tricks

• Telescoping; bounding techniques

C.16 GENERAL PROOF STRATEGIES

Mathematical Induction

• Weak vs. Strong induction
• Structural induction (on trees, graphs, etc.)
• Formulating & strengthening the inductive hypothesis
• Infinite descent / Minimal counterexample

Pigeonhole Principle (PHP)

• Simple form (n+1 pigeons in n holes)
• Generalized/Strong form (⌈N/k⌉ items)
• Applications in geometry, number theory, and graphs

Extremal Principle

• Core idea (Max/Min argument)
• Proving existence or properties of extremal objects

Coloring & Invariant Arguments

• Coloring proofs (e.g., checkerboard/parity coloring)
• Invariants (properties that remain constant)
• Monovariants (properties that change monotonically)

62

	Introduction
	Related Work
	CombiGraph-Vis Dataset
	Data Collection
	Data Curation Process Using Agentic Workflows
	First Phase: Problem Validation
	Second Phase: Automated Error Resolution
	Technique Labels and Taxonomy

	Task Formats and Verification Protocol
	Results
	Conclusion
	LLM Usage Description
	Implementation Details
	Prompt Specifications
	Problem Validation Prompts
	TypoClarityCritic
	LogicalSoundnessCritic
	AnswerVerificationCritic
	FinalAggregator

	Error Resolution Prompts
	IssueDetector
	IssueAggregator
	SolutionEngager
	IssueDetectorWithEngagement
	EngagementReportSynthesizer
	FixPlanner
	Fixer
	Validator
	RePlanner

	Complete Technique Taxonomy
	Technique Labeling Prompt
	Solution Generation Prompt
	Hierarchical Taxonomy
	Combinatorics
	Graph Theory
	Combinatorial Game Theory
	Probability (Elementary)
	Number Theory (Contest Essentials)
	Formal Languages & Automata (CS touch-in)
	Algorithmic Techniques (non-coding)
	Conceptual Data Structures (no code)
	Strings & Combinatorics on Words
	Discrete and Computational Geometry
	Logical & Puzzle Reasoning
	Inequalities & Algebraic Tools
	General Proof Strategies

