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Abstract

Predictive coding is a model of visual processing which
suggests that the brain is a generative model of input,
with prediction error serving as a signal for both learn-
ing and attention. In this work, we show how the equivari-
ant capsules learned by a Topographic Variational Autoen-
coder can be extended to fit within the predictive coding
framework by treating the slow rolling of capsule activa-
tions as the forward prediction operator. We demonstrate
quantitatively that such an extension leads to improved se-
quence modeling compared with both topographic and non-
topographic baselines, and that the resulting forward pre-
dictions are qualitatively more coherent with the provided
partial input transformations.

1. Introduction
Topographic organization in the brain describes the ob-

servation that nearby neurons on the cortical surface tend
to have more strongly correlated activations than spatially
distant neurons. From the simple orientation of lines [22] to
the complex semantics of natural language [23], organiza-
tion of cortical activity is observed for a diversity of stimuli
and across a range of species. Given such strong and ubiq-
uitous observations, it seems only natural to wonder about
the computational benefits of such organization, and if the
machine learning community can take advantage of such
design principles to develop better inductive priors for deep
neural network architectures.

One inductive prior which has gained popularity in re-
cent years is that of equivariance. At a high level, a rep-
resentation is said to be equivariant if it transforms in a
known predictable manner for a given transformation of
the input. A fundamental method for constructing equiv-
ariant representations is through structured parameter shar-
ing, constrained by the underlying desired transformation
group [10, 39, 17, 18]. The most well known example of
an equivariant map is the convolution operation, which is
equivariant to translation. One can think of a convolutional
layer as a function which shares the same feature extractor

Figure 1. Overview of the Predictive Coding Topographic VAE.
The transformation in input space τg becomes encoded as a Roll
within the equivariant capsule dimension. The model is thus able
to forward predict the continuation of the sequence by encoding a
partial sequence and rolling activations within the capsules.

parameters over all elements of the translation group, i.e. all
spatial locations. Similarly, a model which is equivariant to
rotation is one which shares parameters across all rotations.
Existing group equivariant neural networks [10] therefore
propose to maintain ‘capsules’ of tied-parameters which are
correlated by the action of the group. By reducing the num-
ber of trainable parameters while simultaneously increasing
the information contained in the representation, equivari-
ant neural networks have demonstrated significant improve-
ments to generalization and data efficiency [10, 42, 51].

These sets of transformed weights, which we refer to as
‘equivariant capsules’, are reminiscent of a type of topo-
graphic organization observed in the primary visual cortex
(V1), namely orientation columns [22]. This insight en-
couraged the development of the Topographic Variational
Autoencoder (TVAE) [2], linking equivariance and topo-
graphic organization in a single framework. In the origi-
nal work, the TVAE was introduced and demonstrated to
learn topographic equivariant capsules in an entirely unsu-
pervised manner from observed transformation sequences.
Further, the inductive priors of equivariance and ‘slowness’
integrated into the TVAE were demonstrated to be benefi-
cial for modeling sequence transformations, ultimately re-
sulting in higher log-likelihood on held-out data when com-
pared with VAE baselines.

In this work, we propose to extend the TVAE with an
additional inductive prior – that of predictive coding [19].
At a high level, predictive coding suggests that one signifi-
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cant goal of the brain is to predict future input and use the
forward prediction error as a learning signal. In the context
of the TVAE, we observe that the existence of topographi-
cally organized capsules, combined with a slowness prior,
permit efficient forward prediction through simple forward
rolling of capsule activations. We demonstrate empirically
that such a model is able to more accurately predict the im-
mediate future, while simultaneously retaining the learned
equivariance properties afforded by the original TVAE.

2. Background
The Topographic VAE [2] relies on a combination of fun-

damentally related inductive priors including Equivariance,
Topographic Organization, and Slowness. In this section we
will give a brief description of these concepts, and further
introduce predictive coding as it relates to this work.

2.1. Equivariance

Equivariance is the mathematical notion of symmetry for
functions. A function is said to be an equivariant map if
the the result of transforming the input and then comput-
ing the function is the same as first computing the func-
tion and then transforming the output. In other words,
the function and the transformation commute. Formally,
f(τρ[x]) = Γρ[f(x)], where τ and Γ denote the (potentially
different) operators on the domain and co-domain respec-
tively, but are indexed by the same element ρ. The introduc-
tion of the Group-convolution [10] and ensuing work [11,
51, 50, 18, 47] allowed for the development of analytically
equivariant neural network architectures to a broad range of
group transformations, demonstrating measurable benefits
in domains such as medical imaging [46, 3] and molecular
generation [41]. Recently, more work has begun to explore
the possibility of ‘learned’ equivariance guided by the data
itself [5, 14, 20]. The TVAE and the extension presented in
this paper are another promising step in this direction.

2.2. Topographic Organization

Topographic generative models can be seen as a class of
generative models where the latent variables have an un-
derlying topographic organization which determines their
correlation structure. As opposed to common generative
models such as Independant Component Analysis (ICA)
[4, 27] or VAEs [29, 40], the latent variables in a topo-
graphic generative model are not assumed to be entirely in-
dependant, but instead are more correlated when they are
spatially ‘close’ in a predetermined topology. Typically,
simple topologies such as 1 or 2 dimensional grids are used,
often with circular boundaries to avoid edge effects.

One way a topographic generative model can be de-
scribed, as in [25], is as a hierarchical generative model
where there exist a set of higher level independant ‘vari-
ance generating’ variables V which are combined locally

along the topology to generate the variances of the lower
level topographic variables T. Formally, for an adjacency
matrix W, and an appropriate non-linearity φ, the variances
are computed as σ = φ(WV). In the second stage, the
lower level variables are sampled independently, but with
their scale determined by the now topographically orga-
nized variable σ: T ∼ N (0,σ2I). In later work [26],
Hyvärinen et al. further showed this framework to be a gen-
eralization Independant Subspace Analysis (ISA) [24] and
some variants of Slow Feature Analysis (SFA) [43, 49, 44]
by careful choice of topography W. The Topographic VAE
takes advantage of both this framework and these connec-
tions to construct slow-transforming capsules which learn to
become equivariant to observed sequence transformations.

2.3. Predictive Coding

In the machine learning literature, one of the most intu-
itive and common frameworks for unsupervised learning re-
lies on predicting unseen or missing contextual data from a
given input. This idea, informally called predictive coding,
has led to some of the most well known advances in the field
across a range of domains including: natural language pro-
cessing (word2vec [36], GPT3 [6], Bert [13]), vision (CPC
[45], SimCLR [7], GreedyInfoMax [34]), speech (APC [8]),
and more [21, 32]. In the theoretical neuroscience literature,
predictive coding denotes a framework by which the cortex
is a generative model of sensory inputs [16, 38, 19, 9], and
has been linked to probabilistic latent variable models such
as VAEs [35]. Substantial evidence has been gathered sup-
porting the existence of some form of predictive coding in
the brain [1, 12, 15], and numerous computational models
have been proposed which replicate empirical observations
[38, 33, 28]. Given these computational successes, and the
mounting support for such a mechanism underlying biolog-
ical intelligence, we strive to formalize the relationship be-
tween predictive coding and TVAEs in this work.

3. Predictive Coding with Topographic VAEs
In this section we introduce the generative model under-

lying the Predictive Coding Topographic VAE (PCTVAE)
and highlight the differences with the original model – in-
cluding making the conditional generative distribution for-
ward predictive, and limiting the temporal coherence win-
dow to only include past variables.

3.1. The Forward Predictive Generative Model

We assume that the observed sequence data is generated
from a joint distribution over observed and latent variables
xl and tl which factorizes over timesteps l, and further fac-
torizes into the product of a forward predictive conditional
and the prior:

p{Xl+1,Tl}l({xl+1, tl}l) =
∏
l

pXl+1|Tl(xl+1|tl)pTl(tl) (1)

2
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Figure 2. Forward predicted trajectories from the Predictive Coding TVAE (left) and the original TVAE (right). The images in the top
row show the true input transformation, with greyed out images being held out. The lower row then shows the reconstruction, constructed
by starting at t0, and progressively rolling the capsules forward to decode the remainder of the sequence. We see the PCTVAE is able to
predict sequence transformations accurately, while the TVAE forward predictions slowly lose coherence with the input sequence.

The prior distribution is assumed to be a Topographic
Product of Student’s-t (TPoT) distribution [48, 37], i.e.
pTl(tl) = TPoT(tl; ν), and we parameterize the condi-
tional distribution with a flexible function approximator:

pXl+1|Tl(xl+1|tl) = pθ(xl+1|gθ(tl)) (2)

The goal of training is thus to learn the parameters θ such
that the marginal distribution of the model pθ(xl) matches
that of the observed data.

To allow for efficient training, we follow the construc-
tion outlined in [2], whereby we construct a TPoT random
variable from simpler independant normal random variables
Zl and Ul which are amenable to variational inference:

Tl =
Zl − µ√
WU2

l

Zl,Ul ∼ N (0, I) (3)

where W defines the chosen topology, and µ is learned.

Past Temporal Coherence As mentioned in the Section
2.2, the Topographic VAE takes advantage of the general-
ized framework of topographic generative models to induce
structured correlations of activations over time – thereby
achieving equivariance. In this work, this is achieved by
making Tl a function of a sequence {Ul−δ}Lδ=0, and defin-
ing W to connect sequentially rolled copies of past Ul:

Tl =
Zl − µ√

W
[
U2
l ; · · · ;U2

l−L
] (4)

where
[
U2
l ; · · · ;U2

l−L
]

denotes vertical concatenation of
the column vectors Ul, and L can be seen as the past win-
dow size. Then, by careful definition of W, we can achieve
the ‘shifting temporal coherence’, defined in [2], yielding
equivariant capsules. Explicitly, W is thus given by:

W
[
U2
l ; · · · ;U2

l−L
]

=

L∑
δ=0

WδRollδ(U
2
l−δ) (5)

where Wδ defines a set of disjoint ‘capsule’ topologies for
each time-step, and Rollδ(U

2
l−δ) denotes a cyclic permu-

tation of δ steps along the capsule dimension (see [2] for
exact implementation details).

3.2. The Predictive Coding TVAE

To train the parameters of the generative model θ, we use
equation 4 to parameterize an approximate posterior for tl
in terms of a deterministic transformation of approximate
posteriors over simpler Gaussian latent variables zl and ul:

qφ(zl|xl) = N
(
zl;µφ(xl), σφ(xl)I

)
(6)

qγ(ul|xl) = N
(
ul;µγ(xl), σγ(xl)I

)
(7)

tl =
zl − µ√

W
[
u2
l ; · · · ;u2

l−L
] (8)

Additionally, to further encourage the capsule Roll as the
forward prediction operator, we integrate a capsule Roll of
tl by one unit as the first step of the generative model, be-
fore decoding xl+1:

pθ(xl+1|gθ(tl)) = pθ(xl+1|ĝθ(Roll1[tl])) (9)

We denote this model the Predictive Coding Topographic
VAE (PCTVAE) and present an overview of forward predic-
tion in Figure 1. We optimize the parameters θ, φ, γ (and µ)
through the ELBO, summed over the sequence length S:

S∑
l=1

EQφ,γ(zl,ul|{x})
(

log pθ(xl+1|ĝθ(Roll1[tl]))

−DKL[qφ(zl|xl)||pZ(zl)]

−DKL[qγ(ul|xl)||pU(ul)]
)

(10)

where Qφ,γ(zl,ul|{x}) = qφ(zl|xl)
∏L
δ=0 qγ(ul−δ|xl−δ).

The fundamental differences of this model with the TVAE
are that this model is trained to to maximize the likelihood
of future inputs through the Roll operation present in the
ELBO, and that the construction of tl is now only a func-
tion of past inputs. As we will demonstrate in the next sec-
tion, these extensions yields significant improvements to se-
quence modeling, while simultaneously increasing flexibil-
ity by allowing for online training and inference.

3
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4. Experiments
In this section we measure the performance of our model,

compared with non-predictive coding baselines, on the
transforming color MNIST dataset from [2]. The dataset is
composed of MNIST digits [31] sequentially transformed
by one of three randomly chosen transformations: spatial
rotation, rotation in color (hue) space, or scaling. For each
training example, the starting pose (color, angle, scale) is
randomly set, and a cyclic sequence of 18 examples is
generated according to the chosen transform. The same
model architecture as [2] (a 3-layer MLP with ReLU ac-
tivations) is used for all encoders and decoders of all mod-
els presented. For topographic models, the latent space is
structured as 18 1-dimensional circular capsules, each of
18 dimensions. Further training details can be found at
https://github.com/anoniccv2021/PCTVAE.

4.1. Forward Prediction Likelihood

To quantitatively measure the ability of the PCTVAE to
predictively model sequences, we train the model to max-
imize Equation 10 with stochastic gradient descent, and
measure the likelihood of held-out test sequences, with only
partial sequences as input. Explicitly, for the both the TVAE
and PCTVAE, a window size of 9 observations are pro-
vided as input and used to generate a capsule representation
t0. The likelihood of the remaining 9 sequence elements
is then measured by sequentially rolling the capsule acti-
vations forward, and measuring pθ(xδt |gθ(Rollδt(t0))) for
δt ∈ {0, ..., 9}. The final reported likelihood values are
computed by importance sampling with 10 samples. In Ta-
ble 4.1 we report the average log-likelihood over this for-
ward predicted sequence for both the original TVAE and
PCTVAE, in addition to the log-likelihood at δt = 0 (no
forward prediction) with a standard VAE. We see the PCT-
VAE achieves a significantly lower average negative like-
lihood in the forward prediction task, while maintaining a
similar level of approximate equivariance as measured by
the equivariance error Eeq (see [2] for a definition). We omit
the baseline VAE for the sequence likelihood measurements
since it has no defined forward prediction operation.

In Figure 3, we plot the likelihood of future sequence el-
emets as a function of the forward time offset δt. As can
be seen, the TVAE model has a marginally higher likeli-
hood for δt = 0, but its forward predictive performance
rapidly deteriorates as the capsule is rolled forward. Con-
versely, the PCTVAE is observed to obtain consistently high
likelihoods on forward prediction up to 8 steps into the fu-
ture of the sequence, implying it has learned to capture the
transformation sequence structure more accurately. Inter-
estingly, despite the TVAE actually being provided with an
input window extending to δt ≤ 4 (as seen in Figure 2
right), the PCTVAE yields significantly higher likelihoods
even for these immediate-future observations.

NLL NLL Eeq
@ δt = 0 Avg. Seq. Avg. Seq.

VAE 190 ± 1 N/A 13274 ± 0
TVAE 187 ± 1 452 ± 16 2122 ± 21
PCTVAE 207 ± 1 232 ± 1 2201 ± 9

Table 1. Neg. log-likelihood (NLL in nats) without forward pre-
diction (δt = 0), NLL averaged over the forward predicted se-
quence, and equivariance error Eeq for a non-topographic VAE,
TVAE, and PCTVAE. The PCTVAE achieves the lowest average
NLL over the forward predicted sequence while also maintaining
low equivariance error. Mean ± std. over 3 random initalizations.

Figure 3. Forward prediction log-likelihood vs. future time offset
δt. We see that the PCTVAE has consistently high likelihood for
sequence elements into the future whereas the likelihood of the
TVAE model drops off rapidly. Shading denotes ± 1 std.

4.2. Sequence Generation

As a qualitative evaluation of the PCTVAE’s sequence
modeling capacity, we show forward predicted sequences
generated by both models in Figure 2. The top row shows
the input sequence with grey images held out, and the lower
row shows the forward predicted sequence, generated by
sequentially rolling the representation t0 forward, and de-
coding at each step. As can be seen, the PCTVAE (left) ap-
pears to generate sequences which are more coherent with
the provided input sequence, while the TVAE (right) is ob-
served to quickly diverge from the true transformation, in
agreement with likelihood values of Figure 3.

5. Discussion
In this paper we have proposed an extension of the To-

pographic VAE to the framework of predictive coding, and
have demonstrated an improved ability to model the imme-
diate future both qualitatively and quantitatively. This work
is inherently preliminary and limited by the fact that the
model is only tested on a single artificial dataset. In future
work, we intend to explore the ability of such a model to
learn more realistic transformations from natural data, such
as from the Natural Sprites dataset [30], and additionally
further investigate the downstream computational benefits
gained from the learned equivariant capsule representation.

4
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