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Abstract

Accurate needle placement during nerve block procedures is essential for safe and effective
anesthesia and pain management. However, tracking needles and nerves in an austere
setting using Point of Care Ultrasound (POCUS) can be challenging due to the complexity
of the surrounding anatomy, the lack of real-time feedback and limited image quality. In this
paper, we propose a method for segmenting these structures and estimating the pixelwise
uncertainty using a novel approach: Temporal Monte Carlo Dropout. We demonstrate
the effectiveness of our approach in POCUS with a stable probe, where it provides robust
uncertainty estimates in challenging imaging scenarios while simultaneously tracking the
needle accurately. Our method obtains an 84% similarity score with uncertainty estimates
obtained from Monte Carlo Dropout with an 8x decrease in computational complexity
without compromising segmentation performance. Importantly, it can be easily integrated
into existing POCUS workflows on portable devices and has the potential to benefit medical
practitioners and patients alike.

Keywords: POCUS AI, Bayesian Inference, Anatomic Segmentation, Needle, Nerve Block
1. Introduction

Point-of-care ultrasound (POCUS) has emerged as a powerful tool for rapid, accurate, and
portable diagnosis and treatment, particularly in scenarios where traditional imaging modal-
ities are not available or are impractical to use. POCUS can improve patient outcomes,
reduce costs, and increase efficiency in the healthcare system(Kuo et al., 2020; Magalhaes
et al., 2020; Smallwood and Dachsel, 2018). The provision for real-time visualization makes
it an ideal tool for guiding nerve block procedures. Historically, nerve block needle place-
ment has been guided by methods that are invasive, imprecise, and costly due to the need
for specialized equipment and personnel(Hadzic et al., 2003) (Choquet et al., 2012)
Ensuring safety and efficacy of deep learning models in such ultrasound-guided proce-
dures demands precise uncertainty estimation. Traditional Bayesian uncertainty estimation
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methods, such as Markov Chain Monte Carlo sampling(Van Ravenzwaaij et al., 2018), en-
semble methods(Vrugt and Robinson, 2007), and Monte Carlo dropout(Camarasa et al.,
2020), are computationally expensive, limiting real-time feedback. Our Temporal Monte
Carlo Dropout method overcomes this by sampling once per frame with varying dropout
configurations across frames, maintaining reliable uncertainty estimates while reducing com-
plexity and not compromising on segmentation performance.

2. Methods

The work was performed under IRB approvals from all investigators’ home institutions.
The Peripheral Nerve Block dataset, comprising of recorded Adductor Canal (AC) block
procedures, was collected at the Brooke Army Medical Center (BAMC) using a butterfly
ultrasound probe and anonymized for our access and use. We examined 15 different patient
recordings where needle placement was within 0.5 cm of the nerve and 16 different patient
recordings where needle placement was beyond 1 cm from the nerve. We include six ad-
ditional anonymized femoral nerve block clips (labelled Negative) from the University of
Pittsburgh Medical Center (UPMC) Department of Emergency Medicine database.

We employ a Bayesian 3D U-Net encoder-decoder architecture for segmentation, using
temporal volumes as inputs(Kendall and Gal, 2017). The model produces two outputs,
the predictive mean /i and variance 2. We train the model with stochastic cross entropy
loss accounting for aleatoric uncertainty(Kendall and Gal, 2017). The predicted output
for a frame z; is given by [, 62, ,,0:c) = fo(x), where fy denotes the model parametrized
by the weights 6. To obtain the epistemic uncertainty maps, we use our novel temporal
Monte Carlo dropout, which involves performing inference with each frame separately. The
uncertainty estimate for each pixel in a frame is obtained as the variance of i across M
frames, each run with different dropout configurations o*(z;) = 47 Zi]\il(ﬁi — )%, The
model was trained with the Adam optimizer(Kingma and Ba, 2014) with a learning rate of
le-4 and early stopping(Yao et al., 2007)

3. Results and Discussion

We compare the uncertainty maps generated using temporal MC dropout across M frames
with nontemporal MC dropout across N samples per frame where nontemporal MC dropout
refers to the standard way of computing MC dropout with o?(z;) = % Zij\il(ﬁi — fi)? for
N MC samples per frame

Figure 1: a) Example input frames (top) with their corresponding segmentations (bottom : Red
- Needle, Green - Nerve, Blue - Vessel) and b) Needle (top) and nerve (bottom) uncertainty maps
with different MC configurations

We use Structural SIMilarity (SSIM)(Hore and Ziou, 2010) to compare the uncertainty
maps, as SSIM has been shown to capture structural information accurately and corre-
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late well with human perception(Abdar et al., 2021). We show a few visualizations of the
segmentation and uncertainty maps in different configurations in Fig 1 and the SSIM com-
parisons in Fig 2. Our results suggest a strong correlation between Nontemporal Monte
Carlo (MC) sampling with N = 8 and temporal MC sampling with M = 8. This finding
indicates that our approach is effective in generating structurally similar uncertainty maps
while reducing the computational burden of running the model multiple times on a given
image. We validate that sampling once per frame maintains segmentation performance by
comparing our method with popular UNet variants using needle tip error and needle/nerve
detection as segmentation metrics, in table 1. Our method outperforms most alternatives
and nearly matches the nontemporal variant with 8 MC samples per frame while reducing
computational burden by a factor of 1/s.
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Figure 2: Mean + /- Std SSIM scores over the test set comparing needle uncertainty maps generated
with different values of N (nontemporal monte carlo dropout samples) and M (temporal monte carlo
samples across frames) (NT - Nontemporal T - Temporal)

Table 1: Segmentation performance

Model

Bayesian 3D UNet (ours)
Bayesian 3D UNet (nontemporal)

3D UNet

Bayesian 2D UNet

2D UNet
UNet+LSTM

4. Conclusion

Tip Error(cm)
0.23+£0.18
0.22+0.17
0.29+0.18
0.3240.26
0.31+£0.21
0.32+0.18

Needle Detection
100%
100%
99%
88%
97%
87%

Nerve Detection
66%
66%
45%
61%
49%
50%

We presented a novel method to extract uncertainty maps with significant computing ad-
vantages over alternatives, and showed that we did not compromise on output quality and
model accuracy. Further work can look at extending this algorithm to settings with moving
probes and to other imaging modalities.
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