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ABSTRACT

We empirically show that the test error of deep networks can be estimated by
training the same architecture on the same training set but with two different runs
of Stochastic Gradient Descent (SGD), and then measuring the disagreement rate
between the two networks on unlabeled test data. This builds on — and is a
stronger version of — the observation in Nakkiran & Bansal (2020), which re-
quires the runs to be on separate training sets. We further theoretically show that
this peculiar phenomenon arises from the well-calibrated nature of ensembles of
SGD-trained models. This finding not only provides a simple empirical measure
to directly predict the test error using unlabeled test data, but also establishes a
new conceptual connection between generalization and calibration.

1 INTRODUCTION

Consider the following intriguing observation made in Nakkiran & Bansal (2020). Train two net-
works of the same architecture to zero training error on two independently drawn datasets S1 and
S2 of the same size. Both networks would achieve a test error (or equivalently, a generalization
gap) of about the same value, denoted by ε. Now, take a fresh unlabeled dataset U and measure the
rate of disagreement of the predicted label between these two networks on U . Based on the triangle
inequality, one can quickly surmise that this disagreement rate could lie anywhere between 0 and 2ε.
However, across various training set sizes and for various models like neural networks, kernel SVMs
and decision trees, Nakkiran & Bansal (2020) (or N&B’20 in short) report that the disagreement rate
not only linearly correlates with the test error ε, but nearly equals ε (see first two plots in Fig 1).
What brings about this unusual equality? Resolving this open question from N&B’20 could help us
identify fundamental patterns in how neural networks make errors. That might further shed insight
into generalization and other poorly understood empirical phenomena in deep learning.

Figure 1: GDE on CIFAR-10: The scatter plots of pair-wise model disagreement (x-axis) vs the test
error (y-axis) of the different ResNet18 trained on CIFAR10. The dashed line is the diagonal line
where disagreement equals the test error. Orange dots represent models that use data augmentation.
The first two plots correspond to pairs of networks trained on independent datasets, and in the last
two plots, on the same dataset. The details are described in Sec 3.

In this work, we first identify a stronger observation. Consider two neural networks trained with the
same hyperparameters and the same dataset, but with different random seeds (this could take the
form e.g., of the data being presented in different random orders and/or by using a different random
∗Equal contribution
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initialization of the network weights). We would expect the disagreement rate in this setting to be
much smaller than in N&B’20, since both models see the same data. Yet, this is not the case: we
observe on the SVHN (Netzer et al., 2011), CIFAR-10/100 (Krizhevsky et al., 2009) datasets, and for
variants of Residual Networks (He et al., 2016) and Convolutional Networks (Lin et al., 2013), that
the disagreement rate is still approximately equal to the test error (see last two plots in Fig 1), only
slightly deviating from the behavior in N&B’20. In fact, while N&B’20 show that the disagreement
rate captures significant changes in test error with varying training set sizes, we highlight a much
stronger behavior: the disagreement rate is able to capture even minute variations in the test error
under varying hyperparameters like width, depth and batch size. Furthermore, we show that under
certain training conditions, these properties even hold on many kinds of out-of-distribution data in
the PACS dataset (Li et al., 2017), albeit not on all kinds.

The above observations not only raise deeper conceptual questions about the behavior of deep net-
works but also crucially yield a practical benefit. In particular, our disagreement rate does not require
fresh labeled data (unlike the rate in N&B’20) and rather only requires fresh unlabeled data. Hence,
ours is a more meaningful and practical estimator of test accuracy (albeit, a slightly less accurate
estimate at that). Indeed, unsupervised accuracy estimation is valuable for real-time evaluation of
models when test labels are costly or unavailable to due to privacy considerations (Donmez et al.,
2010; Jaffe et al., 2015). While there are also many other measures that correlate with generalization
without access to even unlabeled test data (Jiang et al., 2018; Yak et al., 2019; Jiang et al., 2020b;a;
Natekar & Sharma, 2020; Unterthiner et al., 2020), these require (a) computing intricate propor-
tionality constants and (b) knowledge of the neural network weights/representations. Disagreement,
however, provides a direct estimate, and works even with a black-box model, which makes it prac-
tically viable when the inner details of the model are unavailable due to privacy concerns.

In the second part of our work, we theoretically investigate these observations. Informally stated,
we prove that if the ensemble learned from different stochastic runs of the training algorithm (e.g.,
across different random seeds) is well-calibrated (i.e., the predicted probabilities are neither over-
confident nor under-confident), then the disagreement rate equals the test error (in expectation over
the training stochasticity). Indeed, such kinds of SGD-trained deep network ensembles are known
to be naturally calibrated in practice (Lakshminarayanan et al., 2017). While we do not prove why
calibration holds in practice, the fact the condition in our theorem is empirically satisfied implies
that our theory offers a valuable insight into the practical generalization properties of deep networks.

Overall, our work establishes a new connection between generalization and calibration via the idea
of disagreement. This has both theoretical and practical implications in understanding generalization
and the effect of stochasticity in SGD. To summarize, our contributions are as follows:

1. We prove that for any stochastic learning algorithm, if the algorithm leads to a well-calibrated
ensemble on a particular data distribution, then the ensemble satisfies the Generalization Dis-
agreement Equality1 (GDE) on that distribution, in expectation over the stochasticity of the al-
gorithm. Notably, our theory is general and makes no restrictions on the hypothesis class, the
algorithm, the source of stochasticity, or the test distributions (which may be different from the
training distribution).

2. We empirically show that for Residual Networks (He et al., 2016), convolutional neural networks
(Lin et al., 2013) and fully connected networks, and on CIFAR-10/100 (Krizhevsky et al., 2009)
and SVHN (Netzer et al., 2011), GDE is nearly satisfied, even on pairs of networks trained
on the same data with different random seeds. This yields a simple method that in practice
accurately estimates the test error using unlabeled data in these settings. We also empirically
show that the corresponding ensembles are well-calibrated (according to our particular definition
of calibration) in practice. We do not, however, theoretically prove why this calibration holds.

3. We present preliminary observations showing that GDE is approximately satisfied even for cer-
tain distribution shifts within the PACS (Li et al., 2017) dataset. This implies that the disagree-
ment rate can be a promising estimator even for out-of-distribution accuracy.

4. We empirically find that different sources of stochasticity in SGD are almost equally effective in
terms of their effect on GDE and calibration of deep models trained with SGD. We also explore
the effect of pre-training on these phenomena.

1Nakkiran & Bansal (2020) refer to this as the Agreement Property, but we use the term Generalization
Disagreement Equality to be more explicit and to avoid confusion regarding certain technical differences.
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2 RELATED WORKS

Understanding and predicting generalization. Conventionally, generalization in deep learning
has been studied through the lens of PAC-learning (Vapnik, 1971; Valiant, 1984). Under this frame-
work, generalization is roughly equivalent to bounding the size of the search space of a learning
algorithm. Representative works in this large area of research include Neyshabur et al. (2014; 2017;
2018); Dziugaite & Roy (2017); Bartlett et al. (2017); Nagarajan & Kolter (2019b;c); Krishnan
et al. (2019). Several works have questioned whether these approaches are truly making progress
toward understanding generalization in overparameterized settings (Belkin et al., 2018; Nagarajan
& Kolter, 2019a; Jiang et al., 2020b; Dziugaite et al., 2020). Subsequently, recent works have pro-
posed unconventional ways to derive generalization bounds (Negrea et al., 2020; Zhou et al., 2020;
Garg et al., 2021). Indeed, even our disagreement-based estimate marks a significant departure from
complexity-based approaches to generalization bounds. Of particular relevance here is Garg et al.
(2021) who also leverage unlabeled data. Their bound requires modifying the original training set
and then performing a careful early stopping, and is thus inapplicable to (and becomes vacuous
for) interpolating models. While our estimate applies to the original training process, our guarantee
applies only if we know a priori that the training procedure results in well-calibrated ensembles.
Finally, it is worth noting that much older work (Madani et al., 2004) has provided bounds on the
test error as a function of (rather than based on a “direct estimate” of) disagreement. However, these
require the two runs to be on independent training sets.

While there has been research in unsupervised accuracy estimation (Donmez et al., 2010; Platanios
et al., 2017; Jaffe et al., 2015; Steinhardt & Liang, 2016; ElSahar & Gallé, 2019; Schelter et al.,
2020; Chuang et al., 2020), the focus has been on out-of-distribution and/or specialized learning
settings. Hence, they require specialized training algorithms or extra information about the tasks.
Concurrent work Chen et al. (2021) here has made similar discoveries regarding estimating accuracy
via agreement, although their focus is more algorithmic than ours. We discuss this in Appendix A.

Reducing churn. A line of work has looked at reducing disagreement (termed there as “churn”)
to make predictions more reproducible and easy-to-debug. (Milani Fard et al., 2016; Jiang et al.,
2021; Bhojanapalli et al., 2021). Bhojanapalli et al. (2021) further analyze how different sources of
stochasticity can lead to non-trivial disagreement rates.

Calibration. Calibration of a statistical model is the property that the probability obtained by the
model reflects the true likelihood of the ground truth (Murphy & Epstein, 1967; Dawid, 1982).
A well-calibrated model provides an accurate confidence on its prediction which is paramount for
high-stake decision making and interpretability. In the context of deep learning, several works (Guo
et al., 2017; Lakshminarayanan et al., 2017; Fort et al., 2019; Wu & Gales, 2021; Bai et al., 2021;
Mukhoti et al., 2021) have found that while individual neural networks are usually over-confident
about their predictions, ensembles of several independently and stochastically trained models tend
to be naturally well-calibrated. In particular, two types of ensembles have typically been studied,
depending on whether the members are trained on independently sampled data also called bagging
(Breiman, 1996) or on the same data but with different random seeds (e.g., different random initial-
ization and data ordering) also called deep ensembles (Lakshminarayanan et al., 2017). The latter
typically achieves better accuracy and calibration (Nixon et al., 2020).

On the theoretical side, Allen-Zhu & Li (2020) have studied why deep ensembles outperform in-
dividual models in terms of accuracy. Other works studied post-processing methods of calibration
(Kumar et al., 2019), established relationships to confidence intervals (Gupta et al., 2020), and de-
rived upper bounds on calibration error either in terms of sample complexity or in terms of the
accuracy (Bai et al., 2021; Ji et al., 2021; Liu et al., 2019; Jung et al., 2020; Shabat et al., 2020).

The discussion in our paper complements the above works in multiple ways. First, most works
within the machine learning literature focus on top-class calibration, which is concerned only with
the confidence level of the top predicted class for each point. The theory in our work, however, re-
quires looking at the confidence level of the model aggregated over all the classes. We then empiri-
cally show that SGD ensembles are well-calibrated even in this class-aggregated sense. Furthermore,
we carefully investigate what sources of stochasticity result in well-calibrated ensembles. Finally,
we provide an exact formal relationship between generalization and calibration via the notion of
disagreement, which is fundamentally different from existing theoretical calibration bounds.
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Empirical phenomena in deep learning. Broadly, our work falls in the area of research on identi-
fying & understanding empirical phenomena in deep learning (Sedghi et al., 2019), especially in the
context of overparameterized models that interpolate. Some example phenomena include the gen-
eralization puzzle (Zhang et al., 2017; Neyshabur et al., 2014), double descent (Belkin et al., 2019;
Nakkiran et al., 2020), and simplicity bias (Kalimeris et al., 2019; Arpit et al., 2017). As stated ear-
lier, we particularly build on N&B’20’s empirical observation of the Generalization Disagreement
Equality (GDE) in pairs of models trained on independently drawn datasets. They provide a proof
of GDE for 1-nearest-neigbhor classifiers under specific distributional assumptions, while our result
is different, and much more generic. Due to space constraints, we defer a detailed discussions of the
relationship between our works in Appendix A.

3 DISAGREEMENT TRACKS GENERALIZATION ERROR

We demonstrate on various datasets and architectures that the test error can be estimated directly by
training two runs of SGD and measuring their disagreement on an unlabeled dataset. Importantly, we
show that the disagreement rate can track even minute variations in the test error induced by varying
hyperparameters. Remarkably, this estimate does not require an independent labeled dataset.

Notations. Let h : X → [K] denote a hypothesis from a hypothesis space H, where [K] denotes
the set of K labels {0, 1, . . . ,K − 1}. Let D be a distribution over X × [K]. We will use (X,Y ) to
denote the random variable with the distribution D , and (x, y) to denote specific values it can take.
Let A be a stochastic training algorithm that induces a distribution HA over hypotheses in H. Let
h, h′ ∼ HA denote random hypotheses output by two independent runs of the training procedure.
We note that the stochasticity inA could arise from any arbitrary source. This may arise from either
the fact that each h is trained on a random dataset drawn from D or even a completely different
distribution D ′. The stochasticity could also arise from merely a different random initialization or
data ordering. Next, we denote the test error and disagreement rate for hypotheses h, h′ ∼HA by:

TestErrD(h) , ED [1[h(X) 6= Y ]] and DisD(h, h′) , ED [1[h(X) 6= h′(X)]] . (1)

Let h̃ denote the “ensemble” corresponding to h ∼HA. In particular, define

h̃k(x) , EHA [1[h(x) = k]] (2)

to be the probability value (between [0, 1]) given by the ensemble h̃ for the kth class. Note that the
output of h̃ is not a one-hot value based on plurality vote.

Main Experimental Setup. We report our main observations on variants of Residual Networks,
convolutional neural networks and fully connected networks trained with Momentum SGD on
CIFAR-10/100, and SVHN. Each variation of the ResNet has a unique hyperparameter configura-
tion (See Appendix C.1 for details) and all models are (near) interpolating. For each hyperparameter
setting, we train two copies of models which experience two independent draws from one or more
sources of stochasticity, namely 1. random initialization (denoted by Init) and/or 2. ordering of
a fixed training dataset (Order) and/or 3. different (disjoint) training data (Data). We will use the
term Diff to denote whether a source of stochasticity is “on”. For example, DiffInit means that
the two models have different initializations but see the same data in the same order. In DiffOrder,
models share the same initialization and see the same data, but in different orders. In DiffData,
the models share the initialization, but see different data. In AllDiff, the two models differ in both
data and in initialization (If the two models differ in data, the training data is split into two disjoint
halves to ensure no overlap.). The disagreement rate between a pair of models is computed as the
proportion of the test data on which the (one-hot) predictions of the two models do not match.

Observations. We provide scatter plots of test error of the first run (y) vs disagreement error
between the two runs (x) for CIFAR-10, SVHN and CIFAR-100 in Figures 1, 2 and 3 respectively
(and for CNNs on CIFAR-10 in Fig 10). Naively, we would expect these scatter plots to be arbitrarily
distributed anywhere between y = 0.5x (if the errors of the two models are disjoint) and x = 0 (if the
errors are identical). However, in all these scatter plots, we observe that test error and disagreement
error lie very close to the diagonal line y = x across different sources of stochasticity, while only
slightly deviating in DiffInit/Order. In particular, in AllDiff and DiffData, the points typically
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Figure 2: GDE on SVHN: The scatter plots of pair-wise model disagreement (x-axis) vs the test
error (y-axis) of the different ResNet18 trained on SVHN.

Figure 3: GDE on CIFAR-100: The scatter plots of pair-wise model disagreement (x-axis) vs the
test error (y-axis) of the different ResNet18 trained on CIFAR100.

Figure 4: GDE on 2k subset of CIFAR-10: The scatter plots of pair-wise model disagreement
(x-axis) vs the test error (y-axis) of the different ResNet18 trained on only 2000 points of CIFAR10.

lie between y = x and y = 0.9x while in DiffInit and DiffOrder, the disagreement rate drops
slightly (since the models are trained on the same data) and so the points typically lie between y = x
and y = 1.3x. We quantify correlation via the R2 coefficient and Kendall’s Ranking coefficient
(tau) reported on top of each scatter plot. Indeed, we observe that these quantities are high in all the
settings, generally above 0.85. If we focus only on the data-augmented or the non-data-augmented
models, R2 tends to range a bit lower, around 0.7 and τ around 0.6 (see Appendix D.8).

The positive observations about DiffInit and DiffOrder are surprising for two reasons. First,
when the second network is trained on the same dataset, we would expect its predictions to be
largely aligned with the original network — naturally, the disagreement rate would be negligible,
and the equality observed in N&B’20 would no longer hold. Furthermore, since we calculate the dis-
agreement rate without using a fresh labeled dataset, we would expect disagreement to be much less
predictive of test error when compared to N&B’20. Our observations defy both these expectations.

There are a few more noteworthy aspects. In the low data regime where the test error is high, we
would expect the models to be much less well-behaved. However, consider the CIFAR-100 plots
(Fig 3), and additionally, the plots in Fig 4 where we train on CIFAR-10 with just 2000 training
points. In both settings the network suffers an error as high as 0.5 to 0.6. Yet, we observe a behavior
similar to the other settings (albeit with some deviations) — the scatter plot lies in y = (1 ± 0.1)x
(for AllDiff and DiffData) and in y = (1 ± 0.3)x (for DiffInit/Order), and the correlation
metrics are high. Similar results were established in N&B’20 for AllDiff and DiffData.
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Finally, it is important to highlight that each scatter plot here corresponds to varying certain hyper-
parameters that cause only mild variations in the test error. Yet, the disagreement rate is able to
capture those variations in the test error. This is a stronger version of the finding in N&B’20 that
disagreement captures larger variations under varying dataset size.

Effect of distribution shift and pre-training We study these observations in the context of the
PACS dataset, a popular domain generalization benchmark with four distributions, Photo (P in
short), Art (A), Cartoon (C) and Sketch (S), all sharing the same 7 classes. On any given domain,
we train pairs of ResNet50 models. Both models are either randomly initialized or ImageNet (Deng
et al., 2009) pre-trained. We then evaluate their test error and disagreement on all the domains. As
we see in Fig 5, the surprising phenomenon here is that there are many pairs of source-target domains
where GDE is approximately satisfied despite the distribution shift. Notably, for pre-trained mod-
els, with the exception of three pairs of source-target domains (namely, (P, C), (P, S), (S, P)), GDE
is satisfied approximately. The other notable observation is that under distribution shift, pre-trained
models can satisfy GDE, and often better than randomly initialized models. This is counter-intuitive,
since we would expect pre-trained models to be strongly predisposed towards specific kinds of fea-
tures, resulting in models that disagree rarely. See Appendix C.1 for hyperparameter details.
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Figure 5: GDE under distribution shift: The scatter plots of pair-wise model disagreement (x-
axis) vs the test error (y-axis) of the different ResNet50 trained on PACS. Each plot corresponds to
models evaluated on the domain specified in the title. The marker shapes indicate the source domain.

4 CALIBRATION IMPLIES THE GDE

We now formalize our main observation, like it was formalized in N&B’20 (although with minor
differences to be more general). In particular, we define “the Generalization Disagreement Equality”
as the phenomenon that the test error equals the disagreement rate in expectation over h ∼HA.
Definition 4.1. The stochastic learning algorithm A satisfies the Generalization Disagreement
Equality (GDE) on the distribution D if,

Eh,h′∼HA [DisD(h, h′)] = Eh∼HA [TestErrD(h)]. (3)

Note that the definition does not imply that the equality holds for each pair of h, h′ (which we
observed empirically). However, for simplicity, we will stick to the above “equality in expectation”
as it captures the essence of the underlying phenomenon while being easier to analyze. To motivate
why proving this equality is non-trivial, let us look at the most natural hypothesis that N&B’20
identify. Imagine that all datapoints (x, y) are one of two types: (a) the datapoint is so “easy” that
w.p. 1 over h ∼HA, h(x) = y (b) the datapoint is so “hard” that h(x) corresponds to picking a label
uniformly at random. In such a case, with a simple calculation, one can see that the above equality
would hold not just in expectation over D , but even point-wise: for each x, the disagreement on x
in expectation over HA would equal the error on x in expectation over HA (namely (K − 1)/K if
x is hard, and 0 if easy). Unfortunately, N&B’20 show that in practice, a significant fraction of the
points have disagreement larger than error and another fraction have error larger than disagreement
(see Appendix D.4). Surprisingly though, there is a delicate balance between these two types of
points such that overall these disparities cancel each other out giving rise to the GDE.

What could create this delicate balance? We identify that this can arise from the fact that the ensem-
ble h̃ is well-calibrated. Informally, a well-calibrated model is one whose output probability for a
particular class (i.e., the model’s “confidence”) is indicative of the probability that the ground truth
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class is indeed that class (i.e., the model’s “accuracy”). There are many ways in which calibration
can be formalized. Below, we provide a particular formalism called class-wise calibration.

Definition 4.2. The ensemble model h̃ satisfies class-wise calibration on D if for any confidence
value q ∈ [0, 1] and for any class k ∈ [K],

p(Y = k | h̃k(X) = q) = q. (4)

Next, we show that if the ensemble is class-wise calibrated on the distribution D , then GDE does
hold on D . Note however that shortly we show a more general result where even a weaker notion
of calibration is sufficient to prove GDE. But since this stronger notion of calibration is easier to
understand, and the proof sketch for this captures the key intuition of the general case, we will focus
on this first in detail. It is worth emphasizing that besides requiring well-calibration on the (test)
distribution, all our theoretical results are general. We do not restrict the hypothesis class (it need
not necessarily be neural networks), or the test/training distribution (they can be different, as long
as calibration holds in the test distribution), or where the stochasticity comes from (it need not
necessarily come from the random seed or the data).

Theorem 4.1. Given a stochastic learning algorithm A, if its corresponding ensemble h̃ satisfies
class-wise calibration on D , then A satisfies the Generalization Disagreement Equality on D .

Proof. (Sketch for binary classification. Details for full multi-class classification are deferred to
App. B.2.) Let Xq correspond to a “confidence level set” in that Xq = {X ∈ X | h̃0(X) = q}.
Our key idea is to show that for a class-wise calibrated ensemble, GDE holds within each confidence
level set i.e., for each q ∈ [0, 1], the (expected) disagreement rate equals test error for the distribution
D restricted to the support Xq . Since X is a combination of these level sets, it automatically follows
that GDE holds over D . It is worth contrasting this proof idea with the easy-hard explanation which
requires showing that GDE holds point-wise, rather than confidence-level-set-wise.

Now, let us calculate the disagreement on Xq . For any fixed x in Xq , the disagreement rate in
expectation over h, h′ ∼HA corresponds to q(1−q)+(1−q)q = 2q(1−q). This is simply the sum
of the probability of the events that h predicts 0 and h′ predicts 1, and vice versa. Next, we calculate
the test error on Xq . At any x, the expected error equals h̃1−y(x). From calibration, we have that
exactly q fraction of Xq has the true label 0. On these points, the error rate is h̃1(x) = 1− q. On the
remaining 1− q fraction, the true label is 1, and hence the error rate on those is h̃0(x) = q. The total
error rate across both the class 0 and class 1 points is therefore q(1− q)+(1− q)q = 2q(1− q).

Intuition. Even though the proof is fairly simple, it may be worth demystifying it a bit further. In
short, a calibrated classifier “knows” how much error it commits in different parts of the distribu-
tion i.e., over points where it has a confidence of q, it commits an expected error of 1 − q. With
this in mind, it is easy to see why it is even possible to predict the test error without knowing the
test labels: we can simply average the confidence values of the ensemble to estimate test accuracy.
The expected disagreement error provides an alternative but less obvious route towards estimating
test performance. The intuition is that within any confidence level set of a calibrated ensemble, the
marginal distribution over the ground truth labels becomes identical to the marginal distribution over
the one-hot predictions sampled from the ensemble. Due to this, measuring the expected disagree-
ment of the ensemble against itself becomes equivalent to measuring the expected disagreement of
the ensemble against the ground truth. The latter is nothing but the ensemble’s test error.

What is still surprising though is that in practice, we are able to get away with predicting test error
by computing disagreement for a single pair of ensemble members — and this works even though an
ensemble of two models is not well-calibrated, as we will see later in Table 1. This suggests that the
variance of the disagreement and test error (over the stochasticity of HA) must be unusually small;
indeed, we will empirically verify this in Table 1. In Corollary B.1.1, we present some preliminary
discussion on why the variance could be small, leaving further exploration for future work.

4.1 A MORE GENERAL RESULT: CLASS-WISE TO CLASS-AGGREGATED CALIBRATION

We will now show that GDE holds under a more relaxed notion of calibration, which holds “on aver-
age” over the classes rather than individually for each class. Indeed, we demonstrate in a later section
(see Appendix D.7) that this averaged notion of calibration holds more gracefully than class-wise
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calibration in practice. Recall that in class-wise calibration we look at the conditional probability
p(Y = k | h̃k(X) = q) for each k. Here, we will take an average of these conditional probabilities
by weighting the kth probability by p(h̃k(X) = q). The result is the following definition:

Definition 4.3. The ensemble h̃ satisfies class-aggregated calibration on D if for each q ∈ [0, 1],∑K−1
k=0 p(Y =k,h̃k(X)=q)∑K−1

k=0 p(h̃k(X)=q)
= q. (5)

Intuition. The denominator here corresponds to the points where some class gets confidence value
q; the numerator corresponds to the points where some class gets confidence value q and that class
also happens to be the ground truth. Note however both the proportions involve counting a point x
multiple times if h̃k(x) = q for multiple classes k. In Appendix B.5, we discuss the relation between
this new notion of calibration to existing definitions. In Appendix B.1 Theorem B.1, we show that
the above weaker notion of calibration is sufficient to show GDE. The proof of this theorem is a non-
trivial generalization of the argument in the proof sketch of Theorem 4.1, and Theorem 4.1 follows
as a straightforward corollary since class-wise calibration implies class-aggregated calibration.

Deviation from calibration. For generality, we would like to consider ensembles that do not satisfy
class-aggregated calibration precisely. How much can a deviation from calibration hurt GDE? To
answer this question, we quantify calibration error as follows:

Definition 4.4. The Class Aggregated Calibration Error (CACE) of an ensemble h̃ on D is

CACED(h̃) ,
∫
q∈[0,1]

∣∣∣∑k p(Y =k,h̃k(X)=q)∑
k p(h̃k(X)=q)

− q
∣∣∣ ·∑k p(h̃k(X) = q)dq. (6)

In other words, for each confidence value q, we look at the absolute difference between the left
and right hand sides of Definition 4.3, and then weight the difference by the proportion of instances
where a confidence value of q is achieved. It is worth keeping in mind that, while the absolute
difference term lies in [0, 1], the weight terms alone would integrate to a value of K. Therefore,
CACED(h̃) can lie anywhere in the range [0,K]. Note that CACE is different from the “expected
calibration error (ECE)” (Naeini et al., 2015; Guo et al., 2017) commonly used in the machine
learning literature, which applies only to top-class calibration.

We show below that GDE holds approximately when the calibration error is low (and naturally, as a
special case, holds perfectly when calibration error is zero). The proof is deferred to Appendix B.3.

Theorem 4.2. For any algorithm A, |EHA [DisD(h, h′)]− EHA [TestErrD(h)]| ≤ CACED(h̃).

Remark. All our results hold more generally for any probabilistic classifier h̃. For example, if h̃was
an individual calibrated neural network whose predictions are given by softmax probabilities, then
GDE holds for the neural network itself: the disagreement rate between two independently sampled
one-hot predictions from that network would equal the test error of the softmax predictions.

5 EMPIRICAL ANALYSIS OF CLASS-AGGREGATED CALIBRATION

Empirical evidence for theory. As stated in the introduction, it is a well-established observation
that ensembles of SGD trained models provide good confidence estimates (Lakshminarayanan et al.,
2017). However, typically the output of these ensembles correspond to the average softmax proba-
bilities of the individual models, rather than an average of the top-class predictions. Our theory is
however based upon the latter type of ensembles. Furthermore, there exists many different evalua-
tion metrics for calibration in literature, while we are particularly interested in the precise definition
we have in Definition 4.3. We report our observations keeping these considerations in mind.

In Figure 6, 7 and 8, we show that SGD ensembles do nearly satisfy class-aggregated calibration
for all the sources of stochasticity we have considered. In each plot, we report the conditional
probability in the L.H.S of Definition 4.3 along the y axis and the confidence value q along the x
axis. We observe that the plot closely follows the x = y line. In fact, we observe that calibration
holds across different sources of stochasticity. We discuss this aspect in more detail in Appendix B.6.
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Figure 6: Calibration on CIFAR10: Calibration plot of different ensembles of 100 ResNet18
trained on CIFAR10. The error bar represents one bootstrapping standard deviation (most are ex-
tremely small). The estimated CACE for each scenario is shown in Table 1.

Test Error Disagreement Gap CACE(100) CACE(5) CACE(2) ECE
AllDiff 0.336± 0.015 0.348± 0.015 0.012 0.0437 0.2064 0.4244 0.0197
DiffData 0.341± 0.020 0.354± 0.020 0.013 0.0491 0.2242 0.4411 0.0267
DiffInit 0.337± 0.017 0.307± 0.022 0.030 0.0979 0.2776 0.4495 0.0360
DiffOrder 0.335± 0.017 0.302± 0.020 0.033 0.1014 0.2782 0.4594 0.0410

Table 1: Calibration error vs. deviation from GDE for CIFAR10: Estimated CACE for en-
sembles with different number of models (denoted in the superscript) for ResNet18 on CIFAR10
with 10000 training examples. Test Error, Disagreement statistics and ECE are averaged over 100
models. Here ECE is the standard measure of top-class calibration error, provided for completeness.

For a more precise quantification of how well calibration captures GDE, we also look at our notion
of calibration error, namely CACE, which also acts as an upper bound on the difference between
the test error and the disagreement rate. We report CACE averaged over 100 models in Table 1
(for CIFAR-10) and Table 3 (for CIFAR-100). Most importantly, we observe that the CACE across
different stochasticity settings correlates with the actual gap between the test error and the disagree-
ment rate. In particular, CACE for AllDiff/DiffData are about 2 to 3 times smaller than that for
DiffInit/Order, paralleling the behavior of |TestErr− Dis| in these settings.

Caveats. While we believe our work provides a simple theoretical insight into how calibration
leads to GDE, there are a few gaps that we do not address. First, we do not provide a theoretical
characterization of when we can expect good calibration (and hence, when we can expect GDE).
Therefore, if we do not know a priori that calibration holds in a particular setting, we would need
labeled test data to verify if CACE is small. This would defeat the purpose of using unlabeled-
data-based disagreement to measure the test error. (Thankfully, in in-distribution settings, it seems
like we may be able to assume calibration for granted.) Next, our theory sheds insight into why
GDE holds in expectation over training stochasticity. However, it is surprising that in practice the
disagreement rate (and the test error) for a single pair of models lies close to this expectation. This
occurs even though two-model-ensembles are poorly calibrated (see Tables 1 and 3). Finally, while
CACE is an upper bound on the deviation from GDE, in practice CACE is only a loose bound, which
could either indicate a mere lack of data/models or perhaps that our theory can be further refined.

6 CONCLUSION

Building on Nakkiran & Bansal (2020), we observe that remarkably, two networks trained on the
same dataset, tend to disagree with each other on unlabeled data nearly as much as they disagree
with the ground truth. We’ve also theoretically shown that this property arises from the fact that
SGD ensembles are well-calibrated. Broadly, these findings contribute to the larger pursuit of iden-
tifying and understanding empirical phenomena in deep learning. Future work could shed light on
why different sources of stochasticity surprisingly have a similar effect on calibration. It is also
important for future work in uncertainty estimation and calibration to develop a precise and ex-
haustive characterization of when calibration and GDE would hold. On a different note, we hope
our work inspires other novel ways to leverage unlabeled data to estimate generalization and also
further cross-pollination of ideas between research in generalization and calibration.
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Hady ElSahar and Matthias Gallé. To annotate or not? predicting performance drop under do-
main shift. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-
IJCNLP 2019. Association for Computational Linguistics, 2019.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019.

Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, and Zachary C. Lipton. RATT: leveraging
unlabeled data to guarantee generalization. 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. Distribution-free binary classification:
prediction sets, confidence intervals and calibration. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Ariel Jaffe, Boaz Nadler, and Yuval Kluger. Estimating the accuracies of multiple classifiers without
labeled data. In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 20155, JMLR Workshop and Conference Proceedings, 2015.

Ziwei Ji, Justin D. Li, and Matus Telgarsky. Early-stopped neural networks are consistent. 2021.
URL https://arxiv.org/abs/2106.05932.

Heinrich Jiang, Harikrishna Narasimhan, Dara Bahri, Andrew Cotter, and Afshin Rostamizadeh.
Churn reduction via distillation. arXiv preprint arXiv:2106.02654, 2021.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap
in deep networks with margin distributions. arXiv preprint arXiv:1810.00113, 2018.

Yiding Jiang, Pierre Foret, Scott Yak, Daniel M Roy, Hossein Mobahi, Gintare Karolina Dziugaite,
Samy Bengio, Suriya Gunasekar, Isabelle Guyon, and Behnam Neyshabur. Neurips 2020 compe-
tition: Predicting generalization in deep learning. arXiv preprint arXiv:2012.07976, 2020a.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020b. URL https://openreview.net/forum?id=SJgIPJBFvH.

Christopher Jung, Changhwa Lee, Mallesh M. Pai, Aaron Roth, and Rakesh Vohra. Moment multi-
calibration for uncertainty estimation. 2020. URL https://arxiv.org/abs/2008.08037.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin L. Edelman, Tristan Yang, Boaz
Barak, and Haofeng Zhang. SGD on neural networks learns functions of increasing complex-
ity. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 2019.

Dilip Krishnan, Hossein Mobahi, Behnam Neyshabur, Peter Bartlett, Dawn Song, and Nati Srebro.
Understanding and improving generalization in deep learning. ICML 2019 Workshop, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, 2017.

11

https://arxiv.org/abs/2106.05932
https://openreview.net/forum?id=SJgIPJBFvH
https://arxiv.org/abs/2008.08037


Published as a conference paper at ICLR 2022

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. In IEEE International Conference on Computer Vision, ICCV 2017, 2017.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Lydia T. Liu, Max Simchowitz, and Moritz Hardt. The implicit fairness criterion of unconstrained
learning. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
Proceedings of Machine Learning Research, 2019.

Omid Madani, David M. Pennock, and Gary William Flake. Co-validation: Using model disagree-
ment on unlabeled data to validate classification algorithms. In Advances in Neural Information
Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, 2004.

Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and Maya Gupta. Launch and iterate: Reducing
prediction churn. Advances in Neural Information Processing Systems, 29:3179–3187, 2016.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip H. S. Torr, and Yarin Gal. Determin-
istic neural networks with appropriate inductive biases capture epistemic and aleatoric uncertainty.
CoRR, abs/2102.11582, 2021. URL https://arxiv.org/abs/2102.11582.

Allan H Murphy and Edward S Epstein. Verification of probabilistic predictions: A brief review.
Journal of Applied Meteorology and Climatology, 6(5):748–755, 1967.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI Press, 2015.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain general-
ization in deep learning. In Advances in Neural Information Processing Systems 32, 2019a.

Vaishnavh Nagarajan and J Zico Kolter. Deterministic pac-bayesian generalization bounds for deep
networks via generalizing noise-resilience. arXiv preprint arXiv:1905.13344, 2019b.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv preprint arXiv:1901.01672, 2019c.

Preetum Nakkiran and Yamini Bansal. Distributional generalization: A new kind of generalization.
abs/2009.08092, 2020. URL https://arxiv.org/abs/2009.08092.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In 8th International Conference on
Learning Representations, ICLR 2020, 2020.

Parth Natekar and Manik Sharma. Representation based complexity measures for predicting gener-
alization in deep learning. 2020. URL https://arxiv.org/abs/2012.02775.

Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-
Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.
arXiv preprint arXiv:1810.08591, 2018.

Jeffrey Negrea, Gintare Karolina Dziugaite, and Daniel Roy. In defense of uniform convergence:
Generalization via derandomization with an application to interpolating predictors. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020. PMLR, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring gener-
alization in deep learning. In Advances in Neural Information Processing Systems 30, NeurIPS
2017, 2017.

12

https://arxiv.org/abs/2102.11582
https://arxiv.org/abs/2009.08092
https://arxiv.org/abs/2012.02775


Published as a conference paper at ICLR 2022

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-bayesian
approach to spectrally-normalized margin bounds for neural networks. International Conference
on Learning Representations (ICLR), 2018.

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measur-
ing calibration in deep learning. In CVPR Workshops, volume 2, 2019.

Jeremy Nixon, Balaji Lakshminarayanan, and Dustin Tran. Why are bootstrapped deep ensembles
not better? 2020. URL https://openreview.net/forum?id=dTCir0ceyv0.

Emmanouil A. Platanios, Hoifung Poon, Tom M. Mitchell, and Eric Horvitz. Estimating accuracy
from unlabeled data: A probabilistic logic approach. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 2017.

Sebastian Schelter, Tammo Rukat, and Felix Bießmann. Learning to validate the predictions of
black box classifiers on unseen data. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, 2020.

Hanie Sedghi, Samy Bengio, Kenji Hata, Aleksander Madry, Ari Morcos, Behnam Neyshabur,
Maithra Raghu, Ali Rahimi, Ludwig Schmidt, and Ying Xiao. Identifying and understanding
deep learning phenomena. ICML 2019 Workshop, 2019.

Eliran Shabat, Lee Cohen, and Yishay Mansour. Sample complexity of uniform convergence for
multicalibration. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

Jacob Steinhardt and Percy Liang. Unsupervised risk estimation using only conditional indepen-
dence structure. In Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, 2016.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya O. Tolstikhin. Pre-
dicting neural network accuracy from weights. 2020. URL https://arxiv.org/abs/2002.
11448.

Juozas Vaicenavicius, David Widmann, Carl R. Andersson, Fredrik Lindsten, Jacob Roll, and
Thomas B. Schön. Evaluating model calibration in classification. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, AISTATS 2019, Proceedings of Machine Learning
Research, 2019.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Vladimir Naumovich Vapnik. Chervonenkis: On the uniform convergence of relative frequencies of
events to their probabilities. 1971.

David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class classifica-
tion: A unifying framework. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, pp. 12236–12246,
2019.

Xixin Wu and Mark Gales. Should ensemble members be calibrated? arXiv preprint
arXiv:2101.05397, 2021.

Scott Yak, Javier Gonzalvo, and Hanna Mazzawi. Towards task and architecture-independent gen-
eralization gap predictors. 2019. URL http://arxiv.org/abs/1906.01550.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001).

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. 2017.

Lijia Zhou, Danica J. Sutherland, and Nati Srebro. On uniform convergence and low-norm inter-
polation learning. In Advances in Neural Information Processing Systems 33, NeurIPS 2020,
2020.

13

https://openreview.net/forum?id=dTCir0ceyv0
https://arxiv.org/abs/2002.11448
https://arxiv.org/abs/2002.11448
http://arxiv.org/abs/1906.01550


Published as a conference paper at ICLR 2022

A RELATED WORK

Here we provide a more detailed discussion of some related work. First we discuss how our results
are distinct from and/or complement their other relevant findings. First, N&B’20 provide a proof of
GDE specific to 1-Nearest Neighbor models trained on two independent datasets. Our result does
not restrict the hypothesis class, the algorithm or its stochasticity. Second, N&B’20 identify a notion
they term as “feature calibration” which can be thought of as a generalized version of calibration.
However, the instantiations of feature calibration that they empirically study are significantly dif-
ferent from the standard notion we study. Furthermore, they treat GDE and feature calibration as
independent phenomena. Conversely, we show that calibration in the standard sense implies GDE.
Finally, in their Appendix D.7.1, N&B’20 do report studies of ensembles where the members are
trained on the same data. But this is in an altogether independent context — the GDE-related exper-
iments in N&B’20 are all reported only on ensembles of members trained on different data. Hence,
overall, their empirical results do not imply our GDE results.

In a concurrent work, Chen et al. (2021) make similar discoveries regarding estimating accuracy
via agreement by developing a sophisticated ensemble-learning algorithm and make connections to
calibration. Overall, their focus is more algorithmic, while our focus is primarily on understanding
the nature of this phenomenon. Furthermore, in comparison to all these works which focus on
out-of-distribution settings, since we focus on the in-distribution setting, we are able to identify
a much simpler approach that works with vanilla-trained blackbox models e.g., we examine the
effects of different kinds of stochasticity, we introduce ensembles only as a vehicle to understand
the phenomenon theoretically (rather than an algorithmic object), and we prove how GDE holds
under certain novel notions of calibration weaker than the existing ones.

B APPENDIX: ADDITIONAL THEORETICAL DISCUSSION

B.1 PROOF OF THEOREM B.1

We will now prove Theorem B.1 which states that if the ensemble h̃ satisfies class-aggregated cali-
bration, then the expected test error equals the expected disagreement rate.

The basic intuition behind why class-aggregated calibration implies GDE is similar to the argument
for class-wise calibration — we can similarly argue that within a confidence level set, the distribution
over the predicted classes matches the distribution over the ground truth labels; therefore, measuring
disagreement of the ensemble against the ensemble itself boils down to measuring disagreement
against the ground truth. However, the confidence level sets here can involve counting the same data
point multiple times, and this nuance needs to be handled carefully as can be seen from the proof in
the appendix.

Theorem B.1. Given a stochastic learning algorithm A, if its corresponding ensemble h̃ satisfies
class-aggregated calibration (Definition 4.3) on D , then A satisfies GDE on D (Definition 4.1).

Proof. Before we delve into the details of the proof, we will outline the high-level proof idea which
is similar to that proof sketch presented in Section 4. First, we express the expected test error in
terms of an integral over the confidence values (Eq 23) and then plug in the definition for class-
aggregated calibration to get Eq 25. For expected disagreement rate, we can analogously express it
as an integral over the confidence values, because the models are independent and the expectation
naturally produces the confidence values. Note that the calibration assumption is not used for deriv-
ing the expected disagreement rate and the final result (Eq 44) is equal to the expected test error (Eq
25), which completes our proof.

We’ll first simplify the expected test error and then proceed to simplifying the expected disagreement
rate to the same quantity.

Test Error Recall that the expected test error (which we will denote as ETE for short) corresponds
to EHA [p(h(X) 6= Y | h)].

ETE , Eh∼HA [p(h(X) 6= Y | h)] (7)
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= Eh∼HA

[
E(X,Y )∼D [1[h(X) 6= Y ]]

]
(8)

= E(X,Y )∼D [EHA [1[h(X) 6= Y ]]] (exchanging expectations by Fubini’s theorem) (9)

= E(X,Y )∼D

[
1− h̃Y (X)

]
. (10)

For our further simplifications, we’ll explicitly deal with integrals rather than expectations, so we
get,

ETE =

K−1∑
k=0

∫
x

(1− h̃k(x))p(X = x, Y = k)dx. (11)

We’ll also introduce h̃(X) as a r.v. as,

ETE =

∫
q∈∆K

K−1∑
k=0

∫
x

(1− h̃k(x))p(X = x, Y = k, h̃(X) = q)dxdq. (12)

Over the next few steps, we’ll get rid of the integral over x. First, splitting the joint distribution over
the three r.v.s by conditioning on the latter two,

ETE =

∫
q∈∆K

K−1∑
k=0

p(Y = k, h̃(X) = q)

∫
x

(1− h̃k(x)︸ ︷︷ ︸
=qk

)p(X = x | Y = k, h̃(X) = q)dxdq (13)

=

∫
q∈∆K

K−1∑
k=0

p(Y = k, h̃(X) = q)

∫
x

(1− qk)︸ ︷︷ ︸
constant w.r.t

∫
x

p(X = x | h̃(X) = q, Y = k)dxdq

(14)

=

∫
q∈∆K

K−1∑
k=0

p(Y = k, h̃(X) = q)(1− qk)
∫
x

p(X = x | h̃(X) = q, Y = k)dx︸ ︷︷ ︸
=1

dq (15)

=

∫
q∈∆K

K−1∑
k=0︸ ︷︷ ︸

swap

p(Y = k, h̃(X) = q)(1− qk)dq. (16)

=

K−1∑
k=0

∫
q∈∆K

p(Y = k, h̃(X) = q)(1− qk)dq. (17)

(18)

In the next few steps, we’ll simplify the integral over q by marginalizing over all but the kth dimen-
sion. First, we rewrite the joint distribution of h̃(X) in terms of its K components. For any k, let
h̃−k(X) and q−k denote theK−1 dimensions of both vectors excluding their kth dimension. Then,

ETE =

K−1∑
k=0

∫
qk

∫
q−k

p(h̃−k(X) = q−k | Y = k, h̃k(X) = qk) p(Y = k, h̃k(X) = qk)(1− qk)︸ ︷︷ ︸
constant w.r.t

∫
q−k

dq−kdqk

(19)

=

K−1∑
k=0

∫
qk

p(Y = k, h̃k(X) = qk)(1− qk)
∫
q−k

p(h̃−k(X) = q−k | Y = k, h̃k(X) = qk)dq−k︸ ︷︷ ︸
=1

dqk

(20)

=

K−1∑
k=0

∫
qk

p(Y = k, h̃k(X) = qk)(1− qk)dqk. (21)

15



Published as a conference paper at ICLR 2022

Rewriting qk as just q,

ETE =

K−1∑
k=0

∫
q∈[0,1]︸ ︷︷ ︸

swap

p(Y = k, h̃k(X) = q)(1− q)dq (22)

=

∫
q∈[0,1]

K−1∑
k=0

p(Y = k, h̃k(X) = q)(1− q)dq. (23)

Finally, we have from the calibration in aggregate assumption that
∑K−1

k=0 p(Y = k, h̃k(X) = q) =

q
∑K−1

k=0 p(h̃k(X) = q) (Definition 4.3). So, applying this, we get

=

∫
q∈[0,1]

q

K−1∑
k=0

p(h̃k(X) = q)(1− q)dq. (24)

Rearranging,

ETE =

∫
q∈[0,1]

q(1− q)
K−1∑
k=0

p(h̃k(X) = q)dq. (25)

Disagreement Rate The expected disagreement rate (denoted by EDR in short) is given by the
probability that two i.i.d samples from h̃ disagree with each other over draws of input from D , taken
in expectation over draws from HA. That is,

EDR , Eh,h′∼HA [p(h(X) 6= h′(X) | h, h′)] (26)

= Eh,h′∼HA

[
E(X,Y )∼D [1[h(X) 6= h′(X)]]

]
(27)

= E(X,Y )∼D [Eh,h′∼HA [1[h(X) 6= h′(X)]]] (exchanging expectations by Fubini’s Theorem)
(28)

Over the next few steps, we’ll write this in terms of h̃ rather than h and h′.

EDR =E(X,Y )∼D

[
Eh,h′∼HA

[
K−1∑
k=0

1[h(X) = k] (1− 1[h′(X) = k])

]]
(29)

=E(X,Y )∼D

[
K−1∑
k=0

Eh,h′∼HA [1[h(X) = k] (1− 1[h′(X) = k])]

]
(swapping the expectation and the summation)

(30)

=E(X,Y )∼D

[
K−1∑
k=0

p(h(X) = k | X) (1− p(h′(X) = k | X))

]
(since h and h′ are i.i.d samples from HA)

(31)

=E(X,Y )∼D

[
K−1∑
k=0

h̃k(X)(1− h̃k(X))

]
. (32)

From here, we’ll deal with integrals instead of expectations.

EDR =

∫
x

K−1∑
k=0

h̃k(x)(1− h̃k(x))p(X = x)dx. (33)

Let us introduce the random variable h̃(X) as,

EDR =

∫
q∈∆K

∫
x

K−1∑
k=0

h̃k(x)(1− h̃k(x))p
(
X = x, h̃(X) = q

)
dxdq. (34)
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In the next few steps, we’ll get rid of the integral over x. First, we split the joint distribution as,

EDR =

∫
q∈∆K

p
(
h̃(X) = q

)∫
x

K−1∑
k=0

h̃k(x)(1− h̃k(x))︸ ︷︷ ︸
apply h̃k(x)=qk

p
(
X = x | h̃(X) = q

)
dxdq. (35)

=

∫
q∈∆K

p
(
h̃(X) = q

)∫
x

K−1∑
k=0︸︷︷︸

bring to the front

qk(1− qk)p
(
X = x | h̃(X) = q

)
dxdq. (36)

=

K−1∑
k=0

∫
q∈∆K

p
(
h̃(X) = q

)∫
x

qk(1− qk)︸ ︷︷ ︸
constant w.r.t

∫
x

p
(
X = x | h̃(X) = q

)
dxdq. (37)

=

K−1∑
k=0

∫
q∈∆K

p
(
h̃(X) = q

)
qk(1− qk)

∫
x

p
(
X = x | h̃(X) = q

)
dx︸ ︷︷ ︸

1

dq. (38)

=

K−1∑
k=0

∫
q∈∆K

p
(
h̃(X) = q

)
qk(1− qk)dq. (39)

Next, we’ll simplify the integral over q by marginalizing over all but the kth dimension.

EDR =

K−1∑
k=0

∫
qk

∫
q−k

p(h̃−k(X) = q−k | h̃k(X) = qk) p(h̃k(X) = qk)qk(1− qk)︸ ︷︷ ︸
constant w.r.t.

∫
q−k

dq−kdqk (40)

=

K−1∑
k=0

∫
qk

p(h̃k(X) = qk)qk(1− qk)
∫
q−k

p(h̃−k(X) = q−k | h̃k(X) = qk)dq−k︸ ︷︷ ︸
=1

dqk (41)

=

K−1∑
k=0

∫
qk

p
(
h̃k(X) = qk

)
qk(1− qk)dqk. (42)

Rewriting qk as just q,

EDR =
K−1∑
k=0

∫
q∈[0,1]︸ ︷︷ ︸

swap

p
(
h̃k(X) = q

)
q(1− q)dq (43)

=

∫
q∈[0,1]

q(1− q)
K−1∑
k=0

p
(
h̃k(X) = q

)
dq. (44)

This is indeed the same term as Eq 25, thus completing the proof.

B.2 PROOF OF THEOREM 4.1 AND VARIANCE OF DISAGREEMENT

Since Theorem 4.1 is a special case of Theorem B.1, we can easily prove the former:

Proof. Observe that if h̃ satisfies the class-wise calibration condition as in Definition 4.2, it must
also satisfy class-aggregated calibration.

p
(
Y = k | h̃k(X) = q

)
= q ∀k (45)
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=⇒
∑K−1

i=1 p(Y = k, h̃k(X) = q)∑K−1
i=1 p(h̃k(X) = q)

=

∑K−1
i=1 p

(
Y = k | h̃k(X) = q

)
p(h̃k(X) = q)∑K−1

i=1 p(h̃k(X) = q)
= q (46)

Then, we can invoke Theorem B.1 to claim that GDE holds.

The theorem above shows that in expectation, the disagreement of independent pairs of hypotheses
is equal to the test error of a single hypothesis. Now, we will drive an upper bound on the variance
of the distribution. This result corroborates the empirical observation where we can use as low as a
single pair of independent models to accurate estimate the test error.
Corollary B.1.1. If GDE holds and there exists κ ∈

[
1
2 , 1
]

such that, for all h, h′ in the support of
HA,

Dis(h, h′) ≤ κ (TestErr(h) + TestErr(h′)) ,

then
Varh,h′∼HA (Dis(h, h′)) ≤ 2κ2Varh∼HA (TestErr(h)) +

(
4κ2 − 1

)
ETE2.

Proof. First we write the expression for the exact variance of the disagreement:
Varh,h′∼HA (Dis(h, h′)) = Eh,h′∼HA

[
Dis(h, h′)2

]
− EDR2. (47)

By the assumption:
Eh,h′∼HA

[
Dis(h, h′)2

]
(48)

≤ κ2Eh,h′∼HA

[
(TestErr(h) + TestErr(h′))

2
]

(49)

≤ κ2Eh,h′∼HA

[
TestErr(h)2 + 2TestErr(h)TestErr(h′) + TestErr(h′)2

]
. (50)

Since h and h′ are independent and identically distributed, the expectation of the cross term is equal
to the product of each expectation and the second moments are equal:

Eh,h′∼HA

[
Dis(h, h′)2

]
≤ κ2

(
2Eh∼HA

[
TestErr(h)2

]
+ 2ETE2

)
(51)

= κ2
(
2Eh∼HA

[
TestErr(h)2

]
− 2ETE2 + 2ETE2 + 2ETE2

)
(52)

= κ2
(
2Varh∼H (TestErr(h)) + 4ETE2

)
. (53)

Substituting the inequality back to (47):
Varh,h′∼HA (Dis(h, h′)) ≤ κ2

(
2Varh∼H (TestErr(h)) + 4ETE2

)
− EDR2. (54)

By the GDE, we know that ETE = EDR:
Varh,h′∼HA (Dis(h, h′)) ≤ 2κ2Varh∼H (TestErr(h)) +

(
4κ2 − 1

)
ETE2. (55)

Remark. This corollary characterizes the worst-case behavior of the disagreement error’s variance
and relates it to the expectation and variance of the test error distribution over HA. Recent works
(Neal et al., 2018; Nakkiran et al., 2020) have shown that the classical bias-variance trade-off ex-
hibits unusual behaviors in the overparameterized regime where the model contains much more
parameters than the number of data points. In particular, Neal et al. (2018) shows that the variance
actually decreases as the number of parameters increases, which implies that the first term of the
RHS in (55) is negligible. Empirically, this is supported by the first columns of Table 1 and Table 3,
where we show the variance of the test error is small.

κ represents the amount of structure present in HA. If κ = 1, the assumption Dis(h, h′) ≤
TestErr(h) + TestErr(h′) is always true, since it follows directly from the triangle inequality;
however, this would imply that there exists a pair of hypotheses in the support of HA that achieve
the largest possible disagreement rate. Empirical evidence (Nakkiran & Bansal, 2020) indicates that
this may not the case. Instead, deep models make mistakes in highly structured manner, suggesting
κ is much smaller than 1 in practice. On the other hand, if κ = 1

2 , the GDE holds pointwise for
every hypotheses pair (up to the small stochasticity present in the distribution of TestErr). This is
also unlikely since it would imply the disagreement rate variance is at most only a half of test error
variance. In practice, Table 1 and 3 show that the variance of disagreement is approximately equal
to the variance of the test error, suggesting that κ falls somewhere between 1

2 and 1. This supports
the hypothesis that the models make errors in a structured manner which gives rise to the observed
phenomena.
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B.3 DISAGREEMENT PROPERTY UNDER DEVIATION FROM CALIBRATION

Recall from the main paper that we quantified deviation from class-aggregated calibration in terms
of CACE. Below, we provide the proof of Theorem 4.2, which shows that GDE holds approximately
when CACE is low.

Proof. Recall from the proof of Theorem B.1 that the expected test error (ETE) satisfies:

ETE =

∫
q∈[0,1]

K−1∑
k=0

p(Y = k, h̃k(X) = q)︸ ︷︷ ︸
subtract and add a q

∑K−1
k=0 p(h̃k(X) = q)

(1− q)dq

=

∫
q∈[0,1]

(
K−1∑
k=0

p(Y = k, h̃k(X) = q)− q
K−1∑
k=0

p(h̃k(X) = q)

)
(1− q)dq

+

∫
q∈[0,1]

q

K−1∑
k=0

p(h̃k(X) = q)(1− q)dq.

Recall that the second term on R.H.S is equal to the expected disagreement rate EDR. Therefore,

|ETE− EDR| =
∫
q∈[0,1]

(
K−1∑
k=0

p(Y = k, h̃k(X) = q)− q
K−1∑
k=0

p(h̃k(X) = q)

)
(1− q)dq.

Multiplying and dividing the inner term by
∑K−1

k=0 p(h̃k(X) = q),

|ETE− EDR| =

∣∣∣∣∣
∫
q∈[0,1]

(∑K−1
k=0 p(Y = k, h̃k(X) = q)∑K−1

k=0 p(h̃k(X) = q)
− q

)
K−1∑
k=0

p(h̃k(X) = q)(1− q)dq

∣∣∣∣∣
≤
∫
q∈[0,1]

∣∣∣∣∣
∑K−1

k=0 p(Y = k, h̃k(X) = q)∑K−1
k=0 p(h̃k(X) = q)

− q

∣∣∣∣∣
K−1∑
k=0

p(h̃k(X) = q) (1− q)︸ ︷︷ ︸
≤1

dq

≤
∫
q∈[0,1]

∣∣∣∣∣
∑K−1

k=0 p(Y = k, h̃k(X) = q)∑K−1
k=0 p(h̃k(X) = q)

− q

∣∣∣∣∣
K−1∑
k=0

p(h̃k(X) = q)dq

= CACE(h̃).

Note that it is possible to consider a more refined definition of CACE that yields a tighter bound on
the gap. In particular, in the last series of equations, we can leave the 1 − q as it is, without upper
bounding by 1. In practice, this tightens CACE by upto a value of 2. We however avoid considering
the refined definition as it is less intuitive as an error metric.

B.4 CALIBRATION IS NOT A NECESSARY CONDITION FOR GDE

Theorem B.1 shows that calibration implies GDE. Below, we show that the converse is not true.
That is, if the ensemble satisfies GDE, it is not necessarily the case that it satisfies class-aggregated
calibration. This means that calibration and GDE are not equivalent phenomena, but rather only that
calibration may lead to the latter.
Proposition B.1. For a stochastic algorithm A to satisfy GDE, it is not necessary that its corre-
sponding ensemble h̃ satisfies class-aggregated calibration.

Proof. Consider an example where h̃ assigns a probability of either 0.1 or 0.2 to class 0. In par-
ticular, assume that with 0.5 probability over the draws of (x, y) ∼ D , h̃0(x) = 0.1 and with
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0.5 probability, h̃0(x) = 0.2. The expected disagreement rate (EDR) of this classifier is given by
ED

[
2h̃0(x)h̃1(x)

]
= 2

(
0.1·0.9+0.2·0.8

2

)
= 0.25.

Now, it can be verified that the binary classification setting, class-aggregated and class-wise cali-
bration are identical. Therefore, letting p(Y = 0 | h̃0(X) = 0.1) , ε1 and p(Y = 0 | h̃0(X) =

0.2) , ε2, our goal is to show that it is possible for ε1 6= 0.1 or ε2 6= 0.2 and still have the expected
test error (ETE) equal the EDR of 0.25. Now, the ETE on D conditioned on h̃0(x) = 0.1 is given by
(0.1(1− ε1) + 0.9ε1) and on h̃0(x) = 0.2 is given by (0.2(1− ε2) + 0.8ε1). Thus, the ETE on D is
given by 0.15 + 0.5(0.8ε1 + 0.6ε2). We want 0.15 + 0.5(0.8ε1 + 0.6ε2) = 0.25 or in other words,
0.8ε1 + 0.6ε2 = 0.2.

Observe that while ε1 = 0.1 and ε2 = 0.2 is one possible solution where h̃ would satisfy class-
wise calibration/class-aggregated calibration, there are also infinitely many other solutions for this
equality to hold (such as say ε1 = 0.25 and ε2 = 0) where calibration does not hold. Thus, class-
aggregated/class-wise calibration is just one out of infinitely many possible ways in which h̃ could
be configured to satisfy GDE.

B.5 COMPARING CACE TO EXISTING NOTIONS OF CALIBRATION.

Calibration in machine learning literature (Guo et al., 2017; Nixon et al., 2019) is often concerned
only with the confidence level of the top predicted class for each point. While top-class calibration
is weaker than class-wise calibration, it is neither stronger nor weaker than class-aggregated cali-
bration. Class-wise calibration is a notion of calibration that has appeared originally under different
names in Zadrozny & Elkan; Wu & Gales (2021). On the other hand, the only closest existing notion
to class-aggregated calibration seems to be that of static calibration in Nixon et al. (2019), where it
is only indirectly defined. Another existing notion of calibration for the multi-class setting is that of
strong calibration (Vaicenavicius et al., 2019; Widmann et al., 2019) which evaluates the accuracy
of the model conditioned on h̃(X) taking a particular value in the K-simplex. This is significantly
stronger than class-wise calibration since this would require about exp(K) many equalities to hold
rather than just the K equalities in Definition 4.2.

B.6 THE EFFECT OF DIFFERENT STOCHASTICITY.

Compared to AllDiff/DiffData, DiffInit/Order is still well-calibrated, with only slight devia-
tions. Why is varying the training data almost as effective in calibration as varying the random seed?
One might propose the following natural hypothesis in the context of DiffOrder vs DiffData. In
the first few steps of SGD, the data seen under two different reorderings are likely to not intersect at
all, and hence the two trajectories would initially behave as though being trained on two independent
datasets. Further, if the first few steps largely determine the kind of minimum that the training falls
into, then it is reasonable to expect that the stochasticity in data and in ordering both have the same
effect on calibration. However, this hypothesis falls apart when we try to understand why two runs
with the same ordering and different initialization (DiffInit) exhibits the same effect as DiffData.
Indeed, Fort et al. (2019) have empirically shown that two such SGD runs explore diverse regions
in the function space. Hence, we believe that there is a more nuanced reason behind why different
types of stochasticity have a similar effect on ensemble calibration. One promising hypothesis for
this could be the multi-view hypothesis from Allen-Zhu & Li (2020), which show that different
random initializations could encourage the network to latch on to different predictive features (even
when exposed to the same training set), and thus result in ensembles with better test accuracy. Ex-
tending their study to understand similar effects on calibration would be a useful direction for future
research.
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C APPENDIX: EXPERIMENTAL DETAILS

C.1 PAIRWISE DISAGREEMENT

In this work, the main architectures we used are ResNet18 with the following hyperparameter con-
figurations:

1. width multiplier: {1×, 2×}
2. initial learning rate: {0.1, 0.05}
3. weight decay: {0.0001, 0.0}
4. minibatch size: { 200, 100}
5. data augmentation: {No, Yes}

Width multiplier refers to how much wider the model is than the architecture presented in He et al.
(2016) (i.e. every filter width is multiplied by the width multiplier). All models are trained with
SGD with momentum of 0.9. The learning rate decays 10× every 50 epochs. The training stops
when the training accuracy reaches 100%.

For Convolutional Neural Network experiments, we use architectures similar to Network-in-
Network (Lin et al., 2013). On a high level, the architecture contains blocks of 3 × 3 convolution
followed by two 1 × 1 convolution (3 layers in total). Each block has the same width and the fi-
nal layer is projected to output class number with another 1 × 1 convolution followed by a global
average pooling layer to yield the final logits. Other differences from the original implementation
are that we do not use dropout and add batch normalization layer is added after every layer. The
hyperparameters are:

1. depth: {7, 10, 13}
2. width: {128, 256, 384}
3. weight decay: {0.001, 0.0}
4. minibatch size: {200, 100, 300}

All models are optimized with momentum of 0.9 and uses the same learning rate schedule as
ResNet18.

For Fully Connected Networks, we use:

1. depth: {1,2,3,4}
2. width: {128, 256, 384, 512}
3. weight decay: {0.0, 0.001}
4. minibatch size: {100, 200, 300}

All models are optimized with momentum of 0.9 and uses the same learning rate schedule as
ResNet18.

Distribution shift and pre-training experiments. On all our experiments on the PACS dataset, we
use ResNet50 (with Batch Normalization layers frozen and the final fully-connected layer removed)
as our featurizer and one linear layer as our classifier. All our models are trained until 3000 steps
after reaching 0.995 training accuracy with the following hyperparameter configurations:

1. learning rate: 0.00005

2. weight decay: 0.0

3. learning rate decay: None

4. minibatch size: 100

5. data augmentation: Yes
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On each of these domains, we train 5 pairs of ResNet50 with a linear layer on top, varying the
random seeds (keeping hyperparameters constant). Both models in a pair are trained on the same
80% of the data, and only differ in their initialization, data ordering and the augmentation on the
data. We then evaluate the test error and disagreement rate of all pairs on each of the four domains.
We consider both randomly initialized models and ImageNet pre-trained models (Deng et al., 2009).
For pre-trained models, only the linear layer is initialized differently between the two models in a
pair.

C.2 ENSEMBLE

For ensembles, unless specified otherwise, we use the combination of the first option for each hy-
perparameters in Section C.1.

C.2.1 FINITE-SAMPLE APPROXIMATION OF CACE

For every ensemble experiment, we train a standard ResNet 18 model (width multiplier 1×, initial
learning rate 0.1, weight decay 0.0001, minibatch size 200 and no data augmentation).

To estimate the calibration, we use the testset Dtest. We split [0, 1] into 10 equally sized bins. For
a class k, we can group all (x, y) ∈ Dtest into different bins Bki according to h̃k(x) (all bins have
boundaries that do not overlap with other bins). In total, there are 10×K bins.

Bki =
{
(x, y) | lower(Bki ) ≤ h̃k(x) < upper(Bki ) and (x, y) ∈ Dtest

}
(56)

Where upper and lower are the boundaries of the bin. To mitigate the effect of insufficient samples
for some of the middling confidence value in the middle (e.g. p = 0.5), we further aggregate
the calibration accuracy over the classes into a single bin Bi =

⋃K
k=1 Bki in a weighted manner.

Concretely, for each bin, we sum over all the classes when computing the accuracy:

acc(Bi) =
1∑K

k=1 |Bki |

K∑
k=1

∑
(x,y)∈Bk

i

1[y = k] =
1

|Bi|

K∑
k=1

∑
(x,y)∈Bk

i

1[y = k] (57)

To quantify the how “far” the ensemble is from the ideal calibration level, we use the Class Aggre-
gated Calibration Error (CACE) which is an average of how much each bin deviates from y = x
weighted by the number of samples in the bin:

ĈACE =

NB∑
i=1

|Bi|
|Dtest|

|acc(Bi)− conf(Bi)| (58)

where NB is number of bins (usually 10 in this paper unless specified otherwise), conf(Bi) is the
ideal confidence level of the bin, which we set to the average confidence of all data points in the bin.
This is the sample-based approximation of definition 4.4.

C.2.2 FINITE-SAMPLE APPROXIMATION OF ECE

ECE is a widely used metric for measuing calibration. For completeness, we will reproduce its
approximation here. Let Ŷ be the class with highest probability under h̃ (we are omitting the depen-
dency on X in the notation since it is clear):

Ŷ = argmax
k∈[K]

h̃k(X) (59)

We once again split [0, 1] into 10 equally sized bins but do not divide further into K classes. Each
bin is constructed as:

Bi =
{
(x, y) | lower(Bi) ≤ h̃ŷ(x) < upper(Bi) and (x, y) ∈ Dtest

}
(60)
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With the same notation used for CACE, the accuracy is computed as:

acc(Bi) =
1

|Bi|
∑

(x,y)∈Bi

1[y = ŷ] (61)

Finally, the approximation of ECE is computed as the following:

ÊCE =

NB∑
i=1

|Bi|
|Dtest|

|acc(Bi)− conf(Bi)| (62)
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D ADDITIONAL EMPIRICAL RESULTS

D.1 ADDITIONAL FIGURES

Figure 7: Calibration on 2k subset of CIFAR10: Calibration plot of different ensembles of 100
ResNet18 trained on CIFAR10 with 2000 training points.

Figure 8: Calibration on CIFAR100: Calibration plot of different ensembles of 100 ResNet18
trained on CIFAR100 with 10000 data points.
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Figure 9: Calibration error vs. deviation from GDE under distribution shift: The scatter plots
of CACE (x-axis) vs the gap between the test error and disagreement rate (y-axis) averaged over an
ensemble of 10 ResNet50 models trained on PACS. Each plot corresponds to models evaluated on
the domain specified in the title. The source/training domain is indicated by different marker shapes.

D.2 CIFAR100 CALIBRATION TABLE

Here we present the calibration error for ResNet18 trained on CIFAR100 with 10k training exam-
ples.

D.3 OTHER DATASETS AND ARCHITECTURES

In Fig 10, we provide scatter plots for fully-connected networks (FCN) on MNIST, and convolutional
networks (CNN) on CIFAR10. We observe that when trained on the whole MNIST dataset, there is
larger deviation from the x = y behavior (see left-most image). But when we reduce the dataset size
to 2000, we recover the GDE observation on MNIST. We observe that the CNN settings satisfies
GDE too.
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Pretrained

Test Error Disagreement Gap CACE(10)

Art → Art 0.0518±0.0107 0.0685±0.0133 0.0166 0.0505
Art → Cartoon 0.3229±0.0365 0.2524±0.0446 0.0705 0.2577
Art → Photo 0.0509±0.0097 0.0592±0.0136 0.0082 0.0335
Art → Sketch 0.3871±0.0613 0.3639±0.079 0.0231 0.2374
Cartoon → Art 0.2555±0.0203 0.2534±0.0262 0.0020 0.1121

Cartoon → Cartoon 0.0303±0.0118 0.0380±0.0150 0.0077 0.0308
Cartoon → Photo 0.1361±0.0227 0.1327±0.0201 0.0034 0.0580
Cartoon → Sketch 0.2672±0.0201 0.2398±0.0326 0.0273 0.1322

Photo → Art 0.3315±0.0487 0.2649±0.0624 0.0666 0.2943
Photo → Cartoon 0.6721±0.0545 0.2100±0.0601 0.4621 1.0725
Photo → Photo 0.0245±0.0110 0.0322±0.0125 0.0076 0.0460
Photo → Sketch 0.7180±0.0774 0.2497±0.1350 0.4683 0.8507
Sketch → Art 0.5187±0.0598 0.4144±0.0769 0.1042 0.4274

Sketch → Cartoon 0.3064±0.0330 0.2557±0.0349 0.0506 0.2069
Sketch → Photo 0.5203±0.0435 0.2908±0.0618 0.2295 0.5245
Sketch → Sketch 0.0443±0.0067 0.0460±0.0074 0.0016 0.0389

Not Pretrained

Test Error Disagreement Gap CACE(10)

Art → Art 0.3821±0.0137 0.3545±0.0361 0.0276 0.2021
Art → Cartoon 0.6337±0.0320 0.4764±0.0481 0.1573 0.6267
Art → Photo 0.4443±0.0277 0.3161±0.0360 0.12821 0.4778
Art → Sketch 0.6517±0.0337 0.5513±0.0697 0.1004 0.5169
Cartoon → Art 0.6911±0.0158 0.4186±0.0526 0.2725 0.8669

Cartoon → Cartoon 0.1910±0.0163 0.1817±0.0221 0.0092 0.0981
Cartoon → Photo 0.6±0.0439 0.4070±0.0522 0.1929 0.6207
Cartoon → Sketch 0.6084±0.0720 0.5072±0.0757 0.1012 0.4767

Photo → Art 0.6899±0.0149 0.4301±0.0385 0.8119 0.2598
Photo → Cartoon 0.7293±0.0222 0.4431±0.0566 0.8905 0.2862
Photo → Photo 0.2281±0.0168 0.1868±0.0258 0.1791 0.0413
Photo → Sketch 0.7823±0.021 0.2388±0.1180 0.7954 0.5435
Sketch → Art 0.8110±0.0164 0.6042±0.0629 0.2068 0.9540

Sketch → Cartoon 0.6215±0.0114 0.4882±0.0522 0.1332 0.5785
Sketch → Photo 0.8204±0.0202 0.4868±0.0875 0.3335 0.9615
Sketch → Sketch 0.1066±0.0094 0.0989±0.0125 0.0076 0.0601

Table 2: Calibration error vs. deviation from GDE under distribution shift: Test error, dis-
agreement rate, the gap between the two, and CACE for ResNet18 on PACS over 10 models each.

Test Error Disagreement Gap CACE(100) ECE
AllDiff 0.679± 0.0098 0.6947± 0.0076 0.0157 0.1300 0.0469
DiffData 0.682± 0.0110 0.6976± 0.0074 0.0150 0.1354 0.0503
DiffInit 0.681± 0.0100 0.5945± 0.0127 0.0865 0.3816 0.1400
DiffOrder 0.679± 0.0097 0.5880± 0.0103 0.0910 0.3926 0.1449

Table 3: Calibration error vs. deviation from GDE for CIFAR100: Test error, disagreement
rate, the gap between the two, and ECE and CACE for ResNet18 on CIFAR100 with 10k training
examples computed over 100 models.

D.4 ERROR DISTRIBUTION OF ENSEMBLES

Here (Fig 11) we show the error distribution of the ensemble similar to N&B’20. The x-axis of
these plots represent 1 − h̃y(X) in the context of our work. As N&B’20 note, these plots are not
bimodally distributed on zero error and random-classification-level error (of K−1

K where K is the
number of classes). This disproves the easy-hard hypothesis as discussed in the main paper. As a
side note, we observe that all these error distributions can be fit well by a Beta distribution.
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(a) MNIST FCN (b) MNIST FCN, 2k dat-
apoints.

(c) CIFAR10 CNN

Figure 10: Scatter plots for fully-connected and convolutional networks on MNIST and CIFAR-10
respectively.

(a) Error distribution for
the MNIST FCN experi-
ment

(b) Error distribution for
the CIFAR10 CNN ex-
periment

(c) Error distribu-
tion for the CIFAR10
ResNet18 experiment
with SameInit

Figure 11: Error distributions for different experiments

(a) CIFAR10 + CNN (b) MNIST + 2 layer FCN (c) Full Cifar10 + ResNet18

Figure 12: Histogram of calibration confidence for different settings.

D.5 CALIBRATION CONFIDENCE HISTOGRAM

Here (Fig 12) we report the number of points that fall into each bin in calibration plots. In other
words, for each value of p, we report the number of times the ensemble h̃ satisfies h̃k(x) ≈ p for
some k and some x.

D.6 COMBINING STOCHASTICITY

In Fig 13, for the sake of completeness, we consider a setting where both the random initialization
and the data ordering varies between two runs. We call this setting the SameData setting. We observe
that this setting behaves similar to DiffData and DiffInit.
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(a) Calibration plot

Figure 13: The scatter plot and calibration plot for model pairs that use the different initialization
and different data ordering.

(a) CIFAR10 (b) CIFAR10’s calibra-
tion plot

(c) CIFAR100 (d) CIFAR100’s calibra-
tion plot

Figure 14: The calibration plot for 5 randomly selected individual classes vs the aggregated calibra-
tion plot for ResNet18 trained on CIFAR10 and CIFAR100.

D.7 CLASS-WISE CALIBRATION VS CLASS-AGGREGATED CALIBRATION

In Fig 14, we report the calibration plots for a few random classes in the CIFAR10 and CIFAR100
setup and compare it with the class-aggregated calibration plots. We observe that the class-wise plots
have a lot more variance, indicating that calibration within each class may not always be perfect.
However, when aggregating across classes, calibration becomes much more well-behaved. This
suggests that the calibration is smoothed over all the classes. It is worth noting that a similar effect
also happens for ECE, although not reported here.

D.8 CORRELATION VALUES IN FIG 1

In the main paper figures, we quantified correlated via R2 and τ for scatter plots that include both
data-augmented models and non-data-augmented models. Here, we report these values specific to
each group of models.

AllDiff DiffData DiffOrder DiffInit
w/o aug 0.888 0.977 0.728 0.923
w aug 0.984 0.963 0.737 0.881
both 0.986 0.998 0.941 0.983

Table 4: R2 values

AllDiff DiffData DiffOrder DiffInit
w/o aug 0.752 0.891 0.582 0.771
w aug 0.829 0.891 0.626 0.650
both 0.899 0.948 0.807 0.858

Table 5: τ values
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D.9 MORE THAN ONE PAIR OF MODELS

Here, we show the ResNet18 CIFAR-10 DiffInit experiments (no data augmentation) with only
one pair of models v.s. the average of 4 pairs of models. We see that while 4 pairs of models does
improve the correlation, the improvement is only marginal. This suggests that only using a single
pair of models may be sufficient for estimating the generalization error.

(a) The scatter plot for
the disagreements of 1
pair of models.

(b) The scatter plot for
the average disagree-
ments of 4 pairs of
models.

However, if we instead measure the distance from the y = x line. Specifically, each pair’s deviation
is measured as

|TestError− Disagreement|
0.5(TestError+ Disagreement)

. (63)

The denominator normalizes the deviation so hyperparameters with different performance contribute
equally. Then, we observed that 1-pair achieves an average deviation of 0.112 while the 4-pair
achieves 0.034. This shows that if one is interested in estimating the exact generalization error,
using more pairs of models would help.
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