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ABSTRACT

The Transformer has emerged as a versatile and effective architecture with broad
applications. However, it still remains an open problem how to efficiently train a
Transformer model of high utility with differential privacy guarantees. In this paper,
we identify two key challenges in learning differentially private Transformers, i.e.,
heavy computation overhead due to per-sample gradient clipping and unintentional
attention distraction within the attention mechanism. In response, we propose DP-
Former, equipped with Phantom Clipping and Re-Attention Mechanism, to address
these challenges. Our theoretical analysis shows that DPFormer can reduce compu-
tational costs during gradient clipping and effectively mitigate attention distraction
(which could obstruct the training process and lead to a significant performance
drop, especially in the presence of long-tailed data). Such analysis is further cor-
roborated by empirical results on two real-world recommendation datasets with
varying degrees of long-tailedness, showing its significant improvement in terms
of efficiency and effectiveness.

1 INTRODUCTION

Differentially private deep learning has made remarkable strides, particularly in domains such as
image classification (Tramer & Boneh, 2021; Golatkar et al., 2022; De et al., 2022) and natural
language processing (Yu et al., 2022; Li et al., 2022b; He et al., 2023). This success can be largely
attributed to the availability of extensive pre-trained models, offering robust and diverse foundations
for further learning. However, such reliance on vast, pre-existing datasets poses a significant challenge
when these resources are not accessible or relevant. This hurdle becomes particularly pronounced
when it is necessary to train differentially private Transformers using only domain-specific data
gathered from real-world scenarios rather than generic, large-scale datasets.

One relevant real-world scenario is privacy-preserving commercial recommender systems, where
a transformer model needs to be trained differentially privately on users’ historical behaviors for
sequential prediction and large-scale public datasets or pre-existing pre-trained models do not exist.

The challenges posed by this scenario can be summarized into two key hurdles. The first one stems
from the inherent nature of real-world data, which typically follows a long-tailed distribution, where
a small fraction of data occur frequently, while a majority of data appear infrequently. This poses the
intrinsic hardness of high-utility differentially private training, which, based on its sample complex-
ity (Dwork et al., 2009), necessitates a sufficiently large volume of data to discern general patterns
without resorting to the memorization of individual data points (Carlini et al., 2019; Feldman, 2020).
Our theoretical analysis further shows that during differentially private training of Transformers, at-
tention scores tend to be skewed by long-tailed tokens (i.e., tokens with fewer occurrences), therefore
leading to huge performance drops. The second hurdle arises from the resource-intensiveness of deep
learning with differential privacy, which is primarily due to the requirement of clipping per-sample
gradient. This requirement not only complicates the training process but also places a significant
computational burden, especially when resources are limited, which is typical for mobile devices.

To address these issues, we propose DPFormer (Figure 1), a methodology for enabling efficient and
effective training of differentially private Transformers. Specifically, DPFormer consists of two key
parts, i.e., Phantom Clipping and Re-Attention Mechanism. Phantom Clipping inherit the basic idea
of Ghost Clipping (Li et al., 2022b), that is, obtaining the per-sample gradient norm without the need
for instantiating the per-sample gradient. Our Phantom Clipping generalize this technique to the
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shared embedding layer (among the input layer and output layer, which is the standard practice of
training transformer or other embedding-based models) and provides speedup for free by leveraging
the sparsity nature of the input. Re-Attention Mechanism aims to improve the effectiveness of private
training in the presence of long-tailed data by mitigating the attention distraction phenomenon due to
private training on long-tailed data. Experiments on public real-world recommendation datasets with
varying degrees of long-tailedness show the significant improvement achieved by DPFormer in terms
of efficiency and effectiveness.

2 PRELIMINARIES

Problem Setting: Sequential Prediction. Since Transformers are designed to predict the next token
in an autoregressive manner, we focus our evaluation on sequential prediction tasks, where each
training sample consists of a sequence of tokens1 Given the preceding tokens [s1, s2, ..., st−1], the
task is to predict the next token st. Note that in practice (as is also the case for all our datasets),
training data is typically long-tailed, in the sense that a small number of tokens occur quite frequently
while others have fewer occurrences. Our goal is to train a Transformer with DP-SGD (Abadi et al.,
2016) such that it can predict the next token accurately while preserving differential privacy.

Definition 2.1. (ε, δ)-Differential Privacy (DP) (Dwork et al., 2006; 2014): A randomized
mechanism M : D → R satisfies (ε, δ)-differential privacy if for any two datasets D,D′ ∈
Domain(M) that differ in one record and for all S ∈ Range(M) it holds that Pr(M(D) ∈ S) ≤
eε Pr (M(D′) ∈ S) + δ.

One desirable property of DP is that it ensures privacy (in terms of ε and δ) under composition. Based
on this property, DP-SGD (Abadi et al., 2016) injects calibrated Gaussian noise into model gradients
in each training step to achieve differential privacy as follows,

G =
1

B

(
B∑
i=1

gi · ClipC(∥gi∥+ σdp · N (0, I))

)
, (1)

where G is the averaged gradient among the minibatch, gi is the gradient of the i-th sample in the
minibatch of size B, C is the clipping norm, ClipC(∥gi∥) = min(C/∥gi∥, 1), ensuring that the
sensitivity of the averaged gradient G is bounded by ∆G ≤ ∥gi · Clip(∥gi∥)∥ ≤ C. dp is the noise
multiplier derived from privacy accounting tools (Balle et al., 2018; Wang et al., 2019).

The detailed discussion of related work is in Appendix A.1.
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Figure 1: The DPFormer - methodology overview. Left: Phantom Clipping allows parameter sharing
of the embedding layer while providing additional speedup. Right: Re-Attention Mechanism aims to
mitigate the attention distraction during private training and thereby improves the model performance.

1In this paper, we will use ‘token’ to denote the discrete unit within the input sequence and ‘vocabulary size’
to represent the total count of relevant entities, generalizing their definitions associated with language modeling.
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3 PHANTOM CLIPPING

3.1 MOTIVATION: PARAMETER SHARING AS A FORM OF INDUCTIVE BIAS

The method of clipping per-sample gradient (Goodfellow, 2015) without instantiating per-sample
gradient has shown considerable advantage (Li et al., 2022b) in training Transformer models using
DP-SGD as compared to other libraries or implementations (for instance, Opacus (Yousefpour et al.,
2021), JAX (Subramani et al., 2021)). The current limitation is that such idea does not support
parameter sharing (i.e., the practice that ties the parameter of the input embedding and the output
embedding layer together).

To show the importance of parameter sharing when training with DP-SGD, we conduct experiments
under the following three settings: (1) parameter sharing of the embedding layer, which aligns with
the standard treatment in Transformer; (2) no parameter sharing; and (3) no parameter sharing coupled
with a reduced embedding dimension by half. Note that the third setting is included to account for
the potential impact of model dimension on accuracy in private training, given the difference in the
number of parameters between models with and without parameter sharing. Model performance
across different hyperparameters is shown in Figure. 2. The consistency and significance of the
performance improvement brought by parameter sharing during private training are not hard to
perceive. The essence of embedding sharing lies in the assumption that, by tying the embedding
of the input and output layers, the representation of each token remains consistent throughout its
retrieval. This inductive bias enhances the statistical efficiency of the model, enabling improved
generalization. When training with DP-SGD on limited training data, the model must independently
uncover this relationship from the noisy gradients with a low signal-to-noise ratio, heightening the
convergence challenge.
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Figure 2: Numbers are NDCG(%)@10 (higher is better) of the privately trained model (with ε set to 5)
on MovieLens (Figure 5). Parameter sharing for the embedding layer yields consistent and significant
performance gains over the non-sharing setting in private training. The optimal hyperparameter
configuration is always using a large batch size (with a large learning rate).

3.2 EFFICIENT PER-SAMPLE GRADIENT NORM COMPUTATION WITH PARAMETER SHARING

In this section, we present Phantom Clipping, a technique for efficient private training of Transformers
without the need for instantiating per-sample gradient. Besides additionally supporting parameter
sharing compared with Ghost Clipping (Li et al., 2022b), Phantom Clipping provides further speedup
(for free) by leveraging the sparsity of the input, which achieves significant gains when the efficiency
issue associated with the embedding layer is the bottleneck.

Recall that the computational bottleneck of gradient clipping in Equation (1) lies in the calculation
of the per-sample gradient norm i.e., ∥gi∥. As the L2 norm of a vector can be decomposed cross
arbitrary dimensions, for example, ∥(a, b, c)∥ = ∥(∥a∥, ∥[b, c]∥)∥. It suffices to consider the per-
sample gradient norm ∥gi,E∥ of the embedding layer E because the disparity due to parameter sharing
lies solely in the shared embedding, and other layers can be handled akin to Ghost Clipping. After
obtaining the gradient norm via ∥gi∥ = ∥(∥gi,E∥, ∥gi,−E∥)∥, the next step is to scale the gradient
by a factor of ClipC(∥gi∥) to bound its sensitivity. This can either be accomplished by re-scaling
the loss Li through this factor, followed by a second backpropagation (Lee & Kifer, 2021), or by
manually scaling the gradient as demonstrated by (Bu et al., 2022b).
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Therefore, the challenge of evaluating ∥gi,E∥ efficiently without instantiating gi,E stems from the
non-plain feed-forward (and symmetrically, backward propagation) topology caused by parameter
sharing. See Figure 1a for a visual illustration, where the shared embedding leads to two branches of
the backpropagation.

Claim 3.1. (Phantom Clipping) Let L and M be the input length and vocabulary size, respectively.
Let ai,s ∈ {0, 1}L×M (or ai,c ∈ {0, 1}M×M ) be the one-hot encodings of the input sequence si
(or those of the candidate tokens for the output probability) in a minibatch. Let ei,s ∈ RL×d (or
ei,c ∈ RM×d) be output of the (shared) embedding layer E when fed into ai,s (or ai,c). Then the
norm of the per-sample gradient with respect to E can be efficiently evaluated as

∥gi,E∥ =
(
⟨ai,saTi,s,∇ei,s∇eTi,s⟩2 + ∥∇ei,c∥2 + 2 · ⟨∇ei,s, aTi,s∇ei,c⟩

) 1
2 , (2)

where∇ei,s := ∂Li/∂ei,s ∈ RL×d,∇ei,c := ∂Li/∂ei,c ∈ RM×d, and ⟨·, ·⟩ is the inner product of
two matrices being of the same shape.

The full version and the derivation is deferred to Appendix A.2. Note that besides supporting
parameter sharing, our phantom clipping actually provides additional speedup by leveraging the
sparsity of input via Equation (16). We first study the additional memory footprint required by
the embedding layer. Due to the storage of asaTs (and ∇es∇eTs ) ∈ RB×L×L in the first term of
Equation (16) (note that aT∇ec is merely an indexing operation, requiring no additional memory),
Phantom Clipping has overhead memory complexity of O(BL2). As a comparison, Ghost Clipping
has a memory complexity of O(BT 2) when the input to the layer ai has the shape of RT×·. Hence
its memory complexity for the two embedding layers is O(BM2 +BL2) where M is the vocabulary
size. The relative speedup is therefore 1 +O((M/L)2) (recall that (M/L)2 ≫ 1 due to the sparsity
of input, i.e., the input length is greatly smaller than the vocabulary size).

Overall Speedup. The total memory overhead comprises multiple additive components, each
corresponding to a specific layer, i.e., O(cost of the embedding layer + cost of other layers). The
overall memory complexity of Phantom clipping remains the same as Ghost Clipping for all layers
except the embedding layers. This advantage might diminish when the costs associated with other
layers dominate the overall term. However, we note that when the model is small (suitable for local
inference without the need for uploading sensitive data to the cloud service), Phantom clipping could
achieve significant overall speedup by reducing the cost of the embedding layer.
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Figure 3: Besides supporting parameter sharing, our phantom clipping provides additional speedup
by leveraging the sparsity of input. Left: Phantom Clipping is 10-400× more memory efficient than
Ghost Clipping and is almost as efficient as non-private training. Right: Phantom Clipping is 4-100×
faster than Ghost Clipping, having comparable training speed with non-private training.

Empirical Speedup. We implement our Phantom Clipping based on AWS’s fastDP2 library, which
has implemented Ghost Clipping. We then empirically compare our Phantom Clipping with Ghost
Clipping in terms of both memory footprint and training speed on real-world datasets3 (see Figure 5
for details of the datasets). Figure 3a shows the maximum batch size that can fit into a Tesla V100
GPU (16 GB of VRAM). It can be seen that our technique is much more memory friendly. It allows
up to 450× larger batch size compared with Ghost Clipping on Amazon, almost as large as those in

2https://github.com/awslabs/fast-differential-privacy
3Since Ghost Clipping does not support parameter sharing, its results are obtained from training models

without embedding sharing. This leads to more model parameters. For a fair comparison, we halve its embedding
dimension to dE/2, ending up with a similar number of parameters as in the model with embedding sharing.
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non-private training. Figure 3b shows the training speed on a single Tesla V100 GPU. It allows up to
100× training speedup in practice compared to Ghost Clipping, achieving 0.68× training speed of
the non-private version.

4 RE-ATTENTION MECHANISM

Attention Scores
Distraction

Re-Attention 

𝑥" 𝑥# 𝑥$ 𝑥%

DP Training

Attention Scores

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥" 𝑥# 𝑥$ 𝑥%

Attention Scores

𝑆 𝔼[𝑆] 𝔼[𝑆]

Figure 4: Illustration of Re-Attention Mechanism. Fix query q, consider attention scores with respect
to x1, x2, x3 and x4, where x1 and x4 are assumed to be tail tokens. Left: The attention scores
in non-private setting, i.e., ground truth, with the highest attention on tokens x2 and x3. Middle:
Expectation of attention scores in DP training, where the attention is distracted to x4 and x1 due to
the relatively higher uncertainty level of x1 and x4. Right: Re-Attention mechanism is designed to
handle attention distraction by correcting the attention scores. See Appendix A.10 for full details.

4.1 MOTIVATION: THE ATTENTION DISTRACTION PHENOMENON

Recall that the Attention Mechanism, as the key component of the Transformer, given a query,
calculates attention scores pertaining to tokens of relevance. Our key observation is that, over the
randomness of the attention keys for the tokens of interest4, the expectation of the attention scores
will be distorted, particularly, mindlessly leaning towards tokens with high variance, regardless of
their actual relevance. Refer to Figure 4 for a visual illustration of this concept of attention distraction.

To shed light on this phenomenon, we offer a theoretical analysis. Let us fix some query q and denote
the attention key of token i as Ki. Since DP-SGD injects Gaussian noise into the model, it is natural
to assume Ki follows a Gaussian distribution with mean ki and variance σ2

i . We denote Si as the
random variable of the attention score assigned to token i. With some basic algebraic manipulation
and applying the theory of extreme value (Coles et al., 2001), we can recast the formula for attention
scores as follows5,

Si =
exp ⟨q,Ki⟩∑L
j=1 exp ⟨q,Kj⟩

= exp

⟨q,Ki⟩ − log

L∑
j=1

exp ⟨q,Kj⟩


= exp (⟨q,Ki⟩ − Eγ [maxj{⟨q,Kj⟩+ γ}]),

(3)

where γ is distributed as a standard Gumbel. Let us consider some token i′ that should have attracted
little attention given the query q, then the expectation of the noisy maximum Eγ [maxj{⟨q,Kj⟩+ γ}]
can be approximated by maxj ̸=i′ ⟨q,Kj⟩+ ζ, where ζ = E[γ] = π2/6. Taking the expectation of
Equation (3) over Ki′ , and leveraging the fact E[exp(X)] = exp(E[X]) exp(Var[X]/2) when X
follows a Gaussian distribution, we then arrive at the following conclusion

EKi′ [Si′ ] ≈ EKi′ [exp (⟨q,Ki′⟩ − (maxj ̸=i′{⟨q,Kj⟩}+ ζ))]

= exp (⟨q, ki′⟩ − M̃)︸ ︷︷ ︸
attentive relevance

· exp
(
Cσ2

i′/2
)︸ ︷︷ ︸

multiplicative error

, (4)

where M̃ = (maxj ̸=i′{⟨q,Kj⟩} + ζ) and the last equality leverages the fact that ⟨q,Ki′⟩ ∼
N (⟨q, ki′⟩, Cσ2) with C = ⟨q, q⟩. As a result, tokens with higher variance result in inflated at-
tention scores due to increased multiplicative bias, distracting attention from more deserving tokens,
given that token i′ is presupposed to garner little attention under query q. If all tokens have similar

4In unambiguous contexts, ‘token variance’ will denote the variance of the relevant representation associated
with that token, like its attention key, Ki, or its embedding, Ei.

5For ease of notation, we omit the constant factor (i.e., 1/
√
d) in attention computation.
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variance or variance terms are negligible, the negative effects of this attention diversion are reduced.
However, in less ideal conditions, especially with long-tailed data, this attention distraction could
hinder the Transformer’s training, thereby degrading model utility.

4.2 RE-ATTENTION VIA ERROR TRACKING

At its core, the Re-Attention Mechanism is designed to mitigate attention distraction during the
learning process via debiasing the attention scores. To achieve this, it is natural to track the variance
term identified as the error multiplier in Equation (26). In the following discussion, we elaborate on
the methodology employed for tracking this error term during private training.

4.2.1 ERROR INSTANTIATION

Let us focus on the source of the randomness which leads to the attention distraction phenomenon,
that is, the DP noise injected into the model gradients. Inspired by (Li et al., 2022b), we propose
the idea of effective error, which is a probabilistic treatment of the effective noise multiplier in (Li
et al., 2022b), proposed for model with sequential input. Effective error is used as an estimate of the
uncertainty level underlying the model parameters, where the randomness is over DP noise.
Definition 4.1. Effective Error: The effective error σθ

eff associated with the model parameter θ is
defined as

σθ
eff =

σdp

Bθ
eff

, where Bθ
eff = E

B i.i.d∼ DB

[
B∑
i=1

I [Rθ(Bi)]

]
, (5)

where B ∈ N is the batch size, B ∈ NB×L is the minibatch, i.i.d. sampled from training data
distribution D (note that Bi is a sequence of tokens), σdp is the DP noise multiplier in Equation (1),
and I (·) is the indicator function, Rθ(·) = 1 if Bi has relevance with θ, for example, REi

(Bj) =
I[token i ∈ Bj ] where Ei is the embedding for token i, and RW (Bj) = 1 where W is the parameter
within Transformer Block (see Figure 1).
Remark 4.2. Effective error recovers effective noise multiplier when the model has no embedding
layer, for example, an MLP model. In that case, σθ

eff = σdp/B.

We then have the following claims for obtaining effective error of the Transformer’s parameters. See
Appendix A.4 for detailed derivation.
Claim 4.3. For each layer parameterized by W within the Transformer block, its effective error is
σW
eff = σdp/B.

Claim 4.4. For the embedding layer E, effective error of token i is σEi

eff = σdp/(B · pi), where pi is
the frequency of token i (i.e., the probability of token i’s occurrence in data).

4.2.2 ERROR PROPAGATION

Given the effective errors of the embedding layer and of the Transformer encoder, our goal is to
obtain the error term σi identified in Equation (26) for each attention computation. Notably, this
issue of error tracking aligns with studies in Bayesian deep learning (Wang & Yeung, 2020), a field
primarily focused on quantifying prediction uncertainty to enhance the robustness and reliability of
machine learning systems. While our primary interest lies in unbiased attention score computation
during private training, we can leverage and adapt existing methodologies in Bayesian deep learning
to achieve this distinct goal. Specifically, given the input embedding along with its effective error, we
propagate the effective error through Transformer layers (see Figure 1), with the goal of obtaining σi

for each attention calculation. We denote the output of the l-th layer by the random variable X(l).
Given the output distribution X(l−1) of the preceding layer, the distribution X(l) can be computed
layer-by-layer as follows,

p(X(l)|X(0)) = EX(l−1)|X(0)

[
p
(
X(l)|X(l−1)

)]
= EX(l−1)|X(0)

[
pd
(
X

(l)
i |X

(l−1)
)]

, (6)

where the last equality is due to the isometric Gaussian noise of DP (see Equation 1), i.e., each dimen-
sion is independently and identically distributed. Based on Variational Inference (Kingma & Welling,
2013), we can use an approximating distribution q to approximate the computationally intractable
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distribution p, where q(X(l)) follows a Gaussian distribution of mean µ and variance σ2. Note that
minimizing the KL divergence of KL(p(X(l)|X(0))||q(X(l))) reduces to matching the moments of
q(X(l)) to p(X(l)|X(0)). Since the mean and variance6 are sufficient statistics for Gaussian distribu-
tion, propagating the distribution reduces to propagating its natural parameters (Wang et al., 2016).
For linear layers coupled with a coordinate-wise non-linear activation, the statistics can be computed
by analytic expressions using existing techniques from Probabilistic Neural Networks (Wang et al.,
2016; Shekhovtsov & Flach, 2019; Gast & Roth, 2018; Postels et al., 2019; Morales-Alvarez et al.,
2021). Concretely, for linear transformation, X(l) = X(l−1)W , we can propagate the variance as

σ2
X(l) = σ2

X(l−1) · σ2
W + σ2

X(l−1) · µ2
W + σ2

W · (µX(l−1))2. (7)

For nonlinear activation functions, e.g., X(l) = ReLU
(
X(l−1)

)
, we can propagate the variance as

σ2
X(l) = Φ(

c√
d
)(c2 + d) +

c
√
d√

2π
exp(−1

2

c2

d
)− c2, (8)

where Φ(·) is the cumulative density function (CDF) of the standard Gaussian distribution, c and d
are the natural parameter of X(l−1). For completeness, derivation is included in Appendix A.5.

All in all, we can obtain the output distribution of layer (l) via analytic expression in terms of the
natural parameter (Wang et al., 2016) of the preceding layer’s output distribution as

(c(l), d(l)) = F(c(l−1), d(l−1)), σ2 = T (c(l), d(l)). (9)

Nevertheless, a nuanced difference exists between our error propagation and existing techniques
encapsulated in Equation (9). In the Bayesian approach, the model parameter is directly associated
with the mean µW in Equation (7). During private training, however, we can only access the noisy
parameter after the injection of DP noise. Interestingly, access to this noisy parameter can be
interpreted as a single sampling opportunity from its underlying Gaussian distribution, which can
then be viewed as a one-time Markov Chain sampling (Wang et al., 2015). Therefore, the noisy
parameter can serve as an estimate of its mean. In addition, unlike variance propagation in Bayesian
deep learning, the error propagation here incurs minimal computational and memory overhead as the
effective error can be represented in scalar (again, due to the isometric DP noise), plus the propagation
is performed via analytical expressions.

Re-Attention. With the effective error tracked, we then proceed to mitigate the attention distraction
identified in Equation (26) via Si ← Si/ exp

[
Cσ2

i /2
]
, obtaining unbiased attention scores.

In summary, we can propagate and track the effective error through the layers: given the natural
parameter of X(l−1), the variance can be estimated using analytic expressions, which then can be
used to correct the attention scores.

5 EXPERIMENTS

Dataset MovieLens Amazon

# seqs 6039 29340

# items 3416 22266

Avg Len. 165 9.58

Density 4.79% 0.04%

Figure 5: Data in the real-world scenarios exhibits
long-tailed (also known as, power-law) distribution.

Datasets and Prevalence of Long-Tailed
Distributions. We conduct experiments on
two public recommendation datasets col-
lected from real-world scenarios: Movie-
Lens (Harper & Konstan, 2015) and Ama-
zon (McAuley et al., 2015). Figure 5 shows
their data distributions, illustrating the preva-
lence of long-tailed distributions, where a
small number of items are extremely popu-
lar and have relatively high frequency while
other items occur infrequently. The embed-
ded table above the ‘long tail’ reports the
statistics of the two datasets, showing that the two datasets vary significantly in size and sparsity.
More details on datasets can be found in Appendix A.9.1.

6Note that for a Gaussian distribution, (i) mean and variance, (ii) the first two moments, and (iii) natural
parameter, are equivalent in the sense of mutual convertibility. We will use them interchangeably.
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Baselines and Implementation Details. We compare our DPFormer with vanilla Trans-
former (Vaswani et al., 2017) (i.e., the one without Re-Attention Mechanism), vanilla Transformer
without parameter sharing, GRU (Cho et al., 2014), and LSTM (Hochreiter & Schmidhuber, 1997).
For a fair comparison, embedding sharing is applied for all evaluated methods if not explicitly stated.
The number of epochs is set to 100, where the first 20% of epochs are used for learning rate warm-up.
After that, we linearly decay the learning rate through the remaining epochs. Following (Bu et al.,
2022a; Yang et al., 2022), we normalize the gradients and set the clipping norm C to 1, which
eliminates the hyperparameter tuning for clipping norm C. For privacy accounting, we fix the total
training epochs (iterations) and derive the noise required for each iteration from the preset privacy
budget ε. More details on experiment setting can be found in Appendix A.9.

Table 1: Best results (%) on MovieLens at different privacy levels.

DP Guarantee ε = 5 ε = 8 ε = 10

Metric NDCG@10 HIT@10 NDCG@10 HIT@10 NDCG@10 HIT@10

GRU 2.26 ± 0.04 4.58 ± 0.09 2.40 ± 0.03 4.75 ± 0.20 2.81 ± 0.03 5.53 ± 0.05
LSTM 2.65 ± 0.07 5.08 ± 0.08 2.76 ± 0.03 5.41 ± 0.06 2.95 ± 0.03 5.55 ± 0.06

TRANSFORMER W/O PS 2.33 ± 0.05 4.47 ± 0.07 2.56 ± 0.03 5.11 ± 0.05 2.74 ± 0.04 5.39 ± 0.08
TRANSFORMER (VANILLA) 4.57 ± 0.26 8.69 ± 0.53 7.05 ± 0.23 13.17 ± 0.37 7.99 ± 0.21 14.82 ± 0.38

DPFORMER (OURS) 5.88 ± 0.24 11.13 ± 0.43 7.70 ± 0.26 14.31 ± 0.37 8.42 ± 0.22 15.40 ± 0.32

Relative Improvement 29%↑ 28%↑ 9.2%↑ 8.7%↑ 5.4%↑ 3.9%↑

Table 2: Best results (%) on Amazon at different privacy levels.

DP Guarantee ε = 5 ε = 8 ε = 10

Metric NDCG@10 HIT@10 NDCG@10 HIT@10 NDCG@10 HIT@10

GRU 1.13 ± 0.02 2.46 ± 0.03 1.33 ± 0.02 2.22 ± 0.02 1.47 ± 0.03 2.48 ± 0.02
LSTM 1.19 ± 0.01 2.46 ± 0.04 1.23 ± 0.01 2.46 ± 0.04 1.34 ± 0.01 2.51 ± 0.02

TRANSFORMER W/O PS 1.16 ± 0.01 2.36 ± 0.01 1.20 ± 0.02 2.38 ± 0.01 1.40 ± 0.01 2.47 ± 0.02
TRANSFORMER (VANILLA) 1.37 ± 0.04 2.47 ± 0.10 1.54 ± 0.03 2.77 ± 0.07 1.57 ± 0.03 2.83 ± 0.08

DPFORMER (OURS) 1.64 ± 0.01 3.01 ± 0.01 1.98 ± 0.05 3.70 ± 0.15 1.99 ± 0.04 3.73 ± 0.11

Relative Improvement 20%↑ 22%↑ 28%↑ 34%↑ 27%↑ 31%↑
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Figure 6: The Re-Attention Mechanism renders DPFormer notably more stable during private
training. Each run is repeated five times with independent random seeds, with test accuracy (i.e.,
NDCG@10(%) and HIT@10(%)) reported every five epochs. The graduated shading (best viewed
zoomed in) represents confidence intervals from 60% to 100%.

Table 1 and Table 2 show the best7 NDCG@10 and HIT@10 for all the methods on MovieLens
and Amazon. The vanilla Transformer outperforms all other baselines, reaffirming its dominance

7Strictly speaking, the process of hyperparameter tuning would cost privacy budget (Papernot & Steinke,
2022), but is mainly of theoretical interest. We perform grid search on learning rate ∈ {10−3, 3× 10−3, 5×
10−3, 7 × 10−3, 9 × 10−3} and batch size ∈ {256, 512, 1024, 2048, 4096} for each method, ensuring fair
comparison.
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in sequential data modeling due to the Attention Mechanism. Our DPFormer, incorporating the
Re-Attention Mechanism, further boosts the performance by around 20% on average. Notably,
under a low privacy budget (ε = 3), DPFormer achieves a relative improvement of around 25%,
demonstrating its efficacy in attenuating attention distraction during private training. On MovieLens,
as expected, the performance gain increases with decreasing privacy budget ε, i.e., increasing noise
strength during training; this is because larger noise corresponds to more severe attention distraction,
which better highlights the Re-Attention Mechanism’s advantage. However, on Amazon, DPFormer
achieves a smaller relative improvement at ε = 5 than at ε = 10. We suspect that this is due to the two
datasets’ differences in terms of sparsity (i.e., 1−density in Figure 5) as well as the inherent hardness
of training Transformer (Zhang et al., 2019; Xu et al., 2020; Huang et al., 2020) and substantial DP
noise.

Figure 6 shows the model accuracy every five epochs during training. Evidently, the training dynamics
of the vanilla Transformer, impacted by attention distraction, can suffer from high variance and/or
substantial fluctuation, especially on Amazon. In contrast, DPFormer enjoys faster and smoother
convergence, highlighting its superior training stability under differential privacy.
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Figure 7: Results of grid search for hyperparameter tuning on Amazon with privacy budget ε = 8.

To study the robustness and sensitivity with respect to the hyperparameters of our method, Figure 7
shows the results of hyperparameter tuning via grid search 8. For reasonable (along the main
diagonal (Tramer & Boneh, 2021)) hyperparameter configurations, our DPFormer significantly and
consistently outperforms the vanilla Transformer.

6 CONCLUSION

In this paper, we identify two key challenges in learning differentially private Transformers, i.e.,
heavy computation overhead due to per-sample gradient clipping and attention distraction due to
long-tailed data distributions. We then proposed DPFormer, equipped with Phantom Clipping and
Re-Attention Mechanism, to address these challenges. Our theoretical analysis shows that DPFormer
can effectively correct attention shift (which leads to significant performance drops) and reduce
computational cost during gradient clipping, which is further corroborated by empirical results on
two real-world datasets with varying degrees of long-tailedness. We hope our work has the potential
to spur future research.

Limitation. Firstly, while the relative performance gain is significant when privacy budget is relative
low (ε = 5), the performance still suffers, which drops sharply when ε decreases from 8 to 5, in
contrast to the more moderate decline observed when ε reduces from 10 to 8. It remains unclear
whether we have already achieved the limit of private learning (where the hardness is mainly posed by
the limited and long-tailed data) or there is still potential for improvement. Secondly, we do not scale
our method to the large models in this work. While the use of small model is well justified considering
the computing resource of end devices (which is preferable for privacy protection through local
inference), it remains to be seen to which degree the improvement can be obtained by the Phantom
Clipping and Re-Attention Mechanism in terms of efficiency and effectiveness when adopting a larger
Transformer model. Exploring these directions would be interesting future work.

8Rather than run an addtional differentially private algorithm to report a noisy max (or argmax) (Paper-
not & Steinke, 2022), we opt for this practice of directly displaying all results due to its transparency and
comprehensiveness.
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A APPENDIX

A.1 RELATED WORK

A.1.1 DIFFERENTIAL PRIVATE DEEP LEARNING

Papernot et al. (2021) suggested tempered sigmoid activations to control the gradient norm explicitly,
and in turn support faster convergence in the settings of differentially private ML. Mohapatra et al.
(2022) studied the intrinsic connection between the learning rate and clipping norm hyperparameters
and show that adaptive optimizers like DPAdam enjoy a significant advantage in the process of honest
hyperparameter tuning. Wei et al. (2022) employed importance sampling (IS) in each SGD iteration
for minibatch selection.

One line of work focuses on adaptive optimization of differentially private machine learning. Asi
et al. (2021) proposed adaptive stepsizes as a variant of SGD. Li et al. (2022a) uses non-sensitive side
information to precondition the gradients, allowing the effective use of adaptive methods in private
settings.

Another line of work studies the loss landscape of DP-SGD in comparison to SGD. Wang et al. (2021)
first highlighted the problem of DP-SGD being stuck in local minima due to the training instability.
They constructed a smooth loss function that favors noise-resilient models lying in large flat regions
of the loss landscape. Shamsabadi & Papernot (2021) proposed that loss functions with smaller norm
can reduce the impact of clipping and thus create a smoother loss function. Park et al. (2023) makes
use of sharpnessaware training without additional privacy costs.

The most related work is Li et al. (2022b), which finetunes large language models with differential
privacy. They propose Ghost Clipping, which is a technique that enables efficient per-sample gradient
clipping without instantiating per-sample gradient. Our Phantom Clipping can be viewed as an
extension of Ghost Clipping that additionally handles parameter sharing of the embedding layer. They
also introduce the idea of effective noise multiplier in order to explain the role of batch size in private
learning. Our effective error (Equation 5) can be viewed as its generalization in order to account for
the inherent input sparsity (i.e., only a small portion of tokens appear in one training sequence).

Another related work is Anil et al. (2022), which establishes a baseline for BERT-Large pretraining
with DP. They introduce several strategies to help private training, such as large weight decay and
increasing batch size schedule. Notably, these strategies are independent yet complementary to the
methodologies utilized in this work, thereby offering potential avenues for an integrated approach.

A.1.2 LEARNING ON LONG-TAILED DATA

Previous work has also considered the differentially private learning algorithms on heavy-tailed
data Wang et al. (2020); Hu et al. (2022); Kamath et al. (2022). This line of research is mainly
concerned with differential private stochastic optimization (DP-SCO). Note that the notion of heavy-
tailed there is different from the focus of this work. As pointed out in Kamath et al. (2022), the setting
they actually consider is dealing with heavy-tailed gradients due to unbounded values in the input
data.

A.1.3 FAIRNESS IN PRIVATE LEARNING ON LONG-TAILED DATA

Sanyal et al. (2022) observed that when the data has a long-tailed structure, it is not possible to
build accurate learning algorithms that are both private and results in higher accuracy on minority
subpopulations. The goal is to obtain higher minority group accuracy, albeit at the cost of the overall
accuracy. In contrast, our emphasize is on obtaining higher overall accuracy in the presence of
long-tailed data.

A.2 PROOF OF PHANTOM CLIPPING (CLAIM 16)

Let B be the batch size. Let L ∈ N be the length of each sequence. Let si ∈ NL be a training
sample/sequence in a minibatch. Let M ∈ N be the vocabulary size. Let E ∈ RM×d be the (shared)
embedding layer.
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Let ai,s ∈ {0, 1}L×M be the one-hot encodings of the sequence si, i.e., the input of the input
embedding layer.

Let ei,s ∈ RL×d be output of the input embedding layer when fed into ai,s,

ei,s = InputEmbeddingE(ai,s). (10)

Let ẽi ∈ Rd be the output of the transformer encoder when fed into ei,s

Let ai,c ∈ {0, 1}M×M be the input of the output embedding layer. Let ei,c ∈ RM×d be output of the
output embedding layer when fed into ai,c,

ei,s = OutputEmbeddingE(ai,c). (11)

The prediction score ri ∈ RM for the next token of the sentence si is obtained by

ri = ei,s · ẽi. (12)

Let L =
∑B

i Li be the total loss where Li is the per-sample loss with respect to the i-th sample,

Li = CrossEntropy(ri, yi), (13)

where yi is the ground truth, i.e., the next token of si.

During a standard back-propagation, we can obtain

∇ei,s := ∂Li/∂ei,s ∈ RL×d, (14)

∇ei,c := ∂Li/∂ei,c ∈ RM×d. (15)

Claim A.1. (Phantom Clipping) The norm of the per-sample gradient with respect to E can be
efficiently evaluated as

∥gi,E∥ =
(
⟨ai,saTi,s,∇ei,s∇eTi,s⟩2 + ∥∇ei,c∥2 + 2 · ⟨∇ei,s, aTi,s∇ei,c⟩

) 1
2 , (16)

where ⟨·, ·⟩ is the inner product of two matrices being of the same shape.

Proof. For simplicity, we will omit the per-sample index i throughout this proof. From the chain rule,
the per-sample gradient with respect to the embedding layer E is

gE =
∂L
∂es
· ∂es
∂E

+
∂L
∂ec
· ∂ec
∂E

= aTs · ∇es︸ ︷︷ ︸
g
(1)
E

+ aTc · ∇ec︸ ︷︷ ︸
g
(2)
E

, (17)

where as ∈ {0, 1}L×M (or ac ∈ {0, 1}M×M ) is the one-hot encodings of the input sequence si
(or those of the candidate tokens for the output probability) in a minibatch, and es ∈ RL×d (or
ec ∈ RM×d) be output of the (shared) embedding layer E when fed into as (or ac). Denote the first
segment of the right-hand side (RHS) as g(1)E , the second segment of the RHS as g(2)E . Then we have

∥gE∥2F =
∥∥∥g(1)E + g

(2)
E

∥∥∥2
F
=
∥∥∥g(1)E

∥∥∥2
F
+
∥∥∥g(2)E

∥∥∥2
F
+ 2 · ⟨g(1)E , g

(2)
E ⟩. (18)

Ghost Clipping (Li et al., 2022b) allows us to evaluate
∥∥∥g(1)E

∥∥∥
F

without instantiating g
(1)
E , the formula

is given by ∥∥∥g(1)E

∥∥∥
F
= ⟨asaTs ,∇es∇eTs ⟩. (19)

Similarly, we have ∥∥∥g(2)E

∥∥∥
F
= ⟨acaTc ,∇ec∇eTc ⟩. (20)
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Note that ai,c is the one-hot encoding of [1, 2, 3, ...,M ], thus ai,c is an Identity matrix, Equation 20
can be further simplified as∥∥∥g(2)i,E

∥∥∥
F
= ⟨I,∇ei,c∇eTi,c⟩ =

M∑
i=1

⟨(∇es)i, (∇es)i⟩ = ∥∇ei,c∥2. (21)

Note that this simplification reduces the memory footprint from O(M2) to O(M), obviating the need
for evaluating ec∇eTc in Equation 20.

Therefore, computing the gradient norm of shared embedding reduces to computing ⟨g(1)E , g
(2)
E ⟩ in

Equation 18.

⟨g(1)E , g
(2)
E ⟩ = ⟨a

T
s · ∇es, aTc · ∇ec⟩

=

M∑
j=1

d∑
k=1

(
L∑

i=1

(as)ij · (∇es)ik

)(
M∑
i=1

(ac)ij · (∇ec)ik

)

=

L∑
i1=1

M∑
i2=1

 M∑
j=1

d∑
k=1

(as)i1j · (∇es)i1k · (ac)i2j · (∇ec)i2k


=

L∑
i1=1

M∑
i2=1

 M∑
j=1

(as)i1j · (ac)i2j

( d∑
k=1

(∇es)i1k · (∇ec)i2k

)

=

L∑
i1=1

M∑
i2=1

⟨(as)i1 , (ac)i2⟩ · ⟨(∇es)i1 , (∇ec)i2⟩

=

L∑
i1=1

M∑
i2=1

[i2 == onehot−1((as)i1)] · ⟨(∇es)i1 , (∇ec)i2⟩

=

L∑
i1=1

⟨(∇es)i1 , (aTs · ∇ec)i2⟩

= ⟨(∇es), aTs · (∇ec)⟩.

(22)

Combining Equation 19, 21 and 22 yields the conclusion.

A.3 MOTIVATION OF RE-ATTENTION MECHANISM

Each each iteration of model training needs randomness (e.g. sample a mini-batch, add DP noise).
We split the randomness into two disjoint parts, the coin flipping r1 ∈ {0, 1}∗ is inherited from
non-private machine learning, the coin flipping r2 ∈ {0, 1}∗ is additionally required for DP noise.
We fix r1 for now and let r2 be the uniform random variable over {0, 1}∗.

Conditioned on the model parameter (before adding DP noise) at the end of the iteration t − 1 is
θnon_private
(t−1) . By injecting DP noise, we have

θ(t−1) = Privatize(θnon_private
(t−1) , r2), (23)

where Privatize(·) refers to adding Gaussian noise to the model parameter for differential privacy,
which takes as input the non-private version of the model parameter θnon_private

(t−1) and the randomness r2
required for sampling Gaussian noise. The distribution of random variable θ(t−1) is induced by the
uniform random variable r2. Namely, θ(t−1) follows a Gaussian distribution with mean θnon_private

(t−1)

and variance σDP . It is important to stress that we are not allowed to access θnon_private
(t−1) , otherwise

this could lead to the violation of differential privacy. Instead, what we can access freely is the noisy
parameter θprivate

(t−1) after noise injection. Note that access to this noisy parameter can be interpreted as
a single sampling opportunity from its underlying Gaussian distribution θ(t−1), which can then be
viewed as a one-time Markov Chain sampling (Wang et al., 2015). Therefore, the noisy parameter
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θprivate
(t−1) can serve as an estimate of its mean θnon_private

(t−1) . Jumping ahead, we will exploit this fact in our
Re-Attention method.

Without loss of generality, assume the batch size is 1. At the beginning of the iteration t, we sample a
training sequence, denoted by seq ∈ NL where L ∈ N is the length of the sequence, using r1 as the
randomness and feed seq into the model for forward propagation. Before performing the attention
score calculation, it will first obtain the key and query as follows,

K, q = PreAttention(θ(t−1),D, r1), (24)

where D is the training data set, K ∈ Rd×L (d ∈ N is the model dimension) is the key (required
for attention score calculation) random variable whose distribution is induced by θ(t−1). Likewise,
q ∈ Rd is the query random variable.

We fix a query q ∈ Supp(q). For i ∈ [L], let Si ∈ R be the attention score of i-th token in seq
calculated from q and K. With some basic algebraic manipulation and applying the theory of extreme
value (Coles et al., 2001), we can recast the formula for attention scores as follows9,

Si = Attention(q,Ki)

=
exp ⟨q,Ki⟩∑L
j=1 exp ⟨q,Kj⟩

= exp

⟨q,Ki⟩ − log

L∑
j=1

exp ⟨q,Kj⟩


= exp (⟨q,Ki⟩ − Eγ [maxj{⟨q,Kj⟩+ γ}]),

(25)

where γ is distributed as a standard Gumbel. Let us consider some token i′ ∈ [L] that should
have attracted little attention given the query q, then the expectation of the noisy maximum
Eγ [maxj{⟨q,Kj⟩ + γ}] can be approximated by maxj ̸=i′ ⟨q,Kj⟩ + ζ, where ζ = E[γ] =
π2/6. Taking the expectation of Equation (3) over Ki′ , and leveraging the fact E[exp(X)] =
exp(E[X]) exp(Var[X]/2) when X follows a Gaussian distribution, we then arrive at the following
conclusion

EKi′ [Si′ ] ≈ EKi′ [exp (⟨q,Ki′⟩ − (maxj ̸=i′{⟨q,Kj⟩}+ ζ))]

= exp (⟨q,Ki′⟩ − M̃)︸ ︷︷ ︸
attentive relevance

· exp
(
Cσ2

i′/2
)︸ ︷︷ ︸

multiplicative error

, (26)

where M̃ = (maxj ̸=i′{⟨q,Kj⟩} + ζ) and the last equality leverages the fact that ⟨q,Ki′⟩ ∼
N (⟨q, ki′⟩, Cσ2) with C = ⟨q, q⟩. As a result, tokens with higher variance result in inflated at-
tention scores due to increased multiplicative bias, distracting attention from more deserving tokens,
given that token i′ is presupposed to garner little attention under query q. If all tokens have similar
variance or variance terms are negligible, the negative effects of this attention diversion are reduced.
However, in less ideal conditions, especially with long-tailed data, this attention distraction could
hinder the Transformer’s training, thereby degrading model utility.

A.4 PROOF OF ERROR INSTANTIATION (CLAIM 4.3 AND 4.4)

Taking the average over the minibatch in Equation 1 can be considered noise reduction of O(1/B).
Fix the noise multiplier σdp. As the size of the batch increases, the amount of DP noise incorporated
into the parameter decreases correspondingly. Suppose that token i is absent from the current training
sequence. Its input embedding will not be activated and thus will not be properly trained in this
iteration, but the DP noise will be nevertheless injected into its embedding. The concept of effective
error is introduced to account for this phenomenon.

Proof. It reduces the derive the formula for effective batch size Bθ
eff in Equation 5. Recall that its

definition is given by

Bθ
eff = E

B i.i.d∼ DB

[
B∑
i=1

I [Rθ(Bi)]

]
. (27)

9For ease of notation, we omit the constant factor (i.e., 1/
√
d) in attention computation.
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For each layer parameterized by W within the Transformer block, its effective batch size is BW
eff = B,

since RW (Bi) = 1.

For the embedding layer E, its effective batch size is

BEi

eff = E
B i.i.d∼ DB

 B∑
j=1

I [REi
(Bj)]


=

B∑
j=1

E
Bj

i.i.d∼ D
[I [REi(Bj)]] (Linearity of Expectation)

=

B∑
j=1

E
Bj

i.i.d∼ D
[I [token i ∈ Bj ]]

=

B∑
j=1

pi

= B · pi,

(28)

where pi is the frequency of token i (i.e., the probability of token i’s occurrence in data).

Remark A.2. Note that pi, as the frequency statistics, can be obtained with high accuracy with tiny
privacy budget. For simplicity, we will assume pi is publicly known in this work. We note that this is
a realistic assumption because the total number of clicks/purchase of each item is public in many
online commercial platform powered by recommendation systems.

A.5 PROOF OF LINEAR TRANSFORMATION (EQUATION 7)

Lemma A.3. Let X , Y be two independent random variables. Let Z = XY , then the variance of Z
can be expressed as

Var[Z] = Var[XY ] = E[X2]E[Y 2]− E[XY ]2. (29)

LemmaA.3 directly implies Equation 7 as follows.

Proof. Suppose the linear transformation is given by X(l) = X(l−1)W , then we have

Var[X(l)] = E[(X(l−1))2]E[W 2]− E[X(l−1)W ]2

= (E[X(l−1)]2 +Var[X(l−1)])(E[W ]2 +Var[W ])− E[X(l−1)]2E[W ]2

= Var[X(l−1)] Var[W ] + E[X(l−1)]2 Var[W ] + E[W ]2 Var[X(l−1)].

(30)

A.6 PROOF OF NON-LINEAR TRANSFORMATION (EQUATION 9)

Lemma A.4. Let X1, X2 be two independent Gaussian random variables, where Xi ∼
N (µi, σi), i = 1, 2. Let Z = max(X1, X2).

E[Z] = µ1Φ(γ) + µ2Φ(−γ) + νϕ(γ)

E[Z2] = (µ2
1 + σ2

1)Φ(γ) + (µ2
2 + σ2

2)Φ(−γ) + (µ1 + µ2)νϕ(γ),
(31)

where Φ(·) is the cumulative density function (CDF) of the standard Gaussian distribution, ϕ(·) is
the probability density function (PDF) of the standard Gaussian distribution, ν =

√
σ2
1 + σ2

2 , and
γ = (µ1 − µ2)/ν.

LemmaA.4 directly implies Equation 9 as follows.
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Proof. Let X(l) = ReLU
(
X(l−1)

)
be the ReLU activation. Substitute µ1 = E[X(l−1)], σ2 =

Var[X(l−1)], µ2 = σ2 = 0 into Equation 31. Leveraging Var[X(l)] = E[(X(l))2]− E[X(l)]2 yields
the conclusion.

Remark A.5. GELU activation. GELU function is another widely used activation function within
Transformer models. GELU can be viewed as a smooth version of ReLU (see Figure 8), where
their forward propagation is similar, and the major distinction lies in the numerical behavior of
backpropagation. Since error propagation is only concerned with forward propagation behavior, we
can also use Equation 9 to approximate the variance of GELU output. Table 3 shows the analytic
error propagation for ReLU and GELU activation, compared with the sampling-based results.

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GELU
ReLU

Figure 8: GELU activation and ReLU activation.

Table 3: Analytic error propagation for ReLU and GELU activation.

Input Activation Sampling-based Analytic10 100 1000 10000 100000 1000000

N (0, 0.01)
RELU 4.08e-6 3.60e-5 3.93e-5 3.45e-5 3.40e-5 3.40e-5 3.40e-5GELU 2.48e-5 2.69e-5 2.72e-5 2.57e-5 2.50e-0 2.49e-5

N (0, 0.1)
RELU 0.0030 0.0031 0.0037 0.0034 0.0035 0.0034 0.0034GELU 0.0030 0.0025 0.0027 0.0025 0.0026 0.0025

N (0, 1)
RELU 0.5299 0.2361 0.3649 0.3451 0.3387 0.3418 0.3408GELU 0.5525 0.2306 0.3719 0.3506 0.3433 0.3467

A.7 RE-ATTENTION MECHANISM

The algorithm description of the proposed Re-Attention Mechanism is presented in Algorithm 1.

A.8 PRIVACY GUARANTEE

Claim A.6. Given the noise multiplier, batch size, number of samples, training epochs, let (ε, δ)
be the derived parameter for DP guarantee by the privacy accountant of DP-SGD. DPFormer is
(ε, δ)-DP.

Proof. The privacy guarantee is inherited from that of DP-SGD. Details follow.

Phantom clipping is an efficient implementation of gradient clipping, having the same functionality
as vanilla per-sample clipping (i.e., the same input-output behavior). Therefore, we can think of it as
the vanilla gradient clipping when we analyze the privacy.

For Re-Attention mechanism, observe that the whole computation process only depends on the single
data sample (i.e., we do not create dependency among samples between a mini-batch, thus violating

19



Under review as a conference paper at ICLR 2024

Algorithm 1 Re-Attention Mechanism
Input: X ∈ NB×L: A minibatch of training sentences; B: batch size; L: sentence length.
Parameter: Privacy parameters ε, ϵ > 0, δ ∈ (0, 1);

1: Calculate σDP ← PrivacyAccountant
2: c(0), d(0) = ErrorInstantiation; ▷ Section 4.2.1
3: Initialize X(0) = X;
4: for l in [1, 2, ..., #layers of NN] do
5: X(l+1) = PreAttenionFeedForward(X(l));
6: S ← Self-Attention(X(l+1)) ▷ The vanilla self-attention
7: σ = Convert(c(l), d(l)))
8: S ← S/ exp

[
Cσ2/2

]
▷ Re-Attention mechanism

9: X(l+1) = PostAttenionFeedForward(Si);
10: c(l+1), d(l+1) = ErrorPropagation(c(l), d(l)); ▷ Section 4.2.2

DP like Batch Normalization). Another way to understand this is we can do whatever we like in
the forward pass as long as the computation associated with a single input sample does not rely on
other input samples of the mini-batch. Note that a caveat is discussed in Remark A.1. of Appendix.
Therefore, the private analysis reduces to DP-SGD: By clipping the gradient we can successfully
bound the per-sample sensitivity (and add the calibrated noise to guarantee DP).

A.9 EXPERIMENTAL DETAILS

A.9.1 DATASETS

MovieLens. The MovieLens dataset (Harper & Konstan, 2015) is often used in the development and
evaluation of collaborative filtering algorithms, which are used to make personalized recommenda-
tions based on user behavior. It is a benchmark dataset in the field of recommender systems due to
its size, longevity, and richness of user-item interactions. We use the version (MovieLens-1M) that
includes 1 million user behaviors.

Amazon. A series of datasets introduced in (McAuley et al., 2015), comprising large corpora of
product reviews crawled from Amazon.com. Top-level product categories on Amazon are treated as
separate datasets. We consider the ‘Games.’ category. This dataset is notable for its high sparsity and
variability.

We follow (Kang & McAuley, 2018) for the data preprocessing. We use timestamps to determine the
sequence order of actions. Each user is associated with a training sequence (i.e., his chronological
behavior). We discard users and items with fewer than five related actions. For data partitioning, the
last token of each sequence is left for testing.

It is worth noting that since each user is exclusively associated with exactly one training sample
(sequence) in the training data, the DP guarantee we provide is user-level. That is, removing all
information pertaining to a specific user yields an indistinguishable model.

A.9.2 MODEL ARCHITECTURE

We use the standard Transformer encoder described in (Vaswani et al., 2017). The model dimension
is set to 64. The number of heads in the Attention Mechanism is set to 1. The number of transformer
blocks is set to 2. Our model adopts a learned (instead of fixed) positional embedding. The model
size is similar to that in Ramaswamy et al. (2020), which is suitable for deployment on the user
devices.

A.9.3 HYPERPARAMETERS

The number of epochs is set to 100. The batch size is chosen from {256, 512, 1024, 2048, 4096}.
The learning rate is chosen from {10−3, 3× 10−3, 5× 10−3, 7× 10−3, 9× 10−3}. The dropout rate
is 0.2 for MovieLens and 0.5 for Amazon (due to its high sparsity). We use the Adam optimizer with
a weight decay of 10−5.
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A.9.4 EVALUATION

HIT@k measures whether the relevant (i.e., ground truth) item is present within the top-k items in
prediction list. It is a binary metric indicating the presence (hit) or absence of relevant items.

HIT@k =

{
1, if the next item is in top-k prediction
0, otherwise

(32)

NDCG@k measures the performance of a recommendation system based on the graded relevance of
the recommended items. It is normalized based on the ideal order of items.

NDCG@k =
DCG@k

IDCG@k
(33)

where

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
(34)

Here, reli is the relevance score of the item at position i in the recommendation list. Namely, if the
i− th item (sorted by prediction score of the model) is equal to the ground truth, reli = 1 otherwise
0. IDCG@k (Ideal Discounted Cumulative Gain at k) is the maximum possible DCG@k, obtained
by placing the most relevant items in the top positions (i.e., the item with highest prediction score is
equal to the ground truth). It’s calculated similarly to DCG@k but for the ideal order.

We adhere to the evaluation method advocated in Krichene & Rendle (2020), i.e., ranking all the
items rather than adopting the sampled metrics where only a smaller set of random items and the
relevant items are ranked. Note that under this evaluation method the accuracy value is greatly lower
than the that obtained by sampled metrics, but is more consistent and meaningful.
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A.10 EXPERIMENTS ON ATTENTION SCORE DISTRACTION

𝜀 = 5 𝜀 = 8 𝜀 = 10

Figure 9: Visualization of attention score shift with varying ε on MovieLens

To empirically demonstrate the attention score distraction phenomenon under private training, we
randomly draw five sentences from MovieLens and visualize their attention matrices with ε = 5, 8, 10
(Figure 9). Recall that as the value of ε increases (indicating a lesser amount of noise), the accuracy
of the attention score improves (and consequently, the model performance) will be. With a larger
ε (10), the attention score distribution more closely aligns with the ground truth. It is clear from
Figure 9 that due to the attention distraction caused by DP noise, when ε is low, some tokens receive
a larger amount of attention than they should have (compared with ε = 10), thereby resulting in
suboptimal model performance.
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