Under review as submission to TMLR

Dirichlet Mechanism for Differentially Private KL Diver-
gence Minimization

Anonymous authors
Paper under double-blind review

Abstract

Given an empirical distribution f(z) of sensitive data x, we consider the task of minimizing
F(y) = Dkr(f(x)|ly) over a probability simplex, while protecting the privacy of x. We
observe that, if we take the exponential mechanism and use the KL divergence as the loss
function, then the resulting algorithm is the Dirichlet mechanism that outputs a single
draw from a Dirichlet distribution. Motivated by this, we propose a Rényi differentially
private (RDP) algorithm that employs the Dirichlet mechanism to solve the KL divergence
minimization task. In addition, given f(z) as above and § an output of the Dirichlet
mechanism, we prove a probability tail bound on Dk, (f(x)||§), which is then used to derive
a lower bound for the sample complexity of our RDP algorithm. Experiments on real-world
datasets demonstrate advantages of our algorithm over Gaussian and Laplace mechanisms
in supervised classification and maximum likelihood estimation.

1 Introduction

KL divergence is the most commonly used divergence measure in probabilistic and information-theoretic
modeling. In a probabilistic model, for example, we estimate the model’s parameters by maximizing the
likelihood function of the parameters, which is equivalent to minimizing the KL divergence between the
empirical distribution and the model’s distribution. In supervised classification, a standard way to fit a
classifier is by minimizing the cross-entropy of the model’s predictive probabilities, which is equivalent to
minimizing the KL divergence between the class-conditional empirical distribution and the model’s predictive
distribution.

Such models are widely used in medical fields, social sciences and businesses; hence they are often applied
on sensitive personal information. Without privacy considerations, releasing a model to public might put
the personal data at risk of being exposed to privacy attacks, such as membership inference attacks (Shokri
et al| [2017; [Ye et all |2022). To address the model’s privacy issue, we should focus on its building blocks:
the KL divergences. How can we minimize the KL divergence over the model’s parameters, while keeping
the data private?

Differential Privacy (Dwork et al.l 2006ajb)) provides a framework for quantitative privacy analysis of algo-
rithms that run on sensitive personal data; this framework allows one to design algorithms that preserve the
privacy of their inputs. Many of the designs are results of adding a small amount of random noise to the
output of an existing algorithm. Typically, the random noise is usually drawn from a Gaussian or Laplace
distribution. These additive noise mechanisms are the backbones of many privacy-preserving algorithms,
from simple queries such as counting and histogram queries (Dwork et al., [2006aib) to complex models such
as deep learning (Abadi et al., [2016). The wutility of such techniques is usually measured in terms of the
01~ or ¢2-distance between the noisy and true outputs; the counting and histogram queries above are good
examples for which small distances are desirable.

If the goal is to minimize the KL divergence, however, additive noise mechanisms might not be appropriate.
For example, consider normalized count data of p = [0.5,0.5] and ¢ = [0.1,0.9]. Suppose that we draw a noise
vector of z = [—0.1,0.1]. Then the KL divergences between the true and noisy outputs are Dy, (p||p + 2z) =~
0.009 and Dk, (¢llg + 2) = oo, which illustrate that adding noises at a fixed scale disproportionately affects
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the KL divergence of imbalanced normalized counts, implying that additive noise mechanisms do not provide
the best utility for private KL divergence minimization.

We instead consider the exponential mechanism (McSherry & Talwar, |2007)), a differentially private algorithm
that approximately minimizes user-defined loss functions. It turns out that, by taking the loss function to be
the KL divergence, the exponential mechanism turns into one-time sampling from a Dirichlet distribution;
we shall call this the Dirichlet mechanism.

The Dirichlet mechanism, however, does not inherit the differential privacy guarantee of the exponential
mechanism: the guarantee in (McSherry & Talwar, 2007) requires the loss function to be bounded above,
while the KL divergence can be arbitrarily large. In fact, using the original definition of differential pri-
vacy (Dwork et all |2006b), the Dirichlet mechanism is not differentially private (see Appendix . We
thus turn to a relaxation of differential privacy. Specifically, using the notion of the Rényi differential
privacy (Mironov}, 2017)), we study the Dirichlet mechanism and its utility in terms of KL divergence mini-
mization.

1.1 Overview of Our results

Below are summaries of our results.

Privacy. We propose a version of the Dirichlet mechanism (Algorithm that satisfies the Rényi
differential privacy (RDP). In this algorithm, we need to evaluate a polygamma function and find the root
of a strictly increasing function. Fortunately, polygamma functions, root-finding methods and Dirichlet
distributions are readily available in many scientific programming languages.

Utility. We derive a probability tail bound for Dky,(p|lg) when ¢ is drawn from a Dirichlet distribution
(Theorem . From this, we derive a lower bound for the sample complexity of Algorithm [1| that attains a
target privacy guarantee, both in general case and on categorical data.

Experiments. We compare the Dirichlet mechanism against the Gaussian and Laplace mechanisms for
two learning tasks: naive Bayes classification and maximum likelihood estimation of Bayesian networks—
both tasks can be done with KL divergence minimization. Experiments on real-world datasets show that
the Dirichlet mechanism provides smaller cross-entropy loss in classification, and larger log-likelihood in
parameter estimation, than the other mechanisms at the same level of privacy guarantee.

1.2 Notations

In this paper, all vectors are d-dimensional, where d > 2. The number of observations is always N. Let
[d] :==[1,...,d]. For any u € R?, we let u; be the i-th coordinate of u, and for any vector-valued function
f: X = RY we let f; be that i-th component of f. Let R‘éo be the set of d-tuples of non-negative real

numbers, and R‘io be the set of d-tuples of positive real numbers. Denote the probability simplex by

gd—1 . {p € R‘éo : Zpi = 1}.

For any u,u’ € R? and scalar 7 > 0, we write u + v’ == (u3 +u}, ..., uqg +u}) and ru == (rus,...,rug). For
any positive reals x and 2/, the notation x < 2’ means x = Cz’ for some constant C > 0, z =~ 2’ means
ca’ <z < Ca’ for some ¢,C > 0, and 2 < 2/ means z < Cz’ for some C' > 0. Lastly, [Jul]s == /uf + ... +u3

is the 2 norm of v and |u|s = max;|u;| is the £>° norm of u.

2 Background and related work

2.1 Privacy models

We say that two datasets are neighboring if they differ on a single entry. Here, an entry can be a row of the
datasets, or a single attribute of a row.
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Definition 2.1 (Pure and Approximate differential privacy (Dwork et al., |2006ajb))). A randomized mech-
anism M : X" — )Y is (e, §)-differentially private ((g,d)-DP) if for any two neighboring datasets x and z’
and all events £ C ),

Pr[M(z) € E] < e®Pr[M(2') € E] +6. (1)

If M is (¢,0)-DP, then we say that it is e-differential private (e-DP).

The term pure differential privacy (pure DP) refers to e-differential privacy, while approzimate differential
privacy (approximate DP) refers to (g,d)-DP when ¢ > 0.

In contrast to pure and approximate DP, the next definitions of differential privacy are defined in terms of
the Rényi divergence between M (z) and M (z'):

Definition 2.2 (Rényi Divergence (Rényil [1961)). Let P and @ be probability distributions. For A € (1, c0)
the Rényi divergence of order A between P and (@) is defined as

P(y)*!
PIQ) = 1o g( [ .
DAle) = e lQuy
Definition 2.3 (Rényi differential privacy (Mironov} [2017))). A randomized mechanism M : X" — ) is
(A, e)-Rényi differentially private ((A,e)-RDP) if for any two neighboring datasets  and 2/,

DA(M(z)[|M(2")) < e.

Intuitively, € controls the moments of the privacy loss random variable: Z := log %, where Y is

distributed as M (x), up to order A. A smaller ¢ and larger A correspond to a stronger privacy guarantee.
The composition property allow us to use the Dirichlet posterior sampling as a building block for more
complex algorithms.

Lemma 1 (Composition of RDP mechanisms (Mironov}, 2017)). Let M; : X™ — Y be a (A,€1)-RDP
mechanism and My : X" — Z be a (A2, e2)-RDP mechanism. Then a mechanism M : X™ — Y x Z defined
by M(z) = (M (x), Ma(z)) is (min(A1, A2),e1 + €2)-RDP.

2.2 Exponential mechanism with the KL divergence

The exponential mechanism (McSherry & Talwar, [2007) is a privacy mechanism that releases an element
from a range ) that approximately minimizes a given loss function £ : XV x Y — R. Given a base measure
pover Y and a dataset € XV, the mechanism outputs y € ) with probability density proportional to:

e P pu(y), (2)

where § is a privacy-related parameter.

For the first time, we point out the connection between the exponential mechanism and a well-known family
of probability distributions under a specific choice of £(z,y). Let f : XN — R%) be an arbitrary vector-
valued function on datasets. Let J = S9=1. Assuming that Ny := Y, f;(x) is known and nonzero, we denote
the normalized vector f(z) = N;lf(ac) € 841 In equation let {(x,y) = Dxu(f(2)|ly), B = rN¢, and

1(y) be the density of Dirichlet(ax), that is, u(y) H?zl yf‘fl. Then, the probability density of the output
y of the corresponding exponential mechanism is proportional to:

exp (=N Dia(F)) [T~ = exp| v 3 fite) ostos/fio)) | TTe™

7,270

~ g T o
I+ T

3,270

= Hy;'fi(w)-i-a—l’
7
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which is exactly the non-normalized density function of Dirichlet(r f(z) + «). This specific distribution will
play a major role in the main privacy mechanism introduced in the next section.

From this derivation, we can see that this particular instance of the exponential mechanism can be used to

output y that approximately minimizes the KL divergence Dk, ( ff(\;)Hy) while keeping x private.

To see how the choices of r and « affect the “distance” between y; and ]%, we look at the bias of y;, which
is

rfi(z) +a  fi(@) _ a|Ny — dfi(z)|
Nf+d04 Ny Nf(TNerdOz).

We see that the bias can be reduced by increasing the value of r and decreasing the value of a.

Ely:] — fi(z ‘ =

(3)

Applications. The derivation of the Dirichlet mechanism above suggests that the best use of the Dirichlet
mechanism is for privately minimizing KL divergence, which arises in the following scenarios:

1. Maximum likelihood estimation. Consider a problem of parameter estimation in a multinomial
model with d possible outcomes. Let = € [d]Y be N observations, fi(z),..., fa(x) be the frequencies
and y1, ..., yq be the model’s parameters. Then the log-likelihood of = is ) . f;(x) logy;. Maximizing
the log-likelihood with respect to y is equivalent to minimizing the KL divergence:

arg maxz fi(x)logy; = arg min Dk, <fj(vsc) Hy)

Thus, we can use the Dirichlet mechanism to release an approximate solution while keeping x private.

2. Cross-entropy minimization. Consider the 5ame multinomial model as above. One might in-
stead aim to minimize the cross-entropy loss: —+ Z fi(x)logy; over y. This is also equivalent to
minimizing the KL divergence, so we can use the Dirichlet mechanism to privately solve for y.

2.3 Polygamma functions

100

In most of this study, we take advantage of several nice proper- 50 -
ties of the log-gamma function and its derivatives. Specifically,

¥(z) = <L log'(z) is concave and increasing, while its deriva- =
tive 9’ (x) is positive, convex, and decreasing (see Figure. In

addition, 1)’ can be approximated by the reciprocals: 20
1 1 , 1 1 0

— - < — —, 4 T T T T T T

o <Y@) <+ ) N

hich implies that ¢¥/(z) ~ % as ¢ — 0 and ¢/(z) = L as
;V—>oo. P Vi)~ & Vi)~ g Figure 1: A plot of ¢/(z).

2.4 Related work

There are several studies on the differential privacy of probability sampling. Wang et al.| (2015 showed
that any sampling with the absolute value of the log-density bounded above by a constant B is 4B-
differentially private. However, the densities that we study are not bounded away from zero; they have
the form [], y:f @)% which becomes small when one of the y;’s is close to zero. Dimitrakakis et al.| (2017
showed that a single draw from the Beta distribution, which is the two-dimensional Dirichlet distribution,
is (0,96)-DP, and the result cannot be improved unless the parameters are assumed to be above a positive
threshold. As a continuation of their work, we prove in the appendix that, when the parameters are bounded
below by a > 0, sampling from the Dirichlet distribution is (g, §)-DP with € > 0.

Let = be a sufficient statistic of an exponential family with finite £!-sensitivity. Foulds et al.| (2016]) showed
that sampling Y ~ p(y | £), where & = = + Laplace noise, is differentially private and as asymptotically
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efficient as sampling from p(y | z). However, for a small sample size, the posterior over the noisy statistics
might be too far away from the actual posterior. Bernstein & Sheldon (2018]) thus proposed to approximate
the joint distribution p(y,z, ) using Gibbs sampling, which is then integrated over x to obtain a more
accurate posterior over .

Geumlek et al.| (2017)) were the first to study sampling from exponential families with Rényi differential pri-
vacy (RDP;[Mironov|(2017))). Even though they provided a general framework to find (A, €)-RDP guarantees
for exponential families, explicit forms of A and the upper bound of A were not given.

The privacy of data synthesis via sampling from Multinomial(Y"), where Y is a discrete distribution drawn
from the Dirichlet posterior, was first studied by Machanavajjhala et al. (2008)). They showed that the data
synthesis is (e,0)-approximate DP, where £ grows by the number of draws from Multinomial(Y"). In contrast,
we show that a single draw from the Dirichlet posterior is approximate DP, which by the post-processing
property allows us to sample from Multinomial(Y) as many times as we want while retaining the same
privacy guarantee.

Gohari et al.| (2021)) has recently provided a privacy guarantee for the Dirichlet mechanism, which is imprac-
tical as it requires numerical integrations and optimization over the unit simplex. In contrast, our guarantee
is much simpler to compute. We are also the first to provide the utility of the Dirichlet mechanism in terms
of KL divergence minimization.

3 Main privacy mechanism

3.1 The Dirichlet mechanism

Let f: XN — Rio be an arbitrary vector-valued function with finite ¢2- and ¢>°-sensitivities: there exist
two constants As, A, > 0 such that

sup  [|f(x) = f(z')3 < A and sup  [|f(2) = f(2')]loe < Ane.

x,z’ neighboring z,z’ neighboring

Algorithm [1| below details the Dirichlet mechanism used to privatize z € AN,

Algorithm 1 (), ¢)-RDP Dirichlet mechanism

Input: A dataset x € XN, A vector-valued function f : XN — RZ with £2-sensitivity Ag and £>°-sensitivity
A B

Parameters: A >1,¢>0

1. Use a root-finding algorithm to find 7 > 0 such that e = Ar?A3y/(1 + 3(A — 1)rA).

2. Let a=14+4A—1)rA.

3. Output y ~ Dirichlet(r f(z) + «).

The following lemma ensures that we can obtain an r > 0 in Line [I] for any & > 0:

Lemma 2. The equation e = %)\TQAgw’(l + 3(A = 1)rA) has a unique solution in r for any e, Ao, Asy > 0
and A > 1.

The proof of Lemma 2] can be found in Appendix [C]
3.2 Privacy guarantee

Theorem 1. Algorithm (1] is (A,€)-RDP.

The proof of Theorem [I] can be found in Appendix [D] A few remarks are in order.

Remark 1. In general, we can replace ' (1+3(A—1)rA) in Lineby ' (149g(r)), and @ = 1+4(A—1)rA o
in Line 2 by a = 14 g(r) + (A — 1)rA for any function g : Rsg — R>¢. In particular, choosing g = 0 yields
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Figure 2: The Rényi divergence (¢) of order A between Dirichlet(r f(z) 4+ «) and Dirichlet(r f(2’) + «) as a
function of r, where f(z) = (11,8,65,25,38,0), f(z') = (11,7,65,25,38,1) and « is given in Algorithm
with A2 = 2 and A, = 1. Here, we plot both the direct calculations of € and the suggested values of ¢ in
Algorithm [I]

r = +/2¢/(AA%¢’(1)) which can be computed without a root-finding algorithm. However, this choice of r

makes ¢ grows as 72, which becomes too large when r > 1. Instead, we choose g(r) to be a constant factor of an
existing term (A—1)rA in a, which allows us to offset the Ar? factor in £ with ¢'(1+g(r)) = © (m)

Remark 2. If one has prior knowledge that fi(x) > b for some b > 0 for all z € XV and all i € [d], then
the proof of Theorem [1| can be modified so that (A, &)-RDP can be obtained by setting r to be the solution
to the equation ¢ = %)\TQAEW(I + 70+ 3(A— 1)rA). Since ¢’ is strictly decreasing, this leads to a larger
value of r compared to Algorithm

To demonstrate the tightness of the privacy guarantee of Algorithm [I} we simulate two neighboring his-
tograms: f(x) = (11,8,65,25,38,0) and f(z') = (11,7,65,25,38,1). As functions of r, we compare ¢ in
Line[T] with the analytic values of the Rényi divergence between Dirichlet(r f(x)+c) and Dirichlet(r f(z') + ),

where ais given in Line[2] The plots of € as functions of r in Figure[2]show that our proposed RDP-guarantees
are close to the actual Rényi divergences across different values of \.

4 Utility

Let us recap the setting with which we apply the Dirichlet mechanism: we have a sensitive dataset 2 € AN

and an arbitrary vector-valued function f : XV — R%o Let Ny =), fi(z) and f(z) := N;lf(x) i:S’d_l.
We propose the Dirichlet mechanism (Algorithm which aims to output y that minimizes Dxkr, ( f (m)||y)
while keeping x private.

This motivates us to measure the utility of the Dirichlet mechanism in terms of the KL divergence between
f(z) and y. To this end, we can make use of the following bound:

Theorem 2. For any a > 0, p = (p1,...,pa) € S¥ ! and q ~ Dirichlet(8p + ), the following inequality
holds for any n > 0 and any § > da/(e"? —1):

Pr[Dxw(pllq) > 7] < e #7°/ (2@ +m)(4+3m)

The proof can be found in Appendix Since the Dirichlet mechanism outputs y ~ Dirichlet(rf(x) +
a) = Dirichlet(rNy f(z) + «), we can apply Theorem [2| with p = f(z), ¢ = y and § = rNy. As long as
Ny > da/(r(e"? — 1)), we have the bound

Pr[ Dice (7)) > n] < Vo /CCEn D),
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We shall assume that n < 1 and A > 2. To obtain Dgy, ( R;)Hy) > 7 with high probability, one needs

™2 + r(en/2—1)

Ny = Q( L di"‘) Now, we would like to write  and « in terms of € and A using the following
identities from Algorithm

€= %/\rQAgW(l + 3\ —1)rAy) (5)
a=14+4\—-1ra. (6)

We note in Remark 1 above that the right-hand side of equation[fis an increasing function of . This implies
that, if € > 1, then r > 1 and so /(1 + 3(A — 1)rAy) = @(ﬁ) Thus, equation and|§|give r=0(g)

and a = ©((A — 1)e). On the other hand, if £ < 1, we have r < 1 which implies ' (1+3(A—1)rA) = O(1).
Consequently, r = ©(1/e/A) and o = O(1). Therefore, to attain the (A, ¢)-RDP guarantee, one needs

Q(#er“_”) ife>1

en/2—1
Y e(Vip e ats]) e
e[ n? en/2—1 :

The most common example is when the data is categorical, that is, z € [d] and f;(x) is the number of i’s
in . Then Ny =3, fi(x) = N, and the analysis above implies that the sample complexity for (A, e)-RDP

and sub-n KL divergence, with A and 7 fixed, is N = Q(% + 1) ife>1land N = Q(%) ife <1.

5 Experiments and discussions

5.1 Naive Bayes classification

We consider the Dirichlet mechanism for differentially private multinomial naive Bayes classification. Let
D = {(z,y)}N | be a dataset. Here, 2(V) = (xgl), . ,x(I?) € HkK:1 Xy and y) € [d] where Xi,..., Xk
are finite sets. For j € [d], k € [K] and ¢ € X, we denote N; := S I(y® = j) and Nj, = SN I(y® =

i=1
7, :r,(;) = ¢). The maximum-likelihood estimators for the naive Bayes model are:

#tj == N;/N and éfc = N]kc/Nj. (7)
With these estimates, the probability of y = j conditioned on (x1,...,xk) can be computed as follows:
K k
N N7
Prly =3 e —Z Ik
I'[y ]‘xlv ,Z’K]O( N H N]
k=1
K
A Ak
=T H JTk
k=1

To modify the model with the Dirichlet mechanism, we sample (71, ..., 74) ~ Dirichlet(r(Ny, ..., Ng) + «),
where r and o are chosen according to Algorithm [1| (with A3 = 2 and A, = 1) to attain (),e/K +1)-RDP.
Similarly, for each k € K and ¢ € Xy, we sample (65, ...,60% ) ~ Dirichlet(r¥(Nf,, ..., Nk ) + oF), where 7k
and af are chosen to attain (A, e/(K + 1))-RDP as well. We then release 7; instead of #; and éfc instead
of OA;-“C for all j,k and ¢, which leads to (X,¢)-RDP by the basic composition (Lemma ) and the parallel

composition of RDP mechanisms

To benchmark the Dirichlet mechanism, we apply the Gaussian mechanism and the Laplace mechanism to
the naive Bayes model. This can be done by replacing N; and N ch in equation |7| by their noisy versions,
namely N; := N; + z; and N]’?C = N]’?c + zfc where z;, zfc ~ N(0,\(K + 1)/e) for the Gaussian mechanism
and z;, 25, ~ Laplace(0, \/2\(K + 1)/e) for the Laplace mechanism.
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Table 1: UCI datasets used in the experiment

Dataset #Instances FAttributes #Classes %Positive Source
CreditCard 30000 23 2 22% |Yeh & hui Lien| (2009
Thyroid 7200 21 3 — \Quinlan et al.| (1986
Shopper 12330 17 2 15% [Sakar et al.| (2018
Digit 5620 64 10 — |Garris et al.| (1997
GermanCredit 1000 20 2 30% |Gromping (2019
Bank 41188 20 2 11% Moro et al.| (2014
Spam 4601 57 2 39% |Cranor & LaMacchial (1998
Adult 48842 13 2 24% |K0havi 1996
<10+  CreditCard %103 Thyroid %104 Shopper <104 Digit
» 0 —— Non-private w 'W —— Non-private 2.0 —— Non-private s ° '\—}— Non-private
L 5 Dirichlet 3 s Dirich]et 2 Dirich}et 2 5 1 Dirich]et
=, —+—  Gaussian — —+—  Gaussian — 1.5 —+—  Gaussian — 4 ——  Gaussian
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3 1.0 4
Z - g g Z:] X
52 a4 0 32 a0 52 a4 o0 302 a0
logy(€) logy(€) logy(€) logy(€)
<103 GermanCredit <104 Bank %104 Spam <104 Adult
” 4 -M—}— Non-private| [, ° 7 —— Non-private| | , 5, —— Non-private| | , * ] —— Non-private
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Figure 3: Test CE losses of the original and private naive Bayes models on 8 UCI datasets

In this experiment, the naive Bayes models with differentially private mechanisms are used to classify 8
UCT datasets (Dua & Graffl, 2017) with diverse number of instances/attributes/classes. The details of the
datasets are shown in Table [I}] For each dataset, we use a 70-30 train-test split. Before fitting the models,
numerical attributes are transformed into categorical ones using quantile binning, where the number of bins
is fixed at 10.

For all privacy mechanisms, we fix A = 5 and study their performances as ¢ increases from 1073 to 10. The
classification performances, measured in cross-entropy (CE) loss and accuracy on the test sets, are shown
in Figure 3] and [l We can see that, on all datasets, the test CE losses of the Dirichlet mechanism are
substantially less than those of the Gaussian mechanism and Laplace mechanism; they are remarkably close
to those of the non-private model on the CreditCard, GermanCredit, Bank and Adult datasets. This result
should not be surprising, as the Dirichlet mechanism is the exponential mechanism that aims to minimize
the KL divergence, and thus the cross-entropy between the normalized counts and the parameters.

In terms of accuracy, there are no clear winner among the three mechanisms; the Dirichlet mechanism
performs as well as the other mechanisms in most cases. Specifically, it has higher accuracies than the
Gaussian mechanism on the Digit dataset for € > 0.1, on the Adult dataset for ¢ < 0.1, and on the Bank
dataset for all values of e.

Therefore, if one wants their differentially private naive Bayes model to perform well in terms of CE loss, or
both CE loss and accuracy, then the Dirichlet mechanism is an attractive option.
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Figure 4: Test accuracies of the original and private naive Bayes models on 8 UCI datasets

5.2 Parameter estimations of Bayesian networks

We use the Dirichlet mechanism for differentially private parameter estimations of discrete Bayesian networks.
Consider a dataset D = {z(D}N | where () = (mgz), . ,xg?) € Hszl Xy and Xy, ..., Xk are finite sets. We
name the K variables by their index: 1,..., K. Given a Bayesian network and k € [K], we denote the set of
parents of k by Pa(k). Let azgil(k) = ($él))gepa(k) be observed values of Pa(k) and Xp,(j) = [lsepa(s) Xe
be the product space of Pa(k). Given j € & and ¢ € Xpg(r), we denote NF = Zi\;l ]I(:cgl(k)
N]’?C = ZN ]I(acgf) = j,:cff,) ) = ¢). The log-likelihood of the parameters 9;?6 = Prlzy = j | xpo) = ] is

LL(®) = > Y NElogo¥ (8)

given by:
ke[K] jeXk

cE€EXpa(k)

= ¢) and

Using the first-derivative test, the maximum-likelihood estimators of the Bayesian network are as follow:

. NE
oy, = Njk . (9)
We can modify the model using the Dirichlet mechanism: assuming that Xy = [d], we replace (916, ce ésc)

by (6%,...,0% ) ~ Dirichlet (r(Nf,,...,N5)+a). Here, r and a are chosen according to Algorithm [1| to
attain (\,e/K)-RDP. By the basic composition (Lemma |l)) and the parallel composition, releasing éfc for
all k € [K], j € Xk and ¢ € Xpy() is (A, €)-RDP.

We will compare the Dirichlet mechanism with the Gaussian and Laplace mechanisms. In equation [J] we
replace N ]’-“C by its noisy version: N J’? = N; kot zj ., where z ~ N(0,\K /e) for the Gaussian mechamsm and

zé?c ~ Laplace(0, /2AK/e) for the Laplace mechamsm. In addltlon, we replace N¥ by N¥ = >N

In this experiment, we have prepared Bayesian networks on the Adult, Bank and GermanCredit datasets,
which are parts of full networks provided by [Le Quy et al.| (2022). The Bayesian networks are shown in
Figure [f] As in the previous experiment, we use a 70-30 train-test split on each dataset, and continuous
attributes are transformed into categorical attributes via quantile binning, with the number of bins fixed at
10.

For all privacy mechanisms, we fix A = 5 and study their performances, in terms of the log-likelihoods of
the privatized parameters on the test sets, as ¢ increases from 1072 to 10. The plot of the log-likelihoods as
functions of € are shown in Figure[f] We can see that, on all datasets, the test log-likelihoods of the Dirichlet




Under review as submission to TMLR

Adult Bank GermanCredit
Cororerty
Camount >

w

people-liable @
other-installment

Figure 5: Our Bayesian networks on three datasets.
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Figure 6: Test log-likelihoods of the parameters obtained from the maximum-likelihood estimation (non-
private) and three differential privacy mechanisms.

mechanism are substantially less than those of the Gaussian mechanism and Laplace mechanism. The results
agree with our suggestion to use the Dirichlet mechanism for privacy-aware KL divergence minimization for
discrete parameters, as it is equivalent to likelihood maximization.

6 Conclusion

We study derive the Dirichlet mechanism as an instance of the exponential mechanism with the discrete KL
divergence as the loss function. Consequently, we suggest using the mechanism for privacy-aware KL diver-
gence minimization, which in turn is equivalent to likelihood maximization and cross—entropy minimization.
To this end, we propose a choice of the privacy factor r and the prior « that achieve a desired (A, e)-RDP
guarantee. To demonstrate its efficiency, we compare our mechanism with the Gaussian and Laplace mecha-
nisms for differentially private naive Bayes classification, and as expected, the Dirichlet mechanism provides
significantly lower cross-entropy losses on various datasets compared to the other two mechanisms. We also
make a comparison between the mechanisms for maximum likelihood estimations for Bayesian networks. Our
experiment on three datasets shows that the Dirichlet mechanism provides significantly higher log-likelihoods
than the Gaussian and Laplace mechanisms.

As the KL divergence is a fundamental measure in information theory, we envision that the Dirichlet mech-
anism would become essential for many privacy-focused information-theoretic models with discrete parame-
ters.

10
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Broader Impact Statement

The Dirichlet mechanism does not provide privacy protection for free, but with a cost of some accuracy
loss: the higher the privacy guarantee, the lower the accuracy of the privatized model compared to the
original model. Any losses incurred from the inaccuracy must be taken into consideration before deploying
the privatized model.
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A Dirichlet posterior sampling is not c-differentially private

We show that the Dirichlet posterior sampling does not satisfy the original notion of differential privacy—the
pure differential privacy.

Proposition 3. For any € > 0, the mechanism that outputs y ~ Dirichlet(r f(x) 4+ «) is not e-differentially
private.

Proof. Without loss of generality, let £ = (0,0,...,0) and 2’ = (1,0,...,0). Let @ > 0 be any positive
number. Let y ~ Dirichlet(r f(z) + «) and y’ ~ Dirichlet(rf(z') + «). For any yo = (y1,92,-..,yq) with
> yi =1, we have

Prly = yo _ B(rf(z') + «
Prly’ =yl  B(rf(z)+a) [,y 00"
_B(rf@)+a) 1
B(rf(z)+a) y
For any € > 0, we can choose a sufficiently small y; > 0 so that the right-hand side is larger than e®. O

Since there is no hope for pure differential privacy, we turn our attention to one of relaxed notions of
differential privacy. We shall see below that, with Rényi differential privacy (RDP), we can derive the
privacy guarantee of the Dirichlet posterior sampling in a simple form.
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10-1 o

Figure 7: (£,0)-DP guarantees of the Dirichlet mechanism following equation 10| with A € {2, 10, 50,200}
and § = 107°.

B Approximate differential privacy

We can convert from RDP to approximate DP with the following conversion formula:

Lemma 3 (From RDP to Approximate DP (Canonne et al) [2020)). Let ¢ > 0. If M is a (\,e)-RDP
mechanism, then it also satisfies (€,0)-DP with

5 P = 1)(e =) (1 1){

A—1

Taking the logarithm of equation
logd =(A—1)(e —&) + (A —1)log(A — 1) — Alog(A),
which is equivalent to
log & + Alog(A
e et log(A— 1) — 0BO T AloBY
A—1
Plugging in the RDP guarantee in Algorithm [I} we obtain

log § + Alog(A)

-1 (10)

1
€= AP ALY (14 3(A — 1)rAuc) +log(A — 1) —

which gives a formula for £ in terms of 7, A and d. Figure[7]shows £ as a function of r at four different values
of A\. We can see that € is positively correlated with r and negatively correlated with A.

C Proof of Lemma 2

Denote x = 3(A — 1)rAs. With e, A\, Ay and A, fixed as constants, we can write the equation as ¢ =

Cx%yY/'(1 + z) for some constant C' > 0. From equation we have ¢/'(1 + z) = @(m) as ¢ — 0 and

P (z) = @(14%9@) as © — oo. Consequently,

lim 22¢/(14+2) =0 and lim 2%¢)/'(1 + ) = co.
z—0 T—>00

The conclusion will follow if we can show that the function ¢(z) == x2¢’(1 + z) is strictly increasing. For
this, first we use ¥'(1+ z) < ﬁ + (1-%)2 to obtain

Y(A+a) ¢(+a) _29(1+2)  2¢0'(1+2)

l 2
W+l < 1+ (1+z)2 = 1+z < T
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In other words, 2¢/'(1 + z) > x[¢'(1 + z)]>. Combining this with [¢/'(z)]? 4+ ¢ (z) > 0 (see e.g. Batir| (2004,
Lemmal.1)), we have

¢'(x) = 209/ (1 + ) + 2*" (1 + 2) > 2°[¥' (1 + 2))° + 2?9 (1 + 2) = 2 ([ (2)]* + 9" (2)) > 0.

Therefore, ¢(x) is strictly increasing.

D Proof of Theorem 2

Let 2 and 2’ be neighboring datasets. For notational convenience, let u :== rf(z) + o and v’ == rf(2’) + a.
As usual, we write u = (u1,...,uq), v’ = (u},...,u)), uo =), u; and ug =Y, uj. Let P(y) be the density
of Dirichlet(u) and P’(y) be the density of Dirichlet(u'). To compute the Rényi divergence between P(y)
and P’(y), we start with:

B ’(L/ At 1) (u—u'

B Er [0

B(u) ! Bu+ (A= 1)(u—1))

B(u)*1 B(u) ' (11)

The ratio can be expressed in terms of gamma functions:

B) _ ILP(wi)/TQC;wi) _ T(uo) 11 I'(u3)
r

B(w)  ILT(u)/T(x,u)  up) L Ta)
where ug =Y, u; and u(, ==Y, u;. Similarly,
Blu+ (A -Du—u)) _ ., ui) HF(W + (A = D) —u5))
B(u) PO uwi+ (A= 1) 32, (us — ug)) I(u;) '
Taking the logarithm on both side of equation we need to find an upper bound of:
logE,.p Pl = Z(G(u wy) + H(ug, ul)) — G(uo, up) — H(ug, ug) (12)
y~P(y) P/(y))\71 iy Uy iy Wy s 4o s o )

where
G(ui,u;) = (A = 1)(log T'(uz) — log T'(u;))
H(ug,uy) =log T(u; + (A — 1) (u; — u})) — log T'(u;),

and similarly for G(ug,uj) and H (ug, u()). Using the second-order Taylor expansion, there exists £ between

u; + (A = 1)(u; — uf) and u;, and & between u; and u such that

Gluey ) = —(A = 1w = w)(m) + 50— 1) (s — ul)20/(€)
= = D) — FE)rb() + 2 (= Do)~ L) (€)
(s }) = (A — 1) (s — u)ob(g) + = (A — 1) (s — )/ (€)

2
= (= (i) — fi@)rb(us) + 30— DA(l2) = fia)Pro(€).

We will try to find an upper bound of both ¢’(¢) and v¥’(£’). Note that v’ is increasing. If f;(z) > f;(a'),
then w} < u; < u; + (A — 1)(u; — u}). Thus both £ and & are bounded below by u; > a,,. On the other
hand, if f;(x) < fi(z'), then u; + (A — 1)(u; — u}) < u; < uj. In this case, £ and & are bounded below by:

ui + (A = D(u; — i) = fi(x) + 0s — (A= 1)(rfi(2') = rfi(2))
>a—(A—1rA,

16
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Therefore, ¥’ (£) and ¢’ (') are both bounded above by 9'(a — (A — 1)7rAs). Consequently,

G (wiy uz) + H (uiy ug) < %(()\ = 1)+ A =1?)(filz) = fi(@")*r*P (@ = (A = 1)rAx)

= *>\( D(fi(z) = fi(z")*r*¢' (@ — (A = D)rdc).

The same argument can be used to show that, there exist & and & such that:

2O 1) (a0 — 20 () + 5 (3 — 1)2(uo — ) (€9) > 0

G(uo, uy) + H(ug,ugy) = 5

Therefore, continuing from equation

DAPWIF' (W) = = <Z(G(umu§) + H (ui, u)) — Guo, up) — H(Um%))

1

< ﬁ Z(G(uza ’LL;) + H(u“ ’U,;))

5)\ Z(% —2))%r%Y (@ — (A — 1)rAs)

I /\

IN

1
§AA§7~2¢'(@ — (A= 1)rAL).
Thus, given any A > 1, € > 0 and any g : Rso — R, if we let 7 be the solution of $A\r2A3y/ (14 g(r)) =¢

and a =1+ g(r) + (A — 1)rA, then the inequality above implies Dy (P(y)||P’(y)) < €. We conclude that
Algorithm [1| by setting g(r) = 3(A — 1)rAx

E Proof of the Utility bound

We first note a pair of inequalities for the digamma function, which hold for all x > %:

1
log <x - ) <(z) < logzx. (13)
We start with the Chernoff bound: for any t < /3,

Pr[Dx1(pllq) > n] < e E [ewmpuq)}

=e "E [H(pi/qz‘)tm]

1
— et prpiE H qitpi‘|

— e tn tp; Bpi—tpi+a—1

B Hp ﬁp + ) /H dq
_ —tpi + @)

_ t tpl

= H Bp +a)

iy T(B+da) p; L (Bpi — tpi + @)
=e tnmnpzp W

Using the first-order Taylor approximation, we have the following estimates for log-gamma functions:

logT(B + da) < logT'(B — t + da) + (8 + da)
logT'(Bp; — tp; + a) < logI'(Bp; + dov) — tpsp(Bpi — tpi + ).

17
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Inserting these inequalities and equation [13|into equation we obtain
Pr[Dkw(pllq) > 7] < et (B+da) szmeftmw(ﬁpﬁtpﬁa)

i
< e~ tnetlog(B+da) Hpﬁpie—tpi log(Bpi—tpi+a—1/2)
i

(B + da)* Hp’;pi (Bpi —tpi +a — 1/2)77

i

M6 4 da) TT(8 — t +p; (- 1/2) ™

i

R B+ da i

- nH< —t+p;1(a—1/2)>
th<ﬂ+da>

i Btda

‘e"<ﬁt>

d
= exp (—tn + tlog Bﬂ—’—_ ta)

(15)
1any —1
The function f(¢) is minimized at t* := ( %i;; ), where W is the Lambert W function. Note
that W satisfies the identity log(W (z)/z) = —W (x) for all z > —e~!. Therefore,
+ d
jer) = n+fk%5 -
ﬂ + da Belttn
t*1
tn+ ¢ log B+ da
147
= n+t*log { <§j—d >}+t*logel+’7

—t'n —t*W ( Hn) t"(1+n)
(1_ <ﬂﬁ+da>>
(- () ) () )

The assumption 8 > da/(e"/? — 1) implies §/(8 4+ da) > e~/2. We use the inequality W(z) > loga —
loglogz + loglogz/(2log x) for x > e (Hoorfar & Hassanil, 2008, Theorem 2.7) to obtain

w(Fa) =)
(6

n ny , log(1+n/2)
>1+ 2 —1lo (1+—)+7
2 U T ) T o1 /2)
1
—1 77( ] > (1+ 7
2 2+n
Sigon L
2 2 2409
n
2(2+1)
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Continuing from equation we have

s a(1- (e ) ) (- 1) = o)

Inserting this inequality back into equation we obtain
Pr[Di1(pllq) > 1) < exp(f(1)) < exp(f(t*)) < e/ @m+am),

as desired.
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