Under review as a conference paper at ICLR 2026

Coder-R?: RECOGNIZE, REVIEW AND REPAIR DEFEC-
TIVE CODE WITH FINETUNED LLMS IN PRACTICE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have emerged as powerful tools for software engineering
tasks, demonstrating particular promise in code review activities. However, ex-
isting research on code review LLMs typically decomposes the review process
into discrete subtasks, collecting data and fine-tuning separate models for each
individual component. This fragmented approach overlooks the synergistic re-
lationships between different tasks, necessitates multiple models with complex
multi-stage invocations, and consequently exhibits limited practical applicabil-
ity in real-world deployment scenarios. In this work, we advance beyond previ-
ous code review research by proposing a unified and comprehensive code review
problem modeling approach. We focus on the complete code review process, in-
cluding Recognize, Review, and Repair defective code fragments consecutively,
and propose Coder-R?, an approach that enables a single LLM to handle all code
review-related subtasks uniformly. Additionally, we establish a practically feasi-
ble closed-loop iterative process for industrial scenarios, encompassing data con-
struction, model evaluation, and operational feedback integration. We rigorously
evaluate the effectiveness of various strategies, including input context selection,
output format, and training methodologies. Coder-R> achieves state-of-the-art
performance on the CodeReviewer benchmark, and demonstrates superior effec-
tiveness in real enterprise scenarios. Our work provides valuable insights for en-
terprises seeking to leverage LLMs to enhance code review efficiency.

1 INTRODUCTION

The code review activity (Li et al.|[2022; Tufano et al., 2022;|Lu et al., 2023a; [Huq et al.,[2022) is an
integral component in modern software engineering workflow. Having been widely adopted across
development platforms like GitHub, the code review process significantly contributes to software
quality assurance and long-term maintainability. However, code review has always been a difficult
and time-consuming activity both for reviewers and developers. The previous research (Bosu &
Carver,2013) show that developers spend 6.4 hours on average weekly reviewing other developers’
code. With the advance of information technology, software systems have become increasingly
complex, making the code review process more challenging.

To address this challenge, recent research has increasingly focused on automating code review
tasks (Tufano et al., 2024). Large language models (LLMs) (Radford et al.l 2018; |2019; [Brown
et al.|2020; |Achiam et al.,[2023), with their strong linguistic capabilities, have shown considerable
potential in handling various programming-related tasks. In an effort to alleviate the workload of
software developers, many studies have explored the application of LLMs to automate code review
processes (Hossain et al.}[2024; |Caumartin et al., 2025} Xue et al.,[2024)), achieving notable advance-
ments in this area. Generally, the automated code review process is divided into three subtasks, in-
cluding code change quality estimation, review comment generation, and code refinement (L1 et al.,
2022). However, due to the limitations of methodology and data, plenty of studies still focus on
a single subtask (Dai et al., [2025|; [Sobania et al.| [2023; |[Lopes et al.| [2024; |Cai et al., 2023)), such
as review comment generation or code refinement, resulting in a lack of overall code review ca-
pability. Some other studies work on the whole process, but perform these subtasks by individual
models (Guo et al. 2024} [Begolli et al., 2025), making the whole process complex and computa-
tionally intensive. Additionally, code review data, while relatively easy to collect, often suffers from

Under review as a conference paper at ICLR 2026

(Recognize \I
i |
Code Snippet) | Output Type :
import numpy as np Basic Output |
data = [1, 2, 3] |
data_trans = process_data(data) Input | Yes No :
|]
N .
i
1
/ Context Coder_R3 S 2 -
Review \
Language: Python I(|
i | Output Comment :
\ CodelDiff _O_F_"_O_H?I Output: I think Function “process_data™ | |
\ nput expects a matrix since only such |
t P sine .
f.",'ﬂi; -n::fir:;yr(‘?l, 2, 31) || objects support *.T", passing a | |
Data Flywheel +data = [1, 2, 3] || Python list will raise an error. | |
result = process_data(data) | ep——— P — 7
N :
!
Related Code /—____E_Y_‘ ————— ~
epair
import nunpy as np I(P :
data = [1, 2, 3] a
data_trans = process_data(data) out utl Fixed Code |
ovene dmn LOUIRULL 1 ort numpy 25 np I
def process datalo: I | data = np.array([1, 2, 31) 1
return x.1 l data_trans = process_data(data) | |
i
\ 4

Figure 1: The framework of our proposed Coder-R3. Data are collected through a data flywheel
mechanism. The code snippet is the code that is being reviewed. The context includes additional
information helps the model to understand the code, such as programming language, code diff,
and related code. Taking the code snippet and context as input, the C'oder-R?® model perform the
Recognize, Review and Repair tasks in a unified manner.

inconsistent quality, which in turn constrains the real-world deployment of models. Overall, the
current automated code review is not practical enough.

In this work, we focus on the comprehensive code review task, i.e. given a static code fragment,
the model firstly recognizes the defect in the code, then writes a review explaining the defect and
generates repaired code if the code has defection. This is a unified form of the three code review
subtasks, emphasizing the connection among them. We train a single LLM to accomplish the com-
prehensive task, which is far more practical and efficient in real-world scenarios. Specifically, we
introduce Coder-R3, an approach to finetune LLMs in practical code review scenarios. As shown
in Fig.[I] we fine-tune LLMs via Supervised Fine-Tuning (SFT) with uniformly formatted datasets
from data flywheel, improving the overall ability for code review. Through extensive experimenta-
tion, we investigated the impact of various input configurations, output representations, and training
strategies on the code review task, ultimately identifying the optimal approach. Our method achieves
state-of-the-art results on the CodeReviewer benchmark.

In terms of practical application, we integrate the model into the company’s actual code review
system and establish a data flywheel mechanism. Within this system, the model generates review
suggestions, which are then validated and annotated by human reviewers. The resulting data is
systematically collected, filtered, and preprocessed to form a high-quality code review dataset. By
iteratively training on this continuously updated dataset and redeploying the improved model, we
create a closed-loop pipeline for continuous enhancement. Our experiments validate the method’s
strong effectiveness on company internal data and demonstrate its promising performance in real-
world deployment.

Overall, our work is distinguished by the following aspects: (1) We unify the modeling of the code
review task and propose a method Coder-R? designed for completing the whole code review process
with a single LLM. (2) We perform extensive experiments to evaluate the effectiveness of various
strategies, demonstrating the practicality and effectiveness of our method. (3) We deploy an itera-
tive, data-centric approach that combines public datasets with real-world scenarios to continuously
improve model performance. (4) Our approach achieves state-of-the-art results on the Codereviewer
dataset, and also reveals strong performance in real-world scenarios.

2 RELATED WORK

CodeReviewer (Li et al.[2022)) is a pioneering work that divides the code review process into three
sub-tasks: code change quality estimation, review comment generation and code refinement. It

Under review as a conference paper at ICLR 2026

introduces a large-scale dataset for these tasks and employs pre-training and fine-tuning strategies
to solve each task effectively.

Recent research has addressed code review sub-tasks individually. For example, CRScore++ (Ka-
padnis et al.,[2025) integrates reinforcement learning with analysis tools and LLM feedback to op-
timize review comment generation, while ThinkRepair (Yin et al.| [2024) uses thought-chain knowl-
edge bases to improve vulnerability reasoning and code repair. However, these approaches focus on
single tasks and lack comprehensive review capabilities. Some newer studies explore connections
between tasks. DISCOREV (Ben Sghaier & Sahraoui, |2024) distills repair models to train review
models, and CORAL (Sghaier et al.,|2025a) enhances this with reinforcement learning and diversi-
fied feedback. Although these methods show promising results, they still rely on separate models for
different tasks, increasing complexity and resource requirements. CFT (Kumar & Chimalakonda,
2024) attempts to train LLM using federated multi-task learning, but gains unsatisfactory results.

Additionally, existing code review datasets have several limitations. The CodeReviewer dataset,
for instance, collects data for its three tasks separately from inconsistent sources, leading to in-
formational gaps that complicate unified processing. Moreover, as it was crawled from GitHub
without strict filtering, the dataset contains a significant amount of low-quality text. A recent study,
CuREV (Sghaier et al., [2025b), used LLMs to clean the CodeReviewer data and found a large vol-
ume of irrelevant, unclear, or verbose content, underscoring the dataset’s inherent weaknesses.

With respect to the context, most code review studies have overlooked its significance, relying solely
on code snippets or code changes as model input. A recent research (Guo et al.,[2025) demonstrates
that inputting the review line number improves code repairing significantly, but it lacks practicability
in real-world scenarios. Compared with code review tasks, the SWE-Bench (Jimenez et al., [2024)
task emphasizes code context, as it requires inspecting vulnerabilities across the entire repository.
These two types of tasks share certain similarities, suggesting that code review could also benefit
from contextual information.

3 APPROACH

3.1 TASK FORMULATION

We formulate the code review task as: leveraging the relevant context, perform categorization
(Recognize), explanation (Review), and fixing (Repair) for the input code snippet. We will de-
velop a unified model capable of performing these three tasks simultaneously, addressing these three
highly interrelated tasks in a single framework.

As shown in Fig. [1| the input of this task is X = (code_snippet, context). Here, the code snippet
(code_snippet) is extracted from the modified location, and concatenated with the preceding and
succeeding N lines. Compared with using code changes as input, adopting code snippets is a more
general approach. The relevant context (context) may include various forms such as function calls,
documentation, or code diffs. When the context is empty, the model is expected to review only the
code_snippet itself. The output is represented as Y = (type, comment, fiz_code). Each field is
explained as follows: type: This indicates the classification categories. Similar to CodeReviewer,
’yes’ signifies that a review is needed, while 'no’ means no review is necessary. comment: For
defective code, the model should generate comments that explain the issue and propose possible
solutions. fix_code: For defective code, the output should include the corrected version of the code
snippet based on the comment.

In our experiments, we employed various input-output configurations and training strategies to ex-
plore best practices for the code review task. For the input, the contextual information of the code
included one or more of the following elements: programming language, code change diff, and ex-
tracted contextual code segments. For the output of the repair task, the result could be represented
either as a modified code snippet or in the form of a diff. Regarding the modeling approach, one
method involved a single model performing all three tasks simultaneously, directly generating a
structured output containing (type, comment, fiz_code). This integrated approach offered faster
inference but posed greater learning challenges. Alternatively, a more conventional automatic code
review pipeline was implemented by invoking the model three separate times, each dedicated to one

Under review as a conference paper at ICLR 2026

)

Public Dataset

| [&| [B|1l[3

Internal Code Automated Data Train/Test
Submission Code Review Review Filtering Dataset

&
<

Model

l Updating |
Figure 2: Data flywheel. Within the data flywheel, company employees submit code, which is
automatically reviewed by the model. The review outcomes, combined with publicly available code
data, undergo human verification and systematic data filtering. The resulting high-quality data are

then used to iteratively retrain the model, establishing a self-reinforcing cycle that progressively
enhances both model performance and dataset quality.

specific task. Both approaches utilize only a single model. We refer to these two methodologies as
joint training and hybrid training, respectively.

3.2 CODE CONTEXT CONSTRUCTION

Language. The programming language of the code has a significant impact on defect analysis.
For the majority of the collected data, language labels are already available. For the small portion
of data without such annotations, we employed the open-source tool GuessLang []_-] along with the
LLMs Qwen2.5-Coder-32B (Hui et al., [2024) and Qwen3-Coder-30B-A3B (Team), 2025) to infer
the programming language. The final label for each instance was determined through majority
voting among the three systems.

Code diff. The code diff, which refers to the modifications made to the code compared to its previous
version, serves as additional information to highlight potential defect regions for the model. During
dataset construction, the code changes submitted by users are extracted and utilized as the code diff.

Related code. The functions invoked within a code snippet may not be included in the given snip-
pet. Consequently, incorporating related code can provide complementary contextual information,
thereby enabling a more comprehensive analysis of potential code defects. We parse source code
files into abstract syntax trees using Tree-sitterE]and adopt functions as the slicing unit. For each
function snippet, we additionally capture its internal call relations, which are the set of functions
invoked within its body. This approach allows each snippet to be represented not only by its own
implementation but also by the contextual information regarding dependencies on other functions.

3.3 DATA FLYWHEEL

Manual annotation of code review data demands expert-level programmers and remains highly time-
consuming. Even with model-assisted pre-annotation, each instance still takes an average of 3 ~ 5
minutes. In practice, we designed a relatively low-cost strategy as shown in Fig. |2} deploying the
system internally to collect human feedback, cleaning publicly available datasets, and introducing a
data filtering process to ensure quality.

Internal Data Collection. We collect internal data by integrating open-source models (e.g.,
Qwen2.5-Coder) and commercial APIs (e.g., GPT-5) into a company’s code management platform.
When an engineer submits a merge request, the system reviews the code snippets and contextual
information. Approved code is integrated directly, while flagged segments receive model-generated
annotations for issues and fixes. Reviewers adjust these annotations and provide feedback by accept-
ing or rejecting suggestions. Accepted recommendations are paired with the final merged code to
create high-quality labeled data, enhancing the training dataset and improving the model iteratively.

"https://github.com/yoeo/guesslang
*https://github.com/tree-sitter/tree-sitter

Under review as a conference paper at ICLR 2026

Public Dataset Supplementation. Additional data are collected from public datasets and GitHub,
then mapped to a standardized format. These data are used for training models, increasing the size
of the dataset and enhancing the generalizability of the model.

Data Filtering. For the collected data, we conducted multiple rounds of human-AlI collaborative
screening to ensure high quality. An initial consistency check was performed using multi-round
model voting. Data with low consensus was subsequently reviewed and corrected by human an-
notators. We developed a lightweight annotation system that allows code experts to examine and
modify defect categories, locations, review comments, and repair suggestions. In the first round of
annotation, we engaged 21 code experts to inspect and label 968 instances.

Iterative Process. The process follows a regular cyclic schedule, typically every one to two weeks,
during which new data is collected to train an updated model. This model is then deployed to the
production environment, facilitating a subsequent round of data collection and enabling continuous
and scheduled model iteration.

3.4 MODEL TRAINING AND EVALUATION

We utilize Supervised Fine-Tuning to train C'oder-R3. The base pre-trained model is Qwen2.5-
Coder-7B (Hui et al., 2024). The training of the model Coder-Rg pp requires the raw
dataset to be in the following format: Dgpr = (X; = (code_snippet,context),Y; =
(type, comment, fix_code)). Instruction fine-tuning data in the form of question—answer (QA)
pairs is generated through embedding Dg g into the corresponding template Promptgpp. @ de-
notes the question serving as the input prompt, while A = (A5, As, ..., A7) represents the reference
answer consisting of a sequence of tokens. This data is then used for SFT training, in which tokens
of the model’s responses are compared with the ground-truth answers using cross-entropy loss to
optimize the model.

T
Lor(0) = =Y log Py(A; | Q, A<y))

t=1

At each time step ¢, the model with parameters 6 predicts the probability of the next token A; con-
ditioned on the question) and the previously generated tokens A ;. The objective is to maximize
the likelihood of the reference answer sequence.

4 EXPERIMENTS ON PUBLIC DATASET

4.1 THE CODEREVIEWER DATASET

We choose Codereviewer (Li et al., [2022) dataset from several public datasets because it’s the
only large-scale multilingual public dataset possessing data on the three code review tasks. Despite
some quality issues, Codereviewer dataset is a commonly used dataset in code review tasks. Other
datasets like Tufano (Tufano et al.,[2022) and CodeXGLUE (Lu et al.,[2021) lack some information
or collect data for each task from completely different sources, which are unsuitable for our code
review setting. We performed a series of preprocessing steps on the dataset to align it with the
specific requirements of our task setup. The details of the dataset and the preprocessing procedure
are described in Appendix [A.T]

4.2 EXPERIMENTAL SETTING
We implemented our approach using the LLaMA-Factory (Zheng et al.,|2024) framework, employ-
ing LoRA (Hu et al,, [2022) technique during SFT to enable efficient fine-tuning. The training is

finished on four H100 80G GPUs with the learning rate of 2e — 5, and the batch size for each GPU
is 1 because of the long context.

4.3 EVALUATION METRICS

We evaluate the three code review tasks following Codereviewer’s setting.

Under review as a conference paper at ICLR 2026

Table 1: Ablations on the Codereviewer dataset. The configuration utilizing language identifiers
and code diffs as input context, code snippets as output, and a hybrid training strategy yielded the
best overall performance.

Context Task Output Recognize Review Repair

Language Diff Precision Recall Fl-Score Accuracy | Accuracy BLEU | Accuracy BLEU-review BLEU-code EM
X X Joint Snippet 56.73 5928 57.98 57.14 55.36 5.47 79.15 8.07 85.42 9.27
v X Joint Snippet 57.00 5825 57.62 57.21 54.52 532 71.65 8.25 85.43 9.51
v v Joint Snippet 99.90 13.80 24.25 56.94 4.57 5.37 99.72 9.76 85.53 16.12
X X Recognize Snippet 75.34 61.39 67.65 70.66 - - - - - -
X X Review Snippet - - - - - 5.39 - -
X X Repair Snippet - - - - - 85.58 41.05
X X Hybrid Snippet 79.33 58.77 67.52 71.74 - 533 - - 85.65 40.48
v X Hybrid Snippet 76.25 63.47 69.28 71.86 - 537 - - 85.58 41.15
v v Hybrid Snippet 79.68 71.60 75.43 76.68 - 5.61 - - 86.97 45.47
v v Hybrid Diff 81.14 60.85 69.55 73.36 - 5.68 - - 85.54 40.89

Recognize Task. This is a binary classification task aimed at determining whether a given code
snippet requires review. We use precision, recall, F1-score, and accuracy to evaluate the model’s
predictions. For the calculation of precision, recall, and F1-score, code snippets that need review are
treated as the positive class. This helps in clearly quantifying how well the model identifies snippets
that actually require attention from reviewers.

Review Task. For this sequence generation task, we adopt the BLEU (Bilingual Evaluation Under-
study) (Papineni et al., 2002)) score to assess the quality of the generated review comments.

N
1
BLEU = BP - exp v E:l log pp, (2
1 ife>r
BP = N 3
{exp(l—f:) ife<r ©)

where p,, denotes the proportion of n-grams in the candidate text that also appear in the reference
text. ¢ and r denote the lengths of the candidate text and the reference text. N is the maximum
n-gram order used in the calculation, which is set to 4 in practice. And the brevity penalty BP is
introduced to penalize candidate texts that are too short. When computing BLEU, all whitespace
is normalized to a single space and punctuation is separated from words as independent tokens,
providing a consistent tokenization and spacing scheme for n-gram statistics.

Repair Task. To evaluate the performance of this task, we calculate the BLEU score between the
generated code and the target code, as well as the exact match (EM) rate. When computing the
BLEU score for code snippets, we preprocess the data by removing leading and trailing spaces from
each instance and compressing consecutive spaces into a single space, consistent with the procedure
in Codereviewer(Li et al., [2022) to ensure fairness. While BLEU reflects the similarity between the
generated code and the target code, the EM rate is more critical here because code is highly sensitive
to changes—even minor modifications can lead to compilation errors or runtime exceptions. Only
when the generated code is completely identical to the target code is it considered a successful
refinement.

4.4 ABLATION STUDY

We investigate the contribution of each variable via extensive ablations, and shown in Tab. E}

Modeling Approaches. For the joint training approach, the calculation of BLEU and Exact Match
(EM) scores excluded samples that were incorrectly classified as “requiring no review”, consider-
ing only those correctly identified for further tasks. Across all experimental settings, joint training
consistently underperformed compared to hybrid training. This may be attributed to the excessive
information the model must process simultaneously in the joint setup, hindering its ability to effec-
tively address each subtask sequentially. The results suggest that integrating all three tasks into a
single model remains a challenging objective.

Under review as a conference paper at ICLR 2026

Table 2: Evaluation on the Codereviewer dataset. C'oder-R3 achieves state-of-the-art results on
the Recognize and Repair tasks, surpassing all baseline pre-trained LLMs and most of prior works.
(- indicates that the model did not perform this task or did not test this metric. * indicates the result
of using DeepSeek-7B, as it matches Cooder-R? in parameter scale.)

Recognize Review Repair
Precision Recall F1-Score Accuracy | BLEU | BLEU EM
Qwen-2.5-Coder-7B (Hui et al.|[2024) 47.05 13.65 21.17 49.16 0.63 7496 22.38
Qwen-2.5-Coder-14B (Hui et al.|[2024) 56.32 8.64 14.99 50.98 0.54 7491 2622
Qwen-2.5-Coder-32B (Hui et al.|[2024) 54.93 39.87 46.21 53.59 0.51 72.69 26.36
OpenAl GPT-5 (OpenAl[2025) 51.06 75.00 60.75 51.30 0.42 76.25 31.63
Codereviewer (Li et al..72022) 78.60 65.63 71.53 73.89 5.32 82.61 30.32

Methods

LLaMA-Reviewer (Lu et al.|[2023b) 60.99 83.50 70.49 - 5.70 82.27
CFT-reg(Kumar & Chimalakonda,[2024) 49.14 62.90 55.17 - 0.67 76.10
DISCOREYV (Ben Sghaier & Sahraoui![2024) - - - - 7.33 85.49
CoRAL (Sghaier et al.||2025a) - - - - 8.67
Toggle(Hossain et al.|[2024) - - - - - - 25.59

Intention is All You Need*(Guo et al.|[2025) - - - - - 50.04
Coder-R? 79.68 71.60 75.43 76.68 5.61 86.97 4547

Input Features. The inclusion of programming language information led to minor improvements
across most metrics, whereas adding diff information yielded substantially greater gains. For ex-
ample, accuracy improved by 0.12% with language metadata and by 4.82% with diff information.
Similar trends were observed in other metrics, with the exception of the Repair task, where adding
language metadata caused a very slight decrease in BLEU score (—0.07). These findings confirm
that both types of contextual features contribute positively to model performance on this dataset.

Notably, under the joint training setup, incorporating diff inputs led to severe overfitting—precision
reached 99.90%, while recall dropped to 13.80%. We hypothesize that this may be due to truncated
diff segments in the CodeReviewer code refinement data, creating a discernible distribution gap
between data types.

Output Format. We also experimented with using diff-style outputs under the best-performing
training configuration, introducing line numbers of every code line into the input code and asking the
model to generate a diff rather than the full repaired code. During evaluation, the generated diff was
applied to the original code to recover the repaired version for assessment. However, this approach
underperformed compared to directly generating the full code snippet, indicating that accurately
producing diff-structured edits remains a difficult task for LLMs.

4.5 COMPARED TO OTHER METHODS

For the CodeReviewer dataset, we employed code snippets, programming language identifiers, and
code diffs as input, with the repaired code snippet as the output. The model was trained using
the hybrid training approach. The same input and output configuration was applied to the baseline
models for a fair comparison. The evaluation result is shown in Tab. 2]

Our proposed Coder-R? model significantly outperformed all baseline pre-trained LLMs across
all three tasks, demonstrating the effectiveness of our training methodology. It is worth noting
that Qwen-2.5-Coder-7B, without any fine-tuning, achieved an accuracy below 50% in the binary
classification task. This suggests a potential discrepancy between the labeling conventions in the
CodeReviewer dataset and common understanding, leading to the pre-trained model’s performance
being worse than random guessing in this specific context. Interestingly, we observed that the per-
formance on the Review task decreased as the model size increased, with even GPT-5 delivering the
lowest results. This counterintuitive finding may indicate potential limitations in the data quality.

In comparisons with prior work, our model achieved state-of-the-art results on the Recognize and
Repair tasks, though a performance gap remains on the Review task. For the Recognize task, our
model surpassed previous methods on all metrics except Recall, with a 2.8% higher accuracy than
CodeReviewer. On the Review task, both DISCOREV and CoRAL leveraged the relationship be-
tween review and repair tasks to achieve superior results. For the Repair task, our model attained

Under review as a conference paper at ICLR 2026

Table 3: Ablations on the internal dataset. The optimal performance was achieved by the model
configuration that used a hybrid training approach, with code diff as input context, and generated a
full code snippet as output.

Context Task Output Recognize Review Repair
Language Diff Related Code Precision Recall F1-Score Accuracy | BLEU | BLEU EM
X X X Joint Snippet 98.69 23.15 37.51 70.06 31.04 | 56.60 11.58
v X X Joint Snippet 98.32 22.52 36.65 69.77 30.83 | 5542 10.88
v v X Joint Snippet 98.71 23.60 38.09 70.22 31.63 | 56.79 11.68
v v v Joint Snippet 98.30 2222 36.25 69.66 3243 | 54.50 10.68
X X X Hybrid Snippet 75.77 46.74 57.81 73.52 3284 | 77.53 18.16
4 X X Hybrid Snippet 75.03 46.28 57.25 73.17 3228 | 77.51 18.70
X v X Hybrid Snippet 77.28 47.96 59.19 74.33 33.06 | 78.01 18.23
X X v Hybrid Snippet 75.55 47.35 58.21 73.61 33.25 | 77.69 18.36

the highest BLEU score, while slightly trailing behind the study by Guo et al. in EM. This minor
discrepancy can be attributed to their use of an Intention Framework augmented with RAG and the
inclusion of associated line numbers as input, which creates a different experimental setting and
precludes a direct comparison.

5 CODE REVIEW IN PRACTICE

Beyond utilizing public datasets, we have concentrated on ensuring the method’s effectiveness and
feasibility in real-world code review environments. To achieve this, we gathered internal data from a
company (with over 1, 000 software engineers), trained models based on this data, and assessed the
method’s performance within the company’s actual code review system. The experimental settings
employed are consistent with those detailed in Sec.

5.1 INTERNAL DATASET CURATION

This data is sourced from real-world development processes within the company. Due to the com-
pany’s rigorous programming guidelines and the fact that code contributors and reviewers tend to
be more diligent and responsible compared to those in open-source projects, the data is of higher
quality than that typically found in public datasets. The details of the dataset and the preprocessing
procedure are described in Appendix

5.2 EVALUATION METRICS

The metrics of three code review tasks are consistent with the Codereviewer dataset, as described
in Sec. 4.3 Additionally, we introduced real-world production metrics based on the company’s
code review system to evaluate the model’s practicability: Online Accept Rate(OAR), Replay Pre-
cision(RP) and Replay Recall(RR). OAR means the accept rate of suggestion made by the model,
while RP and RR means the classification metrics of online data. More details in Appendix

5.3 EXPERIMENT RESULTS

Ablation Study. Similar to Sec. @ we conduct ablations on the internal dataset, the results are
shown in Tab.[3] On the internal dataset, Joint Training again underperformed compared to Hybrid
Training. The Joint Training approach resulted in a model with high precision but low recall for the
classification task, although the overall accuracy did not decrease significantly. This phenomenon
may be attributed to the excessive number of tokens involved in the joint training process, which
could have hindered effective optimization of the tokens specifically responsible for classification.

Regarding input features, the inclusion of programming language had almost no effect on the inter-
nal dataset, suggesting that the longer code segments provided sufficient context for the model to
infer the language. The addition of diff information still provide a measurable advantage. While the
inclusion of related code leads to minor improvements, particularly in the review task, the substan-
tial increase in token length made its inclusion cost-ineffective. If more concise and relevant code
contexts could be extracted, it would likely yield greater benefits.

Under review as a conference paper at ICLR 2026

Table 4: Evaluation on the internal dataset. Coder-R? demonstrates strong efficacy on the inter-
nal dataset, achieving significant improvements compared to baseline models.

Recognize Review Repair
Methods
Precision Recall Fl-Score Accuracy | BLEU BLEU EM
Qwen-2.5-Coder-7B (Hui et al.{[2024) 51.56 16.39 24.88 61.57 5.11 75.54 14.48

Qwen-2.5-Coder-14B (Hui et al.. 2024} 54.94 22.14 31.56 62.73 5.86 75.83 13.95
Qwen-2.5-Coder-32B (Hui et al.|[2024) 42.18 82.29 55.77 49.34 6.45 7579 1474
Coder-R? 77.28 47.96 59.19 74.33 33.06 | 78.01 18.23

Compared to Other Methods. On the internal dataset, we adopted code snippets and code diffs
as input, with the complete repaired code as the output, and trained the model using a multi-stage
approach. The same input-output configuration was applied to the baseline models for comparison.

As shown in Tab. 4 our model significantly outperformed the non-fine-tuned baselines across all
metrics, achieving an 11.6% improvement in accuracy, a 26.61-point increase in BLEU for the
Review task, and gains of 2.18 and 3.49 in BLEU and EM respectively for the Repair task.

The baseline models’ initial performance on our dataset was notably higher on the Recognize and
Review tasks compared to their results on the CodeReviewer dataset, suggesting superior label and
annotation quality in our internal data. In contrast, the overall lower scores on the Repair task may
be attributed to the longer code snippets and more extensive modifications required, indicating a
potentially higher difficulty level than that of the CodeReviewer data.

However, we observed that the 32B model exhibited a distinct tendency to classify samples as “re-
quiring review”, a behavior not seen in the two smaller models. This bias resulted in a high recall
score but a corresponding decrease in overall accuracy. This phenomenon presents an interesting
direction for further investigation.

5.4 PERFORMANCE ON REAL-WORLD DEPLOYMENT

We deployed a trained Qwen2.5-Coder-32B model
into the company’s internal code review system. On

a weekly basis, we collected data on the model’s * "
performance in real-world usage. This weekly hu- -, _
man feedback data was then incorporated into the :;:7’

training data, allowing us to iteratively update the *

model through rolling training iterations. The ac- s
tual results are shown in Fig.[3] Model performance
was evaluated weekly, with ‘Baseline’ representing o= Replay Procision
the results of the untrained baseline model on the 30 Replay Recall
preceding week’s data. A consistent upward trend Bait b s
was observed across all three metrics as training pro-
gressed, demonstrating the effectiveness of our train- Figure 3: Performance on real deploy-
ing methodology and data iteration strategy. The ment. We iteratively train and deploy
most significant improvement occurred after the ini- Coder-R? by collecting human feedback
tial fine-tuning round, with subsequent gains gradu- data. All metrics showed a consistent in-
ally diminishing over time before the metrics even- crease over time, validating the efficacy of
tually approached a stable asymptote. our approach.

Baseline Week-1 Week-2 Week-3 Week-4

6 CONCLUSION

In this work, we present Coder-R3, a novel approach that enables large language models to simul-
taneously perform three core code review tasks: Recognize, Review, and Repair. By leveraging a
data flywheel mechanism, we continuously collect internal corporate data to train our model, de-
ploy it for practical use, and gather new feedback—forming a closed-loop iterative pipeline. Our
method achieves state-of-the-art performance on the CodeReviewer benchmark and demonstrates
strong effectiveness in real-world industrial scenarios, contributing significantly to the practical im-
plementation of automated code review systems.

Under review as a conference paper at ICLR 2026

7 STATEMENTS

7.1 ETHICS STATEMENT

This research strictly adheres to academic ethical principles and is dedicated to promoting social
well-being and human progress. We are committed to conducting research responsibly, striving to
minimize potential negative consequences. Our work upholds the highest standards of scientific
excellence, ensuring methodological transparency and reproducible results.

All data usage complies with ethical review approvals. The Codereviewer dataset is an open-sourced
dataset with CC BY 4.0 License. The internal data we collected was obtained with the company’s
permission, and due to proprietary information, it will not be publicly available at this time. Whether
the data will be shared in the future is contingent on company decisions.

Regarding the application of LLMs in research, we only utilize LLMs as tools for assisting and
polishing writing. The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

7.2 REPRODUCIBILITY STATEMENT

We guarantee that our research is reproducible. Our data processing procedures are consistent with
the descriptions in Sec.[3.3]and Sec.[5.1] The data processing and training code will be open-sourced.
Our training process can be reproduced by downloading the open-source LLM Qwen-Coder-7B and
fine-tuning it using the code.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Igli Begolli, Meltem Aksoy, and Daniel Neider. Fine-tuning multilingual language models for code
review: An empirical study on industrial c# projects. arXiv preprint arXiv:2507.19271, 2025.

Oussama Ben Sghaier and Houari Sahraoui. Improving the learning of code review successive
tasks with cross-task knowledge distillation. Proceedings of the ACM on Software Engineering,
1(FSE):1086-1106, 2024.

Amiangshu Bosu and Jeffrey C Carver. Impact of peer code review on peer impression formation:
A survey. In 2013 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 133—142. IEEE, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Kaiwei Cai, Junsheng Zhou, Li Kong, Dandan Liang, and Xianzhuo Li. Automated comment gener-
ation based on the large language model. In International Conference on Computer Science and
Education, pp. 283-294. Springer, 2023.

Genevieve Caumartin, Qiaolin Qin, Sharon Chatragadda, Janmitsinh Panjrolia, Heng Li, and
Diego Elias Costa. Exploring the potential of llama models in automated code refinement: A
replication study. In 2025 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 681-692. IEEE, 2025.

Zhenlong Dai, Bingrui Chen, Zhuoluo Zhao, Xiu Tang, Sai Wu, Chang Yao, Zhipeng Gao, and
Jingyuan Chen. Less is more: Adaptive program repair with bug localization and preference
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 128—
136, 2025.

Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and Xin Peng. Ex-
ploring the potential of chatgpt in automated code refinement: An empirical study. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering, pp. 1-13, 2024.

10

Under review as a conference paper at ICLR 2026

Qi Guo, Xiaofei Xie, Shangqing Liu, Ming Hu, Xiaohong Li, and Lei Bu. Intention is all you need:
Refining your code from your intention. In 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pp. 728-728. IEEE Computer Society, 2025.

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan
Nguyen, and Omer Tripp. A deep dive into large language models for automated bug localization
and repair. Proceedings of the ACM on Software Engineering, 1(FSE):1471-1493, 2024.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Faria Huq, Masum Hasan, Md Mahim Anjum Haque, Sazan Mahbub, Anindya Igbal, and Toufique
Ahmed. Review4repair: Code review aided automatic program repairing. Information and Soft-
ware Technology, 143:106765, 2022.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Manav Nitin Kapadnis, Atharva Naik, and Carolyn Rose. Crscore++: Reinforcement learning with
verifiable tool and ai feedback for code review. arXiv preprint arXiv:2506.00296, 2025.

Jahnavi Kumar and Sridhar Chimalakonda. Code review automation via multi-task federated llm—an
empirical study. arXiv preprint arXiv:2412.15676, 2024.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Automating code review activities by large-scale
pre-training. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 1035-1047, 2022.

Cristina V Lopes, Vanessa I Klotzman, Iris Ma, and Iftekar Ahmed. Commit messages in the age of
large language models. arXiv preprint arXiv:2401.17622, 2024.

Jun Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. Llama-reviewer: Advancing code review
automation with large language models through parameter-efficient fine-tuning. 2023 IEEE 34th
International Symposium on Software Reliability Engineering (ISSRE), pp. 647-658, 2023a. URL
https://api.semanticscholar.org/CorpusID:261064667.

Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. Llama-reviewer: Advancing code review
automation with large language models through parameter-efficient fine-tuning. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE), pp. 647-658. IEEE
Computer Society, 2023b.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

OpenAl. Gpt-5 system card. https://openai.com/index/gpt—5-system—card, 2025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://api.semanticscholar.org/CorpusID:261064667
https://openai.com/index/gpt-5-system-card

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Oussama Ben Sghaier, Rosalia Tufano, Gabriele Bavota, and Houari Sahraoui. Leveraging reward
models for guiding code review comment generation. arXiv preprint arXiv:2506.04464, 2025a.

Oussama Ben Sghaier, Martin Weyssow, and Houari Sahraoui. Harnessing large language models
for curated code reviews. In 2025 IEEE/ACM 22nd International Conference on Mining Software
Repositories (MSR), pp. 187-198. IEEE, 2025b.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An analysis of the automatic
bug fixing performance of chatgpt. In 2023 IEEE/ACM International Workshop on Automated
Program Repair (APR), pp. 23-30. IEEE, 2023.

Qwen Team. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and
Gabriele Bavota. Using pre-trained models to boost code review automation. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), pp. 2291-2302. IEEE, 2022.

Rosalia Tufano, Ozren Dabic, Antonio Mastropaolo, Matteo Ciniselli, and Gabriele Bavota. Code
review automation: Strengths and weaknesses of the state of the art. IEEE Transactions on
Software Engineering, 50(02):338-353, 2024.

Pengyu Xue, Linhao Wu, Zhongxing Yu, Zhi Jin, Zhen Yang, Xinyi Li, Zhenyu Yang, and Yue
Tan. Automated commit message generation with large language models: An empirical study
and beyond. IEEE Transactions on Software Engineering, 2024.

Xin Yin, Chao Ni, Shaohua Wang, Zhenhao Li, Limin Zeng, and Xiaohu Yang. Thinkrepair: Self-
directed automated program repair. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 1274—1286, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL | http://arxiv.org/abs/2403.13372.

12

http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A APPENDIX: DATASET DETAILS

A.1 THE CODEREVIEWER DATASET

Codereviewer dataset is collected from GitHub repositories in nine programming languages, includ-
ing C, C++, C#, Go, Java, JavaScript, PHP, Python, and Ruby. It is composed of three subsets:
code change quality estimation, review generation, and code refinement. The data formats for code
change quality estimation and review generation are identical, and their datasets share a common
subset of data. In contrast, the code repair set utilizes a separate and distinct dataset. The train-
ing sets for these three datasets contain 266k, 118k, and 150k instances respectively, while their
corresponding test sets consist of 31k, 10k, and 13k instances.

Due to inconsistent data formats in the CodeReviewer dataset, we performed a series of preprocess-
ing steps. Firstly, we excluded incomplete entries with missing values in certain fields. Secondly,
using information such as original files, modified files, and diff content provided in the dataset, we
reconstructed code snippets and standardized them into a unified format. What’s more, the training
sets of the code change quality estimation and review generation datasets did not include program-
ming language labels. We used the strategy described in Sec. [3.2]to label this data, which achieved
an accuracy of over 97% on the test set.

For the joint training approach, each input data sample must possess labels for all three tasks to
facilitate model training. We constructed a comprehensive dataset by combining samples from the
code change quality estimation dataset that were flagged as ‘yes’ with all available samples from the
code refinement dataset.

A.2 THE INTERNAL DATASET

We utilize internal data collected according to Sec.[3.3] In the company code review system, the
review model will initially provide code review labels (category, explanation, and repaired code),
and engineers can accept or reject the model’s suggestions and make modifications. We collect this
human feedback data as high-quality labels for training and evaluating the model.

In the experiment, we collected human-
annotated data over an eight-month period, fo-
cusing primarily on mainstream programming
languages such as Python, Go, and C++. Af-
ter preprocessing the data into a standardized CHr
format, we obtained 18, 777 instances. To mit-

igate the risk of data overlap between the train

and test sets, we used the data from the first six

months as the train set and the data from last

two months as the test set. The train set and Java
test set were divided in a ratio of approximately

4.6 : 1. The distribution of the internal dataset

by programming language is shown in Fig.]

Typescript

Furthermore, the code segments in our inter-
nal dataset have an average length of 50.35
lines, which is notably longer than the aver-
age of 11.83 lines in the CodeReviewer dataset. Fjgyre 4: Programming language distribution
Since longer code segments are more COMmMON ¢f the internal dataset.

in practical development, our dataset possesses

greater practical relevance.

Javascript

Python

B METRIC DETAILS

B.1 PRODUCTION METRICS

To evaluate the performance in real-world scenarios, we deploy our model to the code review system
of the company. By tracking whether human reviewers accept or reject the model’s suggestions,

13

Under review as a conference paper at ICLR 2026

these metrics offer a more realistic reflection of its practical performance, particularly for open-
ended generation tasks such as comment generation and code repair.

We propose three production metrics: Online Accept Rate(OAR), Replay Precision(RP) and Replay
Recall(RR). The OAR metric calculates the proportion of the model’s review suggestions that are
accepted by human reviewers after deployment. Let N4ccep: be the amount of accepted review
instances and Ngcje.+ be the amount of rejected review instances during the same period of time,
O AR can be calculated as follows:

NAccept

OAR =
NAccept + NReject

“4)

For RP and RR metrics, we collected human-accepted or rejected data over a recent period after the
model was deployed, which, after filtering and preprocessing, was constructed into a new test set.
The model was then used to predict labels on this set and calculate precision and recall rates. It’s an
offline method to quickly evaluate the model’s online effectiveness.

14

	Introduction
	Related Work
	Approach
	Task Formulation
	Code Context Construction
	Data Flywheel
	Model Training and Evaluation

	Experiments on Public Dataset
	The Codereviewer Dataset
	Experimental Setting
	Evaluation Metrics
	Ablation Study
	Compared to Other Methods

	Code Review in Practice
	Internal Dataset Curation
	Evaluation Metrics
	Experiment Results
	Performance on Real-World Deployment

	Conclusion
	Statements
	Ethics Statement
	Reproducibility Statement

	Appendix: Dataset Details
	The Codereviewer Dataset
	The Internal Dataset

	Metric Details
	Production Metrics

